
1. A BRIEF SUMMARY OF CALCULUS

Calculus is one of the greatest intellectual achievements of humankind. It allows us to solve
mathematical problems that cannot be solved by other means, and that in turn allows us to
make predictions about the behavior of real-world systems that we could not otherwise make.
But beyond its usefulness, calculus has an elegant beauty that leads mathematicians to view it
as a work of art.

A full presentation of calculus requires the equivalent of four or more standard-length Amer-
ican college courses, although this is usually achieved through three one-semester courses. Be-
cause many of the most important mathematical methods in the life sciences are calculus-based,
the reader needs to know some calculus in order to proceed. Fortunately, much of the material
in the full development of calculus is not vital for the development of the these mathematical
methods. The typical reader of this material has probably taken only the first course in calculus,
and has therefore seen barely one third of the full presentation. For some readers, this study of
calculus may be part of the distant past. We therefore begin with a very brief summary of the
calculus background required for the mathematical work that follows. In subsequent chapters,
the reader will be expected to have a solid understanding of the material of this chapter.

Isaac Newton was using calculus by 1666, but solid mathematical definitions of the core
concepts of calculus were first published by Augustin Cauchy in 1840. Careful development of
calculus theory is the subject of analysis, which is a very important branch of pure mathematics.
According to mathematical dogma, nothing can be said to be true until it has been proven.1

Hence, the mathematics community is almost unanimous in the view that all mathematical
instruction should be based on definitions, theorems, and proofs. This is just the right attitude
to take about many areas of mathematics. But it is harmful to the student of calculus. We will
adopt a pragmatic definition of truth, in which something is true if it works. This was good
enough for Newton, Gottfried Leibniz, and other developers of calculus, and it should be good
enough for the calculus student as well. Those readers who want to see mathematical proofs
can find them in any standard calculus text.

This chapter can be subdivided into four portions. The first portion consists of Section 1,
which introduces the notion of continuous mathematical systems as contrasted with the more
familiar discrete systems of mathematics. The central breakthrough of calculus is the method
for developing notions of continuous mathematics from notions of discrete mathematics, using
the limit process. The overall pattern that we use to create continuous mathematics from
discrete mathematics is the focus of this first section. Sections 2 and 3 comprise the second
portion of this chapter, which is devoted to the development of the two central concepts of
calculus: the derivative and the definite integral. These concepts are defined as the solutions
of geometry problems, and then the geometry problems are solved by the procedure introduced
in Section 1. Sections 4 and 5, consisting of the principal computational techniques of calculus,
is the third part of the chapter. The final part of the chapter treats the applications of the
derivative and the definite integral in a very broad way.

After studying this chapter, you should be very comfortable with the concepts of the deriva-
tive and the definite integral and how they are applied to a variety of problem types and have
an intuitive feel for continuous mathematics. You should be able to compute simple derivatives
and definite integrals, but you do not need to be an expert at calculus computations.

1“A mathematician is someone who believes that one should not drive a car until after he has built one
himself.” (G. Ledder)
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1.1 Continuity and Limits

The central concepts of calculus are continuity and limits. Unfortunately, these concepts are
very difficult to define. Mathematics did not acquire a full understanding of continuity and
limits until more than 100 years after the methods of calculus were discovered. This situation
poses a pedagogical problem for anyone who would try to teach calculus. Do we begin with the
mathematical definitions, because good definitions are an essential mathematical foundation or
do we proceed without mathematical definitions, because the calculus methods can be developed
without them?

Mathematicians as a group needed to be able to do calculus before they could create a
sound mathematical foundation for the subject. It seems unreasonable to expect the individual
student to do what the mathematical community could not so. Hence, we will make no attempt
to give a sound mathematical treatment of continuity and limits. Instead, we will present these
concepts through an intuitive approach.

Discrete and continuous quantities

There are two basic processes that we generally use to indicate quantity: counting and measur-
ing, where we are using “measuring” to refer specifically to analog methods such as measuring
the length of an object with a ruler. The important characteristic of measuring that distin-
guishes it from counting is that all values within some interval are possible measurements. One
could, for example, cut a piece of string of length π by laying it on a circle of diameter 1
and then use the string to make a mark on a ruler to indicate the length π. We can’t offer a
procedure for measuring a length of e, but it is possible in principle that a ruler could have a
mark that measures out any length shorter than the ruler.

Given this restricted use of the concept of measuring, quantities that are determined by
counting are discrete and quantities that are determined by measuring are continuous.1

Note that we are not defining the terms “discrete” and “continuous” here; we are just applying
them to the methods used to indicate quantity.

Example 1.1.1
The number of individuals in a population is discrete because only non-negative integers are possible.
The location (say the exact longitude and latitude) of each individual is continuous because all values
are possible within the spatial domain occupied by the population. ¦

Perhaps the best way to understand the difference between discrete and continuous is with
a thought experiment. Suppose we use computer software to plot a smooth graph; say we
choose y = x2 + 3x with the viewing window −3 < x < 3 and −4 < y < 20. Any such graph
is created by plotting such a large number of points that you can’t see the space between the
points. There is an appearance of a smooth curve simply because your eye can’t resolve the
marks into distinct points, but the actual data plotted in the graph is discrete. Figure 1.1.1a
is a plot consisting of 300 points.
Now suppose we lock in the coordinates of the points used to create the graph, so that we will
always be examining the same discrete data set. Next, we draw a rectangular box centered on

1In actual practice, measurements must be reported as discrete approximations, rounded off to the nearest
integral number of some unit of measure. Note that we can make the unit as small as we like, measuring time
in milliseconds, microseconds, or nanoseconds as needed. In practice, we can only go so far, but in principle
there is no limit to how small a unit of time we can use.
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Figure 1.1.1: A data set consisting of points with x values separated by 0.02

a particular point, say the box with corners at (−1,−4) and (1, 4), which is centered around
(0, 0), which we assume is one of the points in the data set. Finally, we use the coordinates of
the corners of the box as the dimensions of the viewing window for a new graph of the same
physical size. We are “zooming in” on a portion of the graph. Not all the points in the original
graph will show up in the smaller viewing window. The points will also be farther apart. In
Figure 1.1.1b, there are 100 points and the plot still appears to be smooth. If we continue to
zoom in on the same point, eventually the viewing window will be small enough that we see
some space separating the discrete points. Figure 1.1.1c shows only 19 points, which are clearly
distinct. Zooming in on the same point again and again, the graph will eventually be reduced
to the single point in the center.

• When you repeatedly zoom in on discrete data, you eventually have a set of points that are
far removed from each other, regardless of the actual distance between the points. Stated
in a different way, the distance between discrete points becomes infinite if we report that
distance in smaller and smaller units of measurement.

The plots in Figure 1.1.1 were made from a set of points. Suppose we use the formula and
let the computer choose the points. When we zoom in on the point (0, 0) without locking in
the coordinates of the points being displayed, the plot rendered by the software will be just as
smooth as the original plot. The software will choose points that are closer together if we make
the viewing window smaller.

• When you repeatedly zoom in on continuous data, your new graph is as smooth as the
old graph because more points are added in between the points of the previous graph. In
principle, this process can be repeated infinitely many times without ever resolving the
plot into isolated points.

The boundary between discrete and continuous can be blurry. Suppose we measure the
masses of some samples of water. For the sake of the thought experiment, let’s say that all
of the water is made from hydrogen atoms of a single isotope and oxygen atoms of a single
isotope.2 No matter whether we measure the mass in milligrams, micrograms, or nanograms,
we can always find a sample whose mass is between any two consecutive integer units. Mass
appears to be continuous. However, our water is made of molecules, which are discrete. If we
use “molecules of water” as our unit of mass, we can only measure integer quantities. So mass
in this example is actually discrete. In practice, there is no harm in thinking of mass as a
continuous quantity. The number of cells in a gram of heart tissue is far less than the number

2This gives all of the molecules exactly the same mass.
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of molecules in a gram of water, but it still seems reasonable to think of the number of cells as
continuous. Given that the mass of a mosquito is approximately 0.5 mg, there are about 2000
individuals in a gram of mosquitos. If we are doing an experiment with approximately a gram
of mosquitos, it is not clear whether we could think of the number of mosquitos as a continuous
quantity.

In actual fact, many quantities either depend on mass or energy, both of which are funda-
mentally discrete. Hence, we could choose to use discrete mathematics for almost everything.
And yet the previous paragraph talks as though we should prefer to think of quantities as con-
tinuous rather than discrete. If continuous quantities are so much harder to understand, why
should we prefer to use them? The answer is that models based on continuous mathematics are
often simpler and easier to study than models based on discrete mathematics. This will only
become clear in Chapter 4.

The limit

The essential tool of continuous mathematics is the limit.

Example 1.1.2
Consider the function defined by

f(x) =
6x− 6

x3 − x2 + 2x− 2
.

The graph of this function, seen in Figure 1.1.2, gives the appearance of a continuous quantity. How-
ever, a quick calculation shows that the formula cannot assign a value to f(1). The function is
continuous except for this one value of x. But now suppose we zoom in on the point (1, 2). No matter
how many times we zoom in, we can never see the hole in the graph. Based on our examination of the
graph, it appears that (1, 2) is as much a part of the curve as the point (0, 3). What do we make of the
observations that the function is not continuous in terms of algebraic calculation, but its graph cannot
be distinguished from that of a continuous function? The answer is the difference between algebra
and calculus. In algebra, the calculation is what counts. In calculus, it is the graph that matters.

How do we indicate that the point (1, 2) ought to be part of the graph even though it cannot be
determined from the formula for the function? We say that the limit of f(x) as x approaches 1 is 2,
and we write

lim
x→1

6x− 6
x3 − x2 + 2x− 2

= 2.

¦
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Figure 1.1.2: The function f of Example 1.1.2, a graph with an invisible hole

Example 1.1.2 suggests an intuitive statement about the meaning of limit.
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• lim
x→a

f(x) = L means that no matter how many times we zoom in on the point (a, L), the

graph always appears to include the point (a, L), regardless of whether f(a) = L or not.

We obtained the conclusion lim
x→1

f(x) = 2 in Example 1.1.2 using graphical methods. We

could have obtained the same conclusion using algebra.

Example 1.1.3
Observe that

6x− 6
x3 − x2 + 2x− 2

=
6(x− 1)

(x− 1)(x2 + 2)
=

6
x2 + 2

,

except for x = 1. The functions

f(x) =
6x− 6

x3 − x2 + 2x− 2
, g(x) =

6
x2 + 2

are identical at all points except x = 1. Since a single point missing from a graph cannot be seen,

lim
x→1

f(x) = lim
x→1

g(x) = 2,

even though f(1) 6= g(1). ¦
Mathematicians say that f and g of Example 1.1.3 are almost equal, which means that all

their limit values are equal even though the function values are not always equal.3 In continuous
models, we are able to treat almost equal functions as exactly equal because we use limit values
rather than algebraic values.

Summary

Thinking of functions in terms of their graphs, rather than the formulas used to calculate points
on the graph, allows us to ignore holes in a graph caused by isolated input values for which
the formula doesn’t work. In these cases, we can define the (graphical) function value as a
limit. These ideas are used in calculus to develop the central concepts of the derivative and
the definite integral. In the next two sections, we will develop these concepts using the same
overall plan:

1. State a general problem about functions that can be solved algebraically only for the
simplest cases, and define the calculus concept to be the as-yet-unknown solution of that
general problem.

2. Develop a scheme to obtain approximate solutions of the general problem. The scheme
must include a refinement parameter that can be adjusted to make the approximation
more and more accurate, up to an extreme parameter value for which the approximation
formula does not work.

3. Think of the approximation result as a function of the refinement parameter. Determine
a limit value for the approximation at the extreme value of the parameter by zooming in.
This gives the desired solution on the principle that holes in a graph can be ignored in
continuous models.

3Limit values are all equal for functions that differ only at one or more isolated points.
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1.2 The Derivative

In Section 1.1, we developed some basic ideas and presented the procedure used to develop
the key concepts of calculus. We now apply that procedure to the first of these concepts, the
derivative.

The tangent slope problem

1. State a general problem about functions that can be solved algebraically only for the
simplest cases, and define the calculus concept to be the as-yet-unknown solution of that
general problem.

PROBLEM
Find the function f ′(x) whose value is the slope of the line tangent to y = f(x) at any point
where the tangent line is well defined.

DEFINITION
The derivative of the function f(x) is the function f ′(x) whose value is the slope of the line
tangent to y = f(x).

Note that we are giving a semantic definition of the word “derivative” rather than a math-
ematical definition of the mathematical object called the derivative. We must discover the
mathematical definition of the derivative by completing the three-step program for concept
development in calculus. The problem in this case meets the requirements for step one. It
is general, in that we can apply it to any function whose graph has well-defined tangents. It
can be solved algebraically for the elementary case of a linear function. It cannot be solved
algebraically for any curve other than the arc of a circle.

An approximation scheme

2. Develop a scheme to obtain approximate solutions of the general problem. The scheme
must include a refinement parameter that can be adjusted to make the approximation
more and more accurate, up to an extreme parameter value for which the approximation
formula does not work.

Algebra provides a simple formula for determining the slope of a line, provided that two
points on the line are known. What makes the tangent slope problem difficult is that we only
know one point on the line. Our procedure does not require an algebraic solution–only an
algebraic approximation. If we choose two points on the curve, we can connect them with a
straight line and determine its slope. A line defined in this manner is a secant line rather than
a tangent line. We can use the secant slope as an estimate of the tangent slope.
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Example 1.2.1
Consider the function f(x) = 3 − (x − 2)2. Figure 1.2.1 shows this function, along with the tangent
line at the point x = 1 and the secant line connecting that point with the point x = 2. The slope of
the secant line is easy to compute:

msec =
∆y

∆x
=

f(2)− f(1)
2− 1

=
3− 2

1
= 1,

msec =
∆y

∆x
=

f(2)− f(1.5)
2− 1.5

=
2.75− 2

1
= 0.75.

Both secant slopes approximate the tangent slope. Neither approximation is very accurate, but we
can make better approximations by moving the second point closer to the first point. ¦
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Figure 1.2.1: The function f of Example 1.2.1, along with a tangent and two secants

Solution of the problem

3. Think of the approximation result as a function of the refinement parameter. Determine
a limit value for the approximation at the extreme value of the parameter by zooming in.
This gives the desired solution, on the principle that holes in a graph can be ignored in
continuous models.

Our approximation scheme needs to be very clear about which secant line is being used. To
that end, observe that a secant line is determined by the choices of the two x coordinates of
the points. The first point is the one where we have drawn the tangent line, so we use x to
denote that point. For the second point, we could use the x coordinate as well; instead, it is
more convenient to define h to be the horizontal distance ∆x between the points. We can then
prescribe a specific secant line by choosing values of x and h. Because the secant slope depends
on these two quantities, we can write a general formula for the secant slope as a function of x
and h.

APPROXIMATION
The slope of the tangent line to the graph y = f(x) at x can be approximated by

msec(x, h) =
∆y

∆x
=

f(x + h)− f(x)

h
, (1.2.1)

becoming as accurate as desired by making h small enough.
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Example 1.2.2
Applying our new notation to the function f(x) = 3− (x− 2)2 (Example 1.2.1), we have

msec(1, 1) = 1, msec(1, 0.5) = 0.75.

In general, we have a family of secant slopes that approximate f ′(1), our notation for the tangent
slope at x = 1:

msec(1, h) =
[3− (1 + h− 2)2]− [3− (1− 2)2]

h
=

[3− (h− 1)2]− 2
h

.

¦
It is important to be very clear about the distinction between the quantities x and h. The

former is the independent variable of the functions f and f ′ and represents the point where
the tangent line is to be drawn. The latter is a parameter that measures the coarseness of the
approximation. The smaller a value we choose for h, the more accurate an approximation to
the tangent slope we get from the secant slope. The value h = 0 is the extreme value referred
to in the procedure. We can’t take h = 0, because then we would have only one point and no
secant; however, we can get as close to this extreme value as we wish. The stage is set for us
to use our zooming procedure to solve the tangent slope problem.

Example 1.2.3
Given the function f(x) = 3− (x−2)2 and the point x = 1, we have already obtained the secant slope
formula

msec(1, h) =
[3− (h− 1)2]− 2

h
.

This formula does not assign a value to h = 0; however, if h 6= 0, we have

msec(1, h) =
3− (h2 − 2h + 1)− 2

h
=

2h− h2

h
= 2− h.

The graph of this function appears in Figure 1.2.2. ¦
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Figure 1.2.2: The function msec(1, h) of Example 1.2.3

The plot in Figure 1.2.2 has a hole in it at the point (0, 2). But as we saw in Section 1.1,
we cannot see a hole in a graph, no matter how many times we zoom in. If we allow the limit
value to represent the secant slope function at h = 0, we have

f ′(1) = lim
h→0

msec(1, h) = 2.
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There was nothing special about the point x = 1 in Examples 1.2.1 through 1.2.3.

SOLUTION
The slope of the line tangent to y = f(x) at any point x where there is a unique tangent is
given by

f ′(x) = lim
h→0

msec(x, h), where msec(x, h) =
∆y

∆x
=

f(x + h)− f(x)

h
. (1.2.2)

Example 1.2.4
Let f(x) = 3− (x− 2)2 = 3− (x2 − 4x + 4) = −x2 + 4x− 1. For arbitrary x, and h 6= 0, we have

msec(x, h) =
[−(x + h)2 + 4(x + h)− 1]− [−x2 + 4x− 1]

h

=
[−(x2 + 2xh + h2) + 4x + 4h− 1]− [−x2 + 4x− 1]

h

=
−2xh− h2 + 4h

h
= −2x− h + 4.

Then
f ′(x) = lim

h→0
(−2x− h + 4) = −2x + 4.

In particular, f ′(x) = 2, as we had already determined. ¦

Summary

The crucial point of this section is the definition at the beginning:

• The derivative f ′(x) is the function that represents the slope of the tangent to the graph
of f at x.

We will use this concept in applications in Section 1.7. In the remainder of these notes, much
of our work with continuous models will be based on the concept of the derivative as stated
here.
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1.3 The Definite Integral

In Section 1.2, we developed the key concept of the derivative by using the three-step procedure
outlined in Section 1.1. We now apply this procedure to the second key concept of calculus:
the definite integral.

The area problem

1. State a general problem about functions that can be solved algebraically only for the
simplest cases, and define the calculus concept to be the as-yet-unknown solution of that
general problem.

PROBLEM
Find the area A bounded by the nonnegative function f(x), the x axis, and the vertical lines
x = a and x = b, with a < b.

DEFINITION
The definite integral of the function f(x) over the interval a ≤ x ≤ b is the area described

in the previous statement of the problem. This quantity is denoted
∫ b

a
f(x) dx, which is read

“the integral of f from a to b.” The function f is called the integrand and the numbers a and
b are called the limits of integration.

As with the derivative, this is a semantic definition of the term “definite integral.” We must
discover the mathematical definition of the definite integral by completing the three-step con-
cept development program. The area problem can be applied to any function whose graph is
moderately smooth. It can be solved algebraically for the elementary case of a linear function.

An approximation scheme

2. Develop a scheme to obtain approximate solutions of the general problem. The scheme
must include a refinement parameter that can be adjusted to make the approximation
more and more accurate, up to an extreme parameter value for which the approximation
formula does not work.

We can use the formula for area of a rectangle to approximate the area under a curve.
While we won’t necessarily have a good approximation, we can use more rectangles to make
the approximation better.

Example 1.3.1
Consider the function f(x) = 1 + x2 between x = 0 and x = 1. Figure 1.3.1 shows this function,
along with approximations using two and four rectangles. The calculated area clearly depends on the
number of rectangles used. If A(n) is the area approximation obtained with n rectangles, then we
have

A(2) = f(.5) · 0.5 + f(1) · .5 = 1.25 · .5 + 2 · .5 = 1.625,

A(5) = f(.2)·.2+f(.4)·.2+f(.6)·.2+f(.8)·.2+f(1)·.2 = 1.04·.2+1.16·.2+1.36·.2+1.64·.2+2·.2 = 1.44.
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Figure 1.3.1: The function 1+x2, along with area approximations using two and five rectangles

¦
Notice that we have followed the practice in Example 1.3.1 of using the x values at the

right of each interval to determine the height of the approximating rectangle. We could just
as well have chosen the left boundary of each interval, or we could have obtained a better
approximation using the midpoint of each interval. In the use of the area problem to define the
definite integral, and of these is equally good. The right endpoint is more convenient because
it makes for the simplest general approximation formula.

Solution of the problem

3. Think of the approximation result as a function of the refinement parameter. Determine
a limit value for the approximation at the extreme value of the parameter by zooming in.
This gives the desired solution, on the principle that holes in a graph can be ignored in
continuous models.

The notation we need for the approximation scheme has already been introduced in Example
1.3.1. The refinement parameter is n, the number of rectangles, and the extreme value of the
parameter is infinity.

Example 1.3.2
Consider the function f(x) = 1 + x2 between x = 0 and x = 1. With n intervals, the width of each
interval is 1/n. The x values on the right side of each interval are 1/n, 2/n, . . . , 1. The rectangle
heights are obtained by substituting these x values into the function f :

1 +
1
n2

, 1 +
4
n2

, 1 +
9
n2

, . . . , 1 + 12.

Thus,

A(n) =
(

1 +
1
n2

)
1
n

+
(

1 +
4
n2

)
1
n

+
(

1 +
9
n2

)
1
n

+ · · ·+ (2)
1
n

=
n∑

k=1

(
1 +

k2

n2

)
1
n

.

¦
In determining the general formulas for the approximation scheme, we need to keep in mind

that the left and right boundaries of the area are not necessarily 0 and 1. In general, if the
integration interval is [a, b], then the width of each interval is ∆x = (b− a)/n. The x value at
the right of the first interval is x1 = a + ∆x, and each successive x value is another ∆x to the
right: xk = a + k∆x. We have the following result:
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APPROXIMATION
The area under f(x) on a ≤ x ≤ b can be approximated by

∆x =
b− a

n
, xk = a + k∆x, A(n) = ∆x

n∑

k=1

f(xk), (1.3.1)

becoming as accurate as desired by making n large enough. Note that the factor ∆x can be
removed from the summation because it is not a function of k.

Example 1.3.3
Suppose we want to determine the area underneath one positive portion of the sine function. The
equation sinx = 0 has solutions x = 0,±π,±2π, . . ., and the function is positive on the interval [0, π].
With n subdivisions, we have

∆x =
π

n
, xk =

kπ

n
, A(n) =

π

n

n∑

k=1

sin
(

kπ

n

)
.

The approximations with n = 2 and n = 6 are illustrated in Figure 1.3.2. Specifically,

A(2) =
π

2

[
sin

(
π

2

)
+ sin (π)

]
=

π

2
≈ 1.571,

A(6) =
π

6

[
sin

(
π

6

)
+ sin

(
2π

6

)
+ sin

(
3π

6

)
+ sin

(
4π

6

)
+ sin

(
5π

6

)
+ sin (π)

]
=

π

6
(2 +

√
3) ≈ 1.954.

Note that for any n, the last rectangle has height 0 because sinπ = 0. ¦
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Figure 1.3.2: The function sin x, along with area approximations using two and six rectangles

There are some technical difficulties involved in the definite integral that we did not en-
counter in the derivative. For the moment, we can simply write down the solution of the area
problem as a limit.

SOLUTION
The area under the graph of y = f(x) ≥ 0 on the interval a ≤ x ≤ b is

∫ b

a
f(x) dx = lim

n→∞

[
∆x

n∑

k=1

f(xk)

]
, where ∆x =

b− a

n
, xk = a + k∆x. (1.3.2)

We have restricted consideration to nonnegative integrands. This has been done to make the
area-integral connection easier to visualize. However, the restriction f ≥ 0 is not necessary
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for the definition and calculation of definite integrals. If the function is negative, then the
summation will be negative, and we will have a negative result for the definite integral. The
integral still represents the area between the curve and the x axis, provided that we associate
negative areas with regions below the x axis.

The limit as n →∞
In our previous discussion of limits, we have worked with functions that were continuous except
at the point of interest and we associated the limit value with the y value of the hole in the
graph. Obviously this will not work if we are looking at the limit as an integer n increases

to infinity. The area approximations for
∫ 1

0
(1 + x2) dx and

∫ π

0
sin x dx are plotted in Figure

1.3.2. Note that both functions have an asymptote,1 and this is the limit value that we seek.
As a practical matter, the details of computing the limits that define definite integrals need not
concern us. We will develop the best methods for integral computation in Section 1.5. In that
section, we will see that the correct values are

∫ 1

0
(1 + x2) dx =

4

3
,

∫ π

0
sin x dx = 2.

0 10 20 30 40 50
1.3

1.4

1.5

n

A(n)

0 10 20 30 40 50
1.8

1.9

2

2.1

n

A(n)

Figure 1.3.3: The approximations A(n) for Examples 1.3.2 and 1.3.3

Summary

The crucial point of this section is the connection between the definite integral and area:

• The definite integral
∫ b

a
f(x) dx is the area between the graph of y = f(x) and the x

axis over the interval a ≤ x ≤ b, with positive f corresponding to areas above the x axis
and negative f corresponding to areas below the x axis.

We will use this concept in applications in Section 1.8. Continuous models in probability, which
we will see in Chapter 3, also utilize the definite integral.

1We are using the term here because its meaning is clear from the context. Technically, the term should be
restricted to continuous functions.
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1.4 Computing Derivatives

In solving the tangent slope problem of Section 1.2, we obtained a formula, Equation 1.2.2,
that provides a mathematical definition of the derivative. In principle, this formula could be
used to compute derivatives; in practice, there is a much better way to do this. As a starting
point, we need

• derivative formulas for a small number of basic functions, and

• general rules for reducing differentiation problems to the basic formulas.

Elementary derivative formulas

Table 1.4.1 summarizes the elementary derivative formulas that we need for our differentiation
scheme. These formulas can be obtained with varying amounts of difficulty. The first five

f(x) xp [p 6= 0] eax ln x sin ax cos ax arctan
x

a
arcsin

x

a

f ′(x) pxp−1 aeax 1

x
a cos ax −a sin ax

a

a2 + x2

1√
a2 − x2

Table 1.4.1: Elementary derivative formulas

come from a combination of Equation 1.2.2 with selected limit values that are not difficult to
determine from a graph, while the latter two come from application of the basic rules given
below.

Example 1.4.1
Let f(x) = eax. Then the secant slope is

msec(x, h) =
eax+ah − eax

h
=

eaxeah − eax

h
= eax eah − 1

h
= aeax eah − 1

ah
.

Thus,

f ′(x) =

[
lim
h→0

eah − 1
ah

]
aeax =

[
lim
y→0

ey − 1
y

]
aeax.

Using our graphical zooming technique, we can assert

lim
y→0

ey − 1
y

= 1;

hence,
f ′(x) = aeax.

¦
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General derivative rules

The task of symbolic differentiation is greatly facilitated by the existence of general rules that
allow us to reduce differentiation of various algebraic structures to differentiation of elementary
functions.

Let f and g be differentiable functions and let a and b be real constants.

Linearity rules
[af(x) + bg(x)]′ = af ′(x) + bg′(x). (1.4.1)

Product rule
[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x). (1.4.2)

Quotient rule [
f(x)

g(x)

]′
=

f ′(x)g(x)− f(x)g′(x)

[g(x)]2
, g 6= 0. (1.4.3)

Chain rule
[f(g(x))]′ = f ′(g(x))g′(x). (1.4.4)

Example 1.4.2

[
3x2 +

√
x + 2x

]′
= 3(x2)′ + (x1/2)′ + (ex ln 2)′ = 3 · 2x +

1
2
x−1/2 + (ln 2)ex ln 2 = 6x +

1
2
√

x
+ (ln 2)2x.

[
x2 cos 3x

]′
= (x2)′ cos 3x + x2(cos 3x)′ = 2x cos 3x− 3x2 sin 3x.

[
x

a + x

]′
=

(x)′(a + x)− x(a + x)′

(a + x)2
=

(a + x)− x · 1
(a + x)2

=
a

(a + x)2
.

[sin(lnx)]′ = cos(lnx)(lnx)′ =
cos(lnx)

x
.

¦
Our small list of elementary formulas and general rules allow us to compute derivatives for

most any function we will encounter in biology. Computer algebra systems, such as Maple and
Mathematica, can also compute derivatives. For this reason, it is not crucial for life science
students to master the mechanics of differentiation. It is useful to be able to compute derivatives
for relatively simple cases, such as those in Example 1.4.2.

The chain rule in terms of variables

The chain rule is of vital importance in many applications of mathematics, even given a choice
to use computer algebra systems to compute derivatives. The reason is that the chain rule is
often used to change variables in a differential equation model. We will see this use of the chain
rule in that context, but for now we focus on the understanding of the chain rule that will be
needed at that time. We begin with a physical example that illustrates how the chain rule is
much more than a mere computational tool.
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Example 1.4.3
A metal rod is placed so that one end is in a campfire and the other end is resting on the cold ground
outside of the fire. An insect is walking along the metal rod away from the fire at a constant speed.
Suppose the temperature along the metal rod is given by T (x) and the position of the insect is given
by x = s(t). The variable x serves as the independent variable for the temperature profile and the
dependent variable for the motion of the insect. This notation is not completely consistent, because in
T (x) we are using x to simultaneously represent all locations on the rod, while in x = s(t) we are using
x to represent the unique location of the insect at any particular time. Adding to the confusion, we
might be interested in the temperature experienced by the insect. The insect’s temperature is changing
in time because of the insect’s motion; hence, if we use u to denote the insect’s temperature, then we
should have u be determined by a function of t. This temperature u is determined by evaluating T at
the point x that gives the insect’s location; thus,

u = T (s(t)).

We can use this equation to write a relationship between the derivatives of u and T . Applying Equation
1.4.4, we have

u′(t) = T ′(s(t))s′(t).

In this equation, u′(t) is the rate of change of the insect’s temperature with respect to time, T ′(x)
is the rate of change of the temperature with respect to the distance at any point on the metal rod,
T ′(s(t)) is the rate of change of the temperature with respect to the distance at the insect’s location,
and u′(t) is the speed of the insect’s motion. ¦

This is a good point at which to introduce an alternative notation for the derivative. Our
standard notation, in which f ′ is the derivative of f , is fine as long as there is no difficulty in
knowing what variable is the independent variable. The equation u′(t) = T ′(s(t))s′(t) can be
confusing because the prime symbol refers to the time derivatives of u and s and the spatial
derivative of T . An alternative is to include the independent variable in the notation by using
dT
dx

instead of T ′ and du
dt

instead of u′. We then have

du

dt
(t) =

dT

dx
(s(t))

ds

dt
(t).

This notation can also be confusing. It is common in mathematical modeling to address this
confusion by abandoning the standard function notation of mathematics. Carefully reread the
text of Example 1.4.3, and you will see that the five quantities, T , x, s, t, and u are really of
two types: t, x, and u are variables, while T and s are functions that are used to indicate the
relationships among the variables. In terms of variables, we have three simultaneously changing
quantities, with time t as the independent variable and the insect’s location x and temperature
u as the dependent variables. The dependent variables have rates of change denoted du/dt and
dx/dt, and the derivative du/dx denotes the rate of change of the insect’s temperature with
respect to the insect’s position. These rates of change are related by the chain rule, which then
appears as

du

dt
=

du

dx

dx

dt
.

While less mathematically precise, this last form is much more elegant. It looks like an equation
about multiplication of fractions, which is particularly memorable even if not precisely correct.

Chain rule
If u depends on x and x depends on t, then

du

dt
=

du

dx

dx

dt
. (1.4.5)
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Change of variables in derivatives

A given quantity can be measured in a variety of units. In a laboratory setting, one chooses
units that are convenient for measurement, given the experiment at hand. Time might be
measured in years for an experiment on progression of AIDS, months for certain cancer survival
experiments, weeks for human embryo development, days for antibiotic therapy experiments,
hours for bacteria growth in a culture, or minutes for blood clotting experiments, to name a
few examples. In mathematical models, time is measured in units that are tied to the rates of
crucial processes rather than familiar measurement units.

Example 1.4.4
Suppose we are studying the natural growth of an invasive species in a lake. For the sake of a thought
experiment, suppose that the population is known to double in approximately 3 years. Let P be
the population and t the time measured in years. A model of the population growth would assume
that the growth is deterministic rather than random, and with a doubling time of exactly 3 years. A
discrete model is given by the equation

P (t + 3) = 2P (t).

A continuous model is given by the equation

dP

dt
= kP,

where k is an as-yet-unknown constant and we have assumed that the rate of population growth is
proportional to the current population. This model will be discussed in detail in Chapter 4. For now,
let us merely observe that the formula

P = Aekt

has the desired property for any constant value of A, since (Aekt)′ = A · kekt = kAekt = kP , where
the prime symbol refers to derivatives with respect to time. Now we can use the problem details to
determine k. We still must have P (t + 3) = 2P (t) for our continuous model; hence,

Aek(t+3) = 2Aekt.

Dividing both sides of the equation by Aekt yields

e3k = 2,

from which we obtain 3k = ln 2 or
k =

ln 2
3
≈ 0.231.

Returning to our model and solution, we can at this point ask ourselves what the model and
solution would be if we measured time in some unit other than years. One possibility is “doubling
times,” a unit based on the population growth rather than convenience of measurement. Suppose s is
the time measured in terms of doubling times. Then s = t/3 because every three years corresponds
to one doubling time. In terms of s, the population is

P = Aek(3s) = A
(
e3k

)s
= A 2s,

where we have used the equation e3k = 2 that we determined earlier. The use of s removes the quantity
k from the solution, which makes for a simpler result.
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Another possibility, less obvious but ultimately more convenient, is to measure time in multiples
of (1/k) ≈ 4.328 years. In other words, we define a new time variable by z = kt, so that t = 1/k
corresponds to z = 1. In terms of z, the population is

P = Aek(z/k) = Aez.

As with the replacement of t by s, replacing t by z removes the constant k. This change has the
additional advantage of simplifying the differential equation. By differentiating P = Aez, we can see
that the original model changes from

dP

dt
= kP

to
dP

dz
= P.

Using z rather than t eliminates k from both the original model and the solution of the model. There
are important mathematical advantages gained from this change. ¦

Example 1.4.4 required a long-winded discussion to arrive at a general statement about
mathematical models:

• Choosing units based on quantities that arise naturally in a model rather than units based
on convenience of measurement makes models simpler.

The connection with the computation of derivatives is that most mathematical models do not
have simple solution formulas. The change of variables usually must be made without knowledge
of the solution. Returning to Example 1.4.4, how could we have changed the model from the
equation dP/dt = kP to dP/dz = P without already knowing the formula P = Aez? The
answer is supplied by the chain rule. We have an equation that contains dP/dt and we want
an equation that contains dP/dz instead. These quantities are related by the chain rule and
the equation z = kt that defines z. We have

dP

dt
=

dP

dz

dz

dt
= k

dP

dz
.

Substituting this relation into dP/dt = kP yields

k
dP

dz
= kP,

which reduces to
dP

dz
= P.

The process of changing an equation so that quantities with units convenient for measurement
are replaced by quantities with units that arise naturally in the model is called nondimen-
sionalization.
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1.5 Computing Definite Integrals

Equation 1.3.2 is an excellent mathematical definition of the definite integral, but it is almost
useless as a means of computing definite integrals. As a general rule, it is harder to compute
definite integrals than derivatives. We developed a complete set of rules in Section 1.4 for
obtaining derivative formulas for any function made from elementary components. No such
scheme is possible for definite integrals. Instead, we will develop (1) an exact method that only
works some of the time and (2) improved formulas for integral approximation.

The Fundamental Theorem of Calculus

So far, we have treated the derivative and the definite integral as two important calculus
concepts whose only relationship is that they are defined to give the solution of a geometry
problem. In fact, the connection between derivative and definite integral is so intimate that the
formal statement of this connection is called the Fundamental Theorem of Calculus.

The Fundamental Theorem is not difficult to derive; calculus textbooks generally include a
derivation. In keeping with our emphasis on understanding and use of ideas, we are instead going
to develop the Fundamental Theorem by solving the same problem twice from two different
points of view. The result will be a statement of the Fundamental Theorem that is intuitively
clear, indicates how the theorem is used to compute definite integrals, and explains why most
definite integrals cannot be computed in this way.

Example 1.5.1
Suppose you begin a drive on an Interstate highway. You travel in the direction of increasing mileposts,
and at some point you stop. How much change has there been in your position?

Let t be time and x be distance as measured by mileposts. Your location is a function of time. If
you start at time a and finish at time b, then you have traveled from milepost x(a) to milepost x(b).
The total change in your position is the difference between these mileposts:

∆x = x(b)− x(a).

¦

Example 1.5.2
Suppose you cannot see the mileposts on the road. Instead, your car has a device that records your
speed v as a function of time t. How much change has there been in your position?

Suppose we partition the time interval a ≤ t ≤ b into n equal subintervals. Each subinterval is
of length ∆t = (b − a)/n. The first interval is from time a to time a + ∆t, the second is from time
a + ∆t to time a + 2∆t, and so on. Now for each of these subintervals, we can approximate the
distance traveled. Assuming that your speed at time a + k∆t is approximately correct for the entire
kth interval that ends at that time, your distance during that interval is given by

(∆x)k ≈ v(a + k∆t)∆t.

Summing over all n subintervals, we have

∆x ≈
n∑

k=1

v(a + k∆t)∆t = ∆t
n∑

k=1

v(a + k∆t).
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This approximation becomes exactly correct in the limit as the number of subintervals goes to infinity.
By Equation 1.3.2, we have

∆x = lim
n→∞

[
∆t

n∑

k=1

v(a + k∆t)

]
=

∫ b

a
v(t) dt.

¦
Examples 1.5.1 and 1.5.2 solved the same problem using different pieces of information. The
solutions have to be the same, and so we can combine them together to obtain the formula

∫ b

a
v(t) dt = x(b)− x(a). (1.5.1)

We derived Equation 1.5.1 from a specific scenario involving a car driving on a highway with
variables indicating the mileposts and the velocity. But what details were really necessary for
the mathematical result? The answer is that the narrative in which the mathematics is couched
is not important. All that matters are the relationships among the quantities. The primary
requirement is that the quantities x and v have to have the right mathematical relationship;
the quantity represented by v must be the rate of change of the quantity represented by x.
Rewriting Equation 1.5.1, with a little extra attention to mathematical issues, brings us to the
Fundamental Theorem:

Theorem 1.5.1 (Fundamental Theorem of Calculus) Suppose f ′ is piecewise continuous
on the interval [a, b]. Then ∫ b

a
f ′(t) dt = f(b)− f(a). (1.5.2)

The first statement is a technical detail of mathematical importance. Piecewise continuity
is the minimal degree of smoothness required of the derivative for the integral to make sense. A
function is piecewise continuous on an interval a ≤ t ≤ b if (1) it is continuous except for at
most finitely many points in the interval and (2) is bounded as t approaches any of these points
of discontinuity. Generally, any function that we are likely to encounter will meet the first of
these requirements, but we must always be careful to check the second requirement. Several
familiar functions, such as 1/x, have isolated points of discontinuity that prevent us from being
able to apply the Fundamental Theorem.

Computing definite integrals with the Fundamental Theorem

The Fundamental Theorem is useful for computing definite integrals, provided that the inte-
grand of the definite integral can be written as the derivative of some known function. As
examples, consider the integrals that we examined in Section 1.3.

Example 1.5.3
Note the derivative formulas

[
x +

1
3
x3

]′
= 1 + x2, (− cosx)′ = sin x.

By the Fundamental Theorem,
∫ 1

0
(1 + x2) dx =

∫ 1

0

[
x +

1
3
x3

]′
dx =

[
1 +

1
3
13

]
−

[
0 +

1
3
03

]
=

4
3
,
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∫ π

0
sinx dx =

∫ π

0
(− cosx)′ dx = (− cosπ)− (− cos 0) = (1)− (−1) = 2.

¦
This sounds easy, but there is a catch. We can only compute

∫ b

a
F (x) dx by the Fundamental

Theorem if we can find a function f(x) for which f ′ = F . Such a function f is called an
antiderivative of F . Each of the elementary derivative rules in Table 1.4.1 can easily be
converted to a suitable antiderivative rule; these rules are summarized in Table 1.5.1.

f ′(x) xr [r 6= −1] eax 1

x
cos ax sin ax

1

a2 + x2

1√
a2 − x2

f(x)
xr+1

r + 1

1

a
eax ln |x| 1

a
sin ax −1

a
cos ax

1

a
arctan

x

a
arcsin

x

a

Table 1.5.1: Elementary antiderivative formulas

The antiderivative formulas can sometimes be used even if the requirements of Theorem 1.5.1
are not quite met.

Example 1.5.4

∫ ∞

0
e−ax dx =

∫ ∞

0

[
−1

a
e−ax

]′
dx = lim

b→∞

[
−1

a
e−ab

]
−

[
−1

a
e0

]
=

1
a
, a > 0.

¦
Example 1.5.4 shows that the definite integral can sometimes exist even if the area it represents
is unbounded in the x direction. It is also possible for the definite integral to exist when the
area it represents is bounded in the y direction.

Example 1.5.5

∫ 1

0

1√
x

dx =
∫ 1

0
(2
√

x)′ dx = 2
√

1− 2
√

0 = 2.

¦

Substitution

The antidifferentiation technique called substitution corresponds to the chain rule of differen-
tiation. If we integrate Equation 1.4.4 and apply the Fundamental Theorem, we obtain the
equation ∫ b

a
f ′(g(x))g′(x) dx =

∫ b

a
[f(g(x))]′ dx = f(g(b))− f(g(a)).

Now let w be the independent variable of the function f . Thus, w is the variable that is
associated with the function g(x). The last equation then becomes

∫ b

a
f ′(w)

dw

dx
dx = f(g(b))− f(g(a)) =

∫ g(b)

g(a)
f ′(w) dw =

∫ w(b)

w(a)
f ′(w) dw,
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where the second equality follows from the Fundamental Theorem and the last from the asso-
ciation of w with g. Finally, we define F (w) = f ′(w) and obtain the substitution rule:

Theorem 1.5.2 (Substitution rule) If w′(x) is continuous on [a, b] and F is piecewise con-
tinuous on an interval containing w(a) and w(b), then

∫ b

a
F (w)

dw

dx
dx =

∫ w(b)

w(a)
F (w) dw.

Theorem 1.5.2 prescribes a method for changing variables in a definite integral; thus, it is
analogous to the method for changing variables in derivatives that we developed in Section 1.4.

Example 1.5.6
To compute

∫ 2
0 xex2

dx, we let w = x2. Then we have

∫ 2

0
xex2

dx =
∫ 2

0

ex2

2
· 2x dx =

∫ 4

0

ew

2
dw =

1
2

∫ 4

0
(ew)′ dw =

e4 − 1
2

.

Note that the integration limits changed in the second equality from 0 ≤ x ≤ 2 to 0 ≤ w ≤ 4, which
follows from the equation w = x2. Also, the function F (w) (in this case ew/2) is whatever remains of
the integrand after dw/dx = 2x is attached to dx. ¦

Numerical approximation of integrals

Equation 1.3.2 was only one of several possible approximation formulas for the definite integral.
We obtained that approximation by using the right endpoint of each subinterval to determine a
value of the integrand, which we then used to indicate the height of an approximation rectangle.
We could just as easily have chosen the left endpoint or the midpoint. We therefore have three
possible approximations using rectangles. We can also average the left and right approxima-
tions, yielding an improved approximation called the trapezoidal rule. Here is a summary of
the geometric approximations for the definite integral:

APPROXIMATION

Let ∆x =
b− a

n
and xk = a + k∆x. Then we have

∫ b

a
f(x) dx ≈ RIGHT(n) = ∆x

n∑

k=1

f(xk),

∫ b

a
f(x) dx ≈ LEFT(n) = ∆x

n∑

k=1

f(xk−1) = ∆x
n−1∑

k=0

f(xk),

∫ b

a
f(x) dx ≈ MID(n) = ∆x

n∑

k=1

f(xk−1/2),

and

∫ b

a
f(x) dx ≈ TRAP(n) =

LEFT(n) + RIGHT(n)

2
=

∆x

2

[
f(a) + 2

n−1∑

k=1

f(xk) + f(b)

]
.
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Example 1.5.7

In Example 1.3.1, we approximated
∫ 1

0
(1 + x2) dx using 5 rectangles and the right endpoints. Our

full set of approximations with n = 5 are

RIGHT(5) = .2[f(.2) + f(.4) + f(.6) + f(.8) + f(1)] = .2(1.04 + 1.16 + 1.36 + 1.64 + 2) = 1.44,

LEFT(5) = .2[f(0) + f(.2) + f(.4) + f(.6) + f(.8)] = .2(1 + 1.04 + 1.16 + 1.36 + 1.64) = 1.24,

MID(5) = .2[f(.1) + f(.3) + f(.5) + f(.7) + f(.9)] = .2(1.01 + 1.09 + 1.25 + 1.49 + 1.81) = 1.33,

TRAP(5) =
LEFT(n) + RIGHT(n)

2
= 1.34.

The MID and TRAP approximations for n = 2 are illustrated in Figure 1.5.1. Notice that we can
illustrate the average of LEFT and RIGHT on any interval by using a trapezoid in which the top line
connects the two points on the graph corresponding to the interval endpoints. This is the reason why
the average of LEFT and RIGHT is called the trapezoidal rule. ¦

0 0.5 1
0

0.5

1

1.5

2 f(x)

0 0.5 1
0

0.5

1

1.5

2

f(x)

Figure 1.5.1: The midpoint and trapezoidal approximations of
∫ 1
0 (1 + x2) dx with n = 2

Careful examination of Figure 1.5.1 shows that the trapezoidal approximation for this inte-
gral is too large and the midpoint approximation is too small. We saw in Example 1.5.3 that
the correct result is 4/3, which is between the two approximations. We can achieve the correct
answer if we use a weighted average of (2*MID+TRAP)/3. This is more than just a coinci-
dence. With the help of Taylor series, an advanced differentiation topic, it can be shown that
this 2 to 1 weighted average always gives the correct answer when the integrand is a quadratic
function. It can be further shown that the 2 to 1 weighted average has several highly desirable
properties that make it the ideal formula for numerical approximation of definite integrals.

DEFINITION

Let ∆x =
b− a

n
and xk = a + k∆x. Then the Simpson’s rule approximation with n subdivi-

sions is ∫ b

a
f(x) dx ≈ ∆x

(
2

3

n∑

k=1

f(xk−1/2) +
1

3

n−1∑

k=1

f(xk) +
1

6
[f(a) + f(b)]

)
. (1.5.3)

Simpson’s rule is the most commonly used technique for numerical approximation of definite in-
tegrals. Most calculators and computer programs use an adaptive1 implementation of Simpson’s
rule.

1An adaptive routine is one in which additional formulas are used to estimate the amount of error in each
subdivision; parts of the domain where the error is large are further subdivided until the error is below some
desired bound.
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Summary

The most powerful tool for computing definite integrals is the Fundamental Theorem of Calcu-
lus, which reduces the definite integral problem to a problem of finding antiderivatives. While
we can compute derivatives for almost any function we do not have anything like a complete
set of rules for finding antiderivatives for a broad class of functions. One problem is that de-
termining the appropriate rule to use for finding an antiderivative is often difficult. A further
problem is that not all functions even have an elementary antiderivative.

Example 1.5.8
We cannot compute ∫ 1

0
sinx2 dx.

The problem is not that we aren’t clever enough to find a function f for which f ′(x) = sinx2, but
rather that there is no function with the desired derivative.

One might expect that ∫ 1

0
sin
√

x dx

would be even worse. However, with w =
√

x, and noting that 0 ≤ x ≤ 1 is then equivalent to
0 ≤ w ≤ 1, we have

∫ 1

0
sin
√

x dx =
∫ 1

0
2
√

x(sin
√

x)
dx

2
√

x
= 2

∫ 1

0
w sinw dw.

From here, we observe that

(sinw − w cosw)′ = cosw − (cosw − w sinw) = w sinw,

so ∫ 1

0
sin
√

x dx = 2
∫ 1

0
w sinw dw = 2(sin 1− cos 1)− 2(sin 0− 0) = 2(sin 1− cos 1).

¦
To compute definite integrals without an elementary antiderivative formula, we have to

settle for numerical approximation. Simpson’s rule (Equation 1.5.3) provides a convenient and
reasonably accurate means of numerical approximation.
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1.6 Applications of the Derivative and Definite Integral

The derivative, f ′, is the rate of change of f , as represented by the slopes of the lines tangent
to the curve y = f(x). this geometric relationship is what makes the derivative useful. Any
statement about tangents of a graph can be recast as statements about derivatives, which can
then be used to calculate solutions to problems.

Local Behavior

You may have noticed that the process of zooming in on a point of a graph leads to the graph
becoming closer to a straight line. this straight line is tangent to the curve. We can use the
derivative to find an equation for this tangent line. In general, slope of a line is determined by
m = ∆y/∆x, where ∆x and ∆y are the differences between the coordinates of any two points
on the line. In the case of a tangent line, we have only one point, but we can find the slope
from the derivative instead. Let (x0, y0) be the point on the curve where the tangent is located,
and let (x, y) be some other point on the tangent line. Using the two formulas for slope, we
have

y − y0

x− x0

= mtan = f ′(x0).

Solving for y yields a formula for the equation of the tangent line.

Theorem 1.6.1 If f ′ exists at x0, then the equation for the line tangent to the curve y = f(x)
at the point x = x0 is

y = f(x0) + f ′(x0)(x− x0). (1.6.1)

Example 1.6.1
To find the equation of the line tangent to

y = f(x) =
x

1 + x

at the point x = 1, we note that

f ′(x) =
(x)′(1 + x)− x(1 + x)′

(1 + x)2
=

1 + x− x

(1 + x)2
=

1
(1 + x)2

.

Thus, f(1) = 1/2 and f ′(1) = 1/4. The tangent line has the equation

y =
1
2

+
1
4
(x− 1).

¦
The tangent line is useful primarily because it serves as an approximation to the function when
x is very close to x0. For this reason, it is best to write the equation for the tangent line as in
Equation 1.6.1.

Tangent line approximations are most useful in the context of a more complicated problem.
This will be important in our study of differential equations in chapters 4 and 7.
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Local Extrema

Suppose we are interested in locating peaks and valleys on graphs. Technically, peaks and
valleys indicate extrema:

DEFINITION
A point x0 is a local maximum of a function f if f(x) ≤ f(x0) for all x in some small interval
(x0 − δ, x0 + δ). Similarly, x0 is a local minimum of a function f if f(x) ≥ f(x0) for all x in
some small interval (x0 − δ, x0 + δ). Local maxima and local minima are collectively known as
local extrema.

In mathematical terms, it is often easier to prove a negative statement than it is to prove a
positive statement.

Theorem 1.6.2 If f ′(x0) 6= 0, then x0 is not a local extrema.

The proof of Theorem 1.6.2 follows immediately from Theorem 1.6.1. The tangent line to a
function, which is given by Theorem 1.6.1, indicates the local behavior of the function. If the
tangent slope is non-zero, then every interval around x0 includes some points with both larger
and smaller function values than f(x0). This rules out the possibility of x0 being either a
maximum or a minimum. As a consequence of Theorem 1.6.2, we can see that local extrema
can occur only at points where f ′ = 0 or where there is no tangent line. A point that could
be a local extremum by Theorem 1.6.2 is called a critical point. In the typical case of a
function that has a tangent line at every point, extrema can only occur when f ′ = 0. There
are a variety of formal tests for determining whether a given critical point is a local maximum,
a local minimum, or neither. The reader should consult a full calculus text for details.

Example 1.6.2
Consider the function f(x) = x4 − 8x3 + 18x2 − 16x, for which f ′(x) = 4x3 − 24x2 + 36x − 16 =
4(x3 − 6x2 + 9x− 4). Critical points are the solutions of

x3 − 6x2 + 9x− 4 = 0.

Normally we must resort to numerical approximation to solve a cubic equation, but observe that x = 1
is a solution of this equation. This means that x− 1 is a factor. If we assume

x3 − 6x2 + 9x− 4 = (x− 1)(x2 + ax + 4),

where the terms x2 and 4 in the second factor are necessary to obtain x3 and −4 in the product, then

x3 − 6x2 + 9x− 4 = x3 + (a− 1)x2 + (4− a)x− 4,

from which we obtain a = −5. Thus, the equation for the critical points becomes

0 = x3 − 6x2 + 9x− 4 = (x− 1)(x2 − 5x + 4) = (x− 1)[(x− 4)(x− 1)] = (x− 1)2(x− 4).

Thus, the critical points are x = 1 and x = 4. Moreover, we have

f ′(x) = 4(x3 − 6x2 + 9x− 4) = 4(x− 1)2(x− 4).

The function f is increasing for x > 4 and decreasing for x < 4 (except for the critical point x = 1).
The function changes from decreasing to increasing at x = 4; hence, x = 4 is a local minimum. The
point x = 1 is not a local extremum. A graph of this function appears in Figure 1.6.1. ¦
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Figure 1.6.1: The graph of y = x4 − 8x3 + 18x2 − 16x

Accumulation

Just as applications of the derivative can be cast in terms of tangent slope, applications of the
definite integral can be cast in terms of areas. However, it is conceptually simpler to derive
applications from the Fundamental Theorem (Theorem 1.5.1). Suppose f(t) is any quantity
that accumulates over time. It could be the size of an organism, the population of a community,1

or the amount of oil released in an oil spill, for example. From a mathematical point of view,
all of these applications and any other quantities that accumulate in time are the same. In the
form

∆f = f(b)− f(a) =
∫ b

a
f ′(t) dt, (1.6.2)

the Fundamental Theorem indicates that the total accumulation of a quantity f(t) over a time
interval a ≤ t ≤ b is the integral of the rate of change of the quantity. This is important
because it is often easier to find a rate of change than it is to find a quantity itself. Viewed as
an algebra equation, Equation 1.6.2 says that either f(a) or f(b) can be determined from the
other, provided that f ′ is known on the interval between a and b.

It is often helpful to set up integrals using intuition rather than merely copying Equation
1.6.2.

Example 1.6.3
Suppose a certain organism becomes sexually mature at an average age of a0 and then produces
offspring at a rate r(a) up to a maximum age of aM . How many offspring are produced by the average
individual that survives to age aM?

To answer this question intuitively, suppose we start a clock when an average individual is born.
(This means that age a and time t are interchangeable.) No offspring begin to accumulate until the
time reaches a0. Now think of a as an arbitrary fixed age between a0 and aM and think of da as a
vanishingly small amount of time. Because da is vanishingly small, the function r takes on the constant
value r(a) over the time interval [a, a + da]. The amount of offspring production that occurs during
this interval, on the average, is then r(a) da. The total amount of offspring production is the sum of
these infinitesimal amounts over all values of a in the interval [a0, aM ]. Interpreting the summation
of infinitely many infinitesimal values over an interval as integration,2 we then write the sum of the

1We can think of population decrease as negative accumulation.
2Mathematical purists often object to this “vanishingly small” conception, preferring limits of Riemann sums.

Our chosen conceptualization is based on an alternative development of calculus, called nonstandard analysis.
It is less formal and more intuitive than derivation with Riemann sums.
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quantities r(a) da as

total =
∫ aM

a0

r(a) da.

¦

Aggregation

The term accumulation has been used to denote the process of building up a quantity by adding
amounts over time. In a similar manner, we use the term aggregation to indicate the process
of building up a quantity by adding amounts over space. We consider here only the case of
one-dimensional aggregation, such as aggregation along a narrow line or aggregation through
a region with density variation in only one direction. Aggregation is a little more difficult to
understand than accumulation because there is no natural flow of space to correspond to the
natural flow of time.

Let x be the symbol representing the spatial coordinate over which the aggregation is to
occur, and suppose we are interested in the region a ≤ x ≤ b. Now let x̄ be a particular
value of x in the region. Then we define f(x̄) to be the amount of some quantity in the region
a ≤ x ≤ x̄. We have defined f so that f(a) = 0 and the total amount of the quantity in the
region is f(b). By the Fundamental Theorem, we have

total = f(b) = f(b)− f(a) =
∫ b

a
f ′(x) dx. (1.6.3)

The integral is essentially a sum of products of the form f ′(x) dx. These products must have
the same dimensions as f . Thus, if f is a mass, then f ′ must be mass per unit length; if f is
population size, then f ′ must be population per unit length. Whatever quantity f is, we can
calculate it by integrating the amount of f per unit length. The integrand f ′ is the linear
density of f .

Example 1.6.4
Suppose grains of sand are distributed along a narrow line of length 10, with linear density 1000e−0.1x

grains per unit length. Then the number of grains located at a point along the line is f ′(x) dx =
1000e−0.1x dx. The total number of grains is

∫ 10

0
1000e−0.1x dx = −10000

∫ 10

0
(−0.1e−0.1x) dx = −10000

∫ 10

0
[e−0.1x]′ dx

= −10000[e−1 − 1] = 10000
e− 1

e
.

¦

Volume and Average

Two other applications of integration are worth noting. First, the principle of accumulation
can be applied to the problem of determining the volume of an object if we just think of the
cross-sectional area perpendicular to the x axis as the linear density of volume.
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Example 1.6.5
Let C be the curve given by y =

√
x from x = 0 to x = 1. If we rotate the curve C around the x axis,

we create a bullet-shaped region. At any particular point x, the cross-section of the region is a circle
of radius

√
x. Thus, the area of the cross-section is A(x) = π(

√
x)2 = πx. The volume corresponding

to the point x is the product of the cross-sectional area with the thickness dx, or A(x) dx. The total
volume is the sum of these thin volumes, or

V =
∫ 1

0
A(x) dx =

∫ 1

0
πx dx =

π

2

∫ 1

0
2x dx =

π

2

∫ 1

0
(x2)′ dx =

π

2
(1− 0) =

π

2
.

¦
Second, we can use integration to determine the average value of a function over an interval,

by making use of a clever trick. We demonstrate with an example.

Example 1.6.6
Let x(t) be a function that indicates the coordinates of an object moving along a straight line as a
function of time and let v(t) = x′(t) be the velocity of the object. On the time interval [a, b], the
object moves a distance x(b)− x(a) in b− a units of time. The average velocity v̄ is the ratio of total
distance to total time. Thus,

v̄ =
x(b)− x(a)

b− a
=

1
b− a

[x(b)− x(a)] =
1

b− a

∫ b

a
x′(t) dt =

1
b− a

∫ b

a
v(t) dt.

¦
There was nothing special about the velocity function in Example 1.6.6. In general, the

average value of a function f(x) on the interval [a, b] is

f̄ =
1

b− a

∫ b

a
f(x) dx. (1.6.4)

Summary

Applications of the derivative are all tied, directly or indirectly, to its representing the slope of
the tangent to y = f(x). Applications of the definite integral can be thought of as stemming
from the Fundamental Theorem of Calculus. In particular,

total accumulation of stuff over a ≤ t ≤ b =
∫ b

a
[stuff per unit time] dt

and

total aggregation of stuff over a ≤ x ≤ b =
∫ b

a
[stuff per unit length] dx.

These schematic equations point out that accumulation and aggregation are really the same
thing, just with different symbols for the independent variables.
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