

Day 2: Analyze

SHINE CONFERENCE

with Dr. Ritamarie Loscalzo (MS, DC, CCN, DACBN)

SCIENTIFIC AND HOLISTIC INVESTIGATION
OF NUTRITIONAL ENDOCRINOLOGY

Mission Possible

**A New Paradigm
of Health Care**

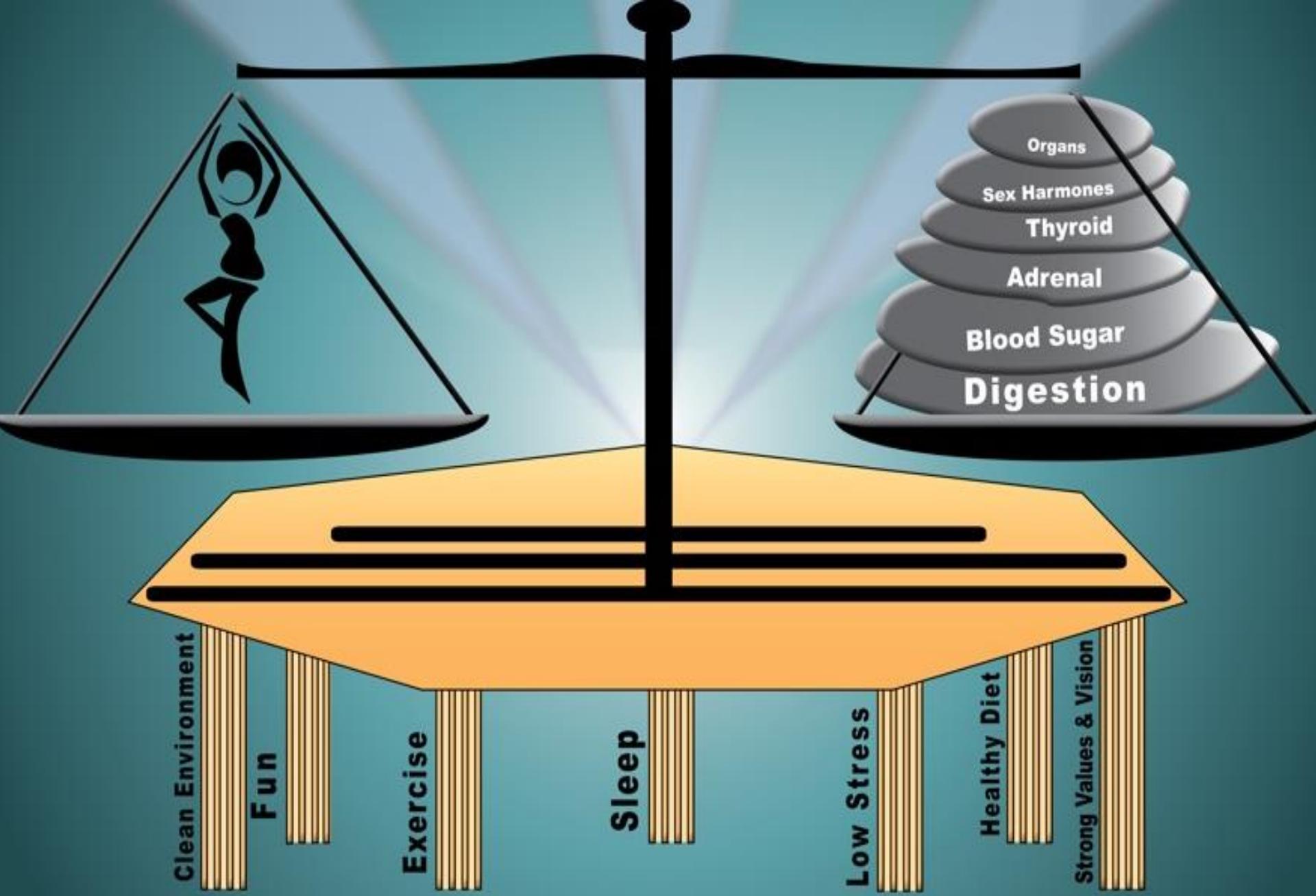
My Mission

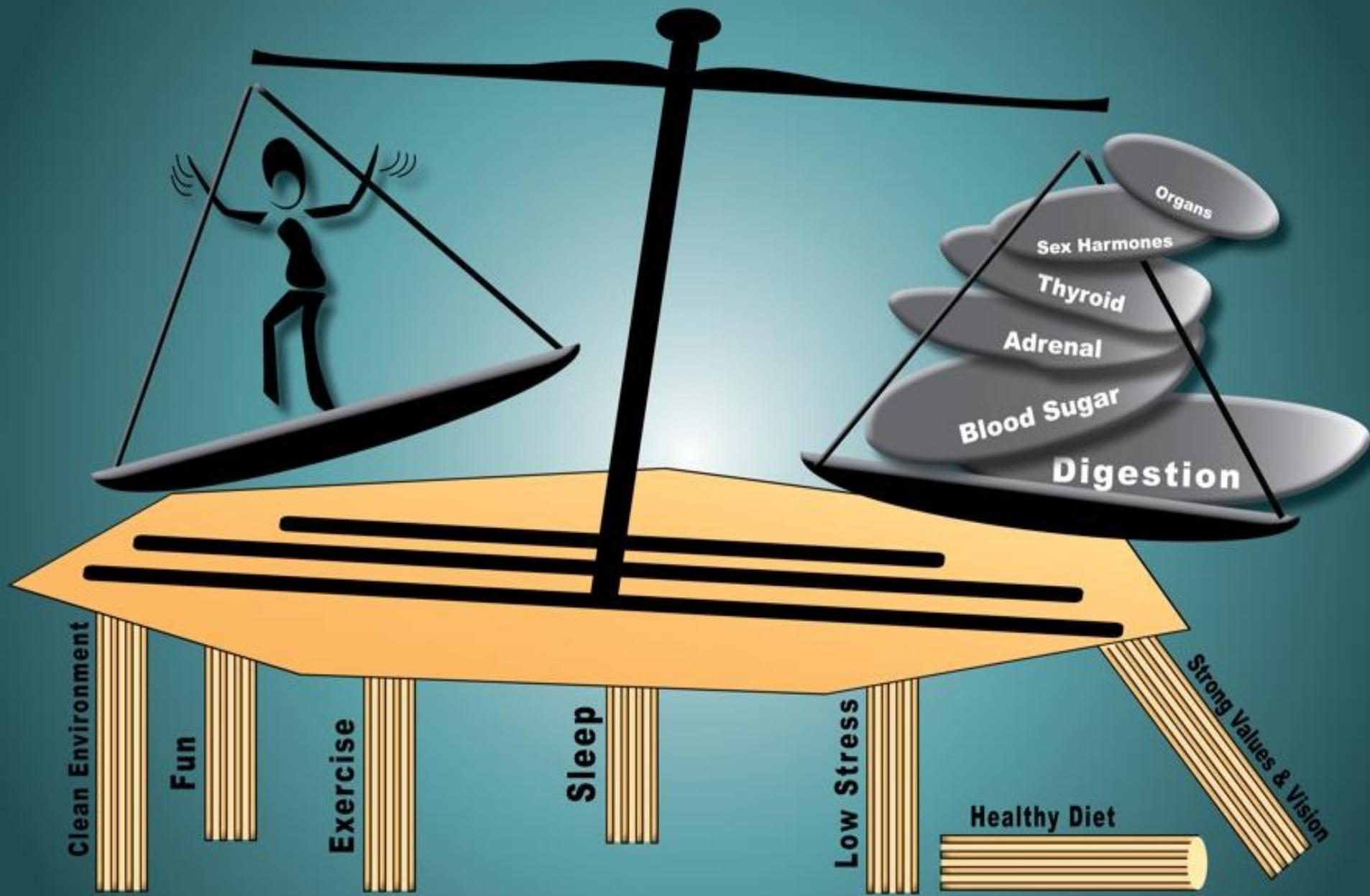
Your Mission

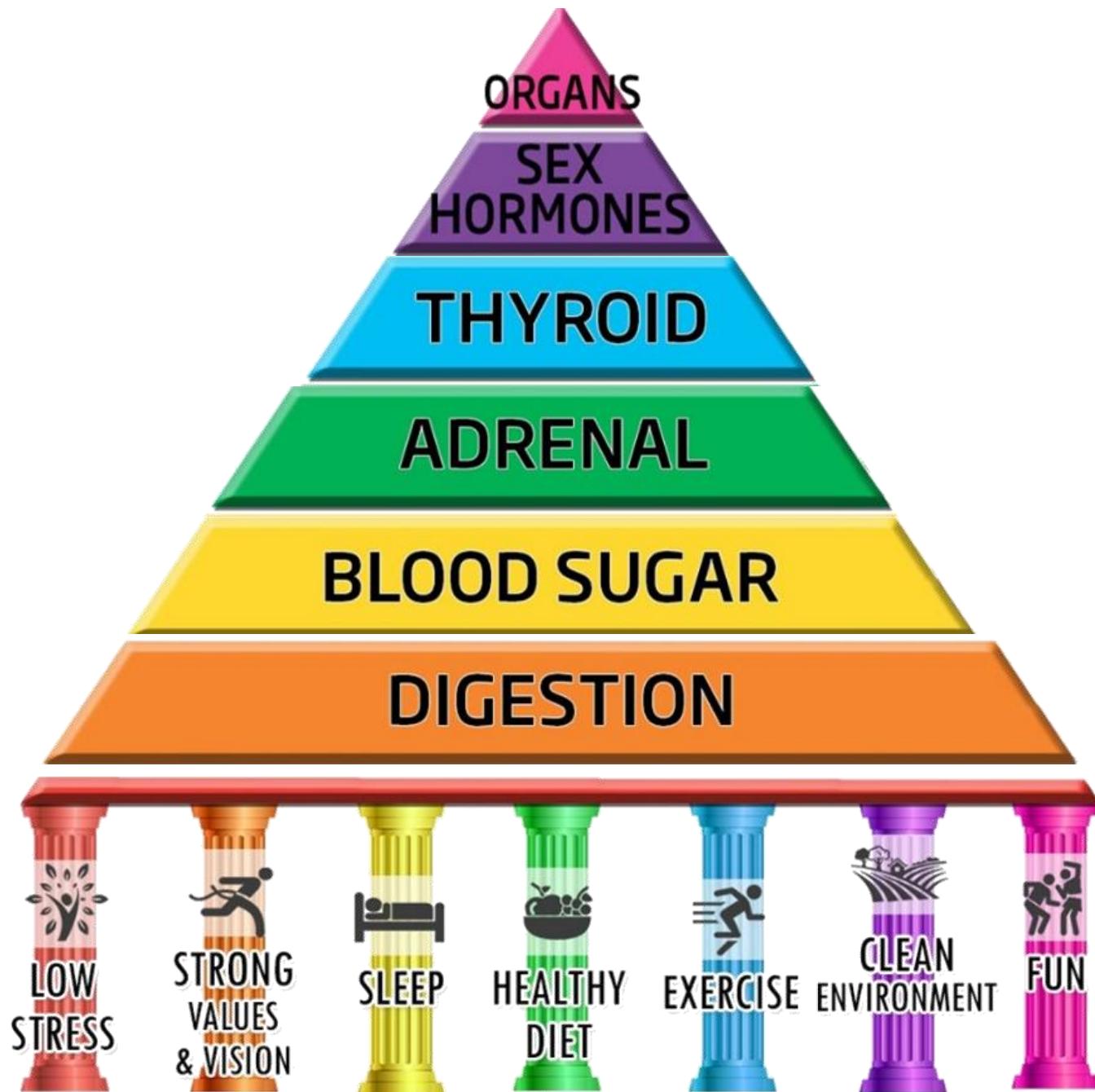

Our Mission

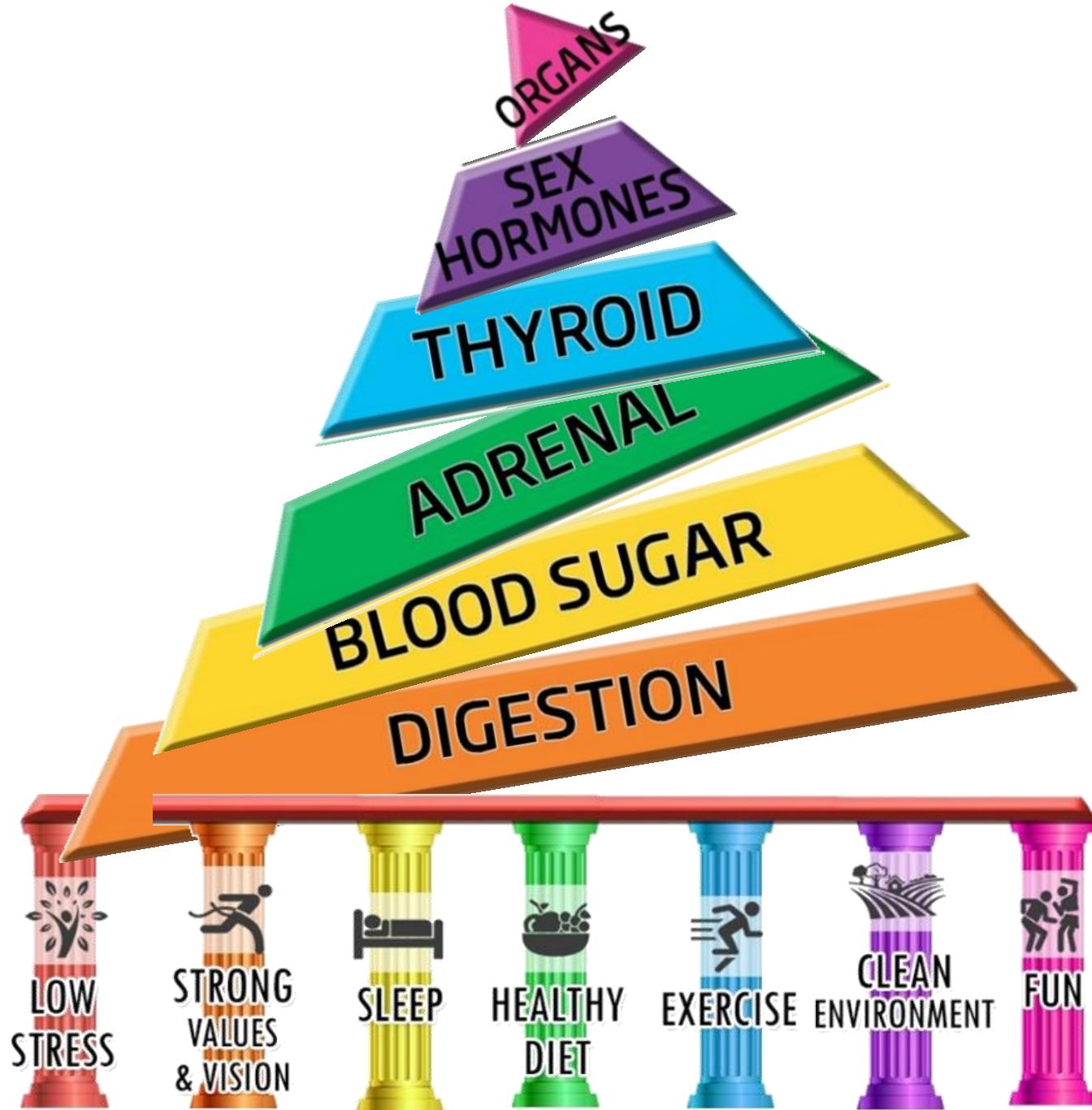
Disease Management

True Health Care






The Power of WHY?



Medical Disclaimer: The information in this presentation is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the research and experience of Dr. Ritamarie Loscalzo, drritamarie.com, and the experts who have contributed. We encourage you to make your own health care decisions based upon your research and in partnership with a qualified health care professional. This presentation is provided for informational purposes only and no guarantees, promises, representations or warranties of any kind regarding specific or general benefits, have been or will be made by Dr. Ritamarie Loscalzo, her affiliates or their officers, principals, representatives, agents or employees. Dr. Ritamarie Loscalzo is not responsible for, and shall have no liability for any success or failure, acts and/or omissions, the appropriateness of the participant's decisions, or the use of or reliance on this information.

Functional Lab Testing

- ✓ Salivary Cortisol Testing (Adrenals)
- ✓ Steroid Hormone Panels - DUTCH and 24-hour urine
- ✓ Comprehensive Digestive Analysis
- ✓ Immune System Evaluation
- ✓ Fatty Acids
- ✓ Amino Acids/Neuro
- ✓ Organic Acids
- ✓ Heavy Metals
- ✓ Methylation & Genetics

Adrenal Assessment

- ✓ Symptoms (Surveys or Interview)
- ✓ Physical Signs (Exam)
- ✓ Routine Blood Testing (Indirect)
- ✓ Direct Blood Testing of Adrenal Hormones
- ✓ Saliva Testing
- ✓ Part of 24-Hour Urine Comprehensive Steroid Panel or DUTCH

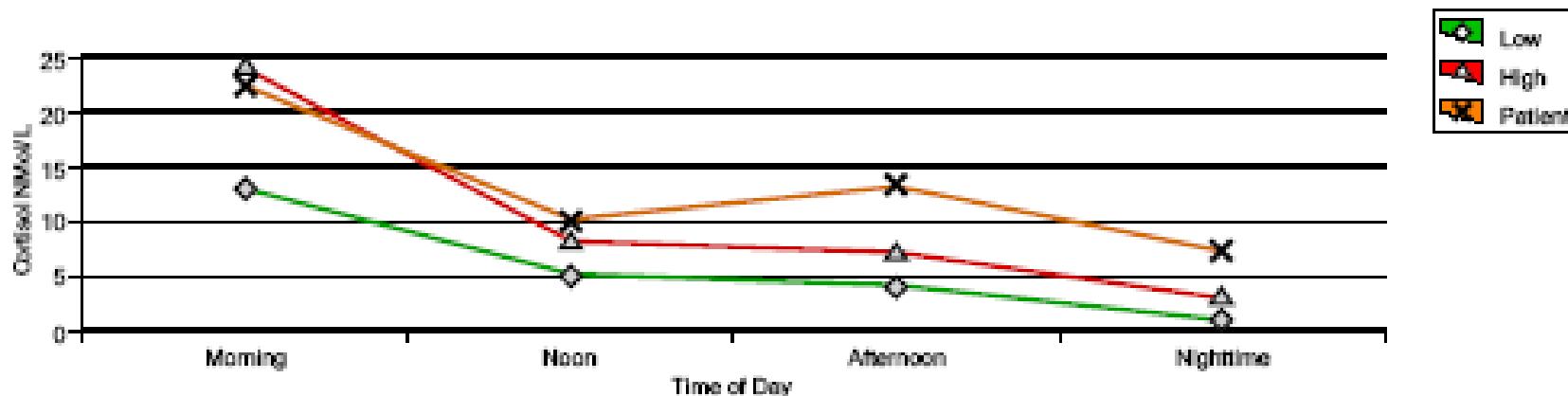
Routine Blood Screen: Adrenal Analysis

Low Adrenal


- ✓ Potassium +
- ✓ Sodium -
- ✓ Glucose -

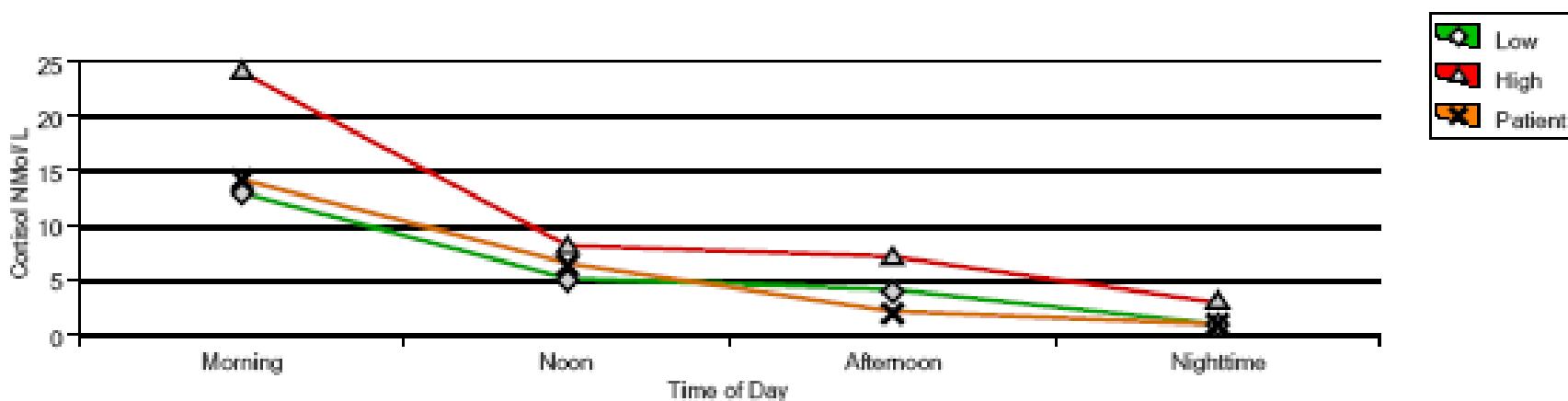
Hyperadrenal

- ✓ Potassium -
- ✓ Sodium +
- ✓ Glucose +
- ✓ Triglycerides +


Progression of Stages in Adrenal Exhaustion – per BioHealth

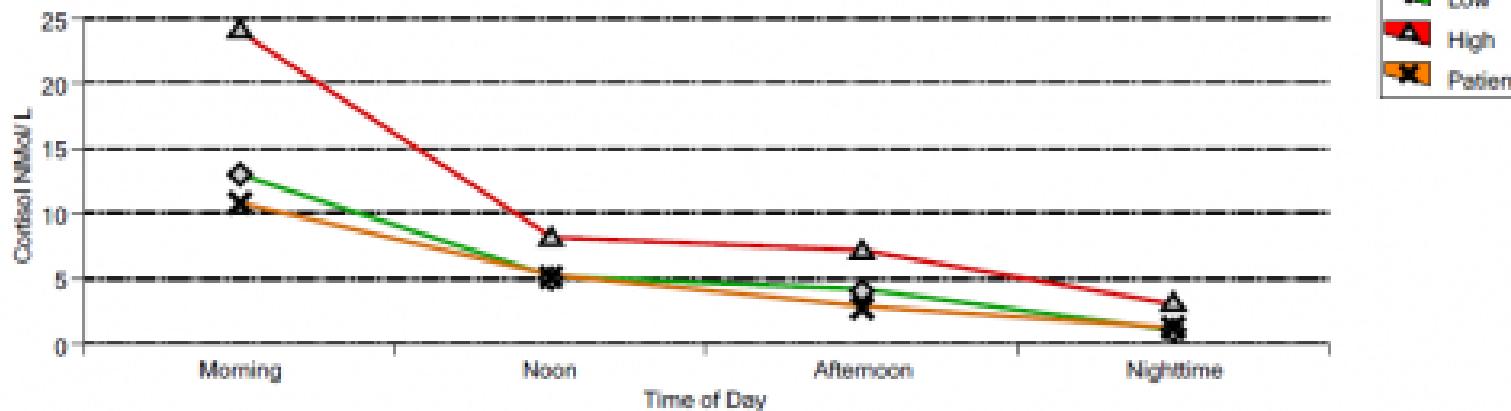
BioHealth Example – Stage 1

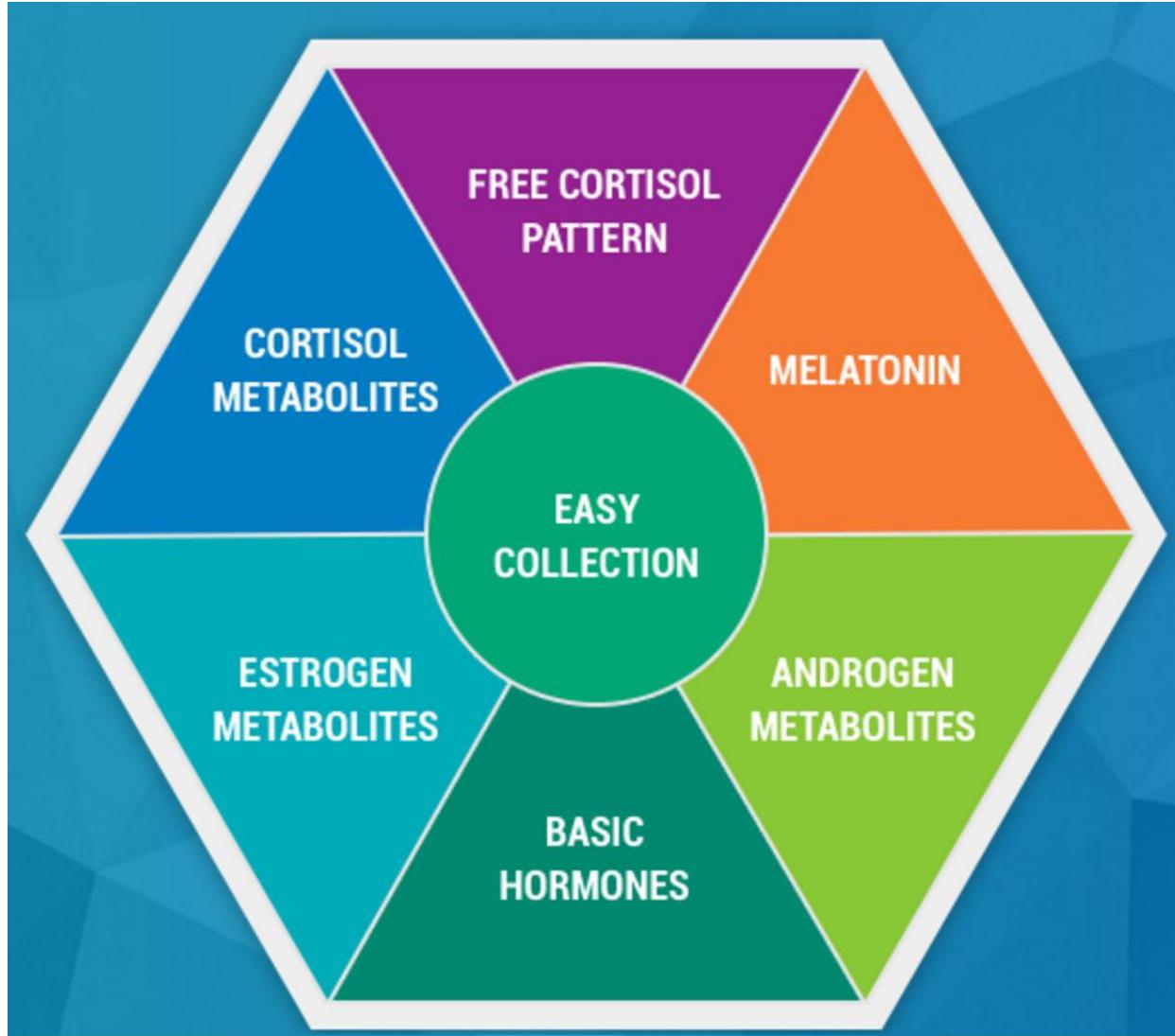
Functional Adrenal Stress Profile - 201


Parameter	Result	Reference Range	Units
Cortisol - Morning (6 - 8 AM)	22.4	13.0 - 24.0	nM/L
Cortisol - Noon (12 - 1 PM)	10.0*	5.0 - 8.0	nM/L
Cortisol - Afternoon (4 - 5 PM)	13.4*	4.0 - 7.0	nM/L
Cortisol - Nighttime (10 PM - 12 AM)	7.3*	1.0 - 3.0	nM/L
Cortisol Sum	53.1*	23.0 - 42.0	nM/L
DHEA-S Average	2.00	2.00 - 10.00	ng/mL
Cortisol/DHEA-S Ratio	26.6*	5.0 - 6.0	Ratio

BioHealth – Stage 2

Functional Adrenal Stress Profile - 201


Parameter	Result	Reference Range	Units
Cortisol - Morning (6 - 8 AM)	14.2	13.0 - 24.0	nM/L
Cortisol - Noon (12 - 1 PM)	6.4	5.0 - 8.0	nM/L
Cortisol - Afternoon (4 - 5 PM)	2.0*	4.0 - 7.0	nM/L
Cortisol - Nighttime (10 PM - 12 AM)	1.0	1.0 - 3.0	nM/L
Cortisol Sum	23.6	23.0 - 42.0	nM/L
DHEA-S Average	2.60	2.00 - 10.00	ng/mL
Cortisol/DHEA-S Ratio	9.1*	5.0 - 6.0	Ratio



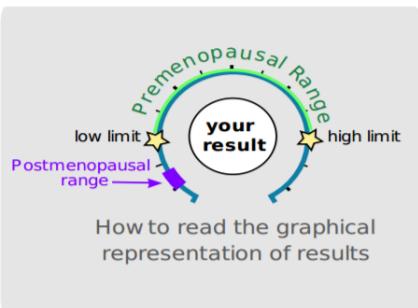
BioHealth – Stage 3

Functional Adrenal Stress Profile plus V - 205

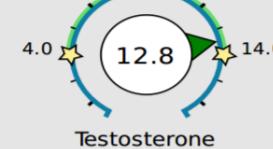
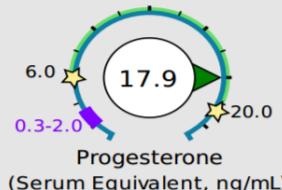
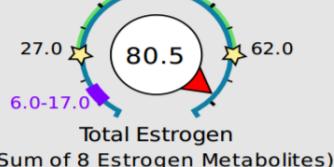
Parameter	Result	Reference Range	Units
Cortisol - Morning (6 - 8 AM)	10.8*	13.0 - 24.0	nM/L
Cortisol - Noon (12 - 1 PM)	5.1	5.0 - 8.0	nM/L
Cortisol - Afternoon (4 - 5 PM)	2.7*	4.0 - 7.0	nM/L
Cortisol - Nighttime (10 PM - 12 AM)	1.2	1.0 - 3.0	nM/L
Cortisol Sum	19.8*	23.0 - 42.0	nM/L
DHEA-S Average	2.22	2.00 - 10.00	ng/mL
Cortisol/DHEA-S Ratio	8.9*	5.0 - 6.0	Ratio

dutch

Ordering physician:
Precision Analytical

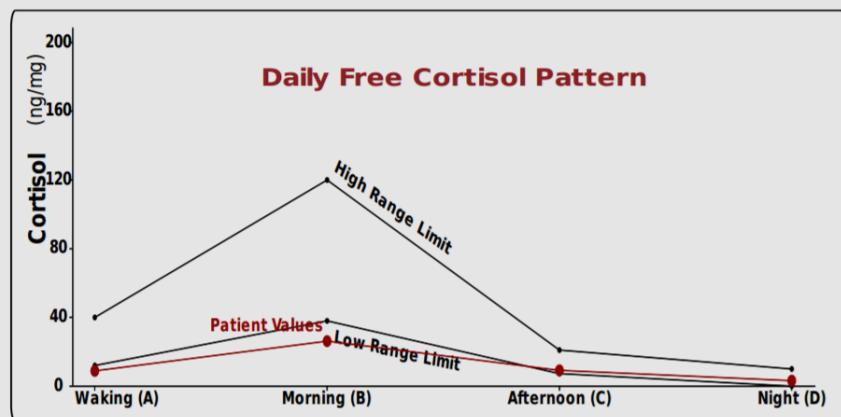

DOB:1976-01-01
Gender: Female

Collection Times:




2015-08-16 05:00PM
2015-08-16 10:00PM
2015-08-17 06:00AM
2015-08-17 08:00AM

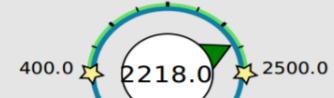
Hormone Testing Summary

All units are given in ng/mg creatinine



Sex Hormones See Pages 2 and 3 for a thorough breakdown of sex hormone metabolites

Progesterone Serum Equivalent is a calculated value based on urine pregnanediol. This value may not accurately reflect serum when progesterone is taken by mouth.


Adrenal Hormones See pages 4 and 5 for a more complete breakdown of adrenal hormones

Free cortisol best reflects tissue levels. Metabolized cortisol best reflects total cortisol production.

Total DHEA Production

Age	Range
20-40	800-2500
40-60	530-1550
>60	400-1350

Total DHEA Production
(DHEAS + Etioclanolone + Androsterone)

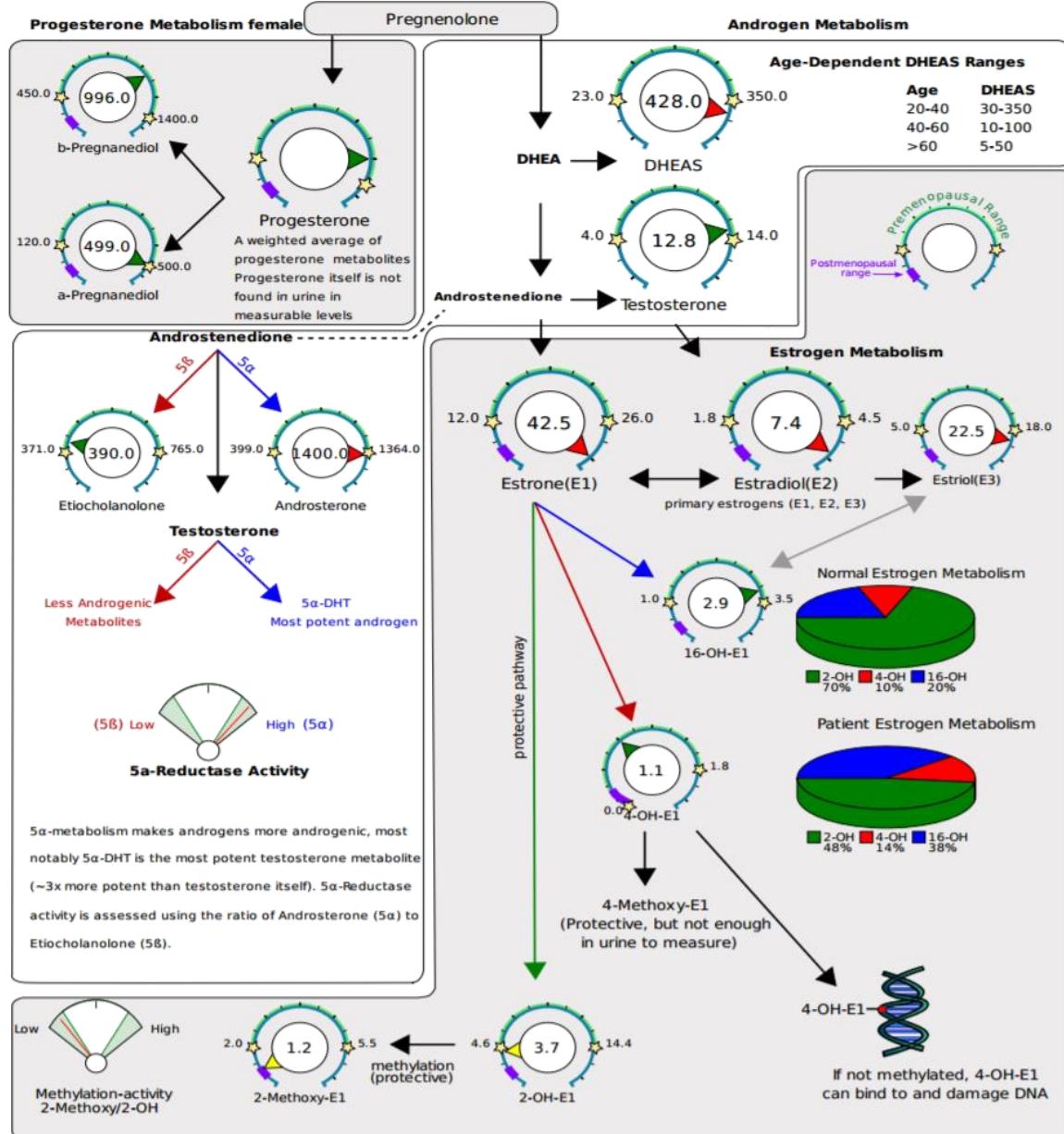
cortisol metabolism

Dried Urine Test for Comprehensive Hormones

Advanced Adrenal Assessment

Accession # 00212403
Female Sample Report
123 A Street
Sometown, CA 90266

Ordering physician:
Precision Analytical


DOB:1976-01-01
Gender: Female

Collection Times:
2015-08-16 05:00PM
2015-08-16 10:00PM
2015-08-17 06:00AM
2015-08-17 08:00AM

Category	Test		Result	Units	Normal Range
Creatinine					
	Creatinine A (Waking)	Within range	0.96	mg/ml	0.3 - 3
	Creatinine B (Morning)	Within range	1.71	mg/ml	0.3 - 3
	Creatinine C (Afternoon)	Within range	0.55	mg/ml	0.3 - 3
	Creatinine D (Night)	Within range	0.99	mg/ml	0.3 - 3
Daily Free Cortisol and Cortisone					
	Cortisol A (Waking)	Below range	8.9	ng/mg	12 - 40
	Cortisol B (Morning)	Below range	26.2	ng/mg	38 - 120
	Cortisol C (Afternoon)	Low end of range	9.2	ng/mg	7.3 - 21
	Cortisol D (Night)	Within range	3.2	ng/mg	0 - 10
	Cortisone A (Waking)	Below range	34.0	ng/mg	40 - 100
	Cortisone B (Morning)	Low end of range	108.0	ng/mg	90 - 200
	Cortisone C (Afternoon)	Within range	46.0	ng/mg	32 - 80
	Cortisone D (Night)	Within range	30.0	ng/mg	0 - 42
	24hr Free Cortisol	Below range	48.0	ug	80 - 185
	24hr Free Cortisone	Below range	218.0	ug	220 - 400
Cortisol Metabolites and DHEAS					
	a-Tetrahydrocortisol (a-THF)	Above range	600.0	ng/mg	75 - 265
	b-Tetrahydrocortisol (b-THF)	Within range	1310.0	ng/mg	1050 - 2070
	b-Tetrahydrocortisone (b-THE)	High end of range	3123.0	ng/mg	1550 - 3150
	Metabolized Cortisol (THF+THE)	High end of range	5033.0	ng/mg	2750 - 5400
	DHEAS	Above range	428.0	ng/mg	23 - 350
Melatonin (*measured as 6-OH-Melatonin-Sulfate)					
	Melatonin* (Waking)	Below range	7.4	ng/mg	10 - 50

HOW TO READ YOUR RESULTS: Hormones are presented on this page graphically in the order the body metabolizes them. Arrows represent conversion from one hormone to another. The stars represent the low and high limits of the reference ranges (see example, right). The number in the middle is your result.

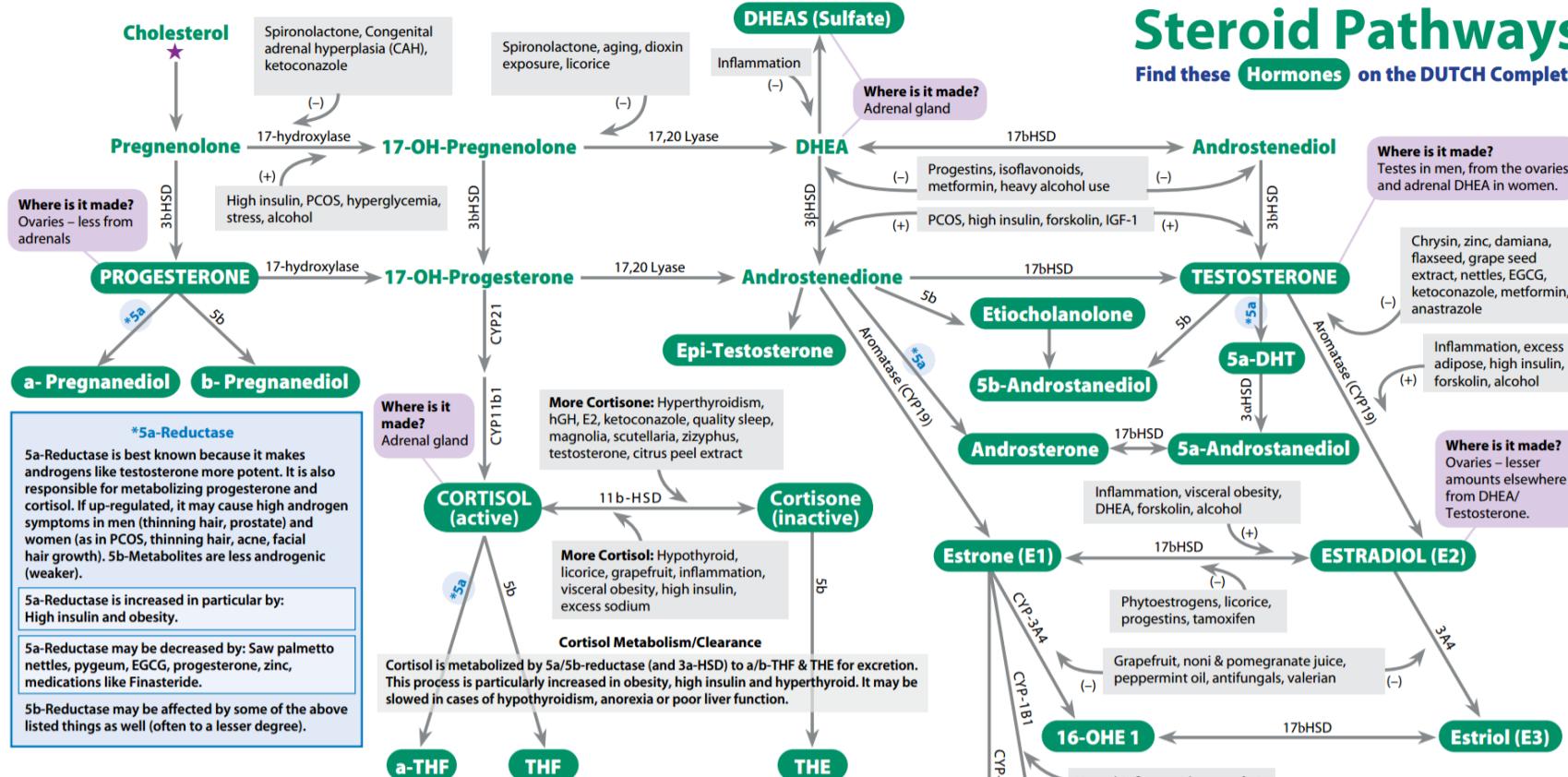
Accession # 00212403
 Female Sample Report
 123 A Street
 Sometown, CA 90266

Ordering physician:
 Precision Analytical

DOB: 1976-01-01
 Gender: Female

Collection Times:

2015-08-16 05:00PM
 2015-08-16 10:00PM
 2015-08-17 06:00AM
 2015-08-17 08:00AM


Category	Test	Result	Units	Normal Range
Progesterone Metabolism				
	b-Pregnanediol	Within range	996.0	ng/mg 450 - 1400
	a-Pregnanediol	High end of range	499.0	ng/mg 120 - 500
Androgen Metabolism				
	DHEAS	Above range	428.0	ng/mg 23 - 350
	Androsterone	Above range	1400.0	ng/mg 399 - 1364
	Etiocholanolone	Low end of range	390.0	ng/mg 371 - 765
	Testosterone	High end of range	12.8	ng/mg 4 - 14
	5a-DHT	Within range	2.1	ng/mg 0 - 8.8
	5a-Androstanediol	Within range	39.6	ng/mg 22 - 66
	5b-Androstanediol	Within range	12.1	ng/mg 6 - 32
	Epi-Testosterone	Within range	14.1	ng/mg 4.5 - 22.3
Estrogen Metabolites				
	Estrone(E1)	Above range	42.5	ng/mg 12 - 26
	Estradiol(E2)	Above range	7.4	ng/mg 1.8 - 4.5
	Estriol(E3)	Above range	22.5	ng/mg 5 - 18
	2-OH-E1	Below range	3.7	ng/mg 4.6 - 14.4
	4-OH-E1	Within range	1.1	ng/mg 0 - 1.8
	16-OH-E1	Within range	2.9	ng/mg 1 - 3.5
	2-Methoxy-E1	Below range	1.2	ng/mg 2 - 5.5
	2-OH-E2	Within range	0.57	ng/mg 0 - 1.2

Normal Ranges	Luteal	Postmenopausal	Follicular	Ovulatory
Estrone (E1)	12-26	3.0-7.0	4.0-12.0	22-68
Estradiol (E2)	1.8-4.5	0.3-0.9	1.0-2.0	4.0-12.0
Estriol (E3)	5-18	1.5-4.0	N/A	N/A
2-OH-E1	4.6-14.4	0.4-2.0	N/A	N/A
4-OH-E1	0-1.8	0-0.3	N/A	N/A
16-OH-E1	1-3.5	0.2-0.6	N/A	N/A
2-Methoxy-E1	2-5.5	0.5-1.4	N/A	N/A
Oral Pg (100mg)				
a-Pregnanediol	120-500	10.0-50	450-2000	25-100
b-Pregnanediol	450-1400	50-150	1500-6000	100-300

Primary hormones (in CAPS) are made by organs by taking up cholesterol ★ and converting it locally to, for example, progesterone. Much less is made from circulating precursors like pregnenolone. For example, taking DHEA can create testosterone and estrogen, but far less than is made by the testes or ovaries, respectively.

Steroid Pathways

Find these Hormones on the DUTCH Complete

Other factors affecting the production of primary reproductive and adrenal hormones:

- Increased Cortisol: stress, inflammation, Cushing's Disease, obesity
- Decreased Cortisol: glucocorticoid use, opioid use, Addison's Disease, Accutane, chronic marijuana use
- Increased DHEA: PCOS, acute stress, Bupropion (Wellbutrin), Alprazolam (Xanax), ADD meds
- Decreased DHEA: aging, rapid weight loss, Venlafaxine/Mirtazapine, opioids, glucocorticoids, hormonal birth control, antipsychotic meds, estrogens, diabetes meds
- Increased Testosterone: PCOS, HCG, GH, L-Dopa, Clomiphene Citrate (Clomid)
- Decreased Testosterone: obesity, opioids, hormonal birth control, acute illness, aging, high insulin, steroid use
- Increased Estrogens: PCOS, inflammation, pregnancy, DHEA/testosterone supplementation
- Decreased Estrogens: hormonal birth control, ovarian failure (menopause), opioids, anorexia, underweight
- Increased Progesterone: pregnancy, pregnenolone supplementation (increases urine progesterone metabolites, not actual circulating progesterone), Vitex (chaste tree berry)
- Decreased Progesterone: hormonal birth control, stress, high insulin, opioids, NSAID use >10 days, anovulation, luteal phase defect, high prolactin, underweight, hypothyroid, hormonal IUD (Mirena)

Information on this chart is for educational purposes only and is not a suggestion for supplementation with any of the listed items. References available upon request.

24-Hour Urine Steroid Panel

Meridian
Valley LAB

<http://www.drritamarie.com/go/MeridianValleyUrineHormoneGuide>

Amount Excreted in 24hrs				Adult Reference Range			
CREATININE	0.8 gm/24hr	0.5-2.0 gm/24hr					
TOTAL VOLUME	1800 mL						
STEROID	Amount Excreted in μ g/24hr	Phase	Day	Female μ g/24hr			
ESTRONE	22.4	Luteal Follicular Mid-Cycle Post Menopausal	17-26 27-11 12-16 12-16	3.3 - 44.6 *	2.0 - 39 11.0 - 46 1.0 - 7.0		
ESTRADIOL	4.5	Luteal Follicular Mid-Cycle Post Menopausal	17-26 27-11 12-16 12-16	1.4 - 12.2 *	1.0 - 23 4.0 - 45 0 - 4		
ESTRIOL	7.4	Luteal Follicular Mid-Cycle Post Menopausal	17-26 27-11 12-16 12-16	6.1 - 32.4 *	3.0 - 48 20 - 130 0 - 30		
<i>Total Estrogens</i>	34.3	Luteal Follicular Mid-Cycle Post Menopausal	17-26 27-11 12-16 12-16	10.8 - 89.2 *	7.0 - 110 38 - 221 0 - 41		
<i>Estrogen Quotient</i>	0.3	Estriol / (estrone + estradiol)		>1.0			
2-OH ESTRONE	< 0.25	LOW	Luteal Post Menopausal	17-26	3.8 - 38.1 * 0.2 - 5.4 *		
16 α -OH ESTRONE	Below Detection Limit		Luteal Post Menopausal	17-26	2.1 - 7.9 * 0.15 - 3.5 *		
2 / 16 α Ratio	Not Calculated		Luteal Post Menopausal	17-26	1.8 - 5.5 * 0.6 - 5.0 *		
4-OH ESTRONE	< 0.25	LOW	Luteal Post Menopausal	17-26	0.8 - 5.9 0.05 - 1.1		
2-METHOXYESTRONE	< 0.25	LOW	Luteal Post Menopausal	17-26	2.2 - 14.4 * 0.3 - 4.1		
2-METHOXYESTRADIOL	< 0.1	Luteal Post Menopausal		17-26	0.1 - 2.2 * 0.03 - 0.54		

Meridian
Valley LAB

<http://www.drritamarie.com/go/MVLComprehensiveULTIMATE>

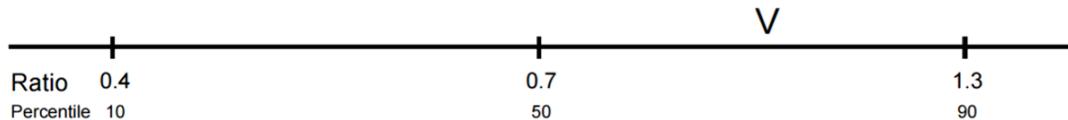
Comprehensive ULTIMATE Hormone Profile

Patient Name: Jane Doe HOLD
 Accession #: 1500 Test ID 419973 Test Code: 4100

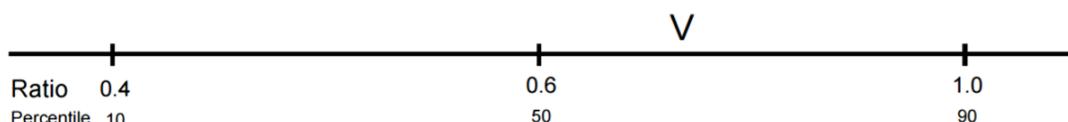
Adult Reference Range
 Female
 µg/24hr

STEROID	Amount Excreted in µg/24hr		
PREGNANEDIOL (progesterone metabolite)	590	Luteal Follicular Post Menopausal	1450 - 6140 * 0 - 2500 200 - 1000
DHEA	185		100 - 2000
TESTOSTERONE	7.4		5.0 - 35.0
5 α -ANDROSTANEDIOL	90.0	HIGH	3.0 - 35.0
5 β -ANDROSTANEDIOL	135.0		13.0 - 180.0
ANDROSTERONE	1547		500 - 3200
ETIOCHOLANOLONE	1491		500 - 5000
PREGNANETRIOL	564		100 -1500
CORTISONE (E)	92		31-209
CORTISOL (F)	50		30-170
TETRAHYDROCORTISONE (THE)	1733		1700-4200
ALLO-TETRAHYDROCORTISOL (5 α -THF)	515		400-2100
TETRAHYDROCORTISOL (THF)	696	LOW	900-2600
11 β -HYDROXYANDROSTERONE	315	LOW	398-1471
11 β -HYDROXYETIOCHOLANOLONE	360		153-827
ALDOSTERONE	15.0		Normal Diet: 6.0-25.0 Low Salt: 17.0-44.0 High Salt: 0.0-6.0
ALLO-TETRAHYDROCORTICOSTERONE (5 α -THB)	270		130-600
TETRAHYDROCORTICOSTERONE (THB)	103		30-240
11-DEHYDROTETRAHYDROCORTICOSTERONE (THA)	32	LOW	62-293

Urinary HGH	Amount Excreted in pg/24hr	Adult Reference Range	
Human Growth Hormone	2652	1065 - 4722 pg/24hr	
Urinary Oxytocin	Amount Excreted in pmol/24hr	Adult Reference Range	
Oxytocin	215	Low	250 - 700 pmol/24hr
Urinary Melatonin Analytes	Amount Excreted	Adult Reference Range	
Melatonin	33.1	9.1 - 57.3 ng/24hr	
6-Sulfatoxymelatonin	5.8	Low	8.3 - 39.7 µg/24hr
Urinary Thyroid	Amount Excreted in ng/24hr	Adult Reference Range ng/24hr	
Free T3	396	Low	470 - 1750
Free T4	524		430 - 3200
Urinary Mineral	Amount Excreted in mmol/24h	Adult Reference Range mmol/24hr	
Sodium	86	40 - 220	
Potassium	41	25 - 150	
Sodium/Potassium Ratio	2.1	1.2 - 4.8	

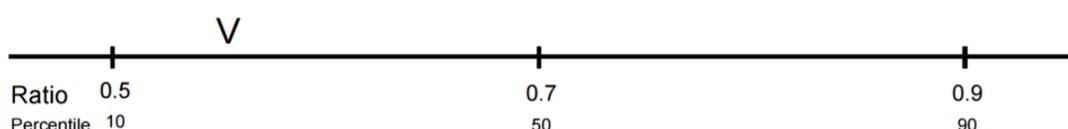


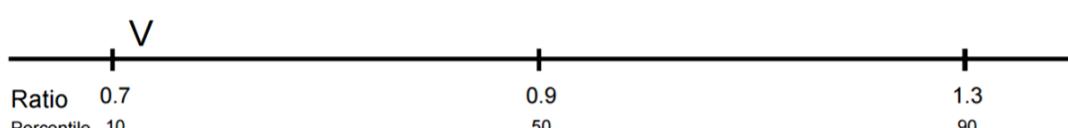
ENZYME ACTIVITY PHENOTYPE ASSESSMENT



5- α -REDUCTASE

Androsterone/Etiocholanolone Ratio: 1.04


Allo-tetrahydrocortisol/tetrahydrocortisol Ratio: 0.74


Elevated 5- α -reductase activity is associated with polycystic ovary syndrome and hirsutism in women, benign prostate hypertrophy and premature baldness in men, and obesity and insulin resistance in both genders. Low 5- α -reductase activity may result in reduced conversion of testosterone to DHT and undervirilization in males.

11- β -hydroxysteroid dehydrogenase I & II

Cortisol/Cortisone Ratio: 0.54

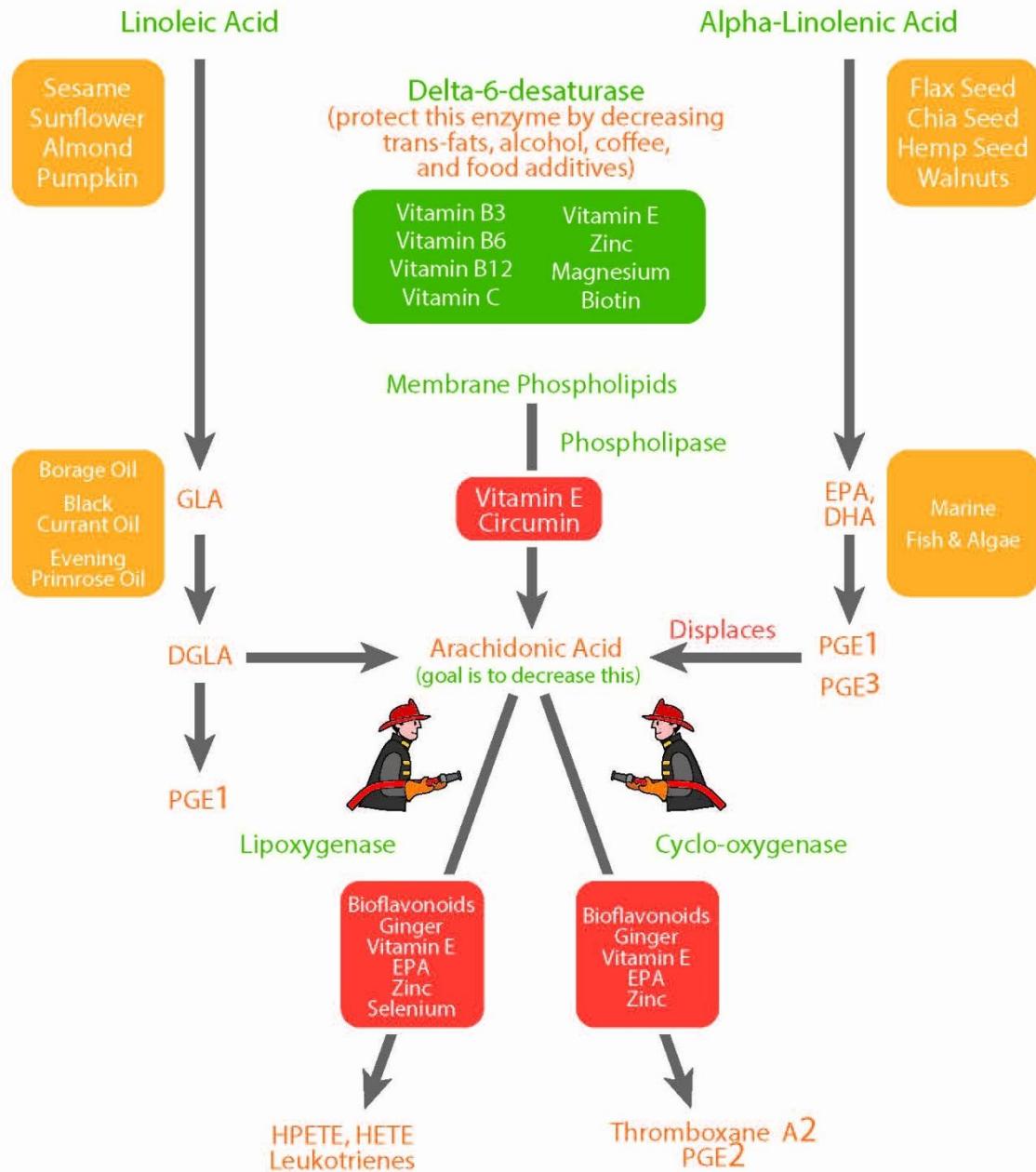
Tetrahydrocortisol+allo-tetrahydrocortisol/Tetrahydrocortisone Ratio: 0.70

Low ratios are associated with obesity and insulin resistance

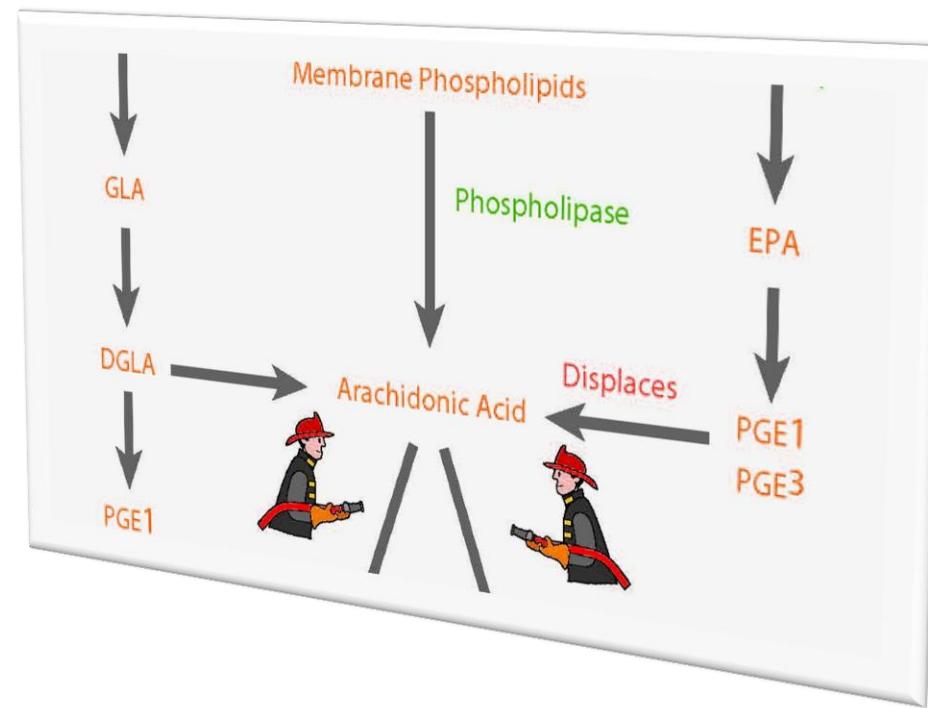
Elevated ratios are associated with low-renin hypertension, high dose licorice, and cortisol administration.

<http://www.drritamarie.com/go/MeridianValleyUrineHormoneGuide>

Comprehensive Digestive Analysis

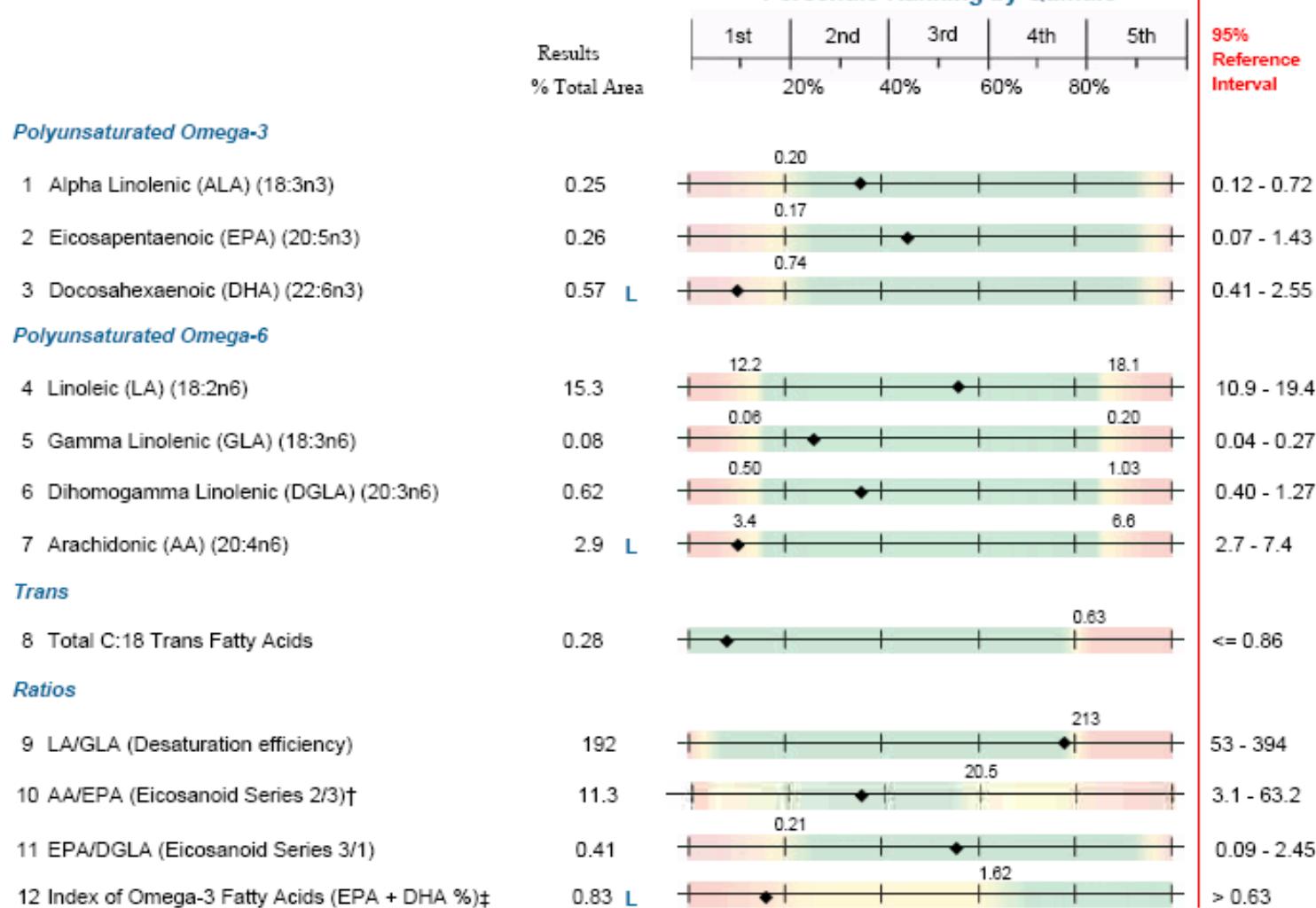

- ✓ Symptoms: digestive and outside
- ✓ Physical signs of nutrient deficiencies due to malabsorption
- ✓ Functional assessments
 - Transit time, HCl challenge
- ✓ Immune system responses
- ✓ Lab testing
 - Blood chemistry markers
 - Stool testing
 - Organic acid testing

Immune System and Fatty Acids Testing


Nutritional Modulation

Inflammatory Cascade

Inflammation Marker: AA/EPA Ratio

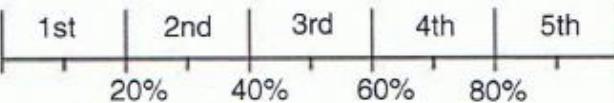

- ✓ Optimum ratio: 1.5 - 3.0
- ✓ Average American: 11
- ✓ “Unwell”: >10
- ✓ High inflammation:
>15
- ✓ Chronic illness and
disease: >=15

0241 Bloodspot Fatty Acid Profile

Methodology: Capillary Gas Chromatography/Mass Spectrometry

Percentile Ranking by Quintile

†Sears, B. *Toxic Fat: When Good Fat Turns Bad*. 1st ed. Nashville, TN: Thomas Nelson; 2008.‡Harris, WS. Omega - 3 fatty acids and cardiovascular disease: A case for omega-3 index as a new risk factor. *Pharmacological Research* 2007; 55:217-223.


60 YO Female – Depression & Celiac

0241 Bloodspot Fatty Acid Profile

Methodology: Capillary Gas Chromatography/Mass Spectrometry

Percentile Ranking by Quintile

Results
% Total Area

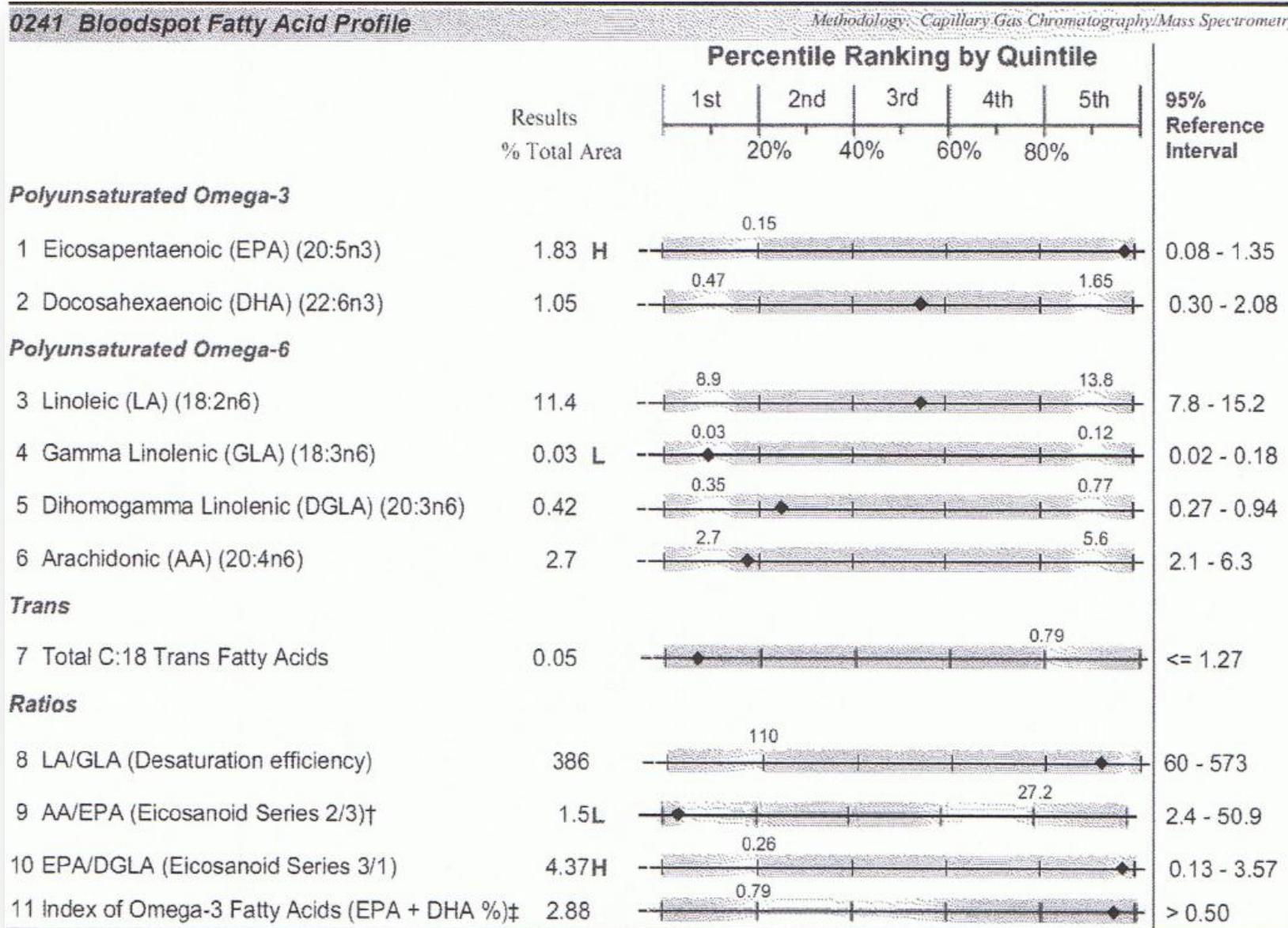
95%
Reference
Interval

Polyunsaturated Omega-3

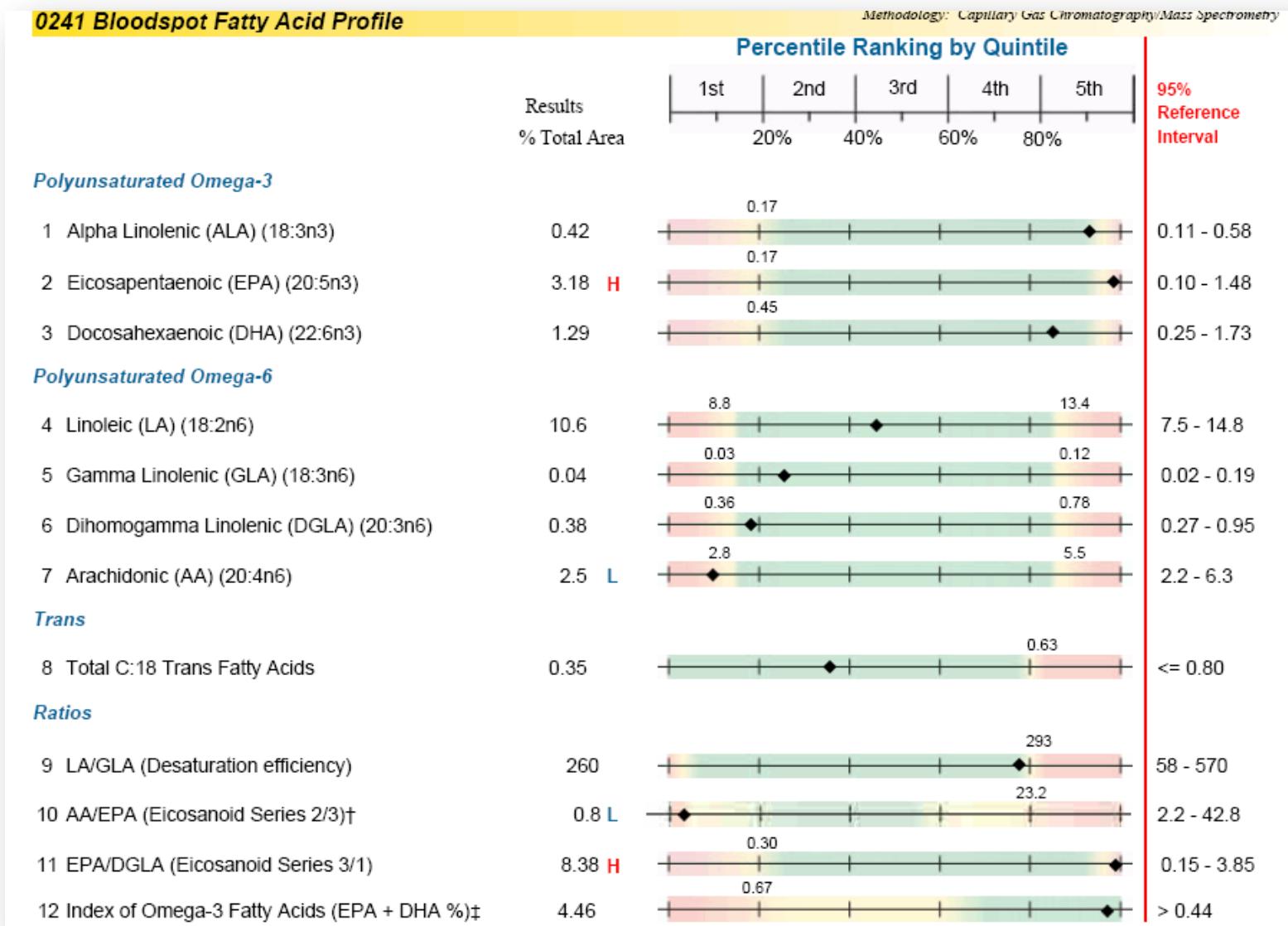
1 Eicosapentaenoic (EPA) (20:5n3)	0.13	L	0.15	0.08 - 1.35
2 Docosahexaenoic (DHA) (22:6n3)	0.53		0.47 1.65	0.30 - 2.08

Polyunsaturated Omega-6

3 Linoleic (LA) (18:2n6)	13.4		8.9 13.8	7.8 - 15.2
4 Gamma Linolenic (GLA) (18:3n6)	0.07		0.03 0.12	0.02 - 0.18
5 Dihomogamma Linolenic (DGLA) (20:3n6)	0.81	H	0.35 0.77	0.27 - 0.94
6 Arachidonic (AA) (20:4n6)	2.9		2.7 5.6	2.1 - 6.3


Trans

7 Total C:18 Trans Fatty Acids	0.46		0.79	<= 1.27
--------------------------------	------	--	------	---------


Ratios

8 LA/GLA (Desaturation efficiency)	200		110	60 - 573
9 AA/EPA (Eicosanoid Series 2/3)†	22.3		27.2	2.4 - 50.9
10 EPA/DGLA (Eicosanoid Series 3/1)	0.16	L	0.26	0.13 - 3.57
11 Index of Omega-3 Fatty Acids (EPA + DHA %)‡	0.66	L	1.31	> 0.50

60 YO Female - 4 Months Later

65 YO Female - 9 Months Later

Percentile Ranking by Quintile

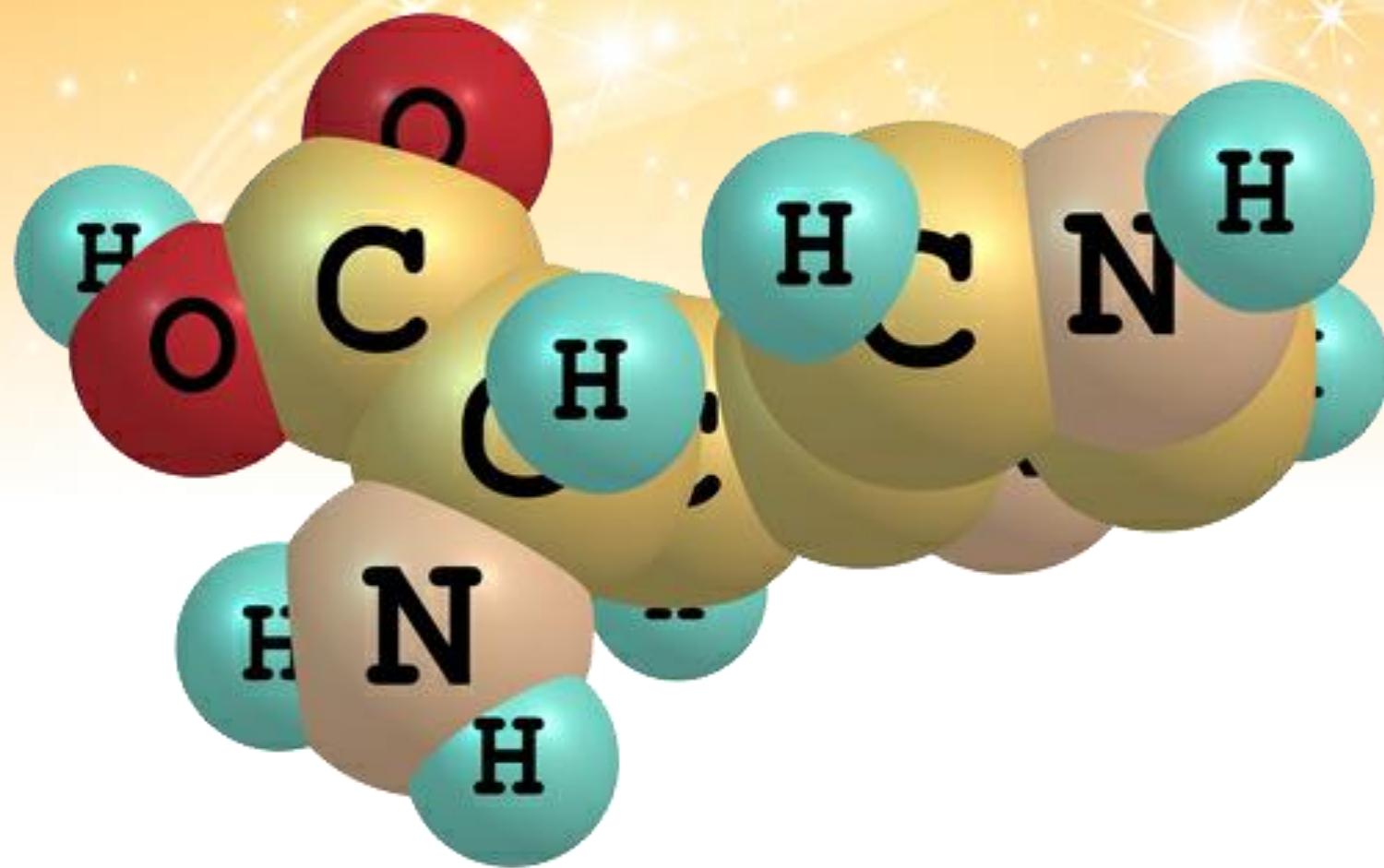
Omega-3 and Omega-6 Ratios

ALA: 2.2 grams per day

EPA/DHA: 0.65 grams per day

<http://www.drritamarie.com/go/USDASearch>

n-3 is Omega 3 Alpha Linolenic Acid ; n-6 is Linoleic Acid


Seeds		Total n-3 FA (g)	Total n-6 FA (g)	n-6/n-3 Ratio
Flax seeds	1 oz.	1.8	0.4	0.2
Hemp Seeds	1 oz.	2.8	8.4	3
Chia Seeds	1 oz.	5	1.6	0.32
Pumpkin seeds, shelled	1 oz.	0.1	5.4	107.8
Poppy seeds	1 oz.	0.1	8.6	96.0
Sesame seeds	1 oz.	0.1	6.7	67
Sunflower Seeds	1 oz.	0.1	8.5	85

Fish		Total n-3 FA (g)	Total n-6 FA (g)	n-6/n-3 Ratio
Salmon	3 oz.	0.273 .251 EPA .948 DHA	0.14	.1

For people who don't eat fish, recommended intake of ALA is 10 grams per day. (1 ounce Chia, 2 ½ Tablespoons, is 5 grams)

Amino Acid Testing

Why Measure Amino Acids?

- ✓ Assess protein intake and sufficiency
- ✓ Determine adequacy of stomach acid
- ✓ Assess pancreatic enzyme status
- ✓ Evaluate neurotransmitter imbalance
- ✓ Determine hormone adequacy
- ✓ Evaluate healing and immune issues
- ✓ Assess vitamin and mineral status

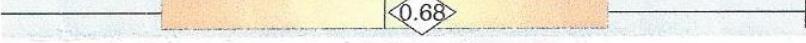
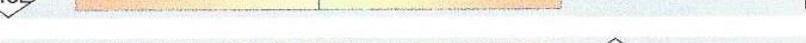
Organic Acids Test: Great Plains

- ✓ Intestinal Microbial Overgrowth
- ✓ Oxalate Metabolites
- ✓ Glycolytic Metabolites
- ✓ Krebs Cycle Metabolites
- ✓ Neurotransmitter Metabolites
- ✓ Folate Metabolism
- ✓ Ketones and Fatty Acid Oxidation
- ✓ Nutritional Markers
- ✓ Detoxification Indicators
- ✓ Amino Acid Metabolites
- ✓ Bone Metabolites

72 MARKERS

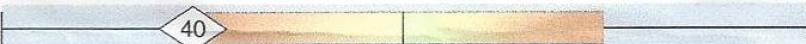
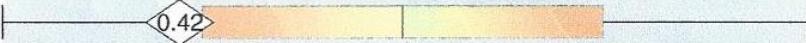
Organic Acids Test: Genova Diagnostics

- ✓ Fatty Acids Oxidation
- ✓ Carbohydrate Metabolism
- ✓ Energy Production
- ✓ B Complex Vitamin Markers
- ✓ Neurotransmitter Metabolism
- ✓ Detoxification Indicators
- ✓ Dysbiosis Markers

www.GDX.net • 800.522.4762

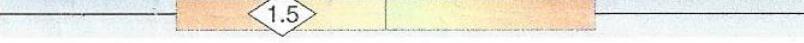
46 MARKERS

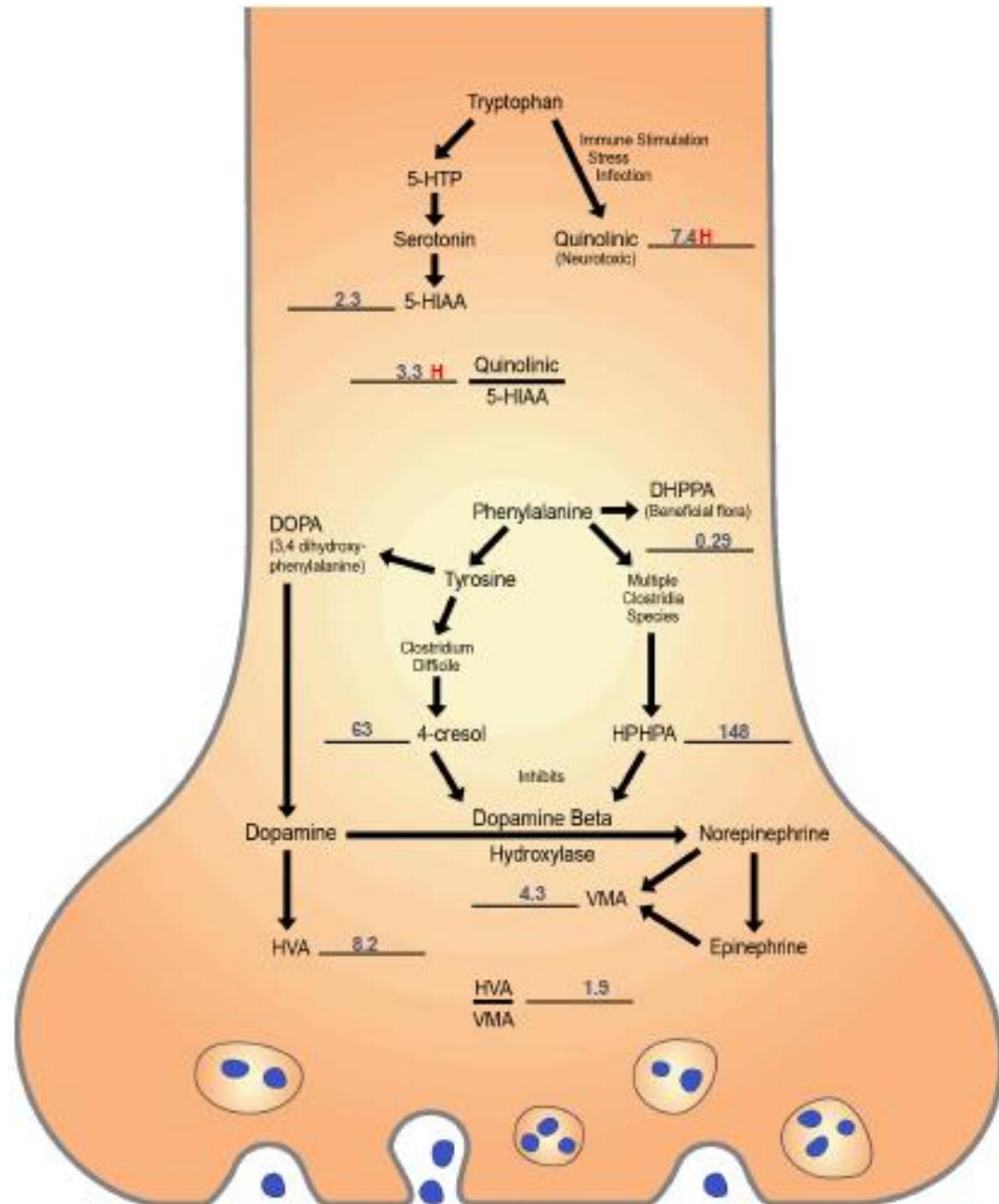



Organic Acids Test - Nutritional and Metabolic Profile

Metabolic Markers in Urine	Reference Range (<i>mmol/mol creatinine</i>)	Patient	Reference Population - Females Age 13 and Over
Malabsorption and Bacterial Markers			
10 2-Hydroxyphenylacetic	0.06 - 0.66	H 1.1	
11 4-Hydroxyphenylacetic	≤ 19	H 26	
12 4-Hydroxybenzoic	≤ 1.3	0.68	
13 4-Hydroxyhippuric	0.79 - 17	H 22	
14 Hippuric	≤ 613	500	
15 3-Indoleacetic	≤ 11	4.8	
16 Succinic	≤ 9.3	H 11	
17 HPPA (Clostridia Marker)	≤ 208	167	
18 4-Cresol (C. difficile)	≤ 75	0.62	
19 DHPPA (Beneficial Bacteria)	≤ 0.38	0.29	

Organic Acids Test - Nutritional and Metabolic Profile



Metabolic Markers in Urine		Reference Range (mmol/mol creatinine)	Patient	Reference Population - Females Age 13 and Over
Oxalate Metabolites				
20	Glyceric	0.77 - 7.0	5.8	
21	Glycolic	16 - 117	40	
22	Oxalic	6.8 - 101	89	
Glycolytic Cycle Metabolites				
23	Lactic	≤ 48	7.6	
24	Pyruvic	≤ 9.1	4.4	
25	2-Hydroxybutyric	0.03 - 1.8	0.42	
Krebs Cycle Metabolites				
26	Succinic	≤ 9.3	H 11	
27	Fumaric	≤ 0.94	H 1.4	
28	Malic	0.06 - 1.8	0.29	
29	2-Oxoglutaric	≤ 35	11	
30	Aconitic	6.8 - 28	H 36	
31	Citric	≤ 507	H 1 040	

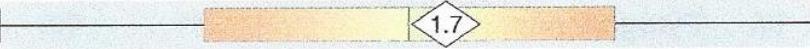
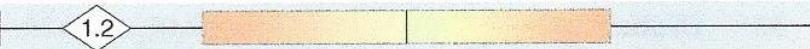
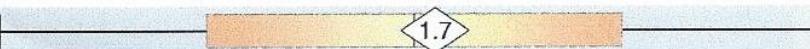


Organic Acids Test - Nutritional and Metabolic Profile

Metabolic Markers in Urine	Reference Range (mmol/mol creatinine)	Patient	Reference Population - Females Age 13 and Over
----------------------------	--	---------	--

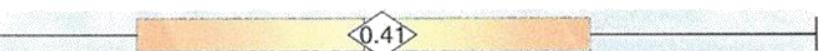
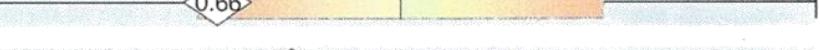
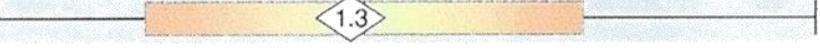
Neurotransmitter Metabolites

32	Homovanillic (HVA) (dopamine)	0.80 - 3.6	H	7.0		7.0
33	Vanillylmandelic (VMA) (norepinephrine, epinephrine)	0.46 - 3.7		2.9		2.9
34	HVA / VMA Ratio	0.16 - 1.8	H	2.4		2.4
35	5-Hydroxyindoleacetic (5-HIAA) (serotonin)	≤ 4.3		1.5		1.5
36	Quinolinic	0.85 - 3.9	H	6.8		6.8
37	Kynurenic	0.17 - 2.2		1.7		1.7
38	Quinolinic / 5-HIAA Ratio	0.42 - 2.0	H	4.7		4.7

Organic Acids Test - Nutritional and Metabolic Profile

Metabolic Markers in Urine	Reference Range (mmol/mol creatinine)	Patient	Reference Population - Females Age 13 and Over
----------------------------	--	---------	--




Ketone and Fatty Acid Oxidation

41	3-Hydroxybutyric	≤ 3.1	1.7	
42	Acetoacetic	≤ 10	1.2	
43	4-Hydroxybutyric	≤ 4.8	2.0	
44	Ethylmalonic	0.44 - 2.8	1.7	
45	Methylsuccinic	0.10 - 2.2	2.0	
46	Adipic	0.04 - 3.8	1.5	
47	Suberic	0.18 - 2.2	H 4.6	
48	Sebacic	≤ 0.24	H 0.36	

Organic Acids Test - Nutritional and Metabolic Profile

Metabolic Markers in Urine	Reference Range (mmol/mol creatinine)	Patient	Reference Population - Females Age 13 and Over
Nutritional Markers			
Vitamin B12			
49 Methylmalonic *	≤ 2.3	2.0	
Vitamin B6			
50 Pyridoxic (B6)	≤ 34	H 47	
Vitamin B5			
51 Pantothenic (B5)	≤ 10	6.1	
Vitamin B2 (Riboflavin)			
52 Glutaric *	0.04 - 0.36	H 2.4	
Vitamin C			
53 Ascorbic	10 - 200	L 2.1	
Vitamin Q10 (CoQ10)			
54 3-Hydroxy-3-methylglutaric *	0.17 - 39	32	
Glutathione Precursor and Chelating Agent			
55 N-Acetylcysteine (NAC)	≤ 0.28	0.12	
Biotin (Vitamin H)			
56 Methylcitric *	0.19 - 2.7	1.6	

Metabolic Markers in Urine		Reference Range (mmol/mol creatinine)	Patient	Reference Population - Females Age 13 and Over
Amino Acid Metabolites				
60	2-Hydroxyisovaleric	≤ 0.42	0.08	
61	2-Oxoisovaleric	≤ 2.1	0.59	
62	3-Methyl-2-oxovaleric	≤ 0.87	0.41	
63	2-Hydroxyisocaproic	≤ 0.48	0.04	
64	2-Oxoisocaproic	≤ 0.37	0.16	
65	2-Oxo-4-methiolbutyric	≤ 0.16	0.13	
66	Mandelic	≤ 0.21	H 0.34	
67	Phenyllactic	≤ 0.20	H 0.31	
68	Phenylpyruvic	0.20 - 1.9	0.66	
69	Homogentisic	≤ 0.36	0.13	
70	4-Hydroxyphenyllactic	≤ 0.80	H 1.1	
71	N-Acetylaspartic	≤ 3.0	1.3	
72	Malonic	≤ 9.7	1.8	
73	3-Methylglutaric	≤ 0.76	H 0.79	
74	3-Hydroxyglutaric	≤ 6.2	2.1	
75	3-Methylglutaconic	≤ 4.5	2.4	

Labs for Organic Acids

Practitioner Only:

- ✓ Genova Diagnostics

<https://www.gdx.net>

Direct Access:

- ✓ Great Plains:

<http://www.greatplainslaboratory.com>

- ✓ Direct Labs:

<http://www.directlabs.com>

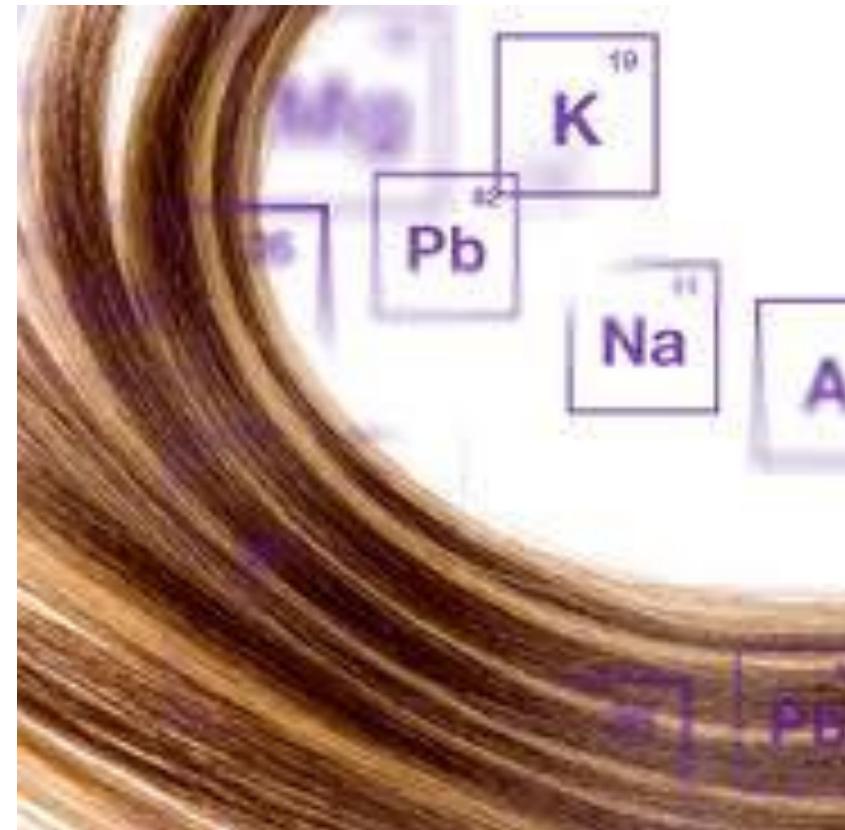
- ✓ Accesa Labs:

<http://www.accesalabs.com>

Toxic and Essential Minerals

Not all methods are created equal!

- ✓ **Blood Chemistry** and electrolyte indicators
- ✓ **Blood Levels** of minerals
- ✓ **Blood Cells: Essential elements**
- ✓ **Hair Testing: Toxics**
- ✓ **Taste Testing: Not universally accepted,**
 although good evidence for validity
- ✓ **Stool Testing: Controversial**
- ✓ **Urine Testing:**
 - Chelation challenge for toxics
 - Unchallenged
- ✓ **Loading:** Pre- and post-urine test based on a loading dose


Routine Blood Test Indicators as an Indicator of Mineral Status

- ✓ **Calcium:** Not a good measure of overall status
- ✓ **Potassium:** Not a good indicator of tissue status
- ✓ **Sodium:** Reliable
- ✓ **Chloride:** Reliable
- ✓ **Phosphorus:** Reliable
- ✓ **Iron:** Reliable
- ✓ **Molybdenum:** Indirect – uric acid low suggests molybdenum low
- ✓ **Selenium:** Indirect per thyroid T4-to-T3 ratios
- ✓ **Zinc:** Indirect via alkaline phosphatase

Hair Testing for Toxic Elements

- ✓ U.S. EPA
- ✓ 300-page review
- ✓ 400 studies of hair in 1979
- ✓ "Hair is a meaningful and representative tissue for biological monitoring for most of the toxic metals."

"Toxic Trace Metals in Human and Mammalian Hair and Nails", EPA-600 4.79-049, August 1979, US Environmental Protection Agency, Research and Development.

Fecal Metals Testing

- ✓ Used by **Dr. Amy Yasko** in combination with other tests
- ✓ Good for evaluating **ability to excrete**
- ✓ Good for monitoring **heavy metal detox**
- ✓ Performed by **Doctor's Data**

Mineral Testing Resources

✓ Red Blood Cell, Urine, Hair:

- Great Plains
- Doctor's Data
- Genova Diagnostics
- Trace Elements

✓ Feces:

- Doctor's Data

✓ Taste Test Kits:

- <http://www.drritamarie.com/go/MineralTests>

