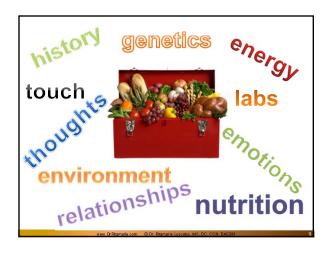
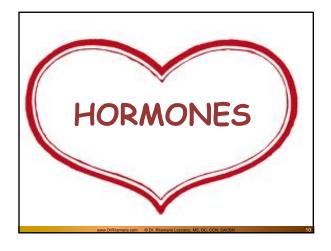
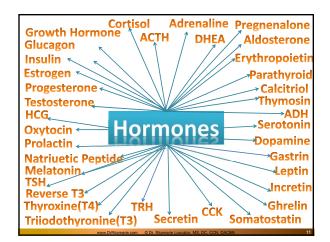
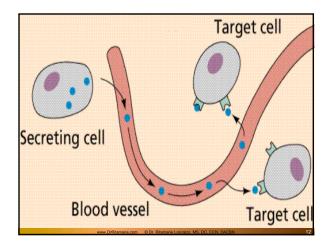
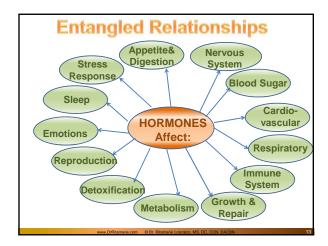

Medical Disclaimer: The information in this presentation is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the research and experience of Dr. Ritamarie Loscalzo, drritamarie.com, and the experts who have contributed. We encourage you to make your own health care decisions based upon your research and in partnership with a qualified health care professional.

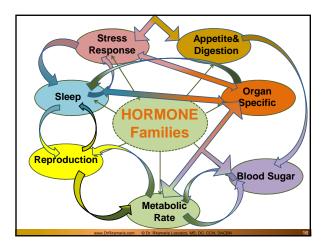





Nutritional Endocrinology to the Rescue







Hormone Families

- ✓ Metabolic rate
- ✓ Blood sugar balancing
- ✓ Appetite & digestion
- √ Stress
- √ Sex and reproduction
- ✓ Sleep, thoughts, and emotions
- √ Organ functions

http://www.	.DrRitamarie	.com

Late Breaking News on the Hormone Front

Pregnenolone Blocks Marijuana High

January 2014: Pregnenolone blocks the activity of the type-1 cannabinoid receptor (CB1) in the brain, according to senior researcher Dr. Pier Vincenzo Piazza of Neurocentre Magendie in Bordeaux, France.

Late Breaking News on the Hormone Front

Hormones in BRCA Gene Carriers 'Explain Cancer Risk'

October 2013: Study by researchers from the Department of Women's Cancer at University College London (UCL) in the UK suggests that high levels of Estradiol may be a reason women with BRCA1 and BRCA2 gene SNPs are more likely to develop breast and ovarian cancer over other cancers. Hormones in BRCA gene carriers 'explain cancer risk'

Late Breaking News on the Hormone Front

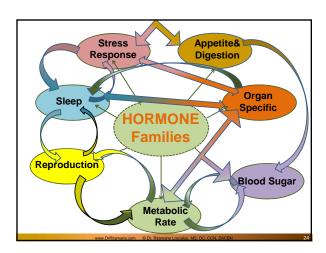
Obese Kids Have Higher Cortisol Than Non-Obese Kids

December 2013: Researchers from the Erasmus MC-Sophia Children's Hospital in the Netherlands examined levels of cortisol from hair samples taken from 20 obese children (15 girls and five boys) and 20 normal weight children (15 girls and five boys), all of whom were between the ages of 8 and 12. None of the children had any chronic diseases, though three of the obese children had metabolic syndrome.

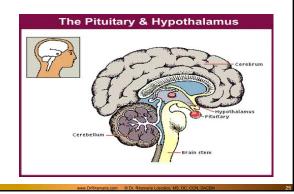
http://press.endocrine.org/journal/jcem

Late Breaking News on the Hormone Front

Oxytocin Stimulates the Reward Center In the Male Brain, Increasing Partner Attractiveness and Strengthening Monogamy


October 2013: Lead author that when the subjects "received oxytocin instead of the placebo, their reward system in the brain when viewing the partner was very active, and they perceived them as more attractive than the other women."

Oxytocin enhances brain reward system responses in men viewing the face of their female partner, René Hurlemann, et al., Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1314190110, published online 25 November 2013, Abstract.

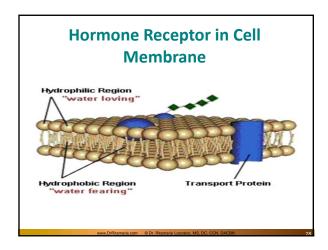

Just About Any Symptom You Can Think Of Can Be Hormone Related √ Fatigue Lethargy Weakness · Fatigue √ Weight gain / • Angina Exertional chest pain weight loss (yo-yo) • Impaired concentration ✓ Insomnia Anorexia Impaired libido/ impotence ✓ Depression, anxiety, Headache and mood swings Cardiorespiratory disturbances √ Skin lesions Cutaneous disturbances √ High cholesterol ✓ Cancer...

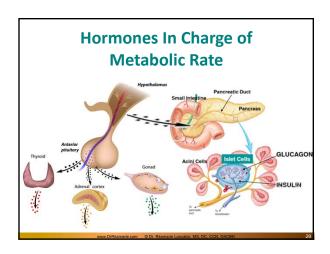
Assessment Tools ✓ Asking the Right Questions ✓ Symptom Surveys ✓ Physical Exam ✓ Blood Chemistry ✓ Functional Assessments > Adrenal Stress Index > Fatty Acids > Amino Acids > Organic Acids > Minerals > Steroid Hormone Panels

Master Hormone Control

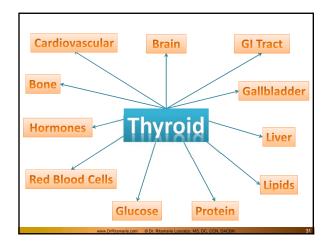
Hormones of the Hypothalamus

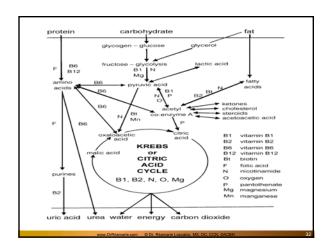
- √ Thyrotropin-releasing hormone (TRH)
- √ Gonadotropin-releasing hormone (GnRH)
- √ Growth hormone-releasing hormone (GHRH)
- √ Corticotropin-releasing hormone (CRH)
- √ Somatostatin: inhibits growth hormone (GH)

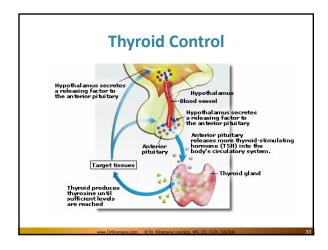

Pituitary Hormones


Anterior Lobe

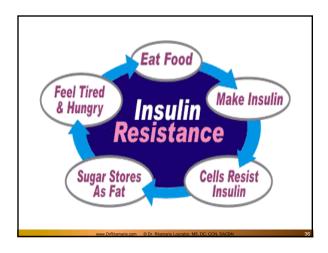
- √ Thyroid Stimulating Hormone (TSH)
- √ Follicle Stimulating Hormone (FSH)
- ✓ Luteinizing Hormone (LH)
- ✓ ACTH
- ✓ Prolactin (PRL)
- ✓ Growth Hormone (GH)
- ✓ Alpha Melanocyte-Stimulating Hormone (α-MSH)


Posterior Lobe

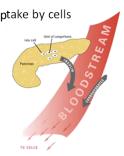

- √ Vasopressin
- ✓ Oxytocin



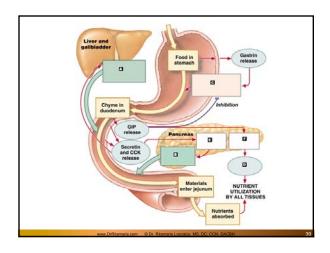
Metabolic Rate Hormone Family			
Hormone	Produced by	Action	
Thyroxine (T4), Free T4	Thyroid	Converts to T3 which stimulates oxygen uptake by cells	
Triiodothyronine (T3), Free T3	Thyroid	Most profound effect on metabolic rate - increases	
Thyroid Stimulating Hormone (TSH)	Anterior pituitary	Stimulates release of T4	
Thyrotropin Releasing Factor (TRH)	Hypothalamus	Stimulates release of TSH	
Reverse T3	Thyroid	Inhibits T3 and decreases metabolic rate	
Insulin	Adrenal cortex	Enhances uptake of glucose into cells and subsequent ATP Production	
Epinephrine (adrenalin)	Thyroid	Enhances metabolic rate and also insulin	
Cortisol	Adrenal cortex	Enhances release of stored sugar and supplies additional fuel to cells	
www.DrRitamarie.com © Dr. Ritamarie Loscalzo, MS, DC, CCN, DACBN 30			



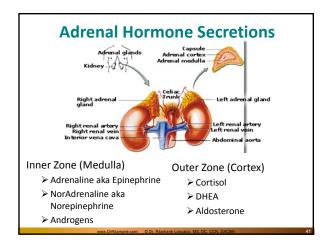
Blood Sugar Balancing Hormones			
Hormone	Produced by	Action	
Insulin	Fat cells	Stimulates glucose uptake into cells and reduces blood glucose	
Glucagon	Stomach lining	Stimulates glucose release from glycogen and synthesis from amino acids and fats	
Somatostatin	Stomach, intestine and pancreas	Suppresses glucagon and insulin, gastric hormones, GH , TS and prolactin	
Growth Hormone	Anterior pituitary	Antagonizes insulin	
Epinephrine (Adrenaline)	Adrenal medulla	Enhances glucose release from glycogen and fat	
Cortisol	Adrenal cortex	Antagonizes insulin and stimulate gluconeogenesis and increases glucose	
Thyroxine (T4)	Thyroid	Enhances release of glucose from glycogen and absorption of sugars from intestine	
ACTH	Anterior Pituitary	Enhances release of cortisol and fatty acids from adipose tissue	
Incretin	Small Intestine	Increases insulin even before glucose enters bloodstream	

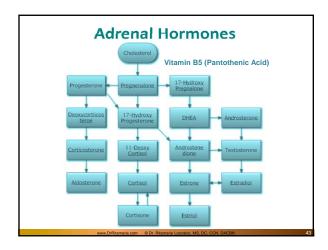

Insulin And Glucagon Imbalance ✓ Blood sugar imbalances weaken and imbalance: → gut → hormone levels → lungs → adrenal glands → brain → detoxification pathways ✓ This leads to → impaired metabolism

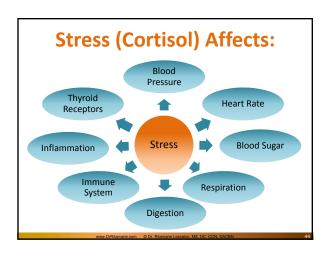
➤ weakened thyroid function
✓ As long as you have blood sugar dysregulation, whatever you do to fix your thyroid isn't going to work.

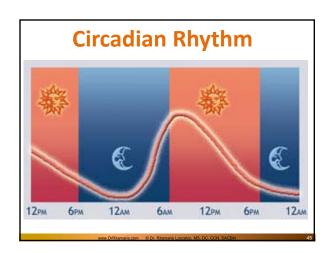


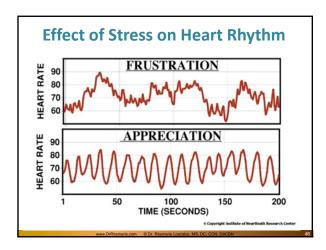
Effects of Thyroid Dysfunction on Glucose Metabolism

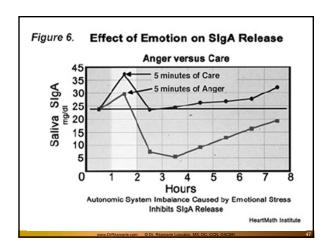

- ✓ Decreased rate of glucose uptake by cells
- ✓ Decreased rate of glucose absorption in the gut
- ✓ Slower response of insulin to elevated blood sugar
- ✓ Slower clearance of insulin from the blood

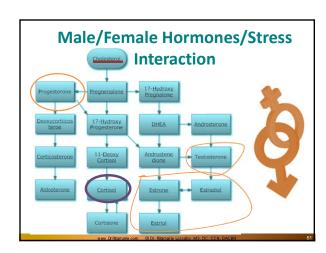

Appetite and Digestion Hormone Family				
Hormone	Produced by	Action		
Leptin	Fat cells	Signals satiety		
Ghrelin	Stomach lining	Signals hunger		
Gastrin	Stomach	Production of stomach acid		
Cholecystokinin (CCK)	Small intestine	Production of pancreatic juices and emptying of gall bladder		
Secretin	Duodenum	Stimulates bicarbonate production by pancreas, bile production by liver, and pepsin by stomach		
Peptide YY	Mainly ileum and colon, but a little in other parts of GI Tract	Inhibits gastric motility, increases water and electrolyte absorption in colon, may suppress pancreatic secretion, increases efficiency of digestion		
Incretins: GIP- gastric inhibitory peptide and GLP- glucagon-like peptide	Small Intestine	Increases insulin, inhibits glucagon, slows rate of absorption of nutrients by reducing gastric emptying		
Somatostatin	Stomach, intestine, pancreas	Inhibits gastrin, CCK, Secretin, GIP and also Growth Hormone, TSH, glucagon and insulin		
Dopamine	Brain and GI Mucosa	Reduces motility and protects mucosa		
Serotonin	Brain and GI Mucosa	Inhibits gastric acid secretion and stimulates production and release of mucus		

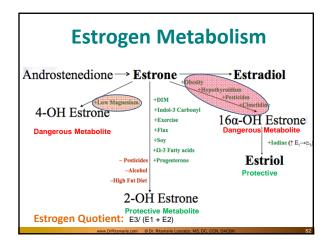



Stress Hormone Family			
Hormone	Produced by	Action	
Adrenalin (epinephrine)	Adrenal Medulla	Allows for fight/flight – increases heart rate, pulse, pressure	
Cortisol	Adrenal Cortex	Stimulates glucose release from glycogen, amino acids and fats and shunts energy to extremities for fight/flight	
Aldosterone	Adrenal Cortex	Aids in retention of fluid and electrolytes in kidney – conserves sodium, secretes potassium	
DHEA	Adrenal Cortex	Precursor to male and female hormones, muscle growth and repair	
Norepinephrine	Adrenal Medulla	Sympathetic response, sharpens focus, antagonizes insulin and stimulate gluconeogenesis	
Thyroxine (T4)	Thyroid	Increases metabolic rate, decreased function with high amounts of stress	
ACTH (Adrenocorticotropic hormone)	Anterior Pituitary	Enhances release of cortisol and fatty acids from adipose tissue	

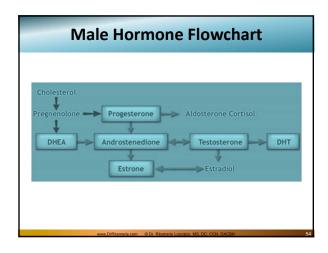


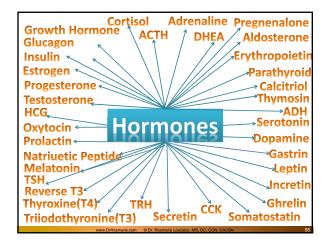


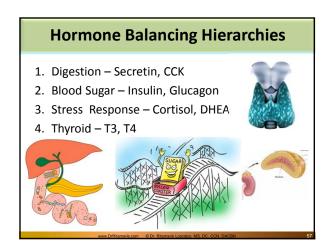

Sleep Hormone Family			
Hormone	Produced by	Action	
Melatonin	Pineal	Promotes deep sleep, immune support	
Growth Hormone	Posterior Pituitary	Promotes growth and repair and fat burning	
Ovaries, Adrenal cortex	Ovaries, Adrenal cortex	Ovaries, Adrenal cortex	
Cortisol	Adrenal Cortex	High levels at night disrupt sleep	
Leptin	Fat Cells	Peaks in middle of night to promote fat burning	
Progesterone	Ovaries, Adrenal cortex	Promotes sleep	
Estrogen	Ovaries, Adrenal cortex	Improves quality of sleep	
Testosterone	Testes, Adrenal cortex	Lack of sleep lowers it	
Insulin	Pancreas	Disrupts growth hormone and sleep pattern	
Glucagon	Pancreas	Keeps blood sugar steady while sleeping	

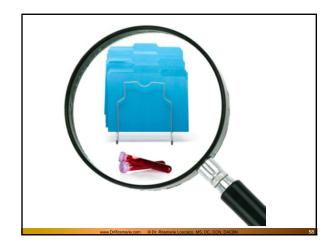

Hormones and Sleep

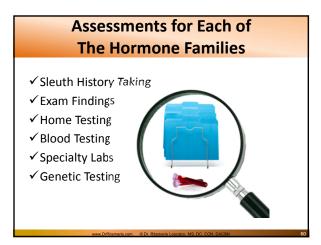
- ✓ Insulin/Glucagon
- ✓ Cortisol/DHEA
- ✓ Growth Hormone
- ✓ Leptin/Ghrelin
- ✓ Melatonin
- ✓ Estrogen/Progesterone
- ✓ Testosterone




Reproductive Hormone Family				
Hormone	Produced by	Action		
Pregnenalone	Adrenal cortex	Precursor to all sex hormones		
Progesterone	Ovaries, Adrenal cortex	Uterine proliferation, protects estrogen		
Estrogen	Ovaries, Adrenal cortex	Female traits, proliferation of breasts, ovulation		
Testosterone	Testes, Adrenal cortex	Male traits, sex drive		
Progesterone	Ovaries, Adrenal cortex	Promotes sleep, maintains uterine lining, corpus luteum pregnancy, strengthens bones		
FSH	Anterior Pituitary	Follicle maturation in females, sperm maturation in males		
LH	Anterior Pituitary	Triggers ovulation in females, testosterone production in males		
GnRH	Hypothalamus	Stimulates anterior pituitary production of LH and FSH		
Thyroid	Thyroid	Involved in egg maturation		
Cortisol	Adrenal Cortex	Chronic excess cortisol depletes sex hormone precursors		
HCG	Embryo	Maintains pregnancy		
Prolactin	Posterior Pituitary	Lactation		
Oxytocin	Posterior Pituitary	Milk letdown, bonding		







Organ Specific Hormone Family			
Hormone	Produced by	Action	
Erythropoietin	Kidney	Stimulates red blood cell production	
Thymosin	Adrenal Cortex	Stimulates glucose release from glycogen and synthesis from amino acids and fats	
Parathyroid HORMONE	Parathyroid gland	Increases blood calcium	
Calcitonin	Thyroid	Reduce blood calcium	
Anti Diuretic Hormone	Posterior pituitary	Retention of fluid	
Natriuretic peptide	Heart	Induces release of urine	
Angiotensin	Liver	Vasoconstriction, release of aldosterone	
Brain natriuretic peptide	Heart	Reduces blood pressure	
Thrombopoietin	Liver, kidney, striated muscle	Produces platelets	

Hormones Interact With Nutrients Foods Stress Environment Digestion Sleep Other Hormones

Blood Testing Spreadsheet and Report

Nutritional Endocrinology Rebalancing Protocols

Hormone Balancing Hierarchies 1. Digestion – Secretin, CCK 2. Blood Sugar – Insulin, Glucagon 3. Stress Response – Cortisol, DHEA 4. Thyroid – T3, T4 5. Sleep 6. Sex Hormones 7. Organ Specific

Kitchen Wisdom for Hormone Balancing To the Control of the Contro

Foods That Disrupt Hormones

- √ Hydrogenated and oxidized fats
- ✓ Processed high glycemic foods: flour, sugar, grains
- ✓ Charred meat: heterocyclic amines promote ER alpha
- ✓ Chemical-laden foods
- √ Foods in cans and plastic
- ✓ Gluten
- ✓ Dairy
- ✓ Caffeine
- ✓ Excess alcohol

Foods That Support Hormones

- ✓ Greens
- ✓ Brassicas
- ✓ Sea vegetables
- ✓ Omega-3 fats
- ✓ Coconut oil
- ✓ Cumin
- ✓ Pomegranate
- ✓ Lignans: flax, sesame and pumpkin seeds, soybeans, broccoli, beans, and some berries.
- ✓ Isoflavones: soybeans, clover, kudzu, mung beans, alfalfa sprouts, black cohosh, chickpeas

Gluten and Hormones

- ✓ Inflammation leads to adrenal stress
- ✓ Antibodies cross react with thyroid
- ✓ Malabsorption leads to nutritional deficiencies
- ✓ Effects on estrogen and progesterone via adrenal exhaustion
- ✓ Effects on digestion and gut flora
- ✓ Effects on neurotransmitters
- √ Worsens at perimenopause

Fat and Hormone Balance

- √ High saturated fat promotes 16 OH estrogen, the dangerous metabolite
- ✓ Omega-3 fats promote 2 methoxy estrone, the protective estrogen
- ✓ Estrogens and omega-3 oils work synergistically. Estrogen aids in absorbing and maintaining omega-3 levels. Proc Nutr Soc. 2008 Feb;67(1):19-27, Lipids. 2008 Jan;43(1):19-28. Epub 2007 Oct 3

- ✓ Omega-3 also reduce C-reactive protein
- ✓ DHA needed for insulin sensitivity
- ✓ EPA deficiency promotes inflamation

Hormone Nourishing Meal Ideas Large veggie salad with omega-3

- rich salad dressing and seed toppings
- ✓ Green blender soups
- √ Wraps using green leaves and nori sea vegetable and filled with greens, sprouts, sauerkraut and topped with an omega-3 rich dressing or spread

- √ Steamed vegetables
- √ "Big Bowl" filled with steamed and/or raw veggies and a blended vegetable sauce, made from the steam water, vegetables and a fat to thicken: chia seed, avocado, tahini, nut butter, coconut or raw nuts or seeds

Hormone Balancing By the Clock

- ✓ Quit eating 3 hours before bedtime to optimize growth hormone and promote fat burning while you sleep.
- ✓ "Burst and Burn" before bed: About 2 hours after your last meal of the day and at least 1 hour before bed, do a 2-minute burst of high intensity exercise.
- ✓ Extend the time between your meals to 5 hours.
- ✓ Consume protein within an hour of waking.
- ✓ Avoid high-carbohydrate breakfasts Morning carb overdoses cause a premature spike in leptin and food cravings.
- ✓ Practice breathing and appreciation before your meals.
- $\checkmark\,$ Commit to getting to sleep no later than 11:00 p.m.
- ✓ Plan fitness bursts 2 hours before each meal.

Gremlins That Sabotage Your Client's Health

- ✓ Overwork
- ✓ Judgment
- ✓ Worry
- √ Fear
- ✓ Anger
- ✓ Resentment
- √ Carb cravings
- **√** Responsibilities
- √ Social eating
- √ Work
- √ Emotional eating
- ✓ Emotional eating
- ✓ Low self-esteem
- ✓ Negative self-talk
- √ Finances
 - ✓ Putting everyone else first

Step-By-Step to Phenomenal Results

Values and goals – connect to what matters most

Ask the right questions to assess where they are now, what brought them here, and what's getting in the way

Labs and exams to determine the current state of health and identify imbalances

Order of correction protocols needs to be decided in advance

Restore balance with diet, lifestyle, and supplementation

Reassess and adjust at regular intervals to make sure you are on the right track

Prerequisites for Success as a Health and Wellness Professional

- ✓ Effective assessments detective skills
- ✓ Coaching, communication and connecting skills
- ✓ Deep understanding about how the body works
- ✓ Sound business model
- ✓ Ability to find clients and have them find you
 - Teleseminars
 - Telesummits
 - Blogs
 - E-zine
 - Social networking
 - Partners
- ✓ Enrollment skills to engage them

	•	•	•	