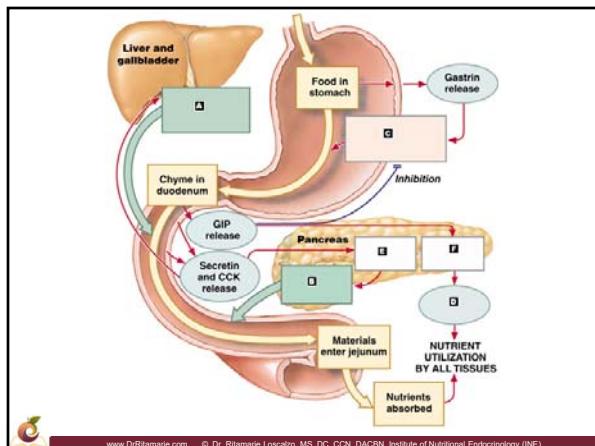


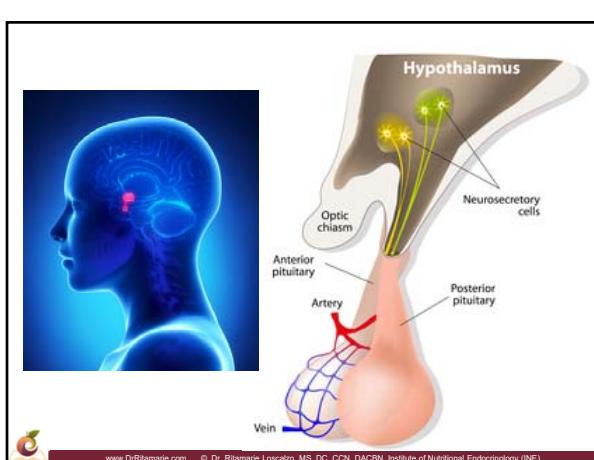
INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

INE INSTITUTE OF
NUTRITIONAL
ENDOCRINOLOGY


Digestion: The Gut-Brain Connection in Clinical Practice

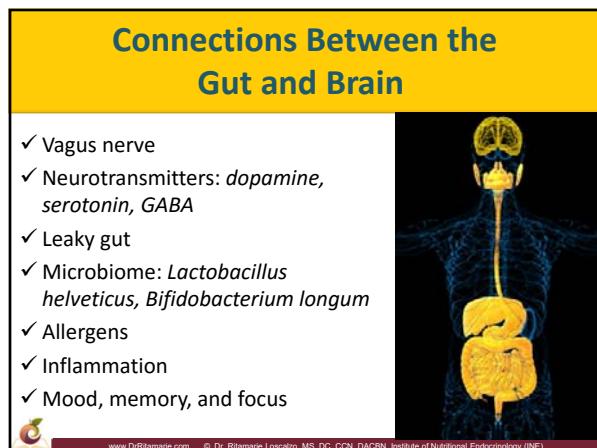
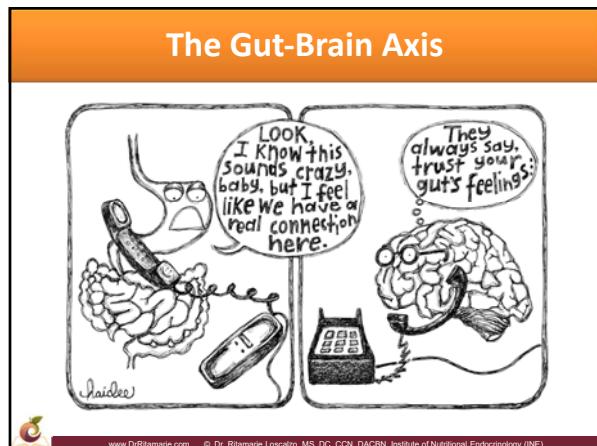
Excerpt from SHINE 2015, Day 1
The Microbiome and The Vagus Nerve: The Impact of Food and Mood

Dr. Ritamarie Loscalzo


www.DrRitamarie.com © Dr. Ritamarie Loscalzo, MS, DC, CCN, DACBN, Institute of Nutritional Endocrinology (INE)

Medical Disclaimer: The information in this presentation is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the research and experience of Dr. Ritamarie Loscalzo, drritamarie.com, and the experts who have contributed. We encourage you to make your own health care decisions based upon your research and in partnership with a qualified health care professional. This presentation is provided for informational purposes only and no guarantees, promises, representations or warranties of any kind regarding specific or general benefits, have been or will be made by Dr. Ritamarie Loscalzo, her affiliates or their officers, principals, representatives, agents or employees. Dr. Ritamarie Loscalzo is not responsible for, and shall have no liability for any success or failure, acts and/or omissions, the appropriateness of the participant's decisions, or the use of or reliance on this information.

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1



Gut Hormones		
Hormone	Produced by	Action
Leptin	Fat cells	Signals satiety
Ghrelin	Stomach lining	Signals hunger
Gastrin	Stomach	Production of stomach acid
Cholecystokinin (CCK)	Small intestine	Production of pancreatic juices and emptying of gall bladder
Secretin	Duodenum	Stimulates bicarbonate production by pancreas, bile production by liver, and pepsin by stomach
Peptide YY	Mainly ileum and colon, but a little in other parts of GI tract	Inhibits gastric motility, increases water and electrolyte absorption in colon, may suppress pancreatic secretion, increases efficiency of digestion
Incretins: GIP: Gastric Inhibitory Peptide and GLP: Glucagon-Like Peptide	Small intestine	Increases insulin, inhibits glucagon release, slows rate of absorption of nutrients by reducing gastric emptying
Somatostatin	Stomach, intestine, pancreas	Inhibits gastrin, CCK, secretin, GIP and also growth hormone, TSH, glucagon and insulin
Dopamine	Brain and GI mucosa	Reduces motility and protects mucosa
Serotonin	Brain and GI mucosa	Inhibits gastric acid and stimulates mucus

Brain Hormones - Hypothalamus		
Hormone	Produced by	Actions
Thyrotropin-releasing hormone (TRH)	Parvocellular neurosecretory cells of the paraventricular nucleus	Stimulate thyroid-stimulating hormone (TSH) release from anterior pituitary (primarily).
Prolactin-releasing hormone (PRH)	Parvocellular neurosecretory cells of the paraventricular nucleus	Stimulate prolactin release from anterior pituitary.
Corticotropin-releasing hormone (CRH)	Parvocellular neurosecretory cells of the paraventricular nucleus	Stimulate adrenocorticotrophic hormone (ACTH) release from anterior pituitary.
Dopamine aka Prolactin inhibiting hormone (DA or PIH)	Dopamine neurons of the arcuate nucleus	Inhibit prolactin release from anterior pituitary.
Growth hormone-releasing hormone (GHRH)	Neuroendocrine neurons of the arcuate nucleus	Stimulate growth hormone (GH) release from anterior pituitary.
Gonadotropin-releasing hormone (GnRH)	Neuroendocrine cells of the preoptic area	<ul style="list-style-type: none"> Stimulate follicle-stimulating hormone (FSH) release from anterior pituitary. Stimulate luteinizing hormone (LH) release from anterior pituitary.
Somatostatin, aka growth hormone-inhibiting hormone (GHIH)	Neuroendocrine cells of the periventricular nucleus	<ul style="list-style-type: none"> Inhibit growth hormone (GH) release from anterior pituitary. Inhibit (moderately) thyroid-stimulating hormone (TSH) release from anterior pituitary.

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

Brain Hormones - Pituitary		
Hormone	Produced by	Actions
Thyroid Stimulating Hormone (TSH)	Anterior lobe of Pituitary	Stimulates thyroid gland to produce T4.
Adrenocorticotropic Hormone (ACTH)	Anterior lobe of Pituitary	Stimulates adrenal glands to respond in times of stress.
Follicle-Stimulating Hormone (FSH)	Anterior lobe of Pituitary	In women, stimulates the growth of ovarian follicles before the release of the egg at ovulation. It also increases estrogen production. In men, acts on the Sertoli cells of the testes to stimulate sperm production.
Luteinizing Hormone (LH)	Anterior lobe of Pituitary	In women, stimulates luteinizing cells in the testes to produce testosterone. In women, stimulates ovarian follicles to produce estrogen, and causes the follicle to rupture and release a mature egg.
Prolactin (PRL)	Anterior lobe of Pituitary	Promotes lactation in response to the sucking of young after birth. (It's inhibited by dopamine)
Growth Hormone (GH)	Anterior lobe of Pituitary	Promotes growth in children and helps to maintain normal body structure and metabolism by promoting the deposition of protein and burning of fat.
Alpha Melanocyte-Stimulating Hormone (α -MSH)	Anterior lobe of Pituitary	Bind to melanocytes to stimulate the production of melanin, a skin pigment.
Anti-diuretic Hormone aka Vasopressin (ADH)	Hypothalamus, stored and secreted by Posterior lobe of Pituitary	Regulates the body's retention of water by acting to increase water reabsorption in the kidney's collecting ducts.
Oxytocin (OT)	Hypothalamus, stored and secreted by Posterior lobe of Pituitary	Stimulates contraction of the uterus during childbirth and promotes the movement of milk into the breast. In men, stimulates sperm movement and production of testosterone by the testes.

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

The Psychology of Digestion

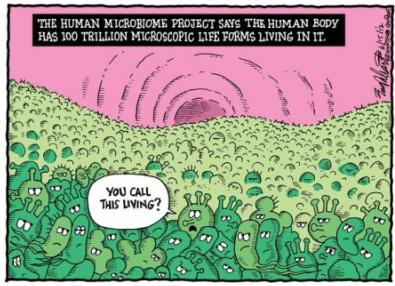
Digestion Begins in your HEAD and HEART -- Not Your Gut!!!

- Impact of thoughts
- Fight/flight effects on digestion
- Relaxation effects on digestion
- Role of breathing on digestion
- Pre-meal ritual

www.DrBitamarie.com © Dr. Bitamarie Loscalzo, MS, DC, CCN, DACBN, Institute of Nutritional Endocrinology (INE)

www.BrianRosenzweig.com • Dr. RABBI BRIAN ROSENZWEIG, MD, DO, OSU, DAIRON, Institute of Neurological Endocrinology (INE)

www.DrRitamane.com © Dr. Ritamane Loscarib, MS, DC, CCN, DACBN, Institute of Nutritional Endocrinology (INE)

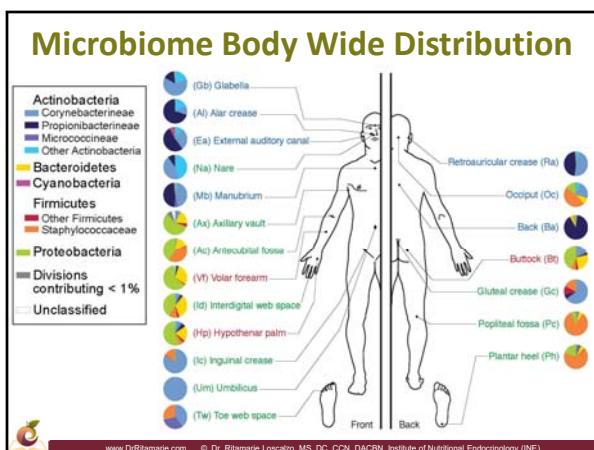
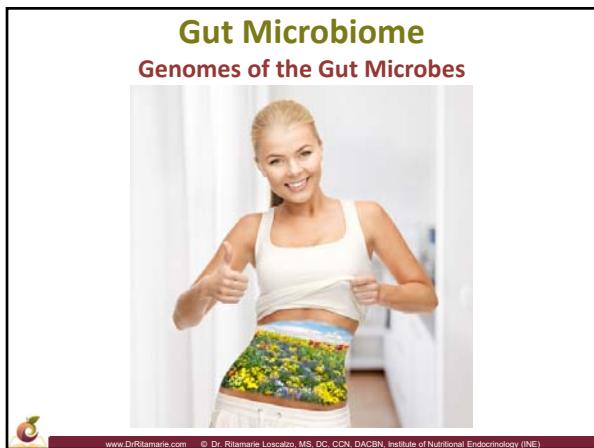
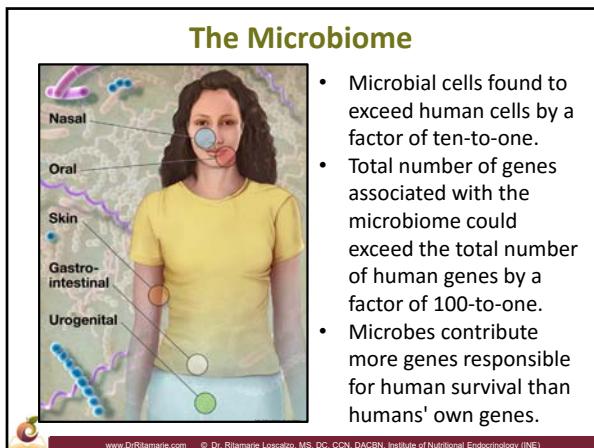

www.DrRamanie.com © Dr. Ramanie Lescalzo, MS, DC, CCN, DACBN, Institute of Nutritional Endocrinology (INE)

10

www.DRReimann.com | DR. REIMANN L6963076 MS, DC, LCN | DALBN Institute of Nutritional Endocrinology | INE

The Human Body Is Mostly Non-Human

- ✓ 50 trillion human cells
- ✓ 500 trillion non-human cells
- ✓ 10% human, and 90% bacterial

卷之三

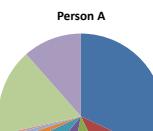
www.DrRitamarie.com © Dr. Ritamarie Loscalzo, MS, DC, CCN, DACBN, Institute of Nutritional Endocrinology (INE)

Ritamarie.com

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

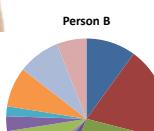
INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

Microbes in the Gut



- ✓ **Types:** beneficial, opportunistic, pathogenic
- ✓ **Protection from foreign microbes by:**
 - ✓ Acidic stomach pH
 - ✓ Saliva and bile
 - ✓ Immune system
- ✓ **Functions:**
 - ✓ Digestion
 - ✓ Synthesis of B vitamins and vitamin K
 - ✓ Making neurotransmitters
 - ✓ Metabolism of bile acids, sterols, and xenobiotics
 - ✓ Fermentation of undigested carbohydrates to short-chain fatty acids
 - ✓ Butyrates: colon epithelium
 - ✓ Propionates: liver
 - ✓ Acetates: muscle tissue

Gut Microbiome Variability



Person A

Microbiome Type	Approximate Percentage
Blue	45%
Green	20%
Purple	15%
Red	10%
Orange	2%
Yellow	1%
Brown	1%

Person B

Microbiome Type	Approximate Percentage
Green	50%
Red	20%
Purple	10%
Blue	8%
Orange	3%
Yellow	1%
Brown	1%

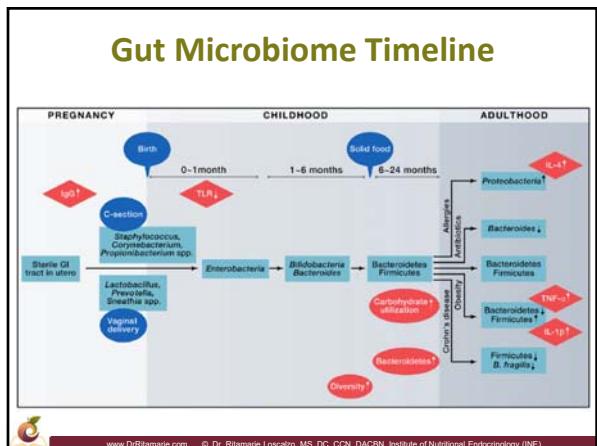
Firmicutes vs Bacterioidetes

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

Non-Caloric Sweeteners and Gut Microbes

I have a gut reaction to non-caloric sweeteners.

Saccharin


Aspartame

Sucratose

Cartoon: Webmann Institute of Science

www.DrRitaMarie.com © Dr. Rita Marie Loscalzo, MS, DC, CCN, DACBN, Institute of Nutritional Endocrinology (INE)

Nature 514, 181–186 (09 October 2014)

Goals:

- ✓ Develop a reference set of microbial genome sequences
- ✓ Preliminary characterization of the human microbiome
- ✓ Explore the relationship between and changes in the human microbiome
- ✓ To develop new technologies and tools for computational analysis
- ✓ To establish a resource repository
- ✓ To study the ethical, legal, and social implications of human microbiome research

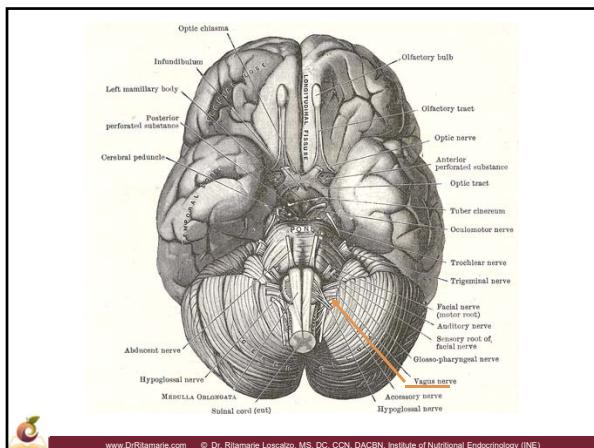
HUMAN
MICROBIOME
PROJECT

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

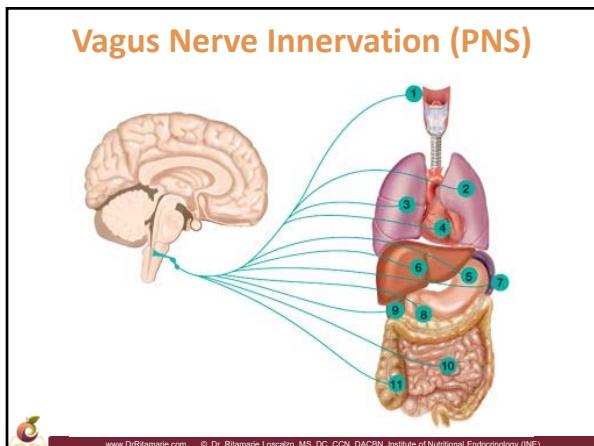
**HUMAN
MICROBIOME
PROJECT**

Methods and Findings

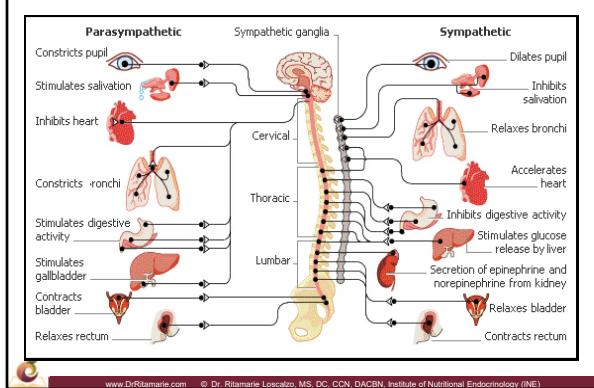
- ✓ 242 healthy U.S. volunteers
- ✓ More than 5,000 samples collected from body sites such as mouth, nose, skin, lower intestine, and vagina
- ✓ Microbial genome data extracted by identifying the bacterial specific ribosomal RNA, 16S rRNA
- ✓ More than 10,000 microbial species found
- ✓ Bacterial components of the microbiome were found to change over time, affected by disease and medication
- ✓ Eventually it returns to equilibrium

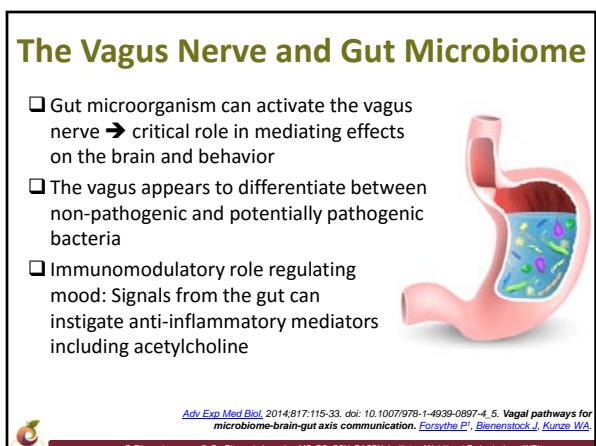
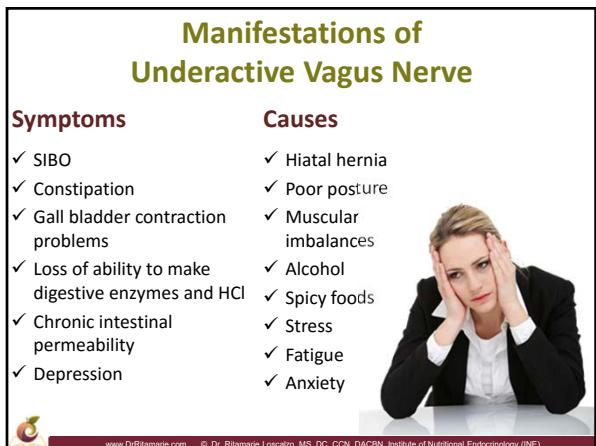
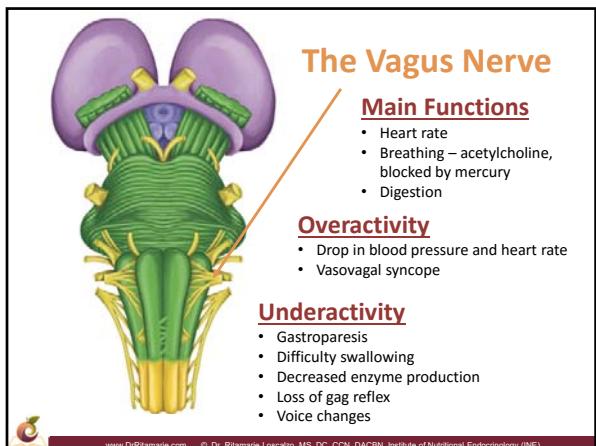

The Second Brain

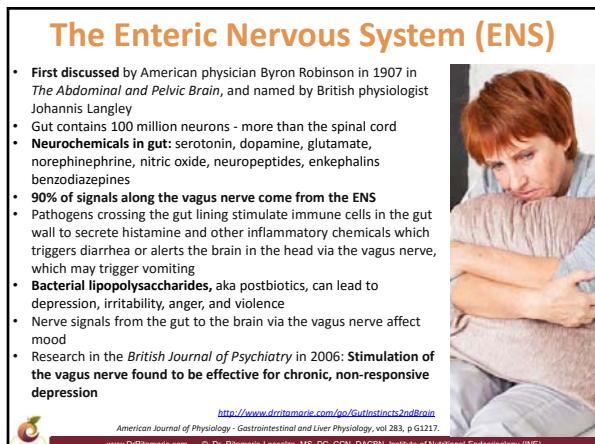
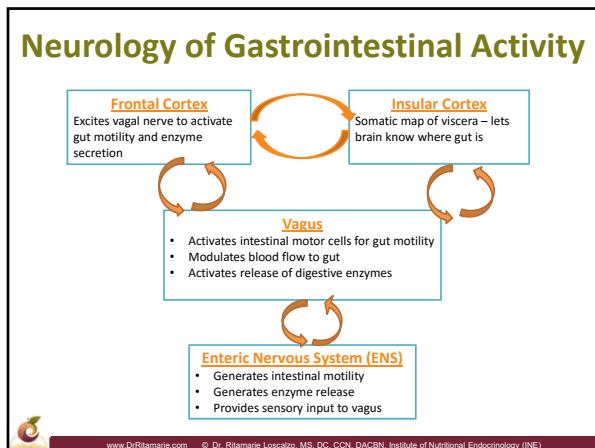
Enteric Nervous System (ENS)


- Embedded in the wall of the gut
- 500 million neurons
- Responsible for cravings under stress
- Important in physical and mental well-being
- Can work both independently of and in conjunction with the brain
- Helps sense environmental threats and then influences response

A diagram of a human brain in lateral view, color-coded into four main lobes: frontal (red), parietal (yellow), temporal (purple), and occipital (blue). The cerebellum is shown at the bottom back, and the spinal cord is shown exiting at the bottom. Labels with leader lines identify each region: 'frontal lobe' points to the red area, 'parietal lobe' points to the yellow area, 'occipital lobe' points to the blue area, 'temporal lobe' points to the purple area, and 'cerebellum' points to the tan-colored structure at the bottom. The spinal cord is also labeled with a leader line.


INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1




Vagus Nerve Innervation (PNS)



The Autonomic Nervous System

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

Brain Imbalance → Vagus Nerve Suppression

- ✓ Impaired gut motility → yeast overgrowth, constipation, and liver stress
- ✓ Decreased ileocecal valve tone → SIBO, transit time disruption
- ✓ Decreased gallbladder contraction
→ _____
- ✓ Decreased HCl → _____
- ✓ Decreased digestive enzyme secretion →

- ✓ Decreased bile →

- ✓ Reduced blood flow to intestines → leaky gut

<h1>Gut Impact on Brain</h1>	
<h2>Gut Imbalances</h2>	<h2>Brain Symptoms</h2>
✓ Flora disruption	✓ Depression, anxiety
✓ Lipopolysaccharides	✓ Changes in appetite
✓ Cytokines	✓ Damage to receptors
✓ Imbalanced gut peptides	✓ Blood brain barrier damage
	✓ Neurochemistry changes

Ghrelin and Mood

- ✓ Stress leads to increased Ghrelin
- ✓ Ghrelin stimulates dopamine
- ✓ Stimulates quest for fatty food
- ✓ Chronic stress or depression can lead to chronically elevated ghrelin and obesity

INE: Digestion - The Gut-Brain Connection in Clinical Practice - Excerpt from SHINE 2015, Day 1

Parkinson's and the Gut

- ✓ Heiko Braak at the University of Frankfurt, Germany believes it begins in the gut
- ✓ Constipation may be an early sign

www.DrRitamarie.com © Dr. Ritamarie Loeselzo, MS, DC, CCN, DACBN, Institute of Nutritional Endocrinology (INE)

The characteristic plaques or tangles found in

The characteristic plaques or tangles found in the brains of people with Alzheimer's are present in neurons in their guts too.

www.DrRitamarie.com © Dr. Ritamarie Loscalzo, MS, DC, CCN, DACBN, Institute of Nutritional Endocrinology (INE)

Vagus Nerve Activation

Activities

- ✓ Gargling
- ✓ Gag reflex
- ✓ Singing loudly
- ✓ Coffee enemas
- ✓ Increased motility
- ✓ Increased contraction of sphincters
- ✓ Increased release of digestive enzymes
- ✓ Increased blood flow to intestines

Results

- ✓ Increased motility
- ✓ Increased contraction of sphincters
- ✓ Increased release of digestive enzymes
- ✓ Increased blood flow to intestines

www.DrRitamando.com © Dr. Ritamando Lanza, MS, DC, CCN, DACRM, Institute of Nutritional Endocrinology (INE)