
/

Stardog 7
THE MANUAL

Stardog is the world’s leading

KNOWLEDGE GRAPH PLATFORM FOR THE

ENTERPRISE

Stardog makes it fast and easy to turn enterprise

data into knowledge.

What’s New in Stardog

Check out the Quick Start Guide (#_quick_start_guide) to get Stardog installed and

running in �ve easy steps.

INTRODUCTION

✓ Masti�: RocksDB-based

LSM-Tree nex-gen storage

engine

✓ Multi-tenancy schemas

✓ Virtual Transparency

✓ MongoDB Virtual Graph

support

✓ Apache Hive Virtual Graph

support

✓ GraphQL Introspection

https://www.stardog.com/

/

Stardog �.�.� (�� Nov ����) supports the RDF graph data model

(http://www.w�.org/RDF/); SPARQL (http://www.w�.org/TR/sparql��-

overview/) query language; property graph model

(https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model) and

Gremlin graph traversal language

(http://tinkerpop.incubator.apache.org/docs/�.�.�-

incubating/#_on_gremlin_language_variants); OWL �

(http://www.w�.org/TR/owl�-overview/) and user-de�ned rules for inference

and data analytics; virtual graphs; geospatial query answering; and

programmatic interaction via several languages and network interfaces.

Stardog is made by hand with skill, taste, and a point of view by people who

care. 🌟🐶

To learn more about where we’ve been and where we’re headed, consult

the Stardog Release Notes (/docs/release-notes/) and the Stardog Studio

Release Notes (https://www.stardog.com/docs/release-notes/studio/).

Downloading

Visit our website for more information on how to get started

(http://stardog.com/download) with Stardog. There is also information in the

Getting Stardog (#_getting_stardog) section of the docs.

Requesting Support

Please use the appropriate channel to request support - customers should

�le a support ticket or use another dedicated support channel, others

should use Stardog Community (https://community.stardog.com)

When reporting an issue, please include the following information:

�. A complete description of the problem you are having

�. The zip �le created when running

stardog-admin diagnostics report

(https://www.stardog.com/docs/man/diagnostics-report). If your

question is related to a particular database, please include the

.metadata �le for that database as well.

http://www.w3.org/RDF/
http://www.w3.org/TR/sparql11-overview/
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#_on_gremlin_language_variants
http://www.w3.org/TR/owl2-overview/
https://www.stardog.com/docs/release-notes/
https://www.stardog.com/docs/release-notes/studio/
http://stardog.com/download
https://community.stardog.com/
https://www.stardog.com/docs/man/diagnostics-report

/

a. If you are unable to run the this command, please include the

stardog.log �le.

�. Other information as you are able and seems relevant:

a. Approximately when you hit this issue (so we can reference in the

logs)

b. Your Stardog version

c. Your operating system and any other system info

d. Which JVM you are using

ENTERPRISE SUPPORT

Customers with Enterprise Premium Support have access to extra

capabilities and services.

Real-time Support

Get access to the core Stardog development team in real-time via voice or

chat. Let us help you get the most from Stardog, ��/�. Our core team has

more semantic graph application and tool development experience than

any other team on the planet. Other vendors shunt you o� to inexperienced

level one techs. We’ve never done that and never will.

Private Maven Repositories

See Using Maven (#_using_maven) for details; this includes a per-customer,

private Maven repository, CDN-powered, for ��/� builds, updates, and

feature releases.

We’re also tying Maven and Docker together, providing private Docker

repositories for customers, which allows us to build out clusters, custom

con�gurations, best practices, and devops tips-and-tricks into custom

Docker images… so that you don’t have to.

/

Private Docker Repositories

Docker-based deliverables not only shortens your development and

devops cycles but they also help create seamless integration to your

Kubernetes deployments. With Enterprise Support you can both get the

latest-greatest versions of Stardog, including security �xes, and

performance hot �xes as well as pin version numbers to those tested in

your production deployments.

Previous versions of Stardog Docker images are tagged by version and

available on Artifactory. To access those images you must use your

credentials and �rst log in to Artifactory, after which you can pull any

available image:

Priority Bug Fixes

With Maven and Docker in place, we’ve got a software delivery mechanism

ready to push priority bug �xes into your enterprise as soon as they’re

ready. We’ve averaged one Stardog release every two weeks since ����.

Enterprise Premium Support customers can now take advantage of our

development pace in a controlled fashion.

Priority Feature Releases

We hate holding new features in a feature branch, especially for mundane

business reasons; we want to release new stu� as soon as possible to our

customers. With Enterprise Premium Support, we can maintain a disruptive

pace of innovation without disrupting you.

QUICK START GUIDE

Requirements

$ docker login -u <username> stardog-eps-docker.jfrog.io

$ docker pull stardog-eps-docker.jfrog.io/stardog:<version>

/

Stardog runs on Java � (i.e. version �.�) and requires sun.misc.Unsafe .

Note that Stardog does not run on any other versions of Java. To check

your version of Java, run java -version from the command line. To get

Java �, you can download from Oracle

(https://www.oracle.com/technetwork/java/javase/downloads/jdk�-

downloads-�������.html), which requires creating an account, or use the

version from OpenJDK (https://openjdk.java.net).

Stardog is veri�ed to run on Ubuntu ��.�� and ��.��, RHEL � and CentOS

�, Amazon Linux � and recent versions of OSX. For Windows users, Stardog

� is supported by running within a Docker container. If you require running

Stardog natively, please contact us (https://www.stardog.com/contact/) for

support.

Insecurity

We optimize Stardog out-of-the-box for ease and simplicity. You must take

additional steps to secure it before production deployment - see the

Security (#_security) section for more detail.

Stardog ships with an insecure but usable default setting: the super user is

admin and the admin password is "admin".

Getting Stardog

Stardog is available via Wget (#_wget), Package Managers

(#_package_managers), Homebrew (#_homebrew), and Docker (#_docker).

Once you have Stardog available, continue to Starting Stardog

(#_starting_stardog).

Upgrading to Stardog �

If you are upgrading to Stardog � from any previous version, please see

Migrating to Stardog � (#_migrating_to_stardog_�) for details. Stardog �

uses a completely new disk index format and all databases created with a

previous version of Stardog must be migrated.

Wget

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://openjdk.java.net/
https://www.stardog.com/contact/

/

To download via Wget, use the following commands:

Homebrew

To download via Homebrew, use the following command:

Package Managers

If using a package manager, download via the Debian

(#_debian_based_systems) instructions or the RPM

(#_rpm_based_systems) instructions and then be sure to follow the

Package Layout (#_package_layout) con�guration instructions.

Debian Based Systems

To install Stardog using apt-get run the following commands:

This will �rst add the Stardog gpg key to the systems and then fetch and

install the latest Stardog deb package.

RPM Based Systems

To install Stardog using yum run the following commands:

Amazon EC�

wget https://downloads.stardog.com/stardog/stardog-latest.zip

unzip stardog-latest.zip

Stardog binaries are now located at ./stardog-<version>/bin

 brew install stardog-union/tap/stardog

curl http://packages.stardog.com/stardog.gpg.pub | apt-key add

echo "deb http://packages.stardog.com/deb/ stable main" >>

/etc/apt/sources.list

apt-get update

apt-get install -y stardog[=<version>]

curl http://packages.stardog.com/rpms/stardog.repo >

/etc/yum.repos.d/stardog.repo

yum install -y stardog[-<version>]

/

Certain Amazon EC� instances do not let you redirect output into

/etc/yum.repos.d as speci�ed above. On such instances you can install

Stardog like so:

Package Layout

The packages require that OpenJDK � and all of its dependencies are

installed on the system. The package managers will install them if they are

not already there. Stardog is then con�gured to start on boot via systemd

and thus it can be controlled by the systemctl tool as shown below:

To customize the environment in which stardog is run the �le

/etc/stardog.env.sh can be altered with key value pairs, for example:

Docker

The latest release of Stardog is available on Docker Hub

(https://hub.docker.com/r/stardog/stardog).

You can pull the image from Docker Hub with:

Stardog home is located in /var/opt/stardog/ in the Docker image.

Because stardog-admin server start is the entry point for the image,

you must instruct Docker to mount a home directory with a valid license

from your host machine at /var/opt/stardog in the image. For example:

sudo yum-config-manager --add-repo

http://packages.stardog.com/rpms/stardog.repo

sudo yum-config-manager --enable stardog

yum install -y stardog[-<version>]

systemctl start stardog

systemctl restart stardog

systemctl stop stardog

export STARDOG_HOME=/var/opt/stardog

export STARDOG_SERVER_JAVA_ARGS="-Xmx8g -Xms8g -

XX:MaxDirectMemorySize=2g"

$ docker pull stardog/stardog:latest

https://hub.docker.com/r/stardog/stardog

/

In this example, ~/stardog-home/ is a Stardog home directory that only

contains a Stardog license �le. /var/opt/stardog is the location of

Stardog home in the Docker image.

The contents of the release zip (binaries, docs, helm charts) are located in

/opt/stardog/ .

You can change the default JVM memory settings for Stardog by setting the

STARDOG_SERVER_JAVA_ARGS environment variable:

Starting Stardog

Basic setup

Stardog Home

The most important piece of con�guration to do before you start Stardog is

setting the STARDOG_HOME environment variable. This is the directory

where all the Stardog databases and other �les will be stored. If

STARDOG_HOME is not de�ned, Stardog will use the Java user.dir

property value. We recommend adding it to your ~./bash_profile , or if

you are using a package manager, /etc/stardog.env.sh .

You should not set STARDOG_HOME to be the same as the directory where

you put the Stardog binary. Our convention is to put Stardog in

/opt/stardog/{$version} and set STARDOG_HOME to /var/stardog . If

you are setting up Stardog for production or other serious usage, see

Upgrading Stardog Server (#_upgrading_stardog_server) for additional

guidance.

License Key

If you do not have a license key

$ docker run -it -v ~/stardog-home/:/var/opt/stardog stardog/stardog

$ docker run -v ~/stardog-home/:/var/opt/stardog -e

STARDOG_SERVER_JAVA_ARGS="-Xmx8g -Xms8g -XX:MaxDirectMemorySize=2g"

stardog/stardog

/

You will be able to retrieve a trial license-key via the command line once

you start Stardog.

If you have a license key

Add it to your STARDOG_HOME . Ensure that the stardog-license-key.bin

�le is readable by the Stardog process.

You can specify a di�erent location for the license �le by setting

STARDOG_LICENSE_PATH .

Setting Path

Place the bin folder of the Stardog install on your PATH so the stardog

and stardog-admin scripts can be used regardless of current working

directory. We recommend adding to your ~./bash_profile (or if you are

using a package manager, /etc/stardog.env.sh), though you can also

set temporarily.

Running Stardog

The commands below assume you’ve followed the instructions in Setting

Path (#_setting_path). If you haven’t, make sure you are using the full

stardog path for commands, i.e.

<stardog-location>/bin/stardog-admin .

�. If you’re not using a package manager, run the following command to

start the Stardog server. By default the server will HTTP on port ����. If

you do not have a license, it will begin a work�ow to help you get one

�. Create a database with some input data. If you don’t have any input

data, you can download some sample music data

(https://github.com/stardog-union/stardog-

$ cp stardog-license-key.bin $STARDOG_HOME

This assumes you've followed our convention above. If you put

stardog somewhere else, update accordingly.

$ export PATH="$PATH:/opt/stardog-<version>/bin"

$ stardog-admin server start

https://github.com/stardog-union/stardog-tutorials/blob/master/music/music.ttl.gz

/

tutorials/blob/master/music/music.ttl.gz) to use.

�. Query the database

�. Download Stardog Studio (https://www.stardog.com/studio/) and run

the same query. You can connect to Studio using the

http://localhost:���� (http://localhost:����) endpoint. If you have not

secured your setup, you can login as username admin and password

admin . Otherwise, use one of your con�gured accounts.

Once you’ve done all four things, Stardog is up and running! If you’re not

sure where to go from here, check out our Getting Started Guide

(https://www.stardog.com/tutorials/Getting-Started-�).

STARDOG DEVELOPMENT TOOLS

Stardog Studio

Overview

Stardog Studio is Stardog’s IDE and administration tool designed to make

Stardog functionality easier to use for everyday users. Aside from

administering Stardog clusters, almost all functionality that exists through

the CLI and other endpoints is available in Studio, and most non-admin

users are able to interact with Stardog using Studio and without going to

the command line.

Stardog Studio is available as a Desktop App

(https://www.stardog.com/studio/) as well as in the browser

(#_stardog_studio_in_the_browser).

$ stardog-admin db create -n myDB /path/to/some/data.ttl

$ stardog query myDB "SELECT DISTINCT ?s WHERE { ?s ?p ?o } LIMIT

10"

https://github.com/stardog-union/stardog-tutorials/blob/master/music/music.ttl.gz
https://www.stardog.com/studio/
http://localhost:5820/
https://www.stardog.com/tutorials/Getting-Started-0
https://www.stardog.com/studio/

/

Studio’s UI is split into the �ve sections below. Note this is not a

comprehensive list of functionality but a general summary of functionality in

each section.

Workspace:

Write, execute, and see query plans for queries in SPARQL

(#_querying_stardog) and GraphQL (#_graphql_queries)

Interact with constraints and rules in SHACL (#_shacl_constraints)

and SRS (#_stardog_rules_syntax)

Edit RDF with TriG and Turtle

Edit Virtual Graph mappings with SMS�

(#_sms�_stardog_mapping_syntax_�)

See query plans

Visualize query results as nodes and edges

Create and edit Stored Queries

Virtual Graphs

Create and con�gure virtual graphs and virtual graph mappings

Databases

Manage databases

Update database properties and namespaces

See and kill running queries

Load and remove data

Visualize the schema

Security

Create users and roles

Assign permissions to users and roles

Tutorials

Interactive tutorials to help you use Stardog

For questions, comments, or feature requests, please post in the Studio

section of the Stardog Community

(https://community.stardog.com/c/stardog-studio).

The Stardog blog includes post about new Studio functionality. All of those

posts are available under the Stardog Studio tag.

(https://www.stardog.com/blog/studio-shacl-released/) Blog posts cover

topics like SHACL support (https://www.stardog.com/blog/studio-shacl-

released/), Stored Queries (https://www.stardog.com/blog/editing-stored-

https://community.stardog.com/c/stardog-studio
https://www.stardog.com/blog/studio-shacl-released/
https://www.stardog.com/blog/studio-shacl-released/
https://www.stardog.com/blog/editing-stored-queries-in-studio/

/

queries-in-studio/), Query Plans (https://www.stardog.com/blog/studio-

query-plans/), and Visualization (https://www.stardog.com/blog/picture-this-

visual-results-in-studio/).

Stardog Studio in the browser

Stardog Studio is available in the browser and is supported for the latest

versions of Firefox and Chrome (v�� and v��, respectively, as of this

writing). It is distributed in a pre-con�gured Docker image via DockerHub

(https://hub.docker.com/).

In-browser functionality is almost identical to the Desktop version aside

from a few di�erences:

Keyboard shortcuts that exist in the browser (e.g. cmd+o) will act on the

browser. Those that don’t (e.g. cmd+E) will work as they do in the

desktop version of Studio.

Saving or running to a �le will only prompt you to choose a location for

the �le if your browser preferences for downloaded �les are set to

require a prompt; otherwise, the �le will automatically be written to your

browser’s downloaded �les location

You cannot save workspace tabs to your �lesystem - note that cmd+s

will be captured by the browser to save the browser tab. You can drag a

�le into Studio to load it but you cannot save it back to that original �le.

Because the application menu is for the entire browser, there is no

equivalent to Studio-speci�c menus like File that are in the Desktop

version. Most of the operations are available via keyboard shortcuts or

in the UI.

Since certain keyboard shortcuts (e.g., Cmd/Ctrl+, to open preferences)

are reserved by modern browsers, the shortcuts in the browser version

of Studio typically di�er from those in the desktop version with respect

to the 'modi�er' key (Ctrl , Alt , Cmd). For example, on Windows,

Ctrl + , in the desktop version of Studio becomes Alt + , in the

browser version, and on Mac, Cmd + , in the desktop version of Studio

becomes Ctrl + , in the browser version.

Configuring Stardog Studio in the browser

https://www.stardog.com/blog/editing-stored-queries-in-studio/
https://www.stardog.com/blog/studio-query-plans/
https://www.stardog.com/blog/picture-this-visual-results-in-studio/
https://hub.docker.com/

/

Before you get started, you should get Docker

(https://docs.docker.com/install/) (if you don’t already have it) and select a

port on your local machine for Studio to be available on in your browser(the

steps below use port number ����; make sure to substitute whatever

number you’re going to use, if it’s a di�erent one).

To get the latest version of in-browser Studio, perform the following steps:

�. Open a command line terminal.

�. In the terminal, enter docker pull stardog/stardog-studio:current

.

�. Once the command in step � completes, enter

docker run --name=stardog-studio -p 8888:80 -d

stardog/stardog-studio:current

The �rst number (before the :) in the -p 8888:80 argument should

be the port number you chose before starting; it is the number you’ll

use to access Studio in the next step. The --name=stardog-studio

argument names the container as “stardog-studio” so that you can

easily reference it later; you could choose another name here, if you’d

like.

�. When the command in step � completes successfully, you should see a

long string ID printed out in the terminal (this is the ID of the running

Docker container; you can ignore it for present purposes). You can now

access Studio in your browser by going to http://localhost:����

(http://localhost:����) (again, substituting whatever port number you

chose).

At this point, you can stop and start the container whenever you need it,

running docker stop stardog-studio and

docker start stardog-studio , respectively (using whatever name you

provided in step �, above). The Docker Daemon and the Studio container

must be running to access in-browser Studio. If Studio is not accessible

please remember to start Docker, as it may not start automatically on

startup.

To upgrade the in-browser version of Stardog Studio, simply open a

terminal and run

docker stop stardog-studio && docker rm stardog-studio (again,

using whatever name you provided in step �, above). Then, repeat steps �

https://docs.docker.com/install/
http://localhost:8888/

/

through �, above.

In-browser Studio stores user data (e.g. saved connections, query history,

open workspace tabs) in your browser’s localStorage, so you must use the

same browser to access your persisted user data.

Language extensions

In case you’d like to have Stardog Studio’s language intelligence available

in other IDEs, we’ve also made Studio’s language servers freely available as

Visual Studio Code Extensions and as unpackaged JavaScript modules.

Instructions for installing them are available on github.

Logs

Studio has its own set of logs. They are available at di�erent paths

depending on the OS. If you are reaching out for support, please include

the log �le.

MacOS: ~/Library/Logs/ Stardog\ Studio /log.log

Windows: %USERPROFILE%\AppData\Roaming``"Stardog Studio"`

\log.log`

Linux: ~/.config/ Stardog\ Studio /log.log

Browser: Log messages are written to the browser’s console. If reaching

out for support, please share recent browser console messages.

Collecting usage data

To improve Stardog Studio, we collect anonymous usage data. We only

collect information like session duration, feature usage, and the size of

queries and results. We never collect the actual content of queries or

results. To opt-out, set telemetryConsent to "false" in your Preferences. You

can access your preferences under the Stardog Studio application menu.

If you are using the in-browser version, use the following keyboard

shorcuts:

Mac: Ctrl + ,

Windows/Linux: Meta + , . The meta key is likely alt or cmd .

/

Stardog Sandbox

If you’re interested to play with, learn, and discover the joys of Stardog

without installing it, then Stardog Sandbox is for you. It’s a free, hosted

environment that lets you run Stardog Studio in your browser and interact

with Stardog running in the Cloud. No installation, no maintenance, just

powerful Knowledge Graph joy at your �ngertips.

Environment

Stardog Sandbox is a limited resource environment, so please be mindful of

this as you’re using the software. As of Sandbox �.�, the VM includes �

cores and �G RAM and a small, ��G SSD drive. Also note, that this is a

single instance, not an HA cluster. The Sandbox should work on all modern

browsers.

If you need access to a more powerful machine, or the HA cluster, the same

software running in the Sandbox is available for download where you can

install and test within your own environment. You can also email us at

inquiries@stardog.com (mailto:inquiries@stardog.com) for more information.

Features

Stardog Sandbox is mostly equivalent to the full version of Stardog.

However, there are a few di�erences, namely, some features of Stardog are

not currently available in Sandbox, including:

BITES, our unstructured data uni�cation and processing engine

Machine Learning

ICV

No user-de�ned Lucene analyzers

Restrictions

In addition to these di�erences, there are a couple other restrictions worth

mentioning:

No administrator access to the Stardog kernel

No access to the security system, i.e., no creating users, updating

permission

You have read/write access to a single database

You are limited to ��M triples in the database

mailto:inquiries@stardog.com

/

No SSH access to the host machine

No access via via the CLI or HTTP API

What’s Next?

We hope you enjoy using the Stardog Sandbox! We understand there are

some features that are present in the real platform that are not yet available

in the Sandbox. We’re working hard to bring more features and more demo

datasets to Sandbox. We look to remove the aforementioned restrictions

and disabled features in the months ahead. In addition to those changes,

we will also add:

Structured & semi-structured external data sources for use with Virtual

Graphs

Larger machines

New demo datasets

Remote machine access

SALE: Stardog Active Learning Environment

If there’s anything that you’d like to see added to Sandbox, please drop us

a line at inquiries@stardog.com (mailto:inquiries@stardog.com)

QUERYING STARDOG

Stardog supports the SPARQL query language along with OWL & Rule

Reasoning. It supports SPARQL �.�.

Executing Queries

To execute a SPARQL query against a Stardog database with the CLI, use

the query subcommand with a query string, a query �le, or the name of a

stored query (#_managing_stored_queries):

Any SPARQL query type (SELECT , CONSTRUCT , DESCRIBE , PATHS , ASK

or any update query type) can be executed using this command.

$ stardog query myDb "select * where { ?s ?p ?o }"

mailto:inquiries@stardog.com
https://www.stardog.com/tutorials/sparql/
https://www.w3.org/TR/sparql11-query/

/

<OWL & Rule Reasoning,Reasoning>> can be enabled by using the

--reasoning �ag (or -r for short):

By default, all Stardog CLI commands assume the server is running on the

same machine as the client using port ����. But you can interact with a

server running on another machine using a full connection string

(#_how_to_make_a_connection_string):

Detailed information on using the query command in Stardog can be found

in the man page (/docs/�.�.�/man/query-execute). See Managing Stored

Queries (#_managing_stored_queries) section for con�guration, usage, and

details of stored queries.

Path Queries

Stardog extends SPARQL for path queries which can be used to �nd paths

between two nodes in a graph. Path queries are similar to SPARQL property

paths (https://www.w�.org/TR/sparql��-query/#propertypaths) that

recursively traverse a graph and �nd two nodes connected via a complex

path of edges. But SPARQL property paths only return the start and end

nodes of a path. Stardog path queries return all the intermediate nodes

on the path and allow arbitrary SPARQL patterns to be used in the query.

Here’s a simple path query to �nd how Alice and Charlie are

connected to each other:

$ stardog query --reasoning myDb "select * where { ?sub

rdfs:subClassOf ?super }"

$ stardog query http://myHost:9090/myDb "select * where { ?s ?p ?o }"

https://www.stardog.com/docs/7.0.3/man/query-execute
https://www.w3.org/TR/sparql11-query/#propertypaths

/

Each row of the result table shows one edge. Adjacent edges are printed

on subsequent rows of the table. Multiple paths in the results are separated

by an empty row.

Path queries by default return only the shortest paths. See the Path Queries

(#_path_queries_�) chapter for details about �nding di�erent kinds of

paths, e.g. all paths (not just shortest ones), paths between all nodes, and

cyclic paths.

DESCRIBE Queries

SPARQL provides a DESCRIBE query type that returns a subgraph

containing information about a resource:

SPARQL’s DESCRIBE keyword is deliberately underspeci�ed. In Stardog, by

default, a DESCRIBE query retrieves all the triples for which

<theResource> is the subject. There are, of course, about seventeen

thousand other ways to implement DESCRIBE . Starting with Stardog �.�,

we are providing two additional describe strategies out of the box. The

desired describe strategy can be selected by using a special query hint

(#_using_query_hints). For example, the following query will return all the

triples where theResource is either the subject or the object:

$ stardog query exampleDB "PATHS START ?x = :Alice END ?y = :Charlie

VIA ?p"

+----------+------------+----------+

| x | p | y |

+----------+------------+----------+

| :Alice | :knows | :Bob |

| :Bob | :worksWith | :Charlie |

| | | |

| :Alice | :worksWith | :Carol |

| :Carol | :knows | :Charlie |

+----------+------------+----------+

Query returned 2 paths in 00:00:00.056

DESCRIBE <theResource>

/

The other built-in describe strategy returns the CBD - Concise Bounded

Description (https://www.w�.org/Submission/CBD/) of the given resource:

The default describe strategy can be changed by setting the

query.describe.strategy database con�guration option

(#_con�guration_options). Finally, it is also possible to implement a custom

describe strategy by implementing a simple Java interface. An example can

be found in the stardog examples repo (https://github.com/stardog-

union/stardog-examples/tree/develop/examples/describe).

Federated Queries

Stardog supports the SERVICE (http://www.w�.org/TR/sparql��-federated-

query/) keyword which allows users to query distributed RDF via SPARQL-

compliant data sources. You can use this to federate queries between

several Stardog databases or Stardog and other public endpoints.

You can also use service variables (https://www.w�.org/TR/sparql��-

federated-query/#variableService) in your queries to dynamically select the

endpoints for federated queries, for example:

Stardog ships with a default Service implementation which uses SPARQL

Protocol to send the service fragment to the remote endpoint and retrieve

the results. Any endpoint that conforms to the SPARQL protocol can be

used.

#pragma describe.strategy bidirectional

DESCRIBE <theResource>

#pragma describe.strategy cbd

DESCRIBE <theResource>

{

 ?service a :MyService .

 SERVICE ?service { ... }

}

https://www.w3.org/Submission/CBD/
https://github.com/stardog-union/stardog-examples/tree/develop/examples/describe
http://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-federated-query/#variableService

/

The Stardog SPARQL endpoint is

http://<server>:<port>/{db}/query (http://<server>:

<port>/{db}/query) .

HTTP Authentication

Stardog requires authentication. If the endpoint you’re referencing with the

SERVICE keyword requires HTTP authentication, credentials are stored in

a password �le (#_using_a_password_�le) called services.sdpass

located in STARDOG_HOME directory. The default Service implementation

assumes HTTP BASIC authentication; for services that use DIGEST auth, or

a di�erent authentication mechanism altogether, you’ll need to implement a

custom Service implementation.

Namespaces

Stardog allows users to store and manage custom namespace pre�x

bindings for each database. These stored namespaces allow users to omit

pre�x declarations in Turtle �les and SPARQL queries. Namespace Pre�x

Bindings (#_namespace_pre�x_bindings) section describes how to manage

these namespace pre�xes in detail.

Stored namespaces allow one to use Stardog without declaring a single

namespace pre�x. Stardog will use its default namespace (

http://api.stardog.com/

(http://api.stardog.com/)) behind the scenes so that

everything will still be valid RDF, but users won’t need to deal with

namespaces manually. Stardog will act as if there are no namespaces,

which in some cases is exactly what you want!

For example, let’s assume we have some data that does not contain any

namespace declarations:

We can create a database using this �le directly:

:Alice a :Person ;

 :knows :Bob .

$ stardog-admin db create -n mydb data.ttl

http://api.stardog.com/

/

We can also add this �le to the database after it is created. After the data is

loaded, we can then execute SPARQL queries without pre�x declarations:

NOTE

Once we export the data from this database, the

default (i.e., in-built) pre�x declarations will be

printed, but otherwise we will get the same

serialization as in the original data �le:

Query Functions

Stardog supports all of the functions from the SPARQL spec

(https://www.w�.org/TR/sparql��-query/#SparqlOps), as well as some

others from XPath and SWRL. See SPARQL Query Functions

(#_sparql_query_functions) for a complete list of built-in functions

supported.

Any of the supported functions can be used in queries or rules. Note that,

some functions appear in multiple namespaces, but using any of the

namespaces will work. Namespaces can be omitted when calling functions

too. XPath comparison (https://www.w�.org/TR/xpath-

functions-��/#comp.datetime) and arithmetic (https://www.w�.org/TR/xpath-

$ stardog query mydb "SELECT * { ?person a :Person }"

+--------+

| person |

+--------+

| :Alice |

+--------+

Query returned 1 results in 00:00:00.111

$ stardog data export mydb

@prefix : <http://api.stardog.com/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix stardog: <tag:stardog:api:> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:Alice a :Person ;

 :knows :Bob .

[� (#_footnote_�)]

https://www.w3.org/TR/sparql11-query/#SparqlOps
https://www.w3.org/TR/xpath-functions-30/#comp.datetime
https://www.w3.org/TR/xpath-functions-30/#dateTime-arithmetic

/

functions-��/#dateTime-arithmetic) operators on duration, date and time

values are supported by overloading the corresponding SPARQL operators

such as = , > , + , - , etc.

In addition to the built-in functions, new functions can be de�ned by

assigning a new name to a SPARQL expression. These function de�nitions

can either be de�ned inline in a query or stored in the system

(#_managing_stored_functions) and used in any query or rule. Finally,

custom function implementations can be implemented in a JVM-compatible

language and registered in the system. See the query functions

(#_query_functions_�) section for more details.

Special Named Graphs

Stardog includes aliases for several commonly used sets of named graphs.

These non-standard extensions are provided for convenience and can be

used wherever named graph IRIs are expected in a SPARQL query but

these graphs are read-only and cannot be updated. Following is a list of

special named graph IRIs.

Named Graph IRI Refers to

tag:stardog:api:context:defau

lt
the default (no) context graph

tag:stardog:api:context:named all named graphs, excluding the

default graph

tag:stardog:api:context:local all local graphs - the default graph

and named graphs

tag:stardog:api:context:virtu

al
all virtual graphs (applicable when

used with Virtual Transparency

(#_virtual_transparency))

tag:stardog:api:context:all all local graphs. If Virtual

Transparency

(#_virtual_transparency) is

enabled, all virtual graphs as well.

https://www.w3.org/TR/xpath-functions-30/#dateTime-arithmetic

/

Obfuscating

When sharing sensitive RDF data with others, you might want to

(selectively) obfuscate it so that sensitive bits are not present, but non-

sensitive bits remain. For example, this feature can be used to submit

Stardog bug reports using sensitive data.

Data obfuscation works much the same way as the export command and

supports the same set of arguments:

By default, all URIs, bnodes, and string literals in the database will be

obfuscated using the SHA��� message digest algorithm. Non-string typed

literals (numbers, dates, etc.) are left unchanged as well as URIs from built-

in namespaces (RDF , RDFS , and OWL). It’s possible to customize

obfuscation by providing a con�guration �le.

The con�guration speci�es which URIs and strings will be obfuscated by

de�ning inclusion and exclusion �lters. See the example con�guration �le in

the stardog-examples Github repo.

(https://github.com/Complexible/stardog-

examples/blob/master/con�g/obfuscation.ttl)

Once the data is obfuscated, queries written against the original data will no

longer work. Stardog provides query obfuscation capability, too, so that

queries can be executed against the obfuscated data. If a custom

con�guration �le is used to obfuscate the data, then the same con�guration

should be used for obfuscating the queries as well:

UNNEST Operator and Arrays

$ stardog data obfuscate myDatabase obfDatabase.ttl

$ stardog data obfuscate --config obfConfig.ttl myDatabase

obfDatabase.ttl

$ stardog query obfuscate --config obfConfig.ttl myDatabase

myQuery.sparql > obfQuery.ttl

https://github.com/Complexible/stardog-examples/blob/master/config/obfuscation.ttl

/

Stardog includes an UNNEST operator as a SPARQL extension. Similar to

the BIND operator, UNNEST introduces new variable bindings as a result of

evaluating an expression. The key di�erence is that UNNEST may produce

more than one binding for each input solution. This is useful when dealing

with arrays.

Arrays can be created with the set (#func-set) and split (#func-split)

functions. The UNNEST operator allows transforming an array into a set of

solutions. For example, consider the following query:

If we match a triple which binds ?person to <urn:John> and

?csvNameString to "John,Johnny" , the following solutions will be

returned for the query:

?person ?name

<urn:John> "John"

<urn:John> "Johnny"

If the array has no elements or evaluation of the source expressions

produce an error, the target variable will be unbound.

UNNEST is governed by the same scope principles

(https://www.w�.org/TR/sparql��-query/#variableScope) as BIND. Variables

used in the expression must precede the UNNEST operator syntactically.

References to the variable which is being assigned must occur syntactically

after the UNNEST operator.

ADMINISTERING STARDOG

In this chapter we describe the administration of Stardog Server and

Stardog databases, including command-line programs, con�guration

options, etc.

select ?person ?name {

 ?person :names ?csvNameString

 UNNEST(split(?csvNameString, ",") as ?name)

}

https://www.w3.org/TR/sparql11-query/#variableScope

/

Security is an important part of Stardog administration; it’s discussed

separately (Security (#_security)).

Command Line Interface

Stardog’s command-line interface (CLI) comes in two parts:

�. stardog-admin : administrative client

�. stardog : a user’s client

The admin and user’s tools operate on local or remote databases using

HTTP protocol. These CLI tools are Unix-only, are self-documenting, and the

help output of these tools is their canonical documentation.

Help

To use the Stardog CLI tools, you can start by asking them to display help:

Or:

These work too:

Security Considerations

We divide administrative functionality into two CLI programs for reasons of

security: stardog-admin will need, in production environments, to have

considerably tighter access restrictions than stardog .

[� (#_footnote_

�)]

stardog help

$ stardog-admin help

$ stardog

$ stardog-admin

/

CAUTION

For usability, Stardog provides a default user

"admin" and password "admin" in

stardog-admin commands if no user or

password are given. This is insecure; before any

serious use of Stardog is contemplated, read the

Security section at least twice, and then—

minimally— change the administrative password

to something we haven’t published on the

interwebs!

Command Groups

The CLI tools use "command groups" to make CLI subcommands easier to

�nd. To print help for a particular command group, just ask for help:

The command groups and their subcommands:

data: add, remove, export;

query: search, execute, explain, status;

reasoning: explain, consistency;

namespace: add, list, remove;

server: start, stop;

metadata: get, set;

user: add, drop, edit, grant, list, permission, revoke, passwd;

role: add, drop, grant, list, permission, revoke;

db: backup, create, drop, migrate, optimize, list, online, o�ine, repair,

restore, status;

virtual: add, import, list, mappings, options, remove.

NOTE
See the man pages for the canonical list of

commands.

The main help command for either CLI tool will print a listing of the

command groups:

$ stardog help [command_group_name]

/

To get more information about a particular command, simply issue the help

command for it including its command group:

Finally, everything here about command groups, commands, and online

help works for stardog-admin , too:

Autocomplete

Stardog also supports CLI autocomplete via bash autocompletion. To

install autocomplete for bash shell, you’ll �rst want to make sure bash

completion is installed:

Homebrew

To install:

To enable, edit .bash_profile :

usage: stardog <command> [<args>]

The most commonly used stardog commands are:

 data Commands which can modify or dump the contents of a

database

 help Display help information

 icv Commands for working with Stardog Integrity Constraint

support

 namespace Commands which work with the namespaces defined for a

database

 query Commands which query a Stardog database

 reasoning Commands which use the reasoning capabilities of a

Stardog database

 version Prints information about this version of Stardog

See 'stardog help' for more information on a specific command.

$ stardog help query execute

$ stardog reasoning consistency -u myUsername -p myPassword -r myDB

$ stardog-admin db migrate -u myUsername -p myPassword myDb

$ brew install bash-completion

/

MacPorts

First, you really should be using Homebrew… ya heard?

If not, then:

Then, edit .bash_profile :

Ubuntu

And for our Linux friends:

Fedora

All Platforms

Now put the Stardog autocomplete script— stardog-completion.sh —into

your bash_completion.d directory, typically one of

/etc/bash_completion.d, /usr/local/etc/bash_completion.d or

~/bash_completion.d.

Alternately you can put it anywhere you want, but tell .bash_profile

about it:

if [-f `brew --prefix`/etc/bash_completion]; then

 . `brew --prefix`/etc/bash_completion

fi

$ sudo port install bash-completion

if [-f /opt/local/etc/bash_completion]; then

 . /opt/local/etc/bash_completion

fi

$ sudo apt-get install bash-completion

$ sudo yum install bash-completion

source ~/.stardog-completion.sh

/

How to Make a Connection String

You need to know how to make a connection string to talk to a Stardog

database. A connection string may consist solely of the database name in

cases where

�. Stardog is listening on the standard port ����; and

�. the command is invoked on the same machine where the server is

running.

In other cases, a "fully quali�ed" connection string, as described below, is

required.

Further, the connection string is now assumed to be the �rst argument of

any command that requires a connection string. Some CLI subcommands

require a Stardog connection string as an argument to identify the server

and database upon which operations are to be performed.

Connection strings are URLs and may either be local to the machine where

the CLI is run or they may be on some other remote machine.

Stardog connection strings use the http:// protocol scheme.

Example Connection Strings

To make a connection string, you need to know the machine name and the

port Stardog Server is running on and the name of the database:

Here are some example connection strings:

Using the default port for Stardog’s use of HTTP protocol simpli�es

connection strings. connectionOptions are a series of ; delimited key-

value pairs which themselves are = delimited. Key names must be

lowercase and their values are case-sensitive.

{scheme}{machineName}:{port}/{databaseName};{connectionOptions}

http://server/billion-triples-punk

http://localhost:5000/myDatabase

http://169.175.100.5:1111/myOtherDatabase;reasoning=true

/

Server Admin

Stardog Server supports all the administrative functions over the HTTP

protocol.

Upgrading Stardog Server

The process of installation is pretty simple; see the Quick Start Guide

(#_quick_start_guide) for details.

But how do we easily upgrade between versions? The key is judicious use

of STARDOG_HOME . Best practice is to keep installation directories for

di�erent versions separate and use a STARDOG_HOME in another location

for storing databases. Once you set your STARDOG_HOME

environment variable to point to this directory, you can simply stop the old

version and start the new version without copying or moving any �les. You

can also specify the home directory using the --home option when starting

the server.

Server Security

See the Security (#_security) section for information about Stardog’s

security system, secure deployment patterns, and more.

Configuring Stardog Server

NOTE

The properties described in this section control

the behavior of the Stardog Server; to set

properties or other metadata on individual

Stardog databases, see Database Admin.

Stardog Server’s behavior can be con�gured via the JVM arg

stardog.home , which sets Stardog Home, overriding the value of

STARDOG_HOME set as an environment variable. Stardog Server’s behavior

can also be con�gured via a stardog.properties —which is a Java

Properties �le—�le in STARDOG_HOME . To specify another location for the

[� (#_footnote_�)]

/

stardog.properties �le, you can set the STARDOG_PROPERTIES

environment variable. To change the behavior of a running Stardog Server,

it is necessary to restart it.

Configuring Temporary ("Scratch") Space

Stardog uses the value of the JVM argument java.io.tmpdir to write

temporary �les for many di�erent operations. If you want to con�gure temp

space to use a particular disk volume or partition, use the java.io.tmpdir

JVM argument on Stardog startup.

Bad (or, at least, weird) things are guaranteed to happen if this part of the

�lesystem runs out of (or even low on) free disk space. Stardog will delete

temporary �les when they’re no longer needed. But Stardog admins should

con�gure their monitoring systems to make sure that free disk space is

always available, both on java.io.tmpdir and on the disk volume that

hosts STARDOG_HOME .

Stardog Configuration

The following twiddly knobs for Stardog Server are available in

stardog.properties :

�. query.all.graphs : Controls what data Stardog Server evaluates

queries against; if true , it will query over the default graph and the

union of all named graphs; if false (the default), it will query only over

the default graph.

�. query.pp.contexts : Controls how property paths interact with

named graphs in the data. When set to true and the property path

pattern is in the default scope (i.e. not inside a graph keyword),

Stardog will check that paths do not span multiple named graphs (per

��.�.� (https://www.w�.org/TR/sparql��-query/#sparqlPropertyPaths)).

For this to a�ect query results either there should be multiple FROM

clauses or query.all.graphs must be also set to true.

�. query.timeout : Sets the upper bound for query execution time that’s

inherited by all databases unless explicitly overriden. See Managing

Query Performance (#_managing_query_performance) section below

for details.

[� (#_footnote_�)]

[� (#_footnote_�)]

https://www.w3.org/TR/sparql11-query/#sparqlPropertyPaths

/

�. logging.[access,audit].[enabled,type,file] : Controls whether

and how Stardog logs server events; described in detail below.

�. logging.slow_query.enabled , logging.slow_query.time ,

logging.slow_query.type : The three slow query logging options are

used in the following way. To enable logging of slow queries, set

enabled to true . To de�ne what counts as a "slow" query, set time

to a time duration value (positive integer plus "h", "m", "s", or "ms" for

hours, minutes, seconds, or milliseconds respectively). To set the type

of logging, set type to text (the default) or binary . A

logging.slow_query.time that exceeds the value of

query.timeout will result in empty log entries.**

�. http.max.request.parameters : Default is ����; any value smaller

than Integer.MAX_VALUE may be provided. Useful if you have lots of

named graphs and are at risk of blowing out the value of

http.max.request.parameters .

�. database.connection.timeout : The amount of time a connection to

the database can be open, but inactive, before being automatically

closed to reclaim the resources. The timeout values speci�ed in the

property �le should be a positive integer followed by either letter h

(for hours), letter m (for minutes), letter s (for seconds), or letters ms

(for milliseconds). Example intervals: 1h for � hour, 5m for � minutes,

90s for �� seconds, 500ms for ��� milliseconds. Default value is

1h . NOTE: setting a short timeout can have adverse results,

especially if updates are being performed without commit changes

to the server, closing the connection prematurely while using it.

�. password.length.min : Sets the password policy for the minimum

length of user passwords, the value can’t be lower than

password.length.min or greater than password.length.max .

Default: 4 .

�. password.length.max : Sets the password policy for the maximum

length of user passwords. Default: 1024 .

��. password.regex : Sets the password policy of accepted chars in user

passwords, via a Java regular expression. Default: [\w@#$%!&]+

/

��. security.named.graphs : Sets named graph security on globally.

Default: false .

��. spatial.use.jts : Enabled support for JTS in the geospatial module.

Default: false

��. Additional properties related to the BI Server. See Con�guring the BI

Server (#_con�guring_the_bi_server).

Starting & Stopping the Server

NOTE

Unlike the other stardog-admin subcommands,

starting the server may only be run locally, i.e., on

the same machine the Stardog Server is will run

on.

The simplest way to start the server—running on the default port, detaching

to run as a daemon, and writing stardog.log to the current working

directory— is

To specify parameters:

The port can be speci�ed using the property --port .

To shut the server down:

If you started Stardog on a port other than the default, or want to shut down

a remote server, you can simply use the --server option to specify the

location of the server to shutdown.

$ stardog-admin server start

$ stardog-admin server start --require-ssl --port=8080

$ stardog-admin server stop

/

By default Stardog will bind it’s server to 0.0.0.0 . You can specify a

di�erent network interface for Stardog to bind to using the --bind

property of server start .

Server Monitoring

Stardog provides server monitoring via the Metrics library

(http://metrics.dropwizard.io/). In addition to providing some basic JVM

information, Stardog also exports information about the Stardog DBMS

con�guration as well as stats for all databases within the system, such as

the total number of open connections, size, and average query time.

Accessing Monitoring Information

Monitoring information is available via the Java API, the HTTP API, the CLI

or (if con�gured) the JMX interface. Performing a GET on /admin/status

which will return a JSON object containing the information available the

server and all the databases. This information is also available for

Prometheus (https://prometheus.io/) via /admin/status/prometheus ,

allowing Prometheus servers to scrape Stardog directly. The endpoint

DB/status will return the monitoring information about the database

status. The stardog-admin server status command will print a subset of

this information on the console.

Configuring JMX Monitoring

By default, JMX monitoring is not enabled. You can enable it by setting

metrics.reporter=jmx in the stardog.properties �le. Then, you can

simply use a tool like VisualVM or JConsole to attach to the process

running the JVM, or connect directly to the JMX server.

If you want to connect to the JMX server remotely you need to set

metrics.jmx.remote.access=true in stardog.properties . Stardog will

bind an RMI server for remote access on port 5833 . If you want to change

this port Stardog binds the remote server to, you can set the property

metrics.jmx.port in stardog.properties .

Finally, if you wish to disable monitoring completely, set metrics.enabled

to false in stardog.properties .

Locking Stardog Home

http://metrics.dropwizard.io/
https://prometheus.io/

/

Stardog Server will lock STARDOG_HOME when it starts to prevent

synchronization errors and other nasties if you start more than one Stardog

Server with the same STARDOG_HOME . If you need to run more than one

Stardog Server instance, choose a di�erent STARDOG_HOME or pass a

di�erent value to --home .

Access & Audit Logging

See the exemplar stardog.properties (https://github.com/stardog-

union/stardog-examples/blob/develop/con�g/stardog.properties) �le for a

complete discussion of how access and audit logging work in Stardog

Server. Audit logging is a superset of the events in access logging. Access

logging covers the most often required logging events; you should consider

enabling audit logging if you really need to log every server event. Logging

generally doesn’t have much impact on performance; but the safest way to

insure that impact is negligible is to log to a separate disk (or to a

centralized logging server, etc.).

The important con�guration choices are whether logs should be binary or

plain text (both based on ProtocolBu�er message formats); the type of

logging (audit or access); the logging location (which may be "o� disk" or

even "o� machine") Logging to a centralized logging facility requires a Java

plugin that implements the Stardog Server logging interface; see Java

Programming (#_java_programming) for more information; and the log

rotation policy (�le size or time).

Slow query logging is also available. See the Managing Running Queries

(#_managing_running_queries) section below.

Database Admin

Stardog is a multi-tenancy system and will happily give access to many,

physically distinct databases.

Configuring a Database

To administer a Stardog database, some con�g options must be set at

creation time; others may be changed subsequently and some may never

be changed. All con�g options have sensible defaults (except for the

https://github.com/stardog-union/stardog-examples/blob/develop/config/stardog.properties

/

database name), so you don’t have to twiddle any of the knobs till you really

need to.

To con�gure a database, use the metadata-get and metadata-set CLI

commands. See Man Pages (#_man_pages) for the details.

Configuration Options

�. Table of Con�guration Options

Option Mutabl

e

Default API

database.archetypes Yes DatabaseOptions.ARCHET

YPES

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#ARCHETYPES)

The name of one or more database archetypes.

database.connection.

timeout

Yes 1h DatabaseOptions.CONNE

CTION_TIMEOUT

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#CONNECTION_

TIMEOUT)

Same as database.connection.timeout described in Stardog

Con�guration (#_stardog_con�guration) but applies only to one

database.

database.name No DatabaseOptions.NAME

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#NAME)

A database name, which must start with an alpha character followed by

zero or more alphanumeric, hyphen or underscore characters, as is

given by the regular expression [A-Za-z]{1}[A-Za-z0-9_-]*.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#ARCHETYPES
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#CONNECTION_TIMEOUT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#NAME

/

Option Mutabl

e

Default API

database.namespace

s

Yes rdf, rdfs, xsd,

owl, stardog
DatabaseOptions.NAMESP

ACES

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#NAMESPACES)

Sets the default namespaces for new databases.

database.online No true DatabaseOptions.ONLINE

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#ONLINE)

The status of the database: online or o�ine. It may be set so that the

database is created initially in online or o�ine status; subsequently, it

can’t be set directly but only by using the relevant admin commands.

docs.default.rdf.extra

ctors

Yes tika BitesOptions.DOCS_DEFA

ULT_RDF_EXTRACTORS

(/docs/java/snarl/com/com

plexible/stardog/docs/bites

options#DOCS_DEFAULT_

RDF_EXTRACTORS)

Comma-separated list of names of RDF extractors to use when

processing documents when no RDF extractor names are given.

docs.default.text.extr

actors

Yes tika BitesOptions.DOCS_DEFA

ULT_TEXT_EXTRACTORS

(/docs/java/snarl/com/com

plexible/stardog/docs/bites

options#DOCS_DEFAULT_

TEXT_EXTRACTORS)

Comma-separated list of names of text extractors to use when

processing documents when no text extractor names are given.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#NAMESPACES
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#ONLINE
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_DEFAULT_RDF_EXTRACTORS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_DEFAULT_TEXT_EXTRACTORS

/

Option Mutabl

e

Default API

docs.�lesystem.uri Yes �le:///

(�le:///)

BitesOptions.DOCS_FILES

YSTEM_URI

(/docs/java/snarl/com/com

plexible/stardog/docs/bites

options#DOCS_FILESYSTE

M_URI)

A URI indicating which FileSystem provider to use for document

storage. In addition to local storage (

�le:///

(�le:///)), documents can be

stored on Amazon S� (s3:///) or document storage can be disabled

altogether (none).

docs.opennlp.models.

path

Yes BitesOptions.DOCS_OPEN

NLP_MODELS_PATH

(/docs/java/snarl/com/com

plexible/stardog/docs/bites

options#DOCS_OPENNLP

_MODELS_PATH)

The directory where OpenNLP models are located. See Entity Extraction

and Linking (#_entity_extraction_and_linking) for details.

docs.path Yes docs/ BitesOptions.DOCS_PATH

(/docs/java/snarl/com/com

plexible/stardog/docs/bites

options#DOCS_PATH)

The path under which documents will be stored. A relative path is

relative to the database directory. S� storage should specify an absolute

path with the bucket name as the �rst part of the path.

docs.s�.protocol Yes https BitesOptions.DOCS_S�_P

ROTOCOL

(/docs/java/snarl/com/com

plexible/stardog/docs/bites

options#DOCS_S�_PROT

OCOL)

file:///
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_FILESYSTEM_URI
file:///
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_OPENNLP_MODELS_PATH
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_PATH
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_S3_PROTOCOL

/

Option Mutabl

e

Default API

Protocol used when storing on S� (and compatible) stores. Can be set to

http to disable TLS/SSL.

icv.active.graphs No default ICVOptions.ICV_ACTIVE_

GRAPHS

(/docs/java/snarl/com/com

plexible/stardog/icv/icvopti

ons#ICV_ACTIVE_GRAPH

S)

Speci�es which part of the database, in terms of named graphs, is

checked with IC validation. Set to tag:stardog:api:context:all to

validate all the named graphs in the database; otherwise, the legal value

of icv.active.graphs is a comma-separated list of named graph

identi�ers.

icv.consistency.autom

atic

Yes false ICVOptions.ICV_CONSIST

ENCY_AUTOMATIC

(/docs/java/snarl/com/com

plexible/stardog/icv/icvopti

ons#ICV_CONSISTENCY_

AUTOMATIC)

Enables automatic ICV consistency check as part of transactions.

icv.enabled Yes false ICVOptions.ICV_ENABLED

(/docs/java/snarl/com/com

plexible/stardog/icv/icvopti

ons#ICV_ENABLED)

Determines whether ICV is active for the database; if true, all database

mutations are subject to IC validation (i.e., "guard mode").

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_ACTIVE_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_CONSISTENCY_AUTOMATIC
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_ENABLED

/

Option Mutabl

e

Default API

icv.explanation.limit Yes � ICVOptions.ICV_EXPLANA

TION_LIMIT

(/docs/java/snarl/com/com

plexible/stardog/icv/icvopti

ons#ICV_EXPLANATION_

LIMIT)

Option to specify the number of violations that will be computed and

returned in the error message when "guard mode" is enabled. If the

option is set to � no explanations will be computed and transaction

failure will only indicate there was a violation without specifying which

constraint failed.

icv.reasoning.enabled Yes false ICVOptions.ICV_REASONI

NG_ENABLED

(/docs/java/snarl/com/com

plexible/stardog/icv/icvopti

ons#ICV_REASONING_EN

ABLED)

Determines if reasoning is used during IC validation.

index.di�erential.ena

ble.limit

Yes ������ IndexOptions.DIFF_INDEX

_MIN_LIMIT

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#DIFF_INDEX_MI

N_LIMIT)

NOTE: Not used in Stardog v�+. The minimum number of statements in

the Stardog database before di�erential indexes are used.

index.di�erential.mer

ge.limit

Yes ����� IndexOptions.DIFF_INDEX

_MAX_LIMIT

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#DIFF_INDEX_MA

X_LIMIT)

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_EXPLANATION_LIMIT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_REASONING_ENABLED
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#DIFF_INDEX_MIN_LIMIT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#DIFF_INDEX_MAX_LIMIT

/

Option Mutabl

e

Default API

The size in number of RDF triples before the di�erential indexes are

merged to the main indexes.

index.literals.canonic

al

No true IndexOptions.CANONICAL

_LITERALS

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#CANONICAL_LIT

ERALS)

Enables RDF literal canonicalization.

index.lucene.mmap Yes true DatabaseOptions.LUCENE

_MMAP

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#LUCENE_MMA

P)

Enables memory-mapping in lucene indices (e.g., search, spatial).

index.named.graphs No true IndexOptions.INDEX_NAM

ED_GRAPHS

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#INDEX_NAMED_

GRAPHS)

Enables optimized index support for named graphs; speeds SPARQL

query evaluation with named graphs at the cost of some overhead for

database loading and index maintenance.

index.statistics.cache.

capacity

Yes ���� IndexOptions.CARDINALIT

Y_CACHE_CAPACITY

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#CARDINALITY_C

ACHE_CAPACITY)

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERALS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#LUCENE_MMAP
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#INDEX_NAMED_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#CARDINALITY_CACHE_CAPACITY

/

Option Mutabl

e

Default API

The max capacity for the query pattern cardinality cache that is shared

across queries to the same database.

index.statistics.charac

teristic.limit

Yes ����� IndexOptions.STATISTICS_

CHARACTERISTIC_SETS_

LIMIT

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#STATISTICS_CH

ARACTERISTIC_SETS_LIMI

T)

The max number of characteristic sets computed as a part of the

statistical summary of the database. More diverse datasets may require

a higher number for more accurate query planning. The downside is

higher memory footprint and slower planning.

index.statistics.updat

e.automatic

Yes true IndexOptions.AUTO_STAT

S_UPDATE

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#AUTO_STATS_U

PDATE)

Determines whether statistics are maintained automatically.

index.statistics.updat

e.min.size

Yes ����� IndexOptions.STATS_UPD

ATE_DB_MIN_SIZE

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#STATS_UPDATE_

DB_MIN_SIZE)

Minimum number of triples that should be in the database for statistics

to be updated automatically.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATISTICS_CHARACTERISTIC_SETS_LIMIT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#AUTO_STATS_UPDATE
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_DB_MIN_SIZE

/

Option Mutabl

e

Default API

index.statistics.updat

e.ratio

Yes �.� IndexOptions.STATS_UPD

ATE_RATIO

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#STATS_UPDATE_

RATIO)

Ratio of updated triples to the number of triples in the database that

triggers the automatic statistics computation in a background thread.

This option has no e�ect if index.statistics.update.automatic is o�

or the index size is less than index.statistics.update.min.size .

index.statistics.updat

e.blocking.ratio

Yes �.� IndexOptions.STATS_UPD

ATE_BLOCKING_RAITO

(/docs/java/snarl/com/com

plexible/stardog/index/inde

xoptions#STATS_UPDATE_

BLOCKING_RAITO)

Similar to index.statistics.update.ratio but once the updates go

over this limit statistics computation will be performed synchronously

within the transaction instead of a background thread. Setting this option

to a non-positive number ({@code ⇐ �}) will disable blocking updates.

literal.comparison.ext

ended

Yes true DatabaseOptions.EXTEND

ED_COMPARISO N

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#EXTENDED_CO

MPARISON)

Controls whether query evaluation will use extended literal comparison.

If enabled, literals of di�erent datatypes are �rst compared based on

their string values and then based on the string value of their datatypes.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_RATIO
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_BLOCKING_RAITO
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#EXTENDED_COMPARISON

/

Option Mutabl

e

Default API

literal.language.norm

alization

No DEFAULT DatabaseOptions.LANGUA

GE_NORMALIZATION

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#LANGUAGE_N

ORMALIZATION)

Con�guration option for determining the normalization algorithm for the

language tags of literals.

preserve.bnode.ids No true DatabaseOptions.PRESER

VE_BNODE_IDS

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#PRESERVE_BN

ODE_IDS)

Determines how the Stardog parser handles bnode identi�ers that may

be present in RDF input. If this property is enabled (i.e., TRUE), parsing

and data loading performance are improved; but the other e�ect is that

if distinct input �les use (randomly or intentionally) the same bnode

identi�er, that bnode will point to one and the same node in the

database. If you have input �les that use explicit bnode identi�ers, and

more than one of those �les may use the same bnode identi�ers, and

you don’t want those bnodes to be smushed into a single node in the

database, then this con�guration option should be disabled (set to

FALSE).

progress.monitoring.e

nabled

No true DatabaseOptions.PROGRE

SS_MONITOR_ENABLED

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#PROGRESS_M

ONITOR_ENABLED)

When enabled, the progress of various tasks will be printed in the server

log.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#LANGUAGE_NORMALIZATION
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#PRESERVE_BNODE_IDS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#PROGRESS_MONITOR_ENABLED

/

Option Mutabl

e

Default API

query.all.graphs Yes false DatabaseOptions.QUERY_

ALL_GRAPHS

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#QUERY_ALL_G

RAPHS)

This option controls the behavior for answering queries that don’t

specify a dataset (FROM or FROM NAMED) in the query. In such cases,

the SPARQL speci�cation says that the query should be answered only

using the information in default graph (no context). However, sometimes

it is desirable to answer such queries using all the information in the

database including the default graph and all named graphs. Setting this

option to true changes the behavior of Stardog to do this. Queries that

specify a dataset are not a�ected by this option.

query.describe.strate

gy

Yes default DatabaseOptions.QUERY_

DESCRIBE_STRATEGY

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#QUERY_DESCR

IBE_STRATEGY)

Option to set the default DESCRIBE query strategy for the database

query.pp.contexts Yes false DatabaseOptions.PROPER

TY_PATH_CONTEXTS

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#PROPERTY_PA

TH_CONTEXTS)

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_ALL_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_DESCRIBE_STRATEGY
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#PROPERTY_PATH_CONTEXTS

/

Option Mutabl

e

Default API

Determines how property paths interact with named graphs in the data.

When set to true and the property path pattern is in the default scope

(i.e. not inside a graph keyword), Stardog will check that paths do not

span multiple named graphs (per ��.�.�

(https://www.w�.org/TR/sparql��-query/#sparqlPropertyPaths)). For this

to a�ect query results either there should be multiple FROM clauses or

query.all.graphs must be also set to true.

query.plan.reuse Yes Always DatabaseOptions.QUERY_

PLAN_REUSE

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#QUERY_PLAN_

REUSE)

Option for con�guring how Stardog will reuse query plans. Stardog

answers queries by �rst generating an execution plan. Generating an

optimal query plan is hard and time-consuming so these plans are

cached and reused for structurally equivalent queries; i.e. queries such

that one can be transformed into another by replacing constants. This

option determines the conditions under which a cached plan will be

reused. See QueryPlanReuse

(/docs/java/snarl/com/complexible/stardog/queryplanreuse) for the

available values.

query.timeout Yes DatabaseOptions.QUERY_

TIMEOUT

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#QUERY_TIMEO

UT)

Determines max execution time for query evaluation. This can also be

overridden in a query’s parameters.

https://www.w3.org/TR/sparql11-query/#sparqlPropertyPaths
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_PLAN_REUSE
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/queryplanreuse
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_TIMEOUT

/

Option Mutabl

e

Default API

reasoning.classify.eag

er

Yes true ReasoningOptions.EAGER_

CLASSIFY

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#EAGER

_CLASSIFY)

Perform schema classi�cation eagerly when the schema is loaded.

Classifying eagerly ensures subclass and equivalence queries between

named classes can be answered with a simple lookup. However, if the

schema is changing frequently then this option can be turned o� so

classi�cation is performed only if necessary.

reasoning.consistenc

y.automatic

Yes false ReasoningOptions.CONSIS

TENCY_AUTOMATIC

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#CONSI

STENCY_AUTOMATIC)

Enables automatic consistency checking with respect to a transaction.

reasoning.punning.en

abled

Yes false ReasoningOptions.PUNNIN

G_ENABLED

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#PUNNI

NG_ENABLED)

Enables punning; the ability for an IRI to represent both a class and an

individual.

reasoning.schema.gr

aphs

Yes * ReasoningOptions.SCHEM

A_GRAPHS

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#SCHEM

A_GRAPHS)

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#EAGER_CLASSIFY
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#CONSISTENCY_AUTOMATIC
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#PUNNING_ENABLED
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMA_GRAPHS

/

Option Mutabl

e

Default API

Determines which, if any, named graph or graphs contains the "TBox",

i.e., the schema part of the data. The legal value is a comma-separated

list of named graph identi�ers, including (optionally) the special names,

tag:stardog:api:context:default and

tag:stardog:api:context:all , which represent the default graph and

the union of all named graphs and the default graph, respectively. In the

context of database con�gurations only, Stardog will recognize

default and * as short forms of those URIs, respectively.

reasoning.schema.tim

eout

Yes 60s ReasoningOptions.SCHEM

A_REASONING_TIMEOUT

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#SCHEM

A_REASONING_TIMEOUT)

Timeout for schema reasoning. If schema reasoning cannot be

completed in the speci�ed time then only RDFS reasoning will be

performed for the schema which might yield incomplete answers for the

schema queries. The timeout values speci�ed as test be a positive

integer followed by either letter 'h' (for hours), letter 'm' (for minutes),

letter 's' (for seconds), or letters 'ms' (for milliseconds). Examples: '�h' for

� hour, '�m' for � minutes, '��s' for �� seconds, '���ms' for ���

milliseconds.

reasoning.schemas Yes ReasoningOptions.SCHEM

AS

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#SCHEM

AS)

Option to specify the schemas and the named graphs that constitute

each schema. The value is a comma-separated collection of schema=IRI

pairs. There should be one pair for each named graph in a schema. The

graphs for the default schema are set via the reasoning.schema.graphs

option.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMA_REASONING_TIMEOUT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMAS

/

Option Mutabl

e

Default API

reasoning.schemas.m

emory.count

Yes � ReasoningOptions.SCHEM

AS_MEMORY_COUNT

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#SCHEM

AS_MEMORY_COUNT)

Option to specify the number of schemas to keep in memory. There can

be more schemas de�ned in the database but only this many schemas

will be kept in memory and other schemas will be pulled into memory as

queries are getting answered. If this limit is too high amount of memory

used for schemas will increase and might cause memory problems. If it

is too low then answering reasoning queries might slow down.

reasoning.type Yes SL

Speci�es the reasoning type associated with the database; legal values

are SL , RL , QL , EL , DL , RDFS , and NONE .

reasoning.approximat

e

Yes false ReasoningOptions.APPRO

XIMATE

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#SCHEM

A_GRAPHS)

Enables approximate reasoning. With this �ag enabled Stardog will

approximate an axiom that is outside the pro�le Stardog supports and

normally ignored. For example, an equivalent class axiom might be split

into two subclass axioms and only one subclass axiom is used.

reasoning.sameas Yes OFF ReasoningOptions.EQUALI

TY_REASONING

(/docs/java/snarl/com/com

plexible/stardog/reasoning

/reasoningoptions#EQUALI

TY_REASONING)

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMAS_MEMORY_COUNT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMA_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#EQUALITY_REASONING

/

Option Mutabl

e

Default API

Option to enable owl:sameAs reasoning. When this option is set to "ON",

then the re�exive, symmetric, and transitive closure of owl:sameAs

triples in the database are computed. When it is set to "FULL", then

owl:sameAs inferences are computed based on schema axioms, such as

functional properties. See the docs for more information.

search.enabled Yes false SearchOptions.SEARCHAB

LE

(/docs/java/snarl/com/com

plexible/stardog/search/se

archoptions#SEARCHABLE

)

Enables semantic search for the database.

search.index.datatype

s

No http://www.w�.org/���

�/��/��-rdf-syntax-

ns#langString

(http://www.w�.org/��

��/��/��-rdf-syntax-

ns#langString),

http://www.w�.org/���

�/XMLSchema#string

(http://www.w�.org/��

��/XMLSchema#strin

g)

SearchOptions.INDEX_DAT

ATYPES

(/docs/java/snarl/com/com

plexible/stardog/search/se

archoptions#INDEX_DATA

TYPES)

Option to specify the datatypes for which to index literals. Literals with

other datatypes will not be accessible via full-text search.

search.wildcard.searc

h.enabled

Yes false SearchOptions.LEADING_

WILDCARD_SEARCH_ENA

BLED

(/docs/java/snarl/com/com

plexible/stardog/search/se

archoptions#LEADING_WI

LDCARD_SEARCH_ENABL

ED)

Enable support in Lucene for searches with leading wildcards.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCHABLE
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/2001/XMLSchema#string
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#INDEX_DATATYPES
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#LEADING_WILDCARD_SEARCH_ENABLED

/

Option Mutabl

e

Default API

search.default.limit Yes -1 SearchOptions.SEARCH_D

EFAULT_LIMIT

(/docs/java/snarl/com/com

plexible/stardog/search/se

archoptions#SEARCH_DEF

AULT_LIMIT)

Specify the default limit on the number of results returned from a full-text

search (-1 returns all results)

search.reindex.tx Yes true SearchOptions.SEARCH_R

EINDEX_IN_TX

(/docs/java/snarl/com/com

plexible/stardog/search/se

archoptions#SEARCH_REI

NDEX_IN_TX)

If false , literals added during a transaction are not automatically

indexed; users need to optimize the database in order to make them

available for search.

security.named.graph

s

Yes false SecurityOptions.GRAPH_S

ECURITY

(/docs/java/snarl/com/com

plexible/stardog/security/s

ecurityoptions#NAMED_G

RAPH_SECURITY)

Database option which controls whether named graph security

(#_named_graph_security) is enabled.

spatial.enabled Yes false GeospatialOptions.SPATIA

L_ENABLED

(/docs/java/snarl/com/com

plexible/stardog/spatial/ge

ospatialoptions#SPATIAL_

ENABLED)

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCH_DEFAULT_LIMIT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCH_REINDEX_IN_TX
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/security/securityoptions#NAMED_GRAPH_SECURITY
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_ENABLED

/

Option Mutabl

e

Default API

Enables geospatial search for the database.

spatial.result.limit Yes ����� GeospatialOptions.SPATIA

L_RESULT_LIMIT

(/docs/java/snarl/com/com

plexible/stardog/spatial/ge

ospatialoptions#SPATIAL_

RESULT_LIMIT)

Specify the default limit on the number of results returned from a

geospatial query (-1 returns all results)

spatial.precision No 11 GeospatialOptions.SPATIA

L_PRECISION

(/docs/java/snarl/com/com

plexible/stardog/spatial/ge

ospatialoptions#SPATIAL_

PRECISION)

Speci�es the precision used for the indexing of geospatial data. The

smaller the value, the less precision.

sql.schema.graph Yes tag:stardog:api:sq

l:schema
link: TODO can’t �nd

SerfOptions in javadocs

Speci�es which named graph in the database is used to read SQL

schema mapping.

strict.parsing No true DatabaseOptions.STRICT_

PARSING

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#STRICT_PARSI

NG)

Controls whether Stardog parses RDF strictly (true, the default) or

loosely (false). Setting this to "false" will allow, for example, integer

literals with leading zeros.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_RESULT_LIMIT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_PRECISION
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#STRICT_PARSING

/

Option Mutabl

e

Default API

transaction.isolation Yes SNAPSHOT DatabaseOptions.TRANSA

CTION_ISOLATION

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#TRANSACTION

_ISOLATION)

Con�gures isolation level for transactions; legal values are SNAPSHOT

and SERIALIZABLE.

transaction.logging Yes false DatabaseOptions.TRANSA

CTION_LOGGING

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#TRANSACTION

_LOGGING)

Option for whether or not the database logs all transactions events to

disk. The default when not in Cluster mode is "false", and when in

Cluster mode the default is "true".

transaction.logging.ro

tation.size

Yes 524288000 DatabaseOptions.TRANSA

CTION_LOGGING_ROTATI

ON_SIZE

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#TRANSACTION

_LOGGING)

When transaction.logging is true , it determines the size (in bytes)

at which the transaction log will be rotated. Default is ��� MB.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_ISOLATION
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGGING
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGGING

/

Option Mutabl

e

Default API

transaction.logging.ro

tation.remove

Yes true DatabaseOptions.TRANSA

CTION_LOGGING_ROTATI

ON_REMOVE

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#TRANSACTION

_LOGGING)

When transaction.logging is true , it determines that old log �les

will be deleted after rotation. Default is true.

virtual.transparency Yes false DatabaseOptions.VIRTUAL

_TRANSPARENCY

(/docs/java/snarl/com/com

plexible/stardog/db/databa

seoptions#VIRTUAL_TRAN

SPARENCY)

Determines what data the database evaluates queries against; if true ,

it will query over the default graph and the union of all accessible virtual

graphs; if false (the default), it will query only over the default graph.

Requires query.all.graphs to be true

A Note About Database Status

A database must be set to offline status before most con�guration

parameters may be changed. Hence, the normal routine is to set the

database o�ine, change the parameters, and then set the database to

online. All of these operations may be done programmatically from CLI

tools, such that they can be scripted in advance to minimize downtime. In a

future version, we will allow some properties to be set while the database

remains online.

Managing Database Status

Databases are either online or o�ine; this allows database maintenance to

be decoupled from server maintenance.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGGING
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#VIRTUAL_TRANSPARENCY

/

Online and Offline

Databases are put online or o�ine synchronously: these operations block

until other database activity is completed or terminated. See

stardog-admin help db for details.

Examples

To set a database from o�ine to online:

To set the database online:

If Stardog Server is shutdown while a database is o�ine, the database will

be o�ine when the server restarts.

Creating a Database

Stardog databases may be created locally or remotely; but performance is

better if data �les don’t have to be transferred over a network during

creation and initial loading. See the section below about loading

compressed data. All data �les, indexes, and server metadata for the new

database will be stored in Stardog Home. Stardog won’t create a database

with the same name as an existing database. Stardog database names must

start with an alpha character followed by zero or more alphanumeric,

hyphen or underscore characters, as is given by the regular expression

[A-Za-z]{1}[A-Za-z0-9_-]* .

NOTE

There are four reserved words that may not be

used for the names of Stardog databases:

system , admin , and docs .

Minimally, the only thing you must know to create a Stardog database is a

database name; alternately, you may customize some other database

parameters and options depending on anticipated workloads, data

$ stardog-admin db offline myDatabase

$ stardog-admin db online myDatabase

/

modeling, and other factors.

See stardog-admin help db create for all the details including examples.

Database Archetypes

Stardog database archetypes are a new feature in �.�. A database

archetype is a named, vendor-de�ned or user-de�ned bundle of data and

functionality to be applied at database-creation time. Archetypes are

primarily for supporting data standards or tool chain con�gurations in a

simple way.

For example, the SKOS standard from W�C de�nes an OWL vocabulary for

building taxonomies, thesauruses, etc. SKOS is made up by a vocabulary,

some constraints, some kinds of reasoning, and (typically) some SPARQL

queries. If you are developing an app that uses SKOS, without Stardog’s

SKOS archetype, you are responsible for assembling all that SKOS stu�

yourself. Which is tedious, error-prone, and unrewarding— even when it’s

done right the �rst time.

Rather than putting that burden on Stardog users, we’ve created database

archetypes as a mechanism to collect these "bundles of stu�" which, as a

developer, you can then simply attach to a particular database.

The last point to make is that archetypes are composable: you can mix-and-

match them at database creation time as needed.

Stardog supports two database archetypes out-of-the-box: PROV

(http://www.w�.org/TR/prov-overview/) and SKOS

(http://www.w�.org/����/��/skos/).

SKOS Archetype

The SKOS archetype is for databases that will contain SKOS data, and

includes the SKOS schema, SKOS constraints using Stardog’s Integrity

Constraint Validation, and some namespace-pre�x bindings.

PROV Archetype

The PROV archetype is for databases that will contain PROV data, and

includes the SKOS schema, SKOS constraints using Stardog’s Integrity

Constraint Validation, and some namespace-pre�x bindings.

http://www.w3.org/TR/prov-overview/
http://www.w3.org/2004/02/skos/

/

Archetypes are composable, so you can use more of them and they are

intended to be used alongside your domain data, which may include as

many other schemas, ontologies, etc. as are required.

User-defined Archetypes

Please see the Stardog Examples repository (https://github.com/stardog-

union/stardog-examples/blob/develop/examples/foaf/readme.md) on

Github for an example that shows how to create your own Stardog

archetype.

Database Creation Templates

As a boon to the overworked admin or devops peeps, Stardog Server

supports database creation templates: you can pass a Java Properties �le

with con�g values set and with the values (typically just the database name)

that are unique to a speci�c database passed in CLI parameters.

Examples

To create a new database with the default options by simply providing a

name and a set of initial datasets to load:

Datasets can be loaded later as well. To create (in this case, an empty)

database from a template �le:

At a minimum, the con�guration �le must have a value for database.name

option.

If you only want to change only a few con�guration options you can directly

give the values for these options in the CLI args as follows:

$ stardog-admin db create -n myDb input.ttl another_file.rdf

moredata.rdf.gz

$ stardog-admin db create -c database.properties

$ stardog-admin db create -n db -o icv.enabled=true

icv.reasoning.enabled=true -- input.ttl

https://github.com/stardog-union/stardog-examples/blob/develop/examples/foaf/readme.md

/

“--” is used in this case when “-o” is the last option to delimit the value for “-

o” from the �les to be bulk loaded.

Please refer to the CLI help for more details of the db create command.

Database Create Options

�. Table of Options for Stardog’s create command

Name Description Arg

values

Default

--name , -n Required, the name of the

database to create

--copy-server-side

,

Flag to specify whether

bulk loaded �les should be

�rst copied to the server

false

--type , -t Speci�es the kind of

database indexes: memory

or disk

M , D disk

--index-triples-

only

, -i

Speci�es that the

database’s indexes should

be optimized for RDF

triples only

false

Repairing a Database

If an I/O error or an index exception occurs while querying a DB, the DB

may be corrupted and repaired with the repair command. If the errors occur

during executing admin commands, then the system DB may have been

corrupted. System database corruptions can also cause other problems

including authorization errors.

This command needs exclusive access to your Stardog home directory and

therefore requires the Stardog Server not to be running. This also means

that the command can only be run on the machine where the Stardog home

directory is located, and you will not be able to start the Stardog Server

while this command is running.

/

NOTE
The repair process can take considerable time

for large databases.

If the built-in Stardog system database is corrupted, then you can use the

database name system as the repair argument. To repair the database

myDB:

To repair the system database:

Backing Up and Restoring

Stardog includes both physical and logical backup utilities; logical backups

are accomplished using the export CLI command. Physical backups and

restores are accomplished using stardog-admin db backup and

stardog-admin db restore commands, respectively.

These tools perform physical backups, including database metadata, rather

than logical backups via some RDF serialization. They are native Stardog

backups and can only be restored with Stardog tools. Backup may be

accomplished while a database is online; backup is performed in a read

transaction: reads and writes may continue, but writes performed during the

backup are not re�ected in the backup.

See the man pages for backup (/man/db-backup.html) and restore

(/man/db-restore.html) for details.

Backup

stardog-admin db backup assumes a default location for its output,

namely, $STARDOG_HOME/.backup ; that default may be overriden by setting

backup.dir . Backup sets are stored in $STARDOG_HOME by database

name and then in date-versioned subdirectories for each backup volume.

You can use a variety of OS-speci�c options to do remote backups over

some network or data protocol; those options are left as an exercise for the

admin.

$ stardog-admin db repair myDB

$ stardog-admin db repair system

https://www.stardog.com/man/db-backup.html
https://www.stardog.com/man/db-restore.html

/

If you need to specify a location outside of $STARDOG_HOME (e.g. a network

mount) you can set backup.location or pass it to the --to argument.

To backup a Stardog database called foobar :

To perform a remote backup, for example, pass in a speci�c directory that

may be mounted in the current OS namespace via some network protocol,

thus:

Backups can also be performed directly to S�. To do so use an S� URL in

the following format:

The endpoint hostname and endpoint port values are only used for on-

premises S� clones. To use Amazon S� those values can be left blank and

the URL will have three / before the bucket, eg

s3:///mybucket/backup/prefix?region=us-east-

1&AWS_ACCESS_KEY_ID=accessKey&AWS_SECRET_ACCESS_KEY=secret

A default S� backup location can also be speci�ed in the

stardog.properties �le with the key backup.location .

Restore

To restore a Stardog database from a Stardog backup volume, simply pass

a fully-quali�ed path to the volume in question. The location of the backup

should be the full path to the backup, not the location of the backup

directory as speci�ed in your Stardog con�guration. There is no need to

specify the name of the database to restore.

To restore a database from its backup:

$ stardog-admin db backup foobar

$ stardog-admin db backup --to /my/network/share/stardog-backups

foobar

s3://[<endpoint hostname>:<endpoint port>]/<bucket name>/<path

prefix>?region=<AWS Region>&AWS_ACCESS_KEY_ID=<access

key>&AWS_SECRET_ACCESS_KEY=<verySecretKey1>

$ stardog-admin db restore $STARDOG_HOME/.backups/myDb/2012-06-21

/

Backups can also be restored directly from S� by using an S� URL in the

following format:

Note: Unlike the backup URL the database name must be speci�ed as

the last entry of the path �eld in the URL.

Restore On Startup

Stardog can be con�gured to automatically restore databases from a

backup location on startup. For example, when a Stardog cluster node �rst

starts it could pull all of the database data down from an S� backup before

joining the cluster.

There are two options that control this behavior.

�. Table of Auto-restore options

Option Description

backup.autorestore.dbnames A regular expression that matches

the names of the databases to

automatically restore on startup,

eg: .* for every database.

backup.autorestore.onfailure A boolean value that determines if

all databases which failed to load

should be automatically restored

from a backup location.

One-time Database Migrations for Backup

The backup system cannot directly backup databases created in versions

before �.�. These databases must be explicitly migrated to use the new

backup system; this is a one-time operation per database and is

accomplished by running

s3://[<endpoint hostname>:<endpoint port>]/<bucket name>/<path

prefix>/<database name>?region=<A

WS Region>&AWS_ACCESS_KEY_ID=<access key>&AWS_SECRET_ACCESS_KEY=

<verySecretKey1>

$ stardog-admin db migrate foobar

/

to migrate a database called foobar . Again, this is a one-time operation

only and all databases created with �.� (or later) do not require it.

Namespace Prefix Bindings

Stardog allows database administrators to persist and manage custom

namespace pre�x bindings:

�. At database creation time, if data is loaded to the database that has

namespace pre�xes, then those are persisted for the life of the

database. This includes setting the default namespace to the default

that appears in the �le. Any subsequent queries to the database may

simply omit the PREFIX declarations:

�. To add new bindings, use the namespace subcommand in the CLI:

�. To change the default binding, use a quote pre�x when adding a new

one:

�. To change an existing binding, delete the existing one and then add a

new one:

�. Finally, to see all the existing namespace pre�x bindings:

If no �les are used during database creation, or if the �les do not de�ne any

pre�xes (e.g. NTriples), then the "Big Four" default pre�xes are stored:

RDF, RDFS, XSD , and OWL .

$ stardog query myDB "select * {?s rdf:type owl:Class}"

$ stardog namespace add myDb --prefix ex --uri

'http://example.org/test#'

$ stardog namespace add myDb --prefix "" --uri http://new.default

$ stardog namespace remove myDb --prefix ex

$ stardog namespace list myDB

/

When executing queries in the CLI, the default table format for SPARQL

SELECT results will use the bindings as qnames. SPARQL CONSTRUCT

query output (including export) will also use the stored pre�xes. To reiterate,

namespace pre�x bindings are per database, not global.

Index Strategies

By default Stardog builds extra indexes for named graphs. These indexes

are used when SPARQL queries specify datasets using FROM and

FROM NAMED .

Stardog may also be con�gured to create and to use fewer indexes, if the

database is only going to be used to store RDF triples— that is to say, if the

database will not be used to store named graph information. In this mode,

Stardog will keep fewer indexes, which will result in faster database

creation and faster updates without compromising query answering

performance. In such databases, quads (that is: triples with named graphs

or contexts speci�ed) may still be added to these database at any time, but

query performance may degrade in such cases.

To create a database which indexes only RDF triples, set the option

index.named.graphs to false at database creation time. The CLI

provides a shorthand option, -i or --index-triples-only , which is

equivalent.

NOTE

This option can only be set at database creation

time and cannot be changed later without

rebuilding the database; use this option with

care.

Loading Compressed Data

Stardog supports loading data from compressed �les directly: there’s no

need to uncompress �les before loading. Loading compressed data is the

recommended way to load large input �les. Stardog supports GZIP, BZIP�

and ZIP compressions natively.

GZIP and BZIP�

/

A �le passed to create will be treated as compressed if the �le name

ends with .gz or .bz2 . The RDF format of the �le is determined by the

penultimate extension. For example, if a �le named test.ttl.gz is used

as input, Stardog will perform GZIP decompression during loading and

parse the �le with Turtle parser. All the formats supported by Stardog

(RDF/XML, Turtle, Trig, etc.) can be used with compression.

ZIP

The ZIP support works di�erently since zipped �les can contain many �les.

When an input �le name ends with .zip , Stardog performs ZIP

decompression and tries to load all the �les inside the ZIP �le. The RDF

format of the �les inside the zip is determined by their �le names as usual. If

there is an unrecognized �le extension (e.g. '.txt'), then that �le will be

skipped.

Dropping a Database

This command removes a database and all associated �les and metadata.

This means all �les on disk related to the database will be deleted, so only

use drop when you’re certain! Databases must be o�ine in order to be

dropped.

It takes as its only argument a valid database name. For example,

Using Integrity Constraint Validation

Stardog supports integrity constraint validation as a data quality mechanism

via closed world reasoning. Constraints can be speci�ed in OWL, SWRL,

and SPARQL. Please see the Validating Constraints

(#_validating_constraints) section for more about using ICV in Stardog.

The CLI icv subcommand can be used to add, delete, or drop all

constraints from an existing database. It may also be used to validate an

existing database with constraints that are passed into the icv

subcommand; that is, using di�erent constraints than the ones already

associated with the database.

$ stardog-admin db drop my_db

/

For details of ICV usage, see stardog help icv and

stardog-admin help icv . For ICV in transacted mutations of Stardog

databases, see the database creation section above.

Migrating a Database

The migrate subcommand migrates an older Stardog database to the

latest version of Stardog. Its only argument is the name of the database to

migrate. migrate won’t necessarily work between arbitrary Stardog

version, so before upgrading check the release notes for a new version

carefully to see whether migration is required or possible.

will update myDatabase to the latest database format.

Getting Database Information

You can get some information about a database by running the following

command:

This will return all the metadata stored about the database, including the

values of con�guration options used for this database instance. If you want

to get the value for a speci�c option then you can run the following

command:

Managing Stored Functions

Stored functions, available since Stardog �.�, provide the ability to reuse

expressions. This avoids duplication and ensures consistency across

instances of the same logic. Stored functions are treated similarly to built-in

and user-de�ned functions in that they can be used in FILTER constraints

and BIND assignments in SPARQL queries, path queries and rules.

Creating and Using Functions

$ stardog-admin db migrate myDatabase

$ stardog-admin metadata get my_db_name

$ stardog-admin metadata get -o index.named.graphs my_db_name

/

Functions are useful to encapsulate computational or business logic for

reuse. We can create a new function to compute the permutation using the

function add command to stardog-admin on the command line:

We can use this function in a SPARQL query and see that the function is

expanded in the query plan:

Stored Function Syntax

Function de�nitions provided to the add command must adhere to the

following grammar:

We can use IRIs or pre�xed names as function names and include several

functions in one add call:

stardog-admin function add "function permutation(?n, ?r) { factorial(?

n) / factorial(?n - ?r) }"

Explaining Query:

select * where { ?x :p :q. filter(permutation(?x, 3) > 1) }

The Query Plan:

Projection(?x) [#1]

`─ Filter((factorial(?x) / factorial((?x - "3"^^xsd:integer))) >
"1"^^xsd:integer) [#1]

 `─ Scan[POS](?x, :p, :q) [#1]

FUNCTIONS ::= Prolog FUNCTION+

FUNCTION ::= 'function' FUNC_NAME '(' ARGS ')' '{' Expression '}'

FUNC_NAME ::= IRI | PNAME | LOCAL_NAME

ARGS ::= [Var [',' Var]*]?

Prolog ::= // BASE and PREFIX declarations as defined by SPARQL 1.1

Expression ::= // as defined by SPARQL 1.1

Var ::= // as defined by SPARQL 1.1

/

Additional Function Management

The admin commands cover adding, listing and removing functions.

Examples of these commands are shown below:

HTTP APIs are also provided to add, list and remove stored functions:

GET /admin/functions/stored[/?name={functionName}]

DELETE /admin/functions/stored[/?name={functionName}]

POST /admin/functions/stored

The contents of the POST request should be a document containing one or

more function de�nitions using the syntax describes above. The GET

request by default returns the de�nitions for all the functions. If the name

parameter is speci�ed a de�nition for the function with that name is

returned. Similarly, the DELETE request deletes all the functions by default

or deletes a single function if the name parameter is speci�ed.

Stored functions are persisted in the system database. The system

database should be backed up properly to avoid loss of functions.

Dependencies Across Stored Functions

$ stardog-admin function add "prefix ex: <http://example/> \

 function ex:permutation(?n, ?r) { factorial(?n) / factorial(?n -

?r) } \

 function <http://example/combination>(?n, ?r) { permutation(?n, ?

r) / factorial(?r) }"

Stored 2 functions successfully

$ stardog-admin function list

FUNCTION combination(?n,?r) {

 ((factorial(?n) / factorial((?n - ?r))) / factorial(?r))

}

FUNCTION permutation(?n,?r) {

 (factorial(?n) / factorial((?n - ?r)))

}

$ stardog-admin function remove permutation

Removed stored function successfully

/

Stored functions are compiled at creation time in a way that guarantees

they will work inde�nitely, even if other functions are removed or changed

in ways that would a�ect them. For this reason, dependent functions need

to be reloaded when their dependencies are changed.

Managing Stored Queries

Stardog �.� added the capability to name and store SPARQL queries for

future evaluation by referring to the query’s name.

Queries of any type can be stored in Stardog and executed directly by

using the name of the stored query. Stored queries can be shared with

other users, which gives those users the ability to run those queries

provided that they have appropriate permissions for a database.

Stored queries can be managed via CLI, Java API, and HTTP API. The CLI

command group is stardog-admin stored . The HTTP API is detailed in

Network Programming (#_list_stored_queries).

Storing Queries

Queries can be stored using the stored add admin command and

specifying a unique name for the stored query:

If a �le is used to specify the query string without an explicit -n/--name

option then the name of the query �le is used for the stored query:

By default, stored queries can be executed over any database. But they can

be scoped by providing a speci�c database name with the -d/--database

option. Also, by default, only the user who stored the query can access that

stored query. Using the --shared �ag will allow other users to execute the

stored query.

The following example stores a shared query with a custom name that can

be executed over only the database myDb :

$ stardog-admin stored add -n types "select distinct ?type {?s a ?

type}"

$ stardog-admin stored add listProperties.sparql

/

The JSON attributes which correspond to --shared and -d are shared

and database .

Stored query names must be unique for a Stardog instance. Existing stored

queries can be replaced using the --overwrite option in the command.

Updating Stored Queries

Queries can be updated using the --overwrite option on the

stored add admin command and specifying an existing name for a stored

query:

Importing and Exporting Stored Queries

Stored queries are saved as RDF statements in the Stardog system

database and it is possible to export the RDF representation of the queries:

The same RDF representation can be used to import the stored queries as

an alternative way of storing new queries or updating existing stored

queries.

$ stardog-admin stored add --shared -d myDb -n listProperties "select

distinct ?p {?s ?p ?o}"

$ stardog-admin stored add --overwrite -n types "select distinct ?p {?

s ?p ?o}"

$ stardog-admin stored export

@prefix system: <http://system.stardog.com/> .

system:QueryExportAll a system:StoredQuery , system:SharedQuery ;

 system:queryName "ExportAll" ;

 system:queryString """construct where {?s ?p ?o}""" ;

 system:queryCreator "admin" ;

 system:queryDatabase "*" .

system:QuerylistDroids a system:StoredQuery , system:ReasoningQuery ;

 system:queryName "listDroids" ;

 system:queryString "select ?x { ?x a :Droid }" ;

 system:queryCreator "luke" ;

 system:queryDatabase "starwars" .

$ stardog stored import queries.ttl

/

In addition to the built-in properties from the system database arbitrary

RDF properties can be used for stored queries. The value of these

additional annotation properties should be IRIs or literals. Only the values

directly linked to the stored query subject in the RDF document will be

saved and the triples with a non-stored query subject will be ignored.

Running Stored Queries

Stored queries can be executed using the regular query execution CLI

command by passing the name of the stored query:

Other commands like query explain also accept stored query names.

They can also be passed instead of query string into HTTP API calls.

Listing Stored Queries

To see all the stored queries, use the stored list subcommand:

The results are formatted tabularly:

$ stardog query myDb listProperties

$ stardog-admin stored list

+--------+---+

| Name | Query String |

+--------+---+

| graphs | SELECT ?graph (count(*) as ?size) |

| | FROM NAMED stardog:context:all |

| | WHERE { GRAPH ?graph {?s ?p ?o}} |

| | GROUP BY ?graph |

| | ORDER BY desc(?size) |

| people | CONSTRUCT WHERE { |

| | ?person a foaf:Person ; |

| | ?p ?o |

| | } |

| types | SELECT DISTINCT ?type ?label |

| | WHERE { |

| | ?s a ?type . |

| | OPTIONAL { ?type rdfs:label ?label } |

| | } |

+--------+---+

3 stored queries

/

Users can only see the queries they’ve stored and the queries stored by

other users that have been --shared . The --verbose option will show

more details about the stored queries.

Removing Stored Queries

Stored queries can be removed using the stored remove command:

If you would like to clear all the stored queries then use the -a/--all

option:

Managing Running Queries

Stardog includes the capability to manage running queries according to

con�gurable policies set at run-time; this capability includes support for

listing running queries; deleting running queries; reading the status of a

running query; killing running queries that exceed a time threshold

automatically; and logging slow queries for analysis.

Stardog is pre-con�gured with sensible server-wide defaults for query

management parameters; these defaults may be overridden or disabled per

database, or even per query.

Configuring Query Management

For many uses cases the default con�guration will be su�cient. But you

may need to tweak the timeout parameter to be longer or shorter,

depending on the hardware, data load, queries, throughput, etc. The default

con�guration has a server-wide query timeout value of query.timeout ,

which is inherited by all the databases in the server. You can customize the

server-wide timeout value and then set per-database custom values, too.

Any database without a custom value inherits the server-wide value. To

disable query timeout, set query.timeout to 0 . If individual queries need

to set their own timeout, this can be done (by passing a timeout

$ stardog-admin stored remove storedQueryName

$ stardog-admin stored remove -a

/

parameter over HTTP or using the --timeout �ag on the CLI), but only if

the query.timeout.override.enabled property is set to true for the

database (true is the default).

Listing Queries

To see all running queries, use the query list subcommand:

The results are formatted tabularly:

You can see which user owns the query (superuser’s can see all running

queries), as well as the elapsed time and the database against which the

query is running. The ID column is the key to deleting queries.

Deleting Queries

To delete a running query, simply pass its ID to the query kill

subcommand:

The output con�rms the query kill completing successfully:

Automatically Killing Queries

For production use, especially when a Stardog database is exposed to

arbitrary query input, some of which may not execute in an acceptable time,

the automatic query killing feature is useful. It will protect a Stardog Server

$ stardog-admin query list

+----+----------+-------+--------------+

| ID | Database | User | Elapsed time |

+----+----------+-------+--------------+

| 2 | test | admin | 00:00:20.165 |

| 3 | test | admin | 00:00:16.223 |

| 4 | test | admin | 00:00:08.769 |

+----+----------+-------+--------------+

3 queries running

$ stardog-admin query kill 3

Query 3 killed successfully

/

from queries that consume too many resources.

Once the execution time of a query exceeds the value of query.timeout ,

the query will be killed automatically. The client that

submitted the query will receive an error message. The value of

query.timeout may be overriden by setting a di�erent value (smaller or

longer) in database options. To disable, set to query.timeout to 0 .

The value of query.timeout is a positive integer concatenated with a

letter, interpreted as a time duration: 'h' (for hours), 'm' (for minutes), 's' (for

seconds), or 'ms' (for milliseconds). For example, '�h' for � hour, '�m' for �

minutes, '��s' for �� seconds, and '���ms' for ��� milliseconds.

The default value of query.timeout is �ve minutes.

Query Status

To see more detail about query in-�ight, use the query status

subcommand:

The resulting output includes query metadata, including the query itself:

Slow Query Logging

Stardog does not log slow queries in the default con�guration because

there isn’t a single value for what counts as a "slow query", which is entirely

relative to queries, access patterns, dataset sizes, etc. While slow query

[� (#_footnote_�)]

$ stardog-admin query status 1

Username: admin

Database: test

Started : 2013-02-06 09:10:45 AM

Elapsed : 00:01:19.187

Query :

select ?x ?p ?o1 ?y ?o2

 where {

 ?x ?p ?o1.

 ?y ?p ?o2.

 filter (?o1 > ?o2).

 }

order by ?o1

limit 5

/

logging has minimal overhead, what counts as a slow query in some

context may be acceptable in another. See Con�guring Stardog Server

(#_con�guring_stardog_server) above for the details.

Protocols and Java API

For HTTP protocol support, see Stardog’s Apiary

(http://docs.stardog.apiary.io/) docs.

For Java, see the Javadocs (http://stardog.com/docs/java/snarl/).

Security and Query Management

The security model for query management is simple: any user can kill any

running query submitted by that user, and a superuser can kill any running

query. The same general restriction is applied to query status; you cannot

see status for a query that you do not own, and a superuser can see the

status of every query.

Managing Query Performance

Stardog answers queries in two major phases: determining the query plan

and executing that plan to obtain answers from the data. The former is

called query planning (or query optimization) and includes all steps

required to select the most e�cient way to execute the query. How Stardog

evaluates a query can only be understood by analyzing the query plan.

Query plan analysis is also the main tool for investigating performance

issues as well as addressing them, in particular, by re-formulating the query

to make it more amenable to optimization.

TIP

� Steps to Fast SPARQL Queries

(https://www.stardog.com/blog/�-steps-to-fast-

sparql-queries/)

Avoidably Slow Queries

(https://www.stardog.com/blog/�-steps-to-fast-

sparql-queries/�/)

How to Read Stardog Query Plans

(https://www.stardog.com/blog/how-to-read-

stardog-query-plans/)

http://docs.stardog.apiary.io/
http://stardog.com/docs/java/snarl/
https://www.stardog.com/blog/7-steps-to-fast-sparql-queries/
https://www.stardog.com/blog/7-steps-to-fast-sparql-queries/2/
https://www.stardog.com/blog/how-to-read-stardog-query-plans/

/

Query Plan Syntax

We will use the following running example to explain query plans in

Stardog.

This query returns the names of all people who have authored both a

journal article and a paper in a conference proceedings. The query plan

used by Stardog (in this example, �.�.�) to evaluate this query is:

The plan is arranged in an hierarchical, tree-like structure. The nodes, called

operators, represent units of data processing during evaluation. They

correspond to evaluations of graphs patterns or solution modi�ers as

de�ned in SPARQL �.� speci�cation (https://www.w�.org/TR/sparql��-

query/#sparqlDe�nition). All operators can be regarded as functions which

may take some data as input and produce some data as output. All input

and output data is represented as streams of solutions

(https://www.w�.org/TR/sparql��-query/#sparqlSolutions), that is, sets of

bindings of the form x → value where x is a variable used in the query

and value is some RDF term (IRI, blank node, or literal). Examples of

operators include scans, joins, �lters, unions, etc.

 SELECT DISTINCT ?person ?name

 WHERE {

 ?article rdf:type bench:Article .

 ?article dc:creator ?person .

 ?inproc rdf:type bench:Inproceedings .

 ?inproc dc:creator ?person .

 ?person foaf:name ?name

 }

 Distinct [#812K]

 `─ Projection(?person, ?name) [#812K]
 `─ MergeJoin(?person) [#812K]
 +─ MergeJoin(?person) [#391K]
 │ +─ Sort(?person) [#391K]
 │ │ `─ MergeJoin(?article) [#391K]
 │ │ +─ Scan[POSC](?article, rdf:type, bench:Article)
[#208K]

 │ │ `─ Scan[PSOC](?article, dc:creator, ?person) [#898K]
 │ `─ Scan[PSOC](?person, foaf:name, ?name) [#433K]
 `─ Sort(?person) [#503K]
 `─ MergeJoin(?inproc) [#503K]
 +─ Scan[POSC](?inproc, rdf:type, bench:Inproceedings)
[#255K]

 `─ Scan[PSOC](?inproc, dc:creator, ?person) [#898K]

https://www.w3.org/TR/sparql11-query/#sparqlDefinition
https://www.w3.org/TR/sparql11-query/#sparqlSolutions

/

Numbers in square brackets after each node refer to the estimated

cardinality of the node, i.e. how many solutions Stardog expects this

operator to produce when the query is evaluated. Statistics-based

cardinality estimation in Stardog merits a separate blog post, but here are

the key points for the purpose of reading query plans:

�. all estimations are approximate and their accuracy can vary greatly

(generally: more precise for bottom nodes, less precise for upper

nodes)

�. estimations are only used for selecting the best plan but have no

bearing on the actual results of the query

�. in most cases a sub-optimal plan can be explained by inaccurate

estimations

Stardog Evaluation Model

Stardog generally evaluates query plans according to the bottom-up

SPARQL semantics (https://www.w�.org/TR/sparql��-

query/#sparqlAlgebraEval). Leaf nodes are evaluated �rst and without input,

and their results are then sent to their parent nodes up the plan. Typical

examples of leaf nodes include scans, i.e. evaluations of triple patterns,

evaluations of full-text search predicates, and VALUES

(https://www.w�.org/TR/sparql��-query/#inline-data) operators. They

contain all information required to produce output, for example, a triple

pattern can be directly evaluated against Stardog indexes. Parent nodes,

such as joins, unions, or �lters, take solutions as inputs and send their

results further towards the root of the tree. The root node in the plan, which

is typically one of the solution modi�ers (https://www.w�.org/TR/sparql��-

query/#solutionModi�ers), produces the �nal results of the query which are

then encoded and sent to the client.

Pipelining And Pipeline Breakers

Stardog implements the Volcano model (http://dbms-

arch.wikia.com/wiki/Volcano_Model), in which evaluation is as lazy as

possible. Each operator does just enough work to produce the next

solution. This is important for performance, especially for queries with a

LIMIT clause (of which ASK queries are a special case) and also enables

Stardog’s query engine to send the �rst result(s) as soon as they are

available (as opposed to waiting till all results have been computed).

https://www.w3.org/TR/sparql11-query/#sparqlAlgebraEval
https://www.w3.org/TR/sparql11-query/#inline-data
https://www.w3.org/TR/sparql11-query/#solutionModifiers
http://dbms-arch.wikia.com/wiki/Volcano_Model

/

Not all operators can produce output solutions as soon as they get �rst

input solutions from their children nodes. Some need to accumulate

intermediate results before sending output. Such operators are called

pipeline breakers, and they are often the culprits for performance problems,

typically resulting from memory pressure. It is important to be able to spot

them in the plan since they can suggest either a way to re-formulate the

query to help the planner or a way to make the query more precise by

specifying extra constants where they matter.

Here are some important pipeline breakers in the example plan:

HashJoin (https://en.wikipedia.org/wiki/Hash_join) algorithms build a

hash table for solutions produced by the right operand. Typically all such

solutions need to be hashed, either in memory or spilled to disk, before

the �rst output solution is produced by the HashJoin operator.

Sort : the sort operator builds an intermediate sorted collection of

solutions produced by its child node. The main use case for sorting

solutions is to prepare data for an operator which can bene�t from

sorted inputs, such as MergeJoin , Distinct , or GroupBy . All

solutions have to be fetched from the child node before the smallest

(w.r.t. the sort key) solution can be emitted.

GroupBy : group-by operators are used for aggregation, e.g. counting

or summing results. When evaluating a query like

select ?x (count(?y) as ?count) where { … } group by ?x Stardog

has to scroll through all solutions to compute the count for every ?x

key before returning the �rst result.

Other operators can produce output as soon as they get input:

MergeJoin : merge join algorithms do a single zig-zag pass over sorted

streams of solutions produced by children nodes and output a solution

as soon as the join condition is satis�ed.

DirectHashJoin : contrary to the classical hash join algorithm, this

operator does not build a hash table. It utilizes Stardog indexes for look-

ups which doesn’t require extra data structures. This is only possible

when the right operand is sorted by the join key, but the left isn’t,

otherwise Stardog would use a merge join.

Filter : a solution modi�er which evaluates the �lter condition on each

input solution.

Union : combines streams of children solutions without any extra work,

e.g. joining, so there’s no need for intermediate results.

https://en.wikipedia.org/wiki/Hash_join

/

Now, returning to the above query, one can see Sort pipeline breakers in

the plan:

This means that all solutions representing the join of

?article rdf:type bench:Article and ?article dc:creator ?person

will be put in a sequence ordered by the values of ?person . Stardog

expects to sort 391K solutions before they can be further merge-joined

with the results of the ?person foaf:name ?name pattern. Alternately the

engine may build a hash table instead of sorting solutions; such decisions

are made by the optimizer based on a number of factors.

Skipping Intermediate Results

One tricky part of understanding Stardog query plans is that evaluation of

each operator in the plan is context-sensitive, i.e. it depends on what other

nodes are in the same plan, maybe in a di�erent sub-tree. In particular, the

cardinality estimations, even if assumed accurate, only specify how many

solutions the operator is expected to produce when evaluated as the root

node of a plan.

However, as it is joined with other parts of the plan, the results can be

di�erent. This is because Stardog employs optimizations to reduce the

number of solutions produced by a node by pruning those which are

incompatible with other solutions with which they will later be joined.

Consider the following basic graph pattern and the corresponding plan:

Sort(?person) [#391K]

`─ MergeJoin(?article) [#391K]
 +─ Scan[POSC](?article, rdf:type, bench:Article) [#208K]
 `─ Scan[PSOC](?article, dc:creator, ?person) [#898K]

?erdoes rdf:type foaf:Person .

?erdoes foaf:name "Paul Erdoes"^^xsd:string .

?document dc:creator ?erdoes .

MergeJoin(?erdoes) [#10]

+─ MergeJoin(?erdoes) [#1]
│ +─ Scan[POSC](?erdoes, rdf:type, foaf:Person) [#433K]
│ `─ Scan[POSC](?erdoes, foaf:name, "Paul Erdoes") [#1]
`─ Scan[POSC](?document, dc:creator, ?erdoes) [#898K]

/

The pattern matches all documents created by a person named Paul

Erdoes. Here the second pattern is selective (only one entity is expected to

have the name "Paul Erdoes"). This information is propagated to the other

two scans in the plan via merge joins, which allows them to skip scanning

large parts of data indexes.

In other words, the node

Scan[POSC](?erdoes, rdf:type, foaf:Person) [#433K] will not

produce all 433K solutions corresponding to all people in the database

and, similarly, Scan[POSC](?document, dc:creator, ?erdoes) [#898K]

will not go through all 898K document creators.

Diagnosing Performance Problems

Performance problems may arise because of two reasons:

�. complexity of the query itself, especially the amount of returned data

�. failure to select a good plan for the query.

It is important to distinguish the two. In the former case the best way

forward is to make the patterns in WHERE more selective. In the latter case,

i.e. when the query returns some modest number of results but takes an

unacceptably long time to do so, one needs to look at the plan, identify the

bottlenecks (most often, pipeline breakers), and reformulate the query or

report it to us for further analysis.

Here’s an example of a un-selective query:

The query returns all distinct pairs of authors who published (possibly

di�erent) articles in the same journal. It returns more than ��M results from

a database of �M triples. Here’s the plan:

SELECT DISTINCT ?name1 ?name2

WHERE {

 ?article1 rdf:type bench:Article .

 ?article2 rdf:type bench:Article .

 ?article1 dc:creator ?author1 .

 ?author1 foaf:name ?name1 .

 ?article2 dc:creator ?author2 .

 ?author2 foaf:name ?name2 .

 ?article1 swrc:journal ?journal .

 ?article2 swrc:journal ?journal

 FILTER (?name1<?name2)

 }

/

This query requires an expensive join on ?journal which is evident from

the plan (it’s a hash join in this case). It produces more than ��M results

(Stardog expects ��.�M which is pretty accurate here) that need to be

�ltered and examined for duplicates. Given all this information from the

plan, the only reasonable way to address the problem would be to restrict

the criteria, e.g. to particular journals, people, time periods, etc.

If a query is well-formulated and selective, but performance is

unsatisfactory, one may look closer at the pipeline breakers, e.g. this part of

the query plan:

A reasonable thing to do would be to evaluate the join of

?article rdf:type bench:Article and ?article dc:creator ?person

separately, i.e. as a separate queries, to see if the estimation of 391K is

reasonably accurate and to get an idea about memory pressure. This is a

Distinct [#17.7M]

`─ Projection(?name1, ?name2) [#17.7M]
 `─ Filter(?name1 < ?name2) [#17.7M]
 `─ HashJoin(?journal) [#35.4M]
 +─ MergeJoin(?author2) [#391K]
 │ +─ Sort(?author2) [#391K]
 │ │ `─ NaryJoin(?article2) [#391K]
 │ │ +─ Scan[POSC](?article2, rdf:type, bench:Article)
[#208K]

 │ │ +─ Scan[PSOC](?article2, swrc:journal, ?journal)
[#208K]

 │ │ `─ Scan[PSOC](?article2, dc:creator, ?author2)
[#898K]

 │ `─ Scan[PSOC](?author2, foaf:name, ?name2) [#433K]
 `─ MergeJoin(?author1) [#391K]
 +─ Sort(?author1) [#391K]
 │ `─ NaryJoin(?article1) [#391K]
 │ +─ Scan[POSC](?article1, rdf:type, bench:Article)
[#208K]

 │ +─ Scan[PSOC](?article1, swrc:journal, ?journal)
[#208K]

 │ `─ Scan[PSOC](?article1, dc:creator, ?author1)
[#898K]

 `─ Scan[PSOC](?author1, foaf:name, ?name1) [#433K]

MergeJoin(?person) [#391K]

+─ Sort(?person) [#391K]
| `─ MergeJoin(?article) [#391K]
| +─ Scan[POSC](?article, rdf:type, bench:Article) [#208K]
| `─ Scan[PSOC](?article, dc:creator, ?person) [#898K]
`─ Scan[PSOC](?person, foaf:name, ?name) [#433K]

/

valuable piece of information for a performance problem report, especially

when the data cannot be shared with us. Similar analysis can be done for

hash joins.

In addition to pipeline breakers, there could be other clear indicators of

performance problems. One of them is the presence of LoopJoin nodes in

the plan. Stardog implements the nested loop join

(https://en.wikipedia.org/wiki/Nested_loop_join) algorithm which evaluates

the join by going through the Cartesian product of its inputs. This is the

slowest join algorithm and it is used only as a last resort. It sometimes, but

not always, indicates a problem with the query.

Here’s an example:

The query is similar to an earlier query plan we saw but runs much slower.

The plan shows why:

 SELECT DISTINCT ?person ?name

 WHERE {

 ?article rdf:type bench:Article .

 ?article dc:creator ?person .

 ?inproc rdf:type bench:Inproceedings .

 ?inproc dc:creator ?person2 .

 ?person foaf:name ?name .

 ?person2 foaf:name ?name2

 FILTER (?name=?name2)

 }

Distinct [#98456.0M]

`─ Projection(?person, ?name) [#98456.0M]
 `─ Filter(?name = ?name2) [#98456.0M]
 `─ LoopJoin(_) [#196912.1M]
 +─ MergeJoin(?person) [#391K]
 │ +─ Sort(?person) [#391K]
 │ │ `─ MergeJoin(?article) [#391K]
 │ │ +─ Scan[POSC](?article, rdf:type, bench:Article)
[#208K]

 │ │ `─ Scan[PSOC](?article, dc:creator, ?person) [#898K]
 │ `─ Scan[PSOC](?person, foaf:name, ?name) [#433K]
 `─ MergeJoin(?person2) [#503K]
 +─ Sort(?person2) [#503K]
 │ `─ MergeJoin(?inproc) [#503K]
 │ +─ Scan[POSC](?inproc, rdf:type,
bench:Inproceedings) [#255K]

 │ `─ Scan[PSOC](?inproc, dc:creator, ?person2) [#898K]
 `─ Scan[PSOC](?person2, foaf:name, ?name2) [#433K]

https://en.wikipedia.org/wiki/Nested_loop_join

/

The loop join near the top of the plan computes the Cartesian product of

the arguments which produces almost ���B solutions. This is because

there is no shared variable between the parts of the query which

correspond to authors of articles and conference proceedings papers,

respectively. The �lter condition ?name = ?name2 cannot be transformed

into an equi-join because the semantics of term equality

(https://www.w�.org/TR/sparql��-query/#OperatorMapping) used in �lters is

di�erent from the solution compatibility (https://www.w�.org/TR/sparql��-

query/#BasicGraphPattern) semantics used for checking join conditions.

The di�erence manifests itself in the presence of numerical literals, e.g.

"1"^^xsd:integer = "1.0"^^xsd:float , where they are di�erent RDF

terms. However, as long as all names in the data are strings, one can re-

formulate this query by renaming ?name2 to ?name which would enable

Stardog to use a more e�cient join algorithm.

Query Plan Operators

The following operators are used in Stardog query plans:

Scan[Index] : evaluates a triple/quad pattern against Stardog indexes.

Indicates the index used, e.g. CSPO or POSC , where S,P,O,C stand

for the kind of lexicographic ordering of quads that the index provides.

SPOC means that the index is sorted �rst by *S*ubject, then *P*redicate,

*O*bject, and *C*ontext (named graph IRI).

HashJoin(join key) : hash join algorithm, hashes the right operand.

Pipeline breaker.

BindJoin(join key) : a join algorithm binds the join variables on the

right operator to the current values of the same variables in the current

solution on the left. Can be seen as an optimization of the nested loop

join for the case when the left operator produces far fewer results than

the right. Not a pipeline breaker.

DirectHashJoin(join key) : a hash join algorithm which directly uses

indexes for lookups instead of building a hash table. Not a pipeline

breaker.

MergeJoin(join key) : merge join algorithm, the fastest option for

joining two streams of solutions. Requires both operands be sorted on

the join key. Not a pipeline breaker.

NaryJoin(join key) : same as MergeJoin but for N operators sorted

on the same join key.

https://www.w3.org/TR/sparql11-query/#OperatorMapping
https://www.w3.org/TR/sparql11-query/#BasicGraphPattern

/

NestedLoopJoin : the nested loop join algorithm, the slowest join

option. The only join option when there is no join key. Not a pipeline

breaker.

Shortest|All(Cyclic)Paths : path query (#_path_queries) operators.

Sort(sort key) : sorts the argument solutions by the sort key, typically

used as a part of a merge join. Pipeline breaker.

Filter(condition) : �lters argument solutions according to the

condition. Not a pipeline breaker.

Union : combines streams of argument solutions. If both streams are

sorted by the same variable, the result is also sorted by that variable.

Not a pipeline breaker.

Minus : Removes solutions from the left operand that are compatible

with solutions from the right operand. Pipeline breaker.

PropertyPath : evaluates a property path

(https://www.w�.org/TR/sparql��-query/#propertypaths) pattern against

Stardog indexes. Not a pipeline breaker.

GroupBy : groups results of the child operator by values of the group-by

expressions (i.e. keys) and aggregates solutions for each key. Pipeline

breaker (unless the input is sorted by �rst key).

Distinct : removes duplicate solutions from the input. Not a pipeline

breaker but accumulates solutions as it runs so the memory pressure

increases with the number of unique solutions.

VALUES : produces the inlined results (https://www.w�.org/TR/sparql��-

query/#inline-data) speci�ed in the query. Not a pipeline breaker.

Search : evaluates a full-text search predicates against the Lucene

index within a Stardog database.

Projection : projects variables as results of a query or a sub-query.

Not a pipeline breaker.

Bind : evaluates expressions on each argument solution and binds

their values to (new) variables. Not a pipeline breaker.

Unnest : unnest array expressions. See the UNNEST operator

(#_unnest_operator_and_arrays). Not a pipeline breaker.

Empty and Singleton : correspond to the empty solution set and a

single empty solution, respectively.

Type : reasoning operator for evaluating patterns of the form

?x rdf:type ?type or :instance rdf:type ?type . Not a pipeline

breaker.

https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.w3.org/TR/sparql11-query/#inline-data

/

Property : operator for evaluating triple patterns with unbound

predicate with reasoning. Not a pipeline breaker but could be very

expensive especially for large schemas. Better be avoided by either

using an IRI in the predicate position or turning o� reasoning for such

patterns using a hint (#_query_answering).

Service : SPARQL federation operator which evaluate a pattern against

a remote SPARQL endpoint or a virtual graph

(http://docs.stardog.com/#_structured_data).

ServiceJoin(join key) : a join algorithm used when one of the

operators is a Service (see above). Propagates bindings from the the

operator to reduce the number of results coming over the network.

Slice(offset=<>, limit=<>) : combines LIMIT and OFFSET

solution modi�ers in SPARQL.

OrderBy : an operator which implements the ORDER BY solution

modi�er in SPARQL.

Describe : a SPARQL Describe operator.

ADD , CLEAR , COPY , LOAD , MOVE , DELETE , DELETE DATA , INSERT ,

INSERT DATA : SPARQL Update (https://www.w�.org/TR/sparql��-

update/) operators.

Using Query Hints

Query hints help Stardog generate optimized query plans. They are

implemented as SPARQL comments started with the pragma keyword.

The equality.identity hint expects a comma-separated list of variables.

It tells Stardog that these variables will be bound to RDF terms (IRIs,

bnodes, or literals) for which equality coincides with identity (i.e. any term is

equal only to itself). This is not true for literals of certain numerical

datatypes (cf. Operator Mapping (https://www.w�.org/TR/sparql��-

query/#OperatorMapping)). However assuming that the listed variables do

not take on values of such datatypes can sometimes lead to faster query

plans, for example, because of converting some �lters to joins and through

value inlining.

 SELECT ?o ?o2 WHERE {

 #pragma equality.identity ?o,?o2

 ?s :p ?o ;

 :q ?o2

 FILTER (?o = ?o2)

 }

http://docs.stardog.com/#_structured_data
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-query/#OperatorMapping

/

Sometimes our query planner can produce sub-optimal join orderings. The

group.joins hint introduces an explicit scoping mechanism to help with

join order optimization. Patterns in the scope of the hint, given by the

enclosing {} , will be joined together before being joined with anything

else. This way, you can tell the query planner what you think is the optimal

way to join variables.

The push.filters hint controls how the query optimizer pushes �lters

down the query plan. There are three possible values: default ,

aggressive , and off . The aggressive option means that the optimizer

will push every �lter to the deepest operator in the plan which binds

variables used in the �lter expression. The off option turn the

optimization o� and each �lter will be applied to the top operator in the

�lter’s graph pattern (in case there’re multiple �lters, their order is not

speci�ed). Finally, the default option (or absence of the hint) means that

the optimizer will decide whether to push each �lter down the plan based

on various factors, e.g. the �lter’s cost, selectivity of the graph pattern, etc.

select ?s where {

 ?s :p ?o1 .

 {

 #pragma group.joins

 #these patterns will be joined first, before being joined with the

other pattern

 ?s :p ?o2 .

 ?o1 :p ?o3 .

 }

}

/

ACID Transactions

What follows is speci�c guidance about Stardog’s transactional semantics

and guarantees.

Atomicity

Databases may guarantee atomicity— groups of database actions (i.e.,

mutations) are irreducible and indivisible: either all the changes happen or

none of them happens. Stardog’s transacted writes are atomic. Stardog

does not support nested transactions.

Consistency

Data stored should be valid according to the data model (in this case, RDF)

and to the guarantees o�ered by the database, as well as to any

application-speci�c integrity constraints that may exist. Stardog’s

transactions are guaranteed not to violate integrity constraints during

execution. A transaction that would leave a database in an inconsistent or

invalid state is aborted.

select ?s where {

 #pragma push.filters off

 #the filter in the top scope will not be pushed into the union

 ?s :p ?o1 .

 FILTER (?o2 > 10)

 {

 #pragma push.filters aggressive

 #the optimizer will place this filter directly on top of ?s :r ?o3

 #and it will be evaluated before the results are joined with ?s :p

?o2

 ?s :p ?o2 ;

 :r ?o3 .

 FILTER (?o3 > 1000)

 }

 UNION

 {

 #pragma push.filters default

 #the optimizer will decide whether to place the filter directly

 #on top of ?s :q ?o3 or leave it on top of the join

 ?s a :Type ;

 :q ?o3 .

 FILTER (?o3 < 50)

 }

}

[� (#_footnote_�)]

[� (#_footnote_�)]

/

See the Validating Constraints (#_validating_constraints) section for a more

detailed consideration of Stardog’s integrity constraint mechanism.

Isolation

A Stardog connection will run in SNAPSHOT

(https://en.wikipedia.org/wiki/Snapshot_isolation) isolation level if it has not

started an explicit transaction and will run in SNAPSHOT or SERIALIZABLE

isolation level depending on the value of the transaction.isolation . In

any of these modes, uncommitted changes will only be visible to the

connection that made the changes: no other connection can see those

values before they are committed. Thus, "dirty reads" can never occur.

Additionally, a transaction will only see changes which were committed

before the transaction began, so there are no "non-repeatable reads".

SNAPSHOT isolation does su�er from the write skew anomaly, which poses

a problem when operating under external logical constraints. We illustrate

this with the following example, where the database initially has two triples

:a :val 100 and :b :val 50 , and the application imposes the constraint

that the total can never be less than �.

�. Table example of Write-skew anomaly

Time Connection � Connection � Connection �

0 BEGIN TX BEGIN TX

1 SELECT ?val {:a

:val ?val}

⇐ 100

SELECT ?val {:b

:val ?val}

⇐ 50

2 INSERT {:a :val 0} INSERT {:b :val 0}

3 COMMIT COMMIT

4 BEGIN TX

5 SELECT ?val {?a

:val ?val}

⇐ 0

https://en.wikipedia.org/wiki/Snapshot_isolation

/

5 SELECT ?val {?b

:val ?val}

⇐ 0

At the end of this scenario, Connection � believes the state of the database

to be :a :val 0 and :b :val 50 , so the constraint is not violated.

Similarly, Connection � believes the state of the database to be

:a :val 100 and :b :val 0 , which also does not violate the constraint.

However, Connection � sees :a :val 0 and :b :val 0 which violates

the logical constraint.

No locks are taken, or any con�ict resolution performed, for concurrent

transactions in SNAPSHOT isolation level. If there are con�icting changes,

the transaction with the highest commit timestamp (functionally, the

transaction which committed "last") will be the result held in the database.

This may yield unexpected results since every transaction reads from a

snapshot that was created at the time its transaction started.

Consider the following query being executed by two concurrent threads in

READ COMMITTED SNAPSHOT isolation level against a database having the

triple :counter :val 1 initially:

Since each transaction will read the current value from its snapshot, it is

possible that both transactions will read the value 1 and insert the value

2 even though we expect the �nal value to be 3 .

Isolation level SERIALIZABLE can be used to avoid these situations. In

SERIALIZABLE mode an exclusive lock needs to be acquired before a

transaction begins. This ensures concurrent updates cannot interfere with

each other, but as a result update throughput will decrease since only one

transaction can run at a time.

Durability

By default Stardog’s transacted writes are durable and no other actions are

required.

INSERT { :counter :val ?newValue }

DELETE { :counter :val ?oldValue }

WHERE { :counter :val ?oldValue

 BIND (?oldValue+1 AS ?newValue) }

/

Commit Failure Autorecovery

Stardog’s transaction framework is low maintenance; but there are some

rare conditions in which manual intervention may be needed.

Stardog’s strategy for recovering automatically from commit failure is as

follows:

�. Stardog will roll back the transaction upon a commit failure;

�. Stardog takes the a�ected database o�ine for maintenance;

 then

�. Stardog will begin recovery, bringing the recovered database back

online once that task is successful so that operations may resume.

With an appropriate logging con�guration for production usage (at least

error-level logging), log messages for the preceding recovery operations

will occur. If for whatever reason the database fails to be returned

automatically to online status, an administrator may use the CLI tools (i.e.,

stardog-admin db online) to try to online the database.

Optimizing Bulk Data Loading

Stardog tries hard to do bulk loading at database creation time in the most

e�cient and scalable way possible. But data loading time can vary widely,

depending on factors in the data to be loaded, including the number of

unique resources, etc. Here are some tuning tips that may work for you:

�. Use the bulk_load memory con�guration for loading large databases

(see Memory Con�guration (#_memory_con�guration) section).

�. Load compressed data (#_loading_compressed_data) since

compression minimizes disk access

�. Use a multicore machine since bulk loading is highly parallelized and

indexes are built concurrently

�. Load many �les together at creation time since di�erent �les will be

parsed and processed concurrently improving the load speed

�. Turn o� strict parsing (see Con�guring a Database

(#_con�guring_a_database) for the details).

[� (#_footn

ote_�)]

/

�. If you are not using named graphs, use triples only indexing

(#_database_create_options).

Memory Management

As of version �.�, Stardog by default uses a custom memory management

approach to minimize GC activity during query evaluation. All intermediate

query results are now managed in native (o�-heap) memory which is pre-

allocated on server start-up and never returned to the OS until server

shutdown. Every query, including SPARQL Update queries with the WHERE

clause, gets a chunk of memory from that pre-allocated pool to handle

intermediate results and will return it back to the pool when it �nishes or

gets cancelled. More technical details about this GC-less memory

management scheme are available in a recent blog post

(https://blog.stardog.com/saying-goodbye-to-garbage/).

The main goal of this memory management approach is to improve server’s

resilience under heavy load. A common problem with JVM applications

under load is the notorious Out-Of-Memory (OOM) exceptions which are

hard to foresee and impossible to reliably recover from. Also, in the

SPARQL world, it is generally di�cult to estimate how many intermediate

results any particular query will have to process before the query starts

(although the selectivity statistics o�ers great help to this end). As such, the

server has to deal with the situation when there is no memory available to

continue with the current query. Stardog handles this by placing all

intermediate results into custom collections which are tightly integrated

with the memory manager. Every collection, e.g. for hashing, sorting, or

aggregating binding sets, requests memory blocks from the manager and

transparently spills data to disk when such requests are denied.

This helps avoid OOMs at any time during query evaluation since running

out of memory only means triggering spilling and the query will continue

slower because of additional disk access. This also means Stardog �.�+ can

run harder, e.g. analytic, queries which may exceed the memory capacity on

your server. We have also seen performance improvements in speci�c (but

common) scenarios, such as with many concurrent queries, where the GC

pressure would considerably slow down the server running on heap.

However, everything comes at a price and the custom collections can be

slightly slower than those based on JDK collections when the server is

under light load, all queries are selective, and there is no GC pressure. For

https://blog.stardog.com/saying-goodbye-to-garbage/

/

that reason Stardog has a server option memory.management which you

can set to JVM in stardog.properties to disable custom memory

management and have Stardog run all queries on heap.

The spilling.dir server option speci�es the directory which will be used

for spilling data in case the server runs out of native memory. It may make

sense to set this to another disk to minimize disk contention.

Memory Configuration

Stardog �.� provides a range of con�guration options related to memory

management. Query engine by default uses the custom memory

management approach described above but it is not the only critical

Stardog component which may require a large amount of memory. Memory

is also consumed aggressively during bulk loading and updates. Stardog

de�nes three standard memory consumption modes to allow users to

con�gure how memory should be distributed based on the usage scenario.

The corresponding server property is memory.mode which accepts the

following values:

�. default : This is the default option which provides roughly equal

amount of memory for queries and updates (including bulk loading).

This should be used either when the server is expected to run both

read queries and updates in roughly equal proportion or when the

expected load is unknown.

�. read_optimized : This option provides more memory to read queries

and SPARQL Update queries with the WHERE clause. This minimizes

the chance of having to spill data to disk during query execution at the

expense of update and bulk loading operations. This option should be

used when the transactions will be infrequent or small in size, e.g. up to

a thousand triples since such transactions do not use signi�cant

amount of memory.

�. write_optimized : This option should be used for optimal loading and

update performance. Queries may run slower if there is not enough

memory for processing intermediate results. It may be also suitable

when the server is doing a lot of updates and some read queries but

the latter are selective and are not highly concurrent.

/

�. bulk_load : This option should be used for bulk loading very large

databases (billions of triples) where there is no other workload on the

server. When bulk loading is complete, the memory con�guration

should be changed and the server restarted.

As with any server option the server has to be restarted after the user

changes the memory mode. The stardog-admin server status

command displays detailed information on memory usage and the current

con�guration.

Capacity Planning

The primary system resources used by Stardog are CPU, memory, and disk.

 Stardog will take advantage of more than one CPU,

core, and core-based thread in data loading and in throughput-heavy or

multi-user loads. Stardog performance is in�uenced by the speed of CPUs

and cores. But some workloads are bound by main memory or by disk I/O

(or both) more than by CPU. Use the fastest CPUs you can a�ord with the

largest secondary caches and the most number of cores and core-based

threads of execution, especially in multi-user workloads.

The following subsections provides more detailed guidance for the memory

and disk resource requirements of Stardog.

Memory usage

Stardog uses system memory aggressively and the total system memory

available to Stardog is often the most important factor in performance.

Stardog uses both JVM memory (heap memory) and also the operating

system memory outside the JVM (o� heap memory). Having more system

memory available is always good; however, increasing JVM memory too

close to total system memory is not prudent as it may tend to increase

Garbage Collection (GC) time in the JVM.

The following table shows recommended JVM memory and system

memory requirements for Stardog.

�. Table of Memory Usage for Capacity Planning

of Triples JVM Memory O�-heap memory

[�� (#_footnote_��)]

[�� (#_footnote_��)]

/

of Triples JVM Memory O�-heap memory

��� million �GB �GB

� billion �GB �GB

�� billion �GB ��GB

�� billion ��GB ���GB

�� billion ��GB ���GB

Out of the box, Stardog sets the maximum JVM memory to �GB and o�-

heap memory to �GB. These settings work �ne for most small databases

(up to, say, ��� million triples). As the database size increases, we

recommend increasing memory. You can increase the memory for Stardog

by setting the system property STARDOG_SERVER_JAVA_ARGS using the

standard JVM options. For example, you can set this property to

"-Xms4g -Xmx4g -XX:MaxDirectMemorySize=8g" to increase the JVM

memory to �GB and o�-heap to �GB. We recommend setting the minimum

heap size (-Xms option) and max heap size (-Xmx option) to the same

value.

System Memory and JVM Memory

Stardog uses an o�-heap, custom memory allocation scheme. Please note

that the memory provisioning recommendations above are for two kinds of

memory allocations for the JVM in which Stardog will run. The �rst is for

memory that the JVM will manage explicitly (i.e., "JVM memory"); and the

second, i.e., "O�-heap memory" is for memory that Stardog will manage

explicitly, i.e., o� the JVM heap, but for which the JVM should be noti�ed via

the MaxDirectMemorySize property. The sum of these two values should

be less than ��% of the total memory available to the underlying operating

system as requirements dictate.

Disk usage

Stardog stores data on disk in a compressed format. The disk space

needed for a database depends on many factors besides the number of

triples, including the number of unique resources and literals in the data,

average length of resource identi�ers and literals, and how much the data is

/

compressed. As a general rule of thumb, every million triples require �� MB

to ��� MB of disk space. The actual disk usage for a database may be

di�erent in practice. It is also important to realize the amount of disk space

needed at creation time for bulk loading data is higher as temporary �les

will be created. The extra disk space needed at bulk loading time can be

��% to ��% of the �nal database size.

Disk space used by a database is non-trivially smaller if triples-only indexing

(#_database_create_options) is used. Triples-only indexing reduces overall

disk space used by ��% on average; however, note the tradeo�: SPARQL

queries involving named graphs perform better with quads indexing.

The disk space used by Stardog is additive for more than one database and

there is little disk space used other than what is required for the databases.

To calculate the total disk space needed for more than one database, one

may sum the disk space needed by each database.

Using Stardog with Kerberos

Stardog can be con�gured to run in both MIT and Active Directory Kerberos

environments. In order to do so a keytab

(https://web.mit.edu/kerberos/krb�-�.��/doc/basic/keytab_def.html) �le

must be properly created.

Once the keytab �le is acquired the following options can be set in

stardog.properties :

�. krb5.keytab : The path to the keytab �le for the Stardog server.

�. krb5.admin.principal : The Kerberos principal that will be the

default administrator of this service.

�. krb5.debug : A boolean value to enable debug logging in the Java

Kerberos libraries.

�. krb5.user.translation.regex : A string value used to translate a

krb� principal name to a Stardog username. The string is an expression

in two parts divided by a : . On the left side is a matching regex of the

krb� principal name to replace and on the right side is the string to

replace it with. By default this is /:- . This means "replace any /

character in the krb� principal with a - character and use that as the

[�� (#_footnote_��)]

https://web.mit.edu/kerberos/krb5-1.12/doc/basic/keytab_def.html

/

Stardog username". Thus the krb� principal name stardog/admin will

be translated to stardog-admin . The details of the substitution rules

are that of Java String.replaceAll()

(https://docs.oracle.com/javase/�/docs/api/java/lang/String.html#replac

eAll(java.lang.String,%��java.lang.String)).

Once Stardog is propery con�gured for Kerberos Stardog user names

should be created that match their associated Kerberos principal names.

Authentication will be done based on the Kerberos environment and

authorization is done based on the principal names matching Stardog

users.

TIP

Kerberos: Three-Headed Stardog

(https://www.stardog.com/blog/kerberos-three-

headed-stardog/)

ENTERPRISE DATA UNIFICATION

Stardog is an Enterprise Knowledge Graph platform, which means it’s also a

data uni�cation platform. Enterprises have lots of data in lots of data

sources and almost all of them are locked away in IT silos and stovepipes

that impede insight, analysis, reporting, compliance, and operations.

State of the art IT management tells us to organize data, systems, assets,

sta�s, schedules, and budgets vertically to mirror lines of business. But

increasingly all the internal and external demands on IT are horizontal in

nature: the data is organized vertically, but the enterprise increasingly

needs to access and understand it horizontally.

Structured Data (Virtual Graphs)

Stardog supports a set of techniques for unifying structured enterprise

data, chie�y, Virtual Graphs which let you declaratively map data into a

Stardog knowledge graph and query it via Stardog in situ.

Stardog intelligently rewrites (parts of) SPARQL queries against Stardog into

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceAll(java.lang.String,%20java.lang.String)
https://www.stardog.com/blog/kerberos-three-headed-stardog/

/

native query syntaxes like SQL, issues the native queries to remote

datasources, and then translates the native results into SPARQL results.

Virtual Graphs can be used to map both tabular (relational) data from

RDBMSs and CSVs as well as semi-structured hierarchical data from NoSQL

sources such as MongoDB, Elasticsearch, Cassandra and JSON to RDF.

A Virtual Graph has three components:

a unique name

a properties �le specifying con�guration options

(#_available_properties)

data source connection parameters

query and data parameters

a data mapping (#_mapping) �le (which can be omitted and

automatically generated for most sources)

Supported Data Sources

Stardog currently supports all the data sources below. Please inquire

(mailto:inquiries@stardog.com) if you need support for another.

Relational Databases:

Apache Hive

Apache/Cloudera Impala

AWS Athena (additional info

(#_aws_athena_virtual_graph_considerations))

AWS Aurora

AWS Redshift

Derby

Exasol

H�

IBM DB�

MariaDB

Microsoft SQL Server

MySQL

Oracle

PostgreSQL

SAP HANA

Sybase ASE

mailto:inquiries@stardog.com

/

Teradata

NoSQL Databases:

Apache Cassandra (additional info

(#_apache_cassandra_virtual_graph_considerations))

Cosmos DB

Elasticsearch (additional info

(#_elasticsearch_virtual_graph_considerations))

MongoDB (additional info (#_mongodb_virtual_graph_considerations))

File Formats:

CSV (additional info (#_importing_csv_�les))

JSON (additional info (#_importing_json_�les))

Specific Data Source Considerations

AWS Athena Virtual Graph Considerations

To connect to an Athena database, �rst download the driver for JDBC

version �.� here (https://docs.aws.amazon.com/athena/latest/ug/connect-

with-jdbc.html). Then follow the instructions here (#_connect).

The Athena JDBC driver does not expose the list of accessible databases.

To save having to qualify every table name with the database name in your

mappings, provide the default database in your connection URL using the

Schema parameter. For example:

jdbc.url=jdbc:awsathena://athena.us-

west.amazonaws.com:443;S3OutputLocation=s3://mybucket/output;Sc

hema=mydb

MongoDB Virtual Graph Considerations

TIP

Native MongoDB Support is Here!

(https://www.stardog.com/blog/native-

mongodb-support-is-here/)

https://docs.aws.amazon.com/athena/latest/ug/connect-with-jdbc.html
https://www.stardog.com/blog/native-mongodb-support-is-here/

/

To connect to a MongoDB database, �rst download the client jar. The client

jar for MongoDB version "x.y.z" can be obtained from

http://central.maven.org/maven�/org/mongodb/mongo-java-

driver/x.y.z/mongo-java-driver-x.y.z.jar

(http://central.maven.org/maven�/org/mongodb/mongo-java-

driver/x.y.z/mongo-java-driver-x.y.z.jar) Then follow the instructions here

(#_connect).

MongoDB has one Date type. It is stored as a ��-bit integer that represents

the number of milliseconds since Jan �, ����, Universal Time Coordinated

(UTC). This Date type can be mapped to xsd:date , xsd:dateTime or

xsd:dateTimeStamp data types. (The xsd:dateTimeStamp data type is

the same as xsd:dateTime except instead of having an optional timezone

the timezone is required.) When a Date is mapped to either xsd:date or

xsd:dateTimeStamp , it will be represented in the UTC timezone. When a

Date �eld is mapped to an xsd:dateTime , the Date will be converted to

the local timezone of the Stardog server and the label will include the

timezone.

Setting Unique Keys Manually

The unique.key.sets option (#_available_properties) can be used with

MongoDB, but the format is MongoDB-speci�c. In place of schema and

table names, the unique keys must be speci�ed in terms of the collection

and a list of nested arrays.

For example, take an accounts virtual graph with this SMS�

(#_sms�_stardog_mapping_syntax_�) mapping:

http://central.maven.org/maven2/org/mongodb/mongo-java-driver/x.y.z/mongo-java-driver-x.y.z.jar

/

And this query:

When Stardog translates this query, it creates a �attened view of the

collection (using the $unwind stage

(https://docs.mongodb.com/manual/reference/operator/aggregation/unwind

/)) giving a relational view. In this example both the customerName and

card arrays will be �attened because both are referenced in the template

for the ?holder variable.

The plan for the example query will include a join because Stardog has no

way of knowing that the card.number / customerName pair is unique. If we

know that this pair of �elds is indeed unique in this collection, we can make

the query more e�cient by adding the pair as a unique key to the

unique.key.sets property:

prefix : <http://example.com/>

MAPPING <urn:accounts>

FROM JSON {

 "accounts" : {

 "_id" : "?id",

 "acct" : "?acctNum",

 "customerName" : ["?name"],

 "card" : [{

 "number" : "?ccNumber",

 "expiration" : "?ccExpr" }

]

 }

}

TO {

 ?holder :hasAcct ?acct .

 ?holder :hasName ?name .

}

WHERE {

 BIND (template("http://example.com/acct/{acctNum}") AS ?acct)

 BIND (template("http://example.com/holder/{ccNumber}_{name}") AS ?

holder)

}

SELECT * {

 graph <virtual://accounts> {

 ?holder :hasAcct ?acct .

 ?holder :hasName ?name .

 }

}

https://docs.mongodb.com/manual/reference/operator/aggregation/unwind/

/

It is required that the �attened arrays are listed in alphabetical order, are

separated by semicolons, and are enclosed in square brackets. For nested

arrays, use periods to delimit the names (level1.level2).

Multiple key sets can be separated with commas. For example, if we also

know that the acct �eld is unique, the property value becomes:

Elasticsearch Virtual Graph Considerations

To create an Elasticsearch virtual graph, you need to download the

Elasticsearch client jar along with two supporting jars. The client jar for

Elasticsearch version "x.y.z" can be obtained from

https://repo�.maven.org/maven�/org/elasticsearch/client/elasticsearch-rest-

client/x.y.z/elasticsearch-rest-client-x.y.z.jar

(https://repo�.maven.org/maven�/org/elasticsearch/client/elasticsearch-rest-

client/x.y.z/elasticsearch-rest-client-x.y.z.jar)

Two supporting jars are also required:

�. http async client

(https://repo�.maven.org/maven�/org/apache/httpcomponents/httpasy

ncclient/�.�.�/httpasyncclient-�.�.�.jar)

�. http core nio

(https://repo�.maven.org/maven�/org/apache/httpcomponents/httpcor

e-nio/�.�.�/httpcore-nio-�.�.�.jar)

Then follow the instructions here (#_connect).

Supported Field Types

Stardog supports the following Elasticsearch �eld types:

keyword

(accounts.[card;customerName].customerName,accounts.

[card;customerName].card.number)

(accounts.[].acct),(accounts.

[card;customerName].customerName,accounts.

[card;customerName].card.number)

https://repo1.maven.org/maven2/org/elasticsearch/client/elasticsearch-rest-client/x.y.z/elasticsearch-rest-client-x.y.z.jar
https://repo1.maven.org/maven2/org/apache/httpcomponents/httpasyncclient/4.1.2/httpasyncclient-4.1.2.jar
https://repo1.maven.org/maven2/org/apache/httpcomponents/httpcore-nio/4.4.5/httpcore-nio-4.4.5.jar

/

long

integer

short

byte

double

�oat

half_�oat

scaled_�oat

date

Note that only the keyword data type is supported for strings. Strings

indexed as text cannot be mapped for the purpose of SPARQL/GraphQL

querying.

Virtual Graph Mappings for Elasticsearch

To create virtual graph mappings for Elasticsearch, use SMS�

(#_sms�_stardog_mapping_syntax_�) mapping syntax with the

FROM JSON clause.

NOTE

There are two types of mappings being

discussed here: Stardog Virtual Graph mappings

that describe how Elasticsearch �elds are

mapped to RDF and Elasticsearch mappings that

de�ne a schema for an Elasticsearch index.

For an index named simple with a single Elasticsearch mapping type

named _doc and an Elasticsearch mapping like:

/

an example Stardog mapping could look like this:

The top-level key in the FROM JSON (simple._doc) is formed by joining

the index name and the Elasticsearch mapping type with a period. This is

similar to the schemaName.tableName convention that is used for SQL

databases. As a shorthand, for indexes with only one mapping type, the

{

 "simple" : {

 "mappings" : {

 "_doc" : {

 "properties" : {

 "StudentId" : {

 "type" : "integer"

 },

 "StudentName" : {

 "type" : "text",

 "fields" : {

 "keyword" : {

 "type" : "keyword",

 "ignore_above" : 256

 }

 }

 }

 }

 }

 }

 }

}

prefix ex: <http://example.com/>

MAPPING <urn:example>

FROM JSON {

 "simple._doc":{

 "_id": "?docId",

 "StudentId": "?id",

 "StudentName.keyword": "?name"

 }

}

TO {

 ?studentIri a ex:Student ;

 rdfs:label ?name ;

 ex:esId ?docId .

}

WHERE {

 bind(template("http://example.com/{id}") as ?studentIri)

}

/

mapping type can be omitted. In this example, simple._doc can be

replaced with simple assuming _doc is the only mapping type.

NOTE

For Elasticsearch versions � and later, indexes

are allowed only one mapping type, where the

name of the mapping type defaults to _doc . For

version � it is possible for an index to have more

than one mapping type. See Removal of mapping

types in the Elasticsearch online documentation

for details.

Notice in the above example that the built-in _id �eld is mapped. Stardog

knows that the _id �eld is unique across all documents in the index and it

uses this information to simplify the queries it generates. Stardog is not able

to determine the uniqueness of any other �elds but if you know certain

�elds (or combinations of �elds) are unique you can indicate which �eld

sets are unique in the con�guration options.

For example, suppose we know that StudentId is in fact a unique �eld.

We can tell Stardog so by setting the unique.key.sets con�guration

option (#_available_properties):

or if the simple index has only the one mapping type:

Automatically Generating Mappings

Elasticsearch indexes have well-de�ned schemas. Stardog can use that

schema information to automatically generate virtual graph mappings to

RDF. By default, the generated templates for the IRIs will be based on the

Elasticsearch mapping type names, which are _doc for all indexes on

recent versions of Elasticsearch. This makes the IRIs di�cult to distinguish.

unique.key.sets=(simple._doc.StudentId)

unique.key.sets=(simple.StudentId)

https://www.elastic.co/guide/en/elasticsearch/reference/current/removal-of-types.html

/

To address this, Stardog defaults the schema.in.generated.mappings

con�guration option (#_available_properties) to true when generating

virtual graph mappings for Elasticsearch.

Apache Cassandra Virtual Graph Considerations

To create a Cassandra virtual graph, you’ll need to �rst download the

shaded

(https://softwareengineering.stackexchange.com/questions/������/what-

is-a-shaded-java-dependency) Cassandra client jar. The client jar for

Cassandra version "x.y.z" can be obtained from

http://central.maven.org/maven�/com/datastax/cassandra/cassandra-driver-

core/x.y.z/cassandra-driver-core-x.y.z-shaded.jar

(http://central.maven.org/maven�/com/datastax/cassandra/cassandra-

driver-core/x.y.z/cassandra-driver-core-x.y.z-shaded.jar) Then follow the

instructions here (#_connect).

Cassandra is special in the way it attempts to prevent users from

distributing queries over a large number of server nodes. If you have

experience with CQL queries, you have no doubt seen the ubiquitous error

message,

Cannot execute this query as it might involve data filtering and

thus may have unpredictable performance. If you want to execute

this query despite the performance unpredictability, use ALLOW

FILTERING

.

This re�ects the Cassandra modeling principle

(https://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-

modeling) that favors writing the same data to multiple tables (perhaps

through the use of Materialized Views), where each table is optimized for

answering di�erent queries.

In order to support as many queries as possible, we recommend creating

mappings to each of these tables and letting Stardog choose which

mappings apply for each query. It is possible that no mappings can support

a particular query. In such cases, Stardog will write an entry to the log �le

and return no results.

This is the default behavior, which can be changed by setting the

cassandra.allow.filtering virtual graph option

https://softwareengineering.stackexchange.com/questions/297276/what-is-a-shaded-java-dependency
http://central.maven.org/maven2/com/datastax/cassandra/cassandra-driver-core/x.y.z/cassandra-driver-core-x.y.z-shaded.jar
https://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-modeling

/

(#_available_properties) to true. When set, Stardog will include the

ALLOW FILTERING clause at the end of each CQL query. Please note that

the use of this option is highly discouraged in large-scale production

environments.

Cassandra is also special for how SQL-like its query language is (for a

NoSQL database). As this is the case, Stardog supports the use of SQL

queries in the mappings �les for Cassandra virtual graphs. That is, you can

use the rr:sqlQuery (https://www.w�.org/����/sw/rdb�rdf/r�rml/#r�rml-

views) predicate for R�RML mappings, the sm:query

(#_r�rml_and_sms_stardog_mapping_syntax) predicate for Stardog

Mapping Syntax, or the FROM SQL (#_from_sql) clause for Stardog Mapping

Syntax �. In all cases, you can supply a SQL query to describe a view to use

for a virtual graph mapping, however, the SQL query can only contain

operators that are supported in CQL - no joins, subqueries, SQL functions,

etc. are allowed.

Importing CSV Files

The same Virtual Graph commands and mappings can be used to import

data from CSV (or TSV) �les. It is not truly virtual, but is part of our Virtual

Graph APIs and docs because it shares the same mappings syntax. If you

have tabular data in a CSV �le that changes over time, a reason to want to

query a CSV �le in place, we recommend loading that �le into a lightweight

RDBMS.

There is a complete example available in our example repo

(https://github.com/stardog-union/stardog-

examples/tree/develop/examples/cli/virtual/csv).

To import a CSV �le, provide said �le as the �nal argument to the import

command:

If the input �le is using di�erent kind of separators, e.g. tab character, a

properties �le can be provided

$ stardog-admin virtual import myDB cars.ttl cars.csv

$ stardog-admin virtual import myDB cars.properties cars.ttl cars.tsv

https://www.w3.org/2001/sw/rdb2rdf/r2rml/#r2rml-views
https://github.com/stardog-union/stardog-examples/tree/develop/examples/cli/virtual/csv

/

The properties �le for CSVs can specify values for the following properties:

- csv.separator (character for separating �elds) - csv.quote (character

for strings) - csv.escape (character for escaping special characters) -

csv.header (boolean value for specifying whether or not the input �le has

a header line at the beginning)

Note that whitespace characters in the Java properties �le need to be

escaped so if you want to import tab-separated value �les set

csv.separator=\t in the properties �le.

In addition to directly referencing �elds by name, CSV mappings may

including the following derived or special �elds: - the modi�er # can be

used in front of a �eld name to generate a SHA-� hash of the value for the

�eld - the special �elds ROW and UUID can be used to obtain the line

number and a newly generated UUID, respectively.

NOTE

CSV �les are processed on the client side and

then sent to the Stardog server. If you run out of

memory, you can increase the memory for the

client using the STARDOG_JAVA_ARGS

environment variable. This environment variable

should only be set for the virtual import

command to avoid a�ecting other client

command invocations. This can be done like so:

Importing JSON Files

The same Virtual Graph commands and mappings can be used to import

data from JSON �les. It is not truly virtual, but is part of our Virtual Graph

APIs and docs because it shares the same mappings syntax. If you have

data in a JSON �le that changes over time, a reason to query the �le in

place, we recommend loading that �le into a document store such as

MongoDB and connecting Stardog to that instead.

$ STARDOG_JAVA_ARGS="-Xmx1g" stardog-admin virtual import myDB

cars.properties cars.ttl cars.csv

/

To import a JSON �le, provide said �le as the �nal argument to the import

command:

NOTE
Unlike CSV �les, JSON �les are sent to the

Stardog server for processing.

NOTE

Unlike all other Virtual Graph data sources, the

WHERE clause in JSON SMS� mappings supports

any SPARQL function when

BIND`ing transformed values to new

variables. This includes ̀ unnest

.

Here is an example JSON �le:

and a corresponding SMS� mapping:

$ stardog-admin virtual import myDB bitcoin.sms bitcoin.json

{

 "hash":

"00000000000000000028484e3ba77273ebd245f944e574e1d4038d9247a7ff8e",

 "time": 1569266867591,

 "block_index": 1762564,

 "height": 575144,

 "txIndexes": [

 445123952,

 445058113,

 445054577,

 445061250

]

}

/

Note how unlike from json when used with MongoDB, with a JSON �le

SMS� mapping there is no collection name following the mapping

keyword.

Also note the use of xsd:dateTime in the WHERE clause, which is not

supported by other virtual graph sources.

Configuration

Supported Client Drivers

To connect to your data sources, Stardog requires you to supply Stardog

with the appropriate Client Driver. You need to manually copy the JAR �le

containing the driver to the stardog_install_dir/server/dbms/

directory (or to the location pointed to by the STARDOG_EXT environment

variable if you have set one) so that it will be available to the Stardog server.

Stardog is tested against all supported databases using the following

drivers. Stardog requires a JDBC �.� compatible client driver. While other

PREFIX : <http://example.com/>

mapping

from json {

 {

 "hash" : "?hash",

 "time" : "?time",

 "block_index" : "?block_index",

 "height" : "?height",

 "txIndexes" : ["?txIndex"]

 }

}

to {

 ?block a :Block ;

 :hash ?hash ;

 :time ?dateTime ;

 :height ?height ;

 :includesTx ?tx .

 ?tx a :Tx ;

 :index ?txIndex .

}

where {

 bind(xsd:dateTime(?time) as ?dateTime)

 bind(template("http://example.com/tx/{txIndex}") as ?tx)

 bind(template("http://example.com/block/{hash}") as ?block)

}

/

drivers may work, your mileage may vary. For best results, set the

sql.dialect option (#_available_properties) property when using

unsupported drivers.

�. Table of Supported Client Drivers

Database Driver

Apache Hive hive-jdbc-�.�.�.jar

(https://repo�.maven.org/maven�/org/apa

che/hive/hive-jdbc/�.�.�/hive-jdbc-

�.�.�.jar)

Apache/Cloudera Impala https://www.cloudera.com/downloads/con

nectors/impala/jdbc/�-�-��.html

(https://www.cloudera.com/downloads/co

nnectors/impala/jdbc/�-�-��.html)

AWS Athena AthenaJDBC��_�.�.�.jar

(https://s�.amazonaws.com/athena-

downloads/drivers/JDBC/SimbaAthenaJD

BC_�.�.�/AthenaJDBC��_�.�.�.jar)

AWS Aurora https://dev.mysql.com/downloads/connect

or/j/�.�.html

(https://dev.mysql.com/downloads/connec

tor/j/�.�.html)

AWS Redshift RedshiftJDBC��-no-awssdk-

�.�.��.����.jar

(https://s�.amazonaws.com/redshift-

downloads/drivers/jdbc/�.�.��.����/Reds

hiftJDBC��-no-awssdk-�.�.��.����.jar)

Cassandra cassandra-driver-core-�.�.�-shaded.jar

(http://central.maven.org/maven�/com/dat

astax/cassandra/cassandra-driver-

core/�.�.�/cassandra-driver-core-�.�.�-

shaded.jar)

https://repo1.maven.org/maven2/org/apache/hive/hive-jdbc/2.3.2/hive-jdbc-2.3.2.jar
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-5-42.html
https://s3.amazonaws.com/athena-downloads/drivers/JDBC/SimbaAthenaJDBC_2.0.7/AthenaJDBC42_2.0.7.jar
https://dev.mysql.com/downloads/connector/j/5.1.html
https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.20.1043/RedshiftJDBC42-no-awssdk-1.2.20.1043.jar
http://central.maven.org/maven2/com/datastax/cassandra/cassandra-driver-core/3.6.0/cassandra-driver-core-3.6.0-shaded.jar

/

Database Driver

Cassandra http://central.maven.org/maven�/com/dat

astax/cassandra/cassandra-driver-

core/�.�.�/cassandra-driver-core-�.�.�-

shaded.jar

(http://central.maven.org/maven�/com/dat

astax/cassandra/cassandra-driver-

core/�.�.�/cassandra-driver-core-�.�.�-

shaded.jar)

Derby https://db.apache.org/derby/releases/rele

ase-��.��.�.�.cgi

(https://db.apache.org/derby/releases/rele

ase-��.��.�.�.cgi)

Elasticsearch Three jars are required: elasticsearch-rest-

client-�.�.�.jar

(https://repo�.maven.org/maven�/org/elas

ticsearch/client/elasticsearch-rest-

client/�.�.�/elasticsearch-rest-client-

�.�.�.jar) httpasyncclient-�.�.�.jar

(https://repo�.maven.org/maven�/org/apa

che/httpcomponents/httpasyncclient/�.�.

�/httpasyncclient-�.�.�.jar) httpcore-nio-

�.�.�.jar

(https://repo�.maven.org/maven�/org/apa

che/httpcomponents/httpcore-

nio/�.�.�/httpcore-nio-�.�.�.jar)

Exasol EXASOL_JDBC-�.�.��.tar.gz

(https://www.exasol.com/support/secure/a

ttachment/�����/EXASOL_JDBC-

�.�.��.tar.gz)

H� h�-�.�.���.jar

(https://repo�.maven.org/maven�/com/h�

database/h�/�.�.���/h�-�.�.���.jar)

http://central.maven.org/maven2/com/datastax/cassandra/cassandra-driver-core/3.6.0/cassandra-driver-core-3.6.0-shaded.jar
https://db.apache.org/derby/releases/release-10.14.2.0.cgi
https://repo1.maven.org/maven2/org/elasticsearch/client/elasticsearch-rest-client/6.7.1/elasticsearch-rest-client-6.7.1.jar
https://repo1.maven.org/maven2/org/apache/httpcomponents/httpasyncclient/4.1.2/httpasyncclient-4.1.2.jar
https://repo1.maven.org/maven2/org/apache/httpcomponents/httpcore-nio/4.4.5/httpcore-nio-4.4.5.jar
https://www.exasol.com/support/secure/attachment/74437/EXASOL_JDBC-6.0.14.tar.gz
https://repo1.maven.org/maven2/com/h2database/h2/1.4.196/h2-1.4.196.jar

/

Database Driver

IBM DB� http://www.ibm.com/eserver/support/�xes/

�xcentral/swg/quickorder?

brandid=�&productid=IBM+Data+Server+

Client+Packages&vrmf=��.�.*&�xes=*jdbc

*FP���

(http://www.ibm.com/eserver/support/�xes

/�xcentral/swg/quickorder?

brandid=�&productid=IBM+Data+Server+

Client+Packages&vrmf=��.�.*&�xes=*jdbc

*FP���)

Microsoft SQL Server mssql-jdbc-�.�.�.jre�.jar

(https://repo�.maven.org/maven�/com/mi

crosoft/sqlserver/mssql-

jdbc/�.�.�.jre�/mssql-jdbc-�.�.�.jre�.jar)

MongoDB mongo-java-driver-�.�.�.jar

(http://central.maven.org/maven�/org/mon

godb/mongo-java-driver/�.�.�/mongo-

java-driver-�.�.�.jar)

MySQL & MariaDB https://dev.mysql.com/downloads/connect

or/j/�.�.html

(https://dev.mysql.com/downloads/connec

tor/j/�.�.html)

Oracle https://www.oracle.com/technetwork/data

base/features/jdbc/default-�������.html

(https://www.oracle.com/technetwork/data

base/features/jdbc/default-�������.html)

PostgreSQL postgresql-��.�.�.jar

(https://jdbc.postgresql.org/download/pos

tgresql-��.�.�.jar)

SAP HANA ngdbc-�.�.��.jar

(https://repo�.maven.org/maven�/com/sa

p/cloud/db/jdbc/ngdbc/�.�.��/ngdbc-

�.�.��.jar)

http://www.ibm.com/eserver/support/fixes/fixcentral/swg/quickorder?brandid=1&productid=IBM+Data+Server+Client+Packages&vrmf=10.1.*&fixes=*jdbc*FP006
https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.2.1.jre8/mssql-jdbc-6.2.1.jre8.jar
http://central.maven.org/maven2/org/mongodb/mongo-java-driver/3.8.2/mongo-java-driver-3.8.2.jar
https://dev.mysql.com/downloads/connector/j/5.1.html
https://www.oracle.com/technetwork/database/features/jdbc/default-2280470.html
https://jdbc.postgresql.org/download/postgresql-42.2.5.jar
https://repo1.maven.org/maven2/com/sap/cloud/db/jdbc/ngdbc/2.3.56/ngdbc-2.3.56.jar

/

Database Driver

Sybase ASE https://www.sap.com/developer/trials-

downloads/additional-downloads/sdk-for-

adaptive-server-enterprise-��-�-sp��-

pl��-�����.html

(https://www.sap.com/developer/trials-

downloads/additional-downloads/sdk-for-

adaptive-server-enterprise-��-�-sp��-

pl��-�����.html)

Teradata https://downloads.teradata.com/download

/connectivity/jdbc-driver

(https://downloads.teradata.com/downloa

d/connectivity/jdbc-driver) (version ��.��)

Available Properties

The following table lists the available options for use in virtual graph

properties �les. The �rst pre�x indicates the type of datasource that the

property is used for. jdbc. properties are used for all relational data

sources.

Additionally, connection pool properties for the built-in Tomcat connection

pool are allowed. This set of additional allowed properties is listed in the

Tomcat JDBC Connection Pool (https://tomcat.apache.org/tomcat-�.�-

doc/jdbc-pool.html#Common_Attributes) documentation.

Any options with the pre�x ext. will be passed directly to the JDBC

Driver.

Any unknown options will be ignored.

�. Table of Virtual Graph Con�guration Options

Option Default

base

Base IRI used to resolve relative IRIs from virtual graphs.

https://www.sap.com/developer/trials-downloads/additional-downloads/sdk-for-adaptive-server-enterprise-16-0-sp03-pl04-15001.html
https://downloads.teradata.com/download/connectivity/jdbc-driver
https://tomcat.apache.org/tomcat-9.0-doc/jdbc-pool.html#Common_Attributes

/

Option Default

jdbc.url

The URL of the JDBC connection.

jdbc.username

The username used to make the JDBC connection.

jdbc.password

The password used to make the JDBC connection.

jdbc.driver

The driver class name used to make the JDBC connection.

csv.separator ,

A single-character separator used when importing tabular data �les.

csv.quote "

A single character used to encapsulate values containing special

characters.

csv.escape

A single character used to escape values containing special characters.

csv.header true

Should the import process read the header row? When headers are

enabled the �rst row of the input �le is used to retrieve the column

names and mappings can refer to those column names. (true / false)

csv.skip.empty true

Should empty values be skipped in the CSV �le? If true no triples will

be generated for templates that refer to a column with empty value. (

true / false)

mongodb.uri

/

Option Default

The URI for the MongoDB connection. Examples:

mongodb://localhost/mydb or

mongodb+srv://myUserName:myP4ssw0rd@cluster0-

kgprod.company.com/mydb

elasticsearch.rest.urls

Whitespace-delimited list of connection host/port values for

Elasticsearch. Example: server1:9200 server2:9200 server3:9200

elasticsearch.username

Username for Elasticsearch connections

elasticsearch.password

Password for Elasticsearch connections

cassandra.contact.point

The address of the Cassandra node(s) that the driver uses to discover

the cluster topology. Example: cassandra.abc.com

cassandra.keyspace

The Cassandra keyspace to use for this session

cassandra.username

The username for the Cassandra cluster

cassandra.password

The password for the Cassandra cluster

cassandra.allow.�ltering false

Whether to include the ALLOW FILTERING clause at the end of Cassandra

CQL queries. Not recommended for production use.

percent.encode true

/

Option Default

Should IRI template strings be percent-encoded to be valid IRIs? (true /

false)

import.optimize true

Should virtual import and ?s ?p ?o queries use the optimized

translation? (true / false)

parser.sql.quoting

If unspeci�ed, R�RML views (using rr:sqlQuery) will be parsed using

the DB-native identi�er quoting convention. For example, MySQL

queries will be parsed treating backtick as the identi�er quote character.

If set to ANSI , the ANSI SQL convention of treating a double quote as

the identi�er quote character will be used instead.

sql.functions

A comma-separated list of SQL function names to register with the

parser. If an R�RML view (using rr:sqlQuery) fails to parse, this option

can be set to allow use of non-standard functions.

unique.key.sets

For data sources that do not express unique constraints in their

metadata, either because unique constraints are not supported or

because the data source did not include some or all of the valid

constraints for reasons such as performance concerns, this property is

used to de�ne additional constraints manually. The property value is a

comma-separated list of keys that de�ne unique rows in a table. Each

key is itself a comma-separated list of schema-quali�ed columns,

enclosed in parentheses. For example, if table APP.CUSTOMERS has an

ID column that serves as a primary key and a pair of columns, FNAME

and LNAME , that together are a unique key, the value to express that is:

(APP.CUSTOMERS.ID),(APP.CUSTOMERS.FNAME,APP.CUSTOMERS.LNAME)

sql.dialect Inferred from supported JDBC

drivers. ORACLE for unsupported

drivers.

/

Option Default

When using an unsupported JDBC driver, this option can be used to

specify the format of the generated SQL. The options supported are

ATHENA , CASSANDRA , DB2 , DERBY , ELASTICSEARCH , EXASOL , H2 ,

HANA , HIVE , IMPALA , MSSQL , MYSQL , ORACLE , POSTGRESQL ,

REDSHIFT , SYBASE , TERADATA

sql.schemas

A comma-separated list of schemas to append to the schema search

path. This option allows R�RML tables and queries to reference tables

that are outside of the default schema for the connected user.

sql.default.schema

Override the default schema for the connected user. Tables in the

default schema may be referenced without quali�cation (mytable or

"mytable" rather than myschema.mytable or "myschema"."mytable"

).

default.mapping.include.tables

A comma-separated list of tables to include when generating default

mappings. If blank, mappings will be generated for all tables in the

default schema for the connected user, plus any schemas listed in

sql.schemas . Cannot be combined with

default.mapping.exclude.tables .

default.mapping.exclude.tables

A comma-separated list of tables to exclude when generating default

mappings. Mappings will be generated for all tables in the default

schema for the connected user, plus any schemas listed in

sql.schemas , except those tables listed in this option. Cannot be

combined with default.mapping.include.tables .

schema.in.generated.mappings false (true for Elasticsearch)

/

Option Default

Whether to include the name of the schema (along with the table name)

in the templates for IRIs when automatically generating mappings based

on source database metadata. For Elasticsearch, setting this to true will

cause the index name to be included in the template.

Mapping

Stardog Virtual Graphs supports � mapping formats, but not all data

sources support all formats. Moreover, one mapping format, SMS�, has �

syntaxes for its FROM clause. Please review the following table to

understand your options.

�. Mapping Syntax Support by Data Source

Data Source R�RML & SMSSMS� FROM SQLFROM JSONFROM GraphQLFunctions in BIND

Expressions

Relational

* Yes Yes Yes No No Limited Support

NoSQL

Apache CassandraYes Yes Yes No No Limited Support

Cosmos DB No Yes No Yes Yes Limited Support

MongoDB No Yes No Yes Yes Limited Support

Elasticsearch No Yes No Yes Yes Limited Support

Static Files

CSV Yes No N/A N/A N/A Limited Support

JSON No Yes No Yes Yes Full Support

Limited support for functions in BIND expressions means only the

template and datatype casting functions are available. Full support makes

all sparql functions available.

/

We recommend SMS� for all data sources that support it; all but CSV �les.

R�RML and SMS (Stardog Mapping Syntax)

R�RML (https://www.w�.org/TR/r�rml/) is the W�C-recommended language

for mapping relational databases to RDF. For this reason all SMS mappings,

and all SMS� mappings using FROM SQL , can be converted to R�RML.

The Stardog Mapping Syntax (SMS) is an alternative way to write R�RML

mappings that is much simpler to read and write than R�RML.

We will use the example database (http://www.w�.org/TR/r�rml/#example-

input-database) from the R�RML speci�cation to explain SMS. The SQL

schema that corresponds to this example is:

Suppose we would like to represent this information in RDF using the same

translation for job codes (http://www.w�.org/TR/r�rml/#example-

translationtable) as in the original example:

CREATE TABLE "DEPT" (

 "deptno" INTEGER UNIQUE,

 "dname" VARCHAR(30),

 "loc" VARCHAR(100));

INSERT INTO "DEPT" ("deptno", "dname", "loc")

 VALUES (10, 'APPSERVER', 'NEW YORK');

CREATE TABLE "EMP" (

 "empno" INTEGER PRIMARY KEY,

 "ename" VARCHAR(100),

 "job" VARCHAR(30),

 "deptno" INTEGER REFERENCES "DEPT" ("deptno"),

 "etype" VARCHAR(30));

INSERT INTO "EMP" ("empno", "ename", "job", "deptno", "etype")

 VALUES (7369, 'SMITH', 'CLERK', 10, 'PART_TIME');

https://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/#example-input-database
http://www.w3.org/TR/r2rml/#example-translationtable

/

SMS looks very similar to the output RDF representation:

SMS is based on Turtle, but it’s not valid Turtle since it uses the URI

templates (http://www.w�.org/TR/r�rml/#from-template) of R�RML— curly

braces can appear in URIs. Other than this di�erence, we can treat an SMS

document as a set of RDF triples. SMS documents use the special

namespace tag:stardog:api:mapping: that we will represent with the

sm pre�x below.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix emp: <http://example.com/emp/> .

@prefix dept: <http://example.com/dept/> .

dept:10 a dept:Department ;

 dept:location "NEW YORK" ;

 dept:deptno "10"^^xsd:integer .

emp:7369 a emp:Employee ;

 emp:name "SMITH" ;

 emp:role emp:general-office ;

 emp:department dept:10 .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix emp: <http://example.com/emp/> .

@prefix dept: <http://example.com/dept/> .

@prefix sm: <tag:stardog:api:mapping:> .

dept:{"deptno"} a dept:Department ;

 dept:location "{\"loc\"}" ;

 dept:deptno "{\"deptno\"}"^^xsd:integer ;

 sm:map [

 sm:table "DEPT" ;

] .

emp:{"empno"} a emp:Employee ;

 emp:name "{\"ename\"}" ;

 emp:role emp:{ROLE} ;

 emp:department dept:{"deptno"} ;

 sm:map [

 sm:query """

 SELECT \"empno\", \"ename\", \"deptno\", (CASE \"job\"

 WHEN 'CLERK' THEN 'general-office'

 WHEN 'NIGHTGUARD' THEN 'security'

 WHEN 'ENGINEER' THEN 'engineering'

 END) AS ROLE FROM \"EMP\"

 """ ;

] .

http://www.w3.org/TR/r2rml/#from-template

/

Every subject in the SMS document that has a sm:map property maps a

single row from the corresponding table/view to one or more triples. If an

existing table/view is being mapped, sm:table is used to refer to the

table. Alternatively, a SQL query can be provided inline using the

sm:query property.

The values generated will be a URI, blank node, or a literal based on the

type of the value used in the mapping. The column names referenced

between curly braces will be replaced with the corresponding values from

the matching row.

SMS can be translated to the standard R�RML syntax automatically by

Stardog. For completeness, we provide the R�RML mappings

corresponding to the above example:

/

SMS� (Stardog Mapping Syntax �)

@prefix rr: <http://www.w3.org/ns/r2rml#> .

@prefix emp: <http://example.com/emp#> .

@prefix dept: <http://example.com/dept#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@base <http://example.com/base/> .

<DeptTriplesMap>

 a rr:TriplesMap;

 rr:logicalTable [rr:tableName "DEPT"];

 rr:subjectMap [rr:template

"http://data.example.com/dept/{\"deptno\"}" ;

 rr:class dept:Department];

 rr:predicateObjectMap [

 rr:predicate dept:deptno ;

 rr:objectMap [rr:column "\"deptno\""; rr:datatype

xsd:positiveInteger]

];

 rr:predicateObjectMap [

 rr:predicate dept:location ;

 rr:objectMap [rr:column "\"loc\""]

].

<EmpTriplesMap>

 a rr:TriplesMap;

 rr:logicalTable [rr:sqlQuery """

 SELECT "EMP".*, (CASE "job"

 WHEN 'CLERK' THEN 'general-office'

 WHEN 'NIGHTGUARD' THEN 'security'

 WHEN 'ENGINEER' THEN 'engineering'

 END) AS ROLE FROM "EMP"

 """];

 rr:subjectMap [

 rr:template "http://data.example.com/employee/{\"empno\"}";

 rr:class emp:Employee

];

 rr:predicateObjectMap [

 rr:predicate emp:name ;

 rr:objectMap [rr:column "\"ename\""];

];

 rr:predicateObjectMap [

 rr:predicate emp:role;

 rr:objectMap [rr:template

"http://data.example.com/roles/{ROLE}"];

];

 rr:predicateObjectMap [

 rr:predicate emp:department;

 rr:objectMap [rr:template

"http://example.com/dept/{\"deptno\"}";];

].

/

Stardog Mapping Syntax � (SMS�) is a way to represent virtual graph

mappings that is designed to support a broader range of source data

formats than R�RML and SMS, including semi-structured data sources such

as JSON, MongoDB and Elasticsearch, as well as structured formats like

SQL RDBMS.

SMS� is loosely based on the SPARQL CONSTRUCT query. An abbreviated

example looks like this:

SMS� consists of �ve parts: PROLOGUE , MAPPING , FROM , TO , and

WHERE .

�. The PROLOGUE is a series of pre�x declarations at the beginning of the

�le.

a. The MAPPING through WHERE clauses de�ne a mapping and the

set of them can be repeated, separated by a semicolon.

�. The MAPPING clause consists of the MAPPING keyword followed by an

optional IRI for naming the mapping.

�. The FROM clause describes the input. The FROM clause starts with the

FROM keyword and is followed by a data format keyword (JSON in this

case, but can be JSON (#_from_json), GraphQL (#_from_graphql) or

SQL (#_from_sql)) followed by a de�nition that describes the structure

of the data and assigns �elds to variable names.

PREFIX : <http://stardog.com/movies/>

MAPPING <urn:movies>

FROM JSON {

 "movie":{

 "_id":"?movieId",

 "name":"?name",

 }

}

TO {

 ?movie a :Movie ;

 :name ?name .

}

WHERE {

 BIND (template("http://stardog.com/movies/Title_{movieId}") AS ?

movie)

}

/

�. The TO clause de�nes how the output RDF should look. It is

analogous to the CONSTRUCT portion of the SPARQL CONSTRUCT

query. It consists of a set of triples where variables can be used in any

position.

�. The WHERE clause is where you can transform source data and BIND

the transformed values to new variables. The currently supported

functions for use within BIND are template for IRI construction and

the cast functions (xsd:string , xsd:boolean , xsd:integer ,

xsd:float , xsd:double , xsd:decimal , xsd:dateTime ,

xsd:date) for literal value type conversion.

Notice there are no platform-speci�c query elements (such as MongoDB

query syntax) present in the mapping, only descriptions of the source and

target data schemas and transformations for mapping the relationship

between the source and target.

To help illustrate SMS�, we’ll use the following JSON for a movie

collection from a MongoDB database:

/

For this example we’ll create mappings that represent the data as this RDF:

{

 "_id":"unforgiven",

 "name":"Unforgiven",

 "datePublished":new Date("1992-08-07T00:00:00.000Z"),

 "genre":["Drama", "Western"],

 "boxOffice":101157447,

 "description":"Retired gunslinger reluctantly takes on one last

job.",

 "director":[

 {"director":"clintEastwood", "name":"Clint Eastwood"}

],

 "actor":[

 {"actor":"morganFreeman", "name":"Morgan Freeman"},

 {"actor":"clintEastwood", "name":"Clint Eastwood"},

 {"actor":"geneHackman", "name":"Gene Hackman"}

]

}

{

 "_id":"noWayOut",

 "name":"No Way Out",

 "datePublished":new Date("1987-08-14T00:00:00.000Z"),

 "genre":["Action", "Mystery", "Drama", "Thriller"],

 "boxOffice":35509515,

 "description":"A coverup and witchhunt occur after a politician

accidentally kills his mistress.",

 "director":[

 {"director":"rogerDonaldson", "name":"Roger Donaldson"}

],

 "actor":[

 {"actor":"geneHackman", "name":"Gene Hackman"},

 {"actor":"kevinCostner", "name":"Kevin Costner"}

]

}

/

@prefix : <http://stardog.com/movies/> .

:Title_noWayOut a :Movie ;

 :name "No Way Out" ;

 :datePublished "1987-08-14"^^xsd:date ;

 :boxOffice 35509515 ;

 :description "A coverup and witchhunt occur after a politician

accidentally kills his mistress." ;

 :genre "Action", "Mystery", "Drama", "Thriller" ;

 :directed :Job_noWayOut_rogerDonaldson ;

 :actedIn :Job_noWayOut_geneHackman, :Job_noWayOut_kevinCostner .

:Title_unforgiven a :Movie ;

 :name "Unforgiven" ;

 :datePublished "1992-08-07"^^xsd:date ;

 :boxOffice 101157447 ;

 :description "Retired gunslinger reluctantly takes on one last

job." ;

 :genre "Drama", "Western" ;

 :directed :Job_unforgiven_clintEastwood ;

 :actedIn :Job_unforgiven_morganFreeman,

:Job_unforgiven_clintEastwood, :Job_unforgiven_geneHackman .

:Job_noWayOut_rogerDonaldson a :DirectedMovie ;

 :name "Roger Donaldson" ;

 :director :Name_rogerDonaldson .

:Name_rogerDonaldson a :Person .

:Job_unforgiven_clintEastwood a :DirectedMovie ;

 :name "Clint Eastwood" ;

 :director :Name_clintEastwood .

:Job_unforgiven_clintEastwood a :ActedInMovie ;

 :name "Clint Eastwood" ;

 :actor :Name_clintEastwood .

:Name_clintEastwood a :Person .

:Job_noWayOut_geneHackman a :ActedInMovie ;

 :name "Gene Hackman" ;

 :actor :Name_geneHackman .

:Job_unforgiven_geneHackman a :ActedInMovie ;

 :name "Gene Hackman" ;

 :actor :Name_geneHackman .

:Name_geneHackman a :Person .

:Job_noWayOut_kevinCostner a :ActedInMovie ;

 :name "Kevin Costner" ;

 :actor :Name_kevinCostner .

:Name_kevinCostner a :Person .

/

Notice there are many IRIs that contain both Movie and Person ids. These

scoped IRIs are redundant in this dataset but they serve a purpose when

working with denormalized datasources, which is common in NoSQL

databases like MongoDB. In this dataset, the name of a Person can appear

in both actor and director objects. The name is repeated for every directing

or acting job that Person has had. There is no guarantee that a Person’s

name is constant across all their jobs, either because the �eld re�ects the

name the person had at the time of the job, or because of a problem during

an update that led to the inconsistency. Without IRIs that scope a Person to

a speci�c Movie, when you query for the Person’s name, the correct

response is a record for every Person/name pair, which can be an

expensive query. See the blog post Mapping Denormalized Data

(https://www.stardog.com/blog/mapping-denormalized-data/) for more

details.

Here is the SMS� mapping for this exercise:

:Job_unforgiven_morganFreeman a :ActedInMovie ;

 :name "Morgan Freeman" ;

 :actor :Name_morganFreeman .

:Name_morganFreeman a :Person .

https://www.stardog.com/blog/mapping-denormalized-data/

/

PREFIX : <http://stardog.com/movies/>

MAPPING <urn:movies>

FROM JSON {

 "movie":{

 "_id":"?movieId",

 "name":"?name",

 "datePublished":"?datePublished",

 "genre":["?genre"],

 "boxOffice":"?boxOffice",

 "description":"?description",

 "director":[{

 "director":"?directorId",

 "name":"?directorName"

 }

],

 "actor":[{

 "actor":"?actorId",

 "name":"?actorName"

 }

]

 }

}

TO {

 ?movie a :Movie ;

 :name ?name ;

 :datePublished ?xsdDatePublished ;

 :genre ?genre ;

 :boxOffice "?boxOffice"^^xsd:integer ;

 :description ?description ;

 :directed ?directedMovie ;

 :actedIn ?actedInMovie .

 ?directedMovie a :DirectedMovie ;

 :director ?director ;

 :name ?directorName .

 ?director a :Person .

 ?actedInMovie a :ActedInMovie ;

 :actor ?actor ;

 :name ?actorName .

 ?actor a :Person .

}

WHERE {

 BIND

(template("http://stardog.com/movies/Job_{movieId}_{directorId}") AS ?

directedMovie)

 BIND (template("http://stardog.com/movies/Job_{movieId}_{actorId}")

AS ?actedInMovie)

 BIND (template("http://stardog.com/movies/Title_{movieId}") AS ?

movie)

 BIND (template("http://stardog.com/movies/Name_{directorId}") AS ?

director)

 BIND (template("http://stardog.com/movies/Name_{actorId}") AS ?

/

Details of the various FROM formats follows.

FROM JSON

The structure of the FROM JSON clause resembles the source JSON

structure with some changes:

�. Values are replaced by variable names.

�. Arrays contain a single element.

�. Only one JSON document is supplied.

�. (MongoDB and Cosmos only) There is an outermost key to indicate the

name of the collection (movie).

Fields are interpreted as strings unless given a speci�c data type, by using

a cast function in either the WHERE clause as illustrated in the example with

the datePublished �eld, or directly in the TO clause as illustrated by the

boxOffice �eld.

See the example directly above which uses FROM JSON in a mapping �le

for MongoDB.

FROM GraphQL

The FROM GraphQL de�nition is an alternative format for hierarchical data.

It is a Selection Set (https://graphql.github.io/graphql-spec/June����/#sec-

Selection-Sets) consisting of Fields (https://graphql.github.io/graphql-

spec/June����/#sec-Language.Fields), which can be aliased and can

contain nested selection sets. By default, each �eld will be mapped to a

variable with the same name as the �eld. If the �eld is aliased the alias will

serve as the variable name. To identify an array, use an @array directive.

The following mapping uses a FROM GraphQL clause to produce the same

results as our prior example that used a FROM JSON clause.

A noteworthy di�erence between FROM GraphQL and FROM JSON is the

actor)

 BIND (xsd:date(?datePublished) AS ?xsdDatePublished)

}

https://graphql.github.io/graphql-spec/June2018/#sec-Selection-Sets
https://graphql.github.io/graphql-spec/June2018/#sec-Language.Fields

/

order in which source names are replaced with target names. In

FROM JSON you can reference the value associated with each "_id"

attribute by specifying "_id":"?movieid" , the variable is on the right. In

FROM GraphQL you do the same by specifying movieId: _id , the variable

is on the left.

/

PREFIX : <http://stardog.com/movies/>

MAPPING <urn:movies>

FROM GraphQL {

 movie {

 movieId: _id

 name

 datePublished

 genre @array

 boxOffice

 description

 director @array {

 directorId: director

 directorName: name

 }

 actor @array {

 actorId: actor

 actorName: name

 }

 }

}

TO {

 ?movie a :Movie ;

 :name ?name ;

 :datePublished ?xsdDatePublished ;

 :genre ?genre ;

 :boxOffice "?boxOffice"^^xsd:integer ;

 :description ?description ;

 :directed ?directedMovie ;

 :actedIn ?actedInMovie .

 ?directedMovie a :DirectedMovie ;

 :director ?director ;

 :name ?directorName .

 ?director a :Person .

 ?actedInMovie a :ActedInMovie ;

 :actor ?actor ;

 :name ?actorName .

 ?actor a :Person .

}

WHERE {

 BIND

(template("http://stardog.com/movies/Job_{movieId}_{directorId}") AS ?

directedMovie)

 BIND (template("http://stardog.com/movies/Job_{movieId}_{actorId}")

AS ?actedInMovie)

 BIND (template("http://stardog.com/movies/Title_{movieId}") AS ?

movie)

 BIND (template("http://stardog.com/movies/Name_{directorId}") AS ?

director)

 BIND (template("http://stardog.com/movies/Name_{actorId}") AS ?

actor)

/

Note how an array of primitives like genre has the @array directive while

an array of objects has the @array directive followed by a selection set. If

we wished to map, say, the genre �eld to a genres variable, we would

use an alias, giving this complete line for the genre �eld:

genres: genre @array .

FROM SQL

The third option for the FROM clause is FROM SQL , which is for RDBMS

datasources and Cassandra. It di�ers from the JSON and GraphQL source

template formats in that for SQL we provide a query in place of a data

description. Stardog will interrogate the database schema to determine the

�eld names (which will become variable names) to use for mapping.

To explain the FROM SQL format, recall the SMS mapping from above

(#_r�rml_and_sms_stardog_mapping_syntax):

 BIND (xsd:date(?datePublished) AS ?xsdDatePublished)

}

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix emp: <http://example.com/emp/> .

@prefix dept: <http://example.com/dept/> .

@prefix sm: <tag:stardog:api:mapping:> .

dept:{"deptno"} a dept:Department ;

 dept:location "{\"loc\"}" ;

 dept:deptno "{\"deptno\"}"^^xsd:integer ;

 sm:map [

 sm:table "DEPT" ;

] .

emp:{"empno"} a emp:Employee ;

 emp:name "{\"ename\"}" ;

 emp:role emp:{ROLE} ;

 emp:department dept:{"deptno"} ;

 sm:map [

 sm:query """

 SELECT \"empno\", \"ename\", \"deptno\", (CASE \"job\"

 WHEN 'CLERK' THEN 'general-office'

 WHEN 'NIGHTGUARD' THEN 'security'

 WHEN 'ENGINEER' THEN 'engineering'

 END) AS ROLE FROM \"EMP\"

 """ ;

] .

/

The SMS� equivalent of this mapping looks like this:

Note the use of the semicolon to separate multiple mappings, which were

necessary because we needed the two SQL statements.

How To Use Virtual Graphs

Connect

To query a non-materialized Virtual Graph it must �rst be registered with

Stardog. Adding a new virtual graph is done via the following command:

PREFIX emp: <http://example.com/emp/>

PREFIX dept: <http://example.com/dept/>

MAPPING <urn:departments>

FROM SQL {

 SELECT * FROM "DEPT"

}

TO {

 ?deptIri a dept:Department ;

 dept:location ?loc ;

 dept:deptno "?deptno"^^xsd:integer .

}

WHERE {

 BIND (template("http://example.com/dept/{deptno}") AS ?deptIri)

}

;

MAPPING <urn:employees>

FROM SQL {

 SELECT \"empno\", \"ename\", \"deptno\", (CASE \"job\"

 WHEN 'CLERK' THEN 'general-office'

 WHEN 'NIGHTGUARD' THEN 'security'

 WHEN 'ENGINEER' THEN 'engineering'

 END) AS ROLE FROM \"EMP\"

}

TO {

 ?empIri a emp:Employee ;

 emp:name ?ename ;

 emp:role ?roleIri ;

 emp:department ?deptIri .

}

WHERE {

 BIND (template("http://example.com/emp/{empno}") AS ?empIri)

 BIND (template("http://example.com/dept/{deptno}") AS ?deptIri)

 BIND (template("http://example.com/emp/{ROLE}") AS ?roleIri)

}

/

When adding a Virtual Graph Stardog will establish a connection to the data

source to verify the provided con�guration and mappings.

Properties �le

The properties �le (dept.properties in this example) contains all of the

con�guration for the JDBC data source and virtual graph con�guration. It

must be in the Java properties �le format

(https://docs.oracle.com/cd/E�����_��/Platform.��/ATGProgGuide/html/s�

���properties�leformat��.html).

A minimal example (in this case, for MySQL) looks like this:

IMPORTANT

Stardog does not ship with client drivers. You

must add drivers for each data source you want

to connect to. See Supported Client Drivers for

more information.

The credentials for the JDBC connection need to be provided in plain text.

An alternative way to provide credentials is to use the password �le

(#_using_a_password_�le) mechanism. The credentials should be stored in

a password �le called services.sdpass located in STARDOG_HOME

directory. The password �le entries are in the format

hostname:port:database:username:password so for the above example

there should be an entry

localhost:*:dept:dept:MySqlUserName:MyPassword in this �le. Then the

credentials in the properties �le can be omitted.

The properties �le can also contain a property called base to specify a

$ stardog-admin virtual add dept.properties dept.ttl

jdbc.url=jdbc:mysql://localhost/dept

jdbc.username=MySqlUserName

jdbc.password=MyPassword

jdbc.driver=com.mysql.jdbc.Driver

https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html

/

base URI (http://www.w�.org/TR/r�rml/#dfn-base-iri) for resolving relative

URIs generated by the mappings (if any). If no value is provided, the base

URI will be virtual://myGraph where myGraph is the name of the virtual

graph.

Mapping �le

The mapping �le (dept.ttl in this example) contains the mapping from

the virtual data source into RDF. The mapping can be in one of three

formats:

�. SMS (#_r�rml_and_sms_stardog_mapping_syntax), which is the

default

�. Standard R�RML, which is indicated using --format r2rml

�. SMS� (Stardog Mapping Syntax �)

(#_sms�_stardog_mapping_syntax_�), a syntax that better supports

hierarchical datasources like JSON and MongoDB. This is indicated

using --format sms2

A mapping �le is required for data sources without a built-in schema, e.g.

some NoSQL databases like Mongo and delimited �at �les like .csv and tsv.

A mapping �le is not required if your data has a built-in schema, e.g. MySQL

or other relational databases. In this case you can omit a mapping �le and

the the virtual graph will be automatically mapped using R�RML direct

mapping (http://www.w�.org/TR/rdb-direct-mapping/). Omitting a mapping

�le is most commonly used with one or both of the options

default.mapping.include.tables and sql.schemas to indicate the

speci�c tables to include.

List Registered VGs and Inspect Mappings / Properties

Registered virtual graphs can be listed:

http://www.w3.org/TR/r2rml/#dfn-base-iri
http://www.w3.org/TR/rdb-direct-mapping/

/

Notice the * in the Database column of the output of the virtual list

command. This indicates that the dept virtual graph can be used with any

database. To associate a virtual graph with a speci�c database, use the

-d <db> or --database <db> command-line option with the

virtual add command.

The commands virtual mappings and virtual options can be used to

retrieve the mappings and con�guration options associated with a virtual

graph respectively. Registered virtual graphs can be removed using the

virtual remove command. See the Man Pages (#_man_pages) for the

details of these commands.

Query

Querying Virtual Graphs is done by using the GRAPH clause, using a

special graph URI in the form virtual://myGraph to query the Virtual

Graph named myGraph .

The following example shows how to query dept :

Virtual graphs can be de�ned globally in Stardog Server, which is the

default, or they can be linked to a speci�c database when they are created

(see here (#_list_registered_vgs_and_inspect_mappings_properties)). If a

virtual graph is linked to a speci�c database, it can only be accessed from

that database. Attempts to access a linked virtual graph from some other

database will result in no data being returned from that virtual graph.

$ stardog-admin virtual list

+----------------|----------|--------+

| Virtual Graphs | Database | Online |

+----------------|----------|--------+

| virtual://dept | * | true |

+----------------|----------|--------+

1 virtual graphs

SELECT * {

 GRAPH <virtual://dept> {

 ?person a emp:Employee ;

 emp:name "SMITH"

 }

}

/

Once a virtual graph is registered, it can be accessed as allowed by the

access rules (#_secure).

We can query the local Stardog database and virtual graph’s remote data in

a single query. Suppose we have the dept virtual graph, de�ned as above,

that contains employee and department information, and the Stardog

database contains data about the interests of people. We can use the

following query to combine the information from both sources:

Or, with Virtual Transparency (#_virtual_transparency) enabled, the

following query will include remote data from the virtual graph as well as

from the default graph.

NOTE

Query performance will be best if the GRAPH

clause for Virtual Graphs is as selective as

possible.

Virtual Graph queries are implemented by executing a query against the

remote data source. This is a powerful feature and care must be taken to

ensure peak performance. SPARQL and SQL don’t have feature parity,

especially given the varying capabilities of SQL implementations. Stardog’s

query translator supports most of the salient features of SPARQL including:

Arbitrarily nested subqueries (including solution modi�ers)

Aggregation

SELECT * {

 GRAPH <virtual://dept> {

 ?person a emp:Employee ;

 emp:name "SMITH" .

 }

 ?person foaf:interest ?interest

}

SELECT * {

 ?person a emp:Employee ;

 emp:name "SMITH" .

 ?person foaf:interest ?interest

}

/

FILTER (including most SPARQL functions)

OPTIONAL , UNION , BIND

That said, there are also limitations on translated queries. This includes:

SPARQL MINUS is not currently translated to SQL

Comparisons between objects with di�erent datatypes don’t always

follow XML Schema semantics

Named graphs in R�RML are not supported

Import

In some cases you need to materialize the information stored in RDBMS

directly into RDF. For example, a combination of high network latency,

slow-changing data, and strict query performance requirements can make

materialization a good �t.

There is a special command virtual import that can be used to import

the contents of the RDBMS into Stardog. The command can be used as

follows:

This command adds all the mapped triples from the RDBMS into the default

graph. Similar to virtual add , this command assumes Stardog Mapping

Syntax (#_r�rml_and_sms_stardog_mapping_syntax) by default and can

accept R�RML mappings using the --format r2rml option or Stardog

Mapping Syntax � (#_sms�_stardog_mapping_syntax_�) mappings using

the --format sms2 option.

It is also possible to specify a target named graph by using the -g /

--namedGraph option:

This virtual import command is equivalent to the following SPARQL

update query:

$ stardog-admin virtual import myDb dept.properties dept.ttl

$ stardog-admin virtual import -g http://example.com/targetGraph myDb

dept.properties dept.ttl

ADD <virtual://dept> TO <http://example.com/targetGraph>

/

If the RDBMS contents change over time, and we need to update the

materialization results in the future, we can clear the named graph contents

and rematerialize again. This can be done by using the --remove-all

option in virtual import or with the following SPARQL query:

Query performance over materialized graphs will be better as the data will

be indexed locally by Stardog, but materialization may not be practical in

cases where frequency of change is very high.

Secure

To manage virtual graphs, the user must be granted access to the

virtual-graph security resource type (see Security (#_security)). create

permission is required to add a virtual graph, delete permission is

needed to either remove or add a virtual graph with the -o or

--overwrite option, and read permission is required for all other

management commands such as options or mappings .

Accessing virtual graphs is controlled the same way as regular named

graphs as explained in the Named Graph Security

(#_named_graph_security) section. If named graph security is not enabled

for a database, all registered virtual graphs in the server will be accessible

through that database. If named graph security is enabled for a database,

then users will be able to query only the virtual graphs for which they have

been granted access.

If the virtual graphs contain any sensitive information, then it is

recommended to enable named graph security globally by setting

security.named.graphs=true in stardog.properties . Otherwise

creating a new database without proper con�guration would allow users to

access those virtual graphs.

The Named Graph Security (#_named_graph_security) settings apply to

virtual graphs regardless of the manner in which they are accessed. The

following three queries are identical with the one exception that attempts to

access a virtual graph using the SERVICE keyword result in an error when

COPY <virtual://dept> TO <http://example.com/targetGraph>

/

there are insu�cient permissions while queries that use the GRAPH or

FROM keywords will treat the virtual graphs as empty and return no results

but without error.

Unstructured Data (BITES)

Unifying unstructured data is, by necessity, a di�erent process from unifying

structured or semistructured data. Stardog includes a document storage

subsystem called BITES , which provides con�gurable

storage and processing for unifying unstructured data with the Stardog

graph. The following �gure shows the main BITES components:

SELECT * {

 GRAPH <virtual://dept> {

 ?person a emp:Employee ;

 emp:name "SMITH"

 }

}

SELECT * FROM <virtual://dept> {

 ?person a emp:Employee ;

 emp:name "SMITH"

}

SELECT * {

 SERVICE <virtual://dept> {

 ?person a emp:Employee ;

 emp:name "SMITH"

 }

}

[�� (#_footnote_��)]

/

Storage

BITES allows storage and retrieval of documents in the form of �les.

Stardog treats documents as opaque blobs of data; it defers to the

extraction process to make sense of individual documents. Document

storage is independent of �le and data formats.

Stardog internally stores documents as �les. The location of these �les

defaults to a subdirectory of STARDOG_HOME but this can be overridden.

Documents can be stored on local �lesystem, or an abstraction thereof,

accessible from the Stardog server or on Amazon S� by setting the

docs.filesystem.uri con�guration option. The exact location is given by

the docs.path con�guration option.

Structured Data Extraction

BITES supports an optional processing stage in which a document is

processed to extract an RDF graph to add to the database. BITES has the

following built-in RDF extractors:

tika : This extractor is based on Apache Tika, collects metadata about

the document and asserts this set of RDF statements to a named graph

speci�c to the document.

text : Adds a RDF statement with the full text extracted from the

document. Side-e�ect of this extractor is that a document’s text will be

indexed by the search index twice: one for the document itself, other for

the value of this RDF statement.

/

entities : This extractor uses OpenNLP (https://opennlp.apache.org/)

to extract all the mentions of named entities from the document and

adds this information to the document named graph.

linker : This extractor works just like entities but after it �nds a

named entity mention in the document it also �nds the entity in the

database that best matched that mention.

dictionary : Similar to linker , but using a user-provided dictionary

that maps named entity mentions to IRIs.

CoreNLPEntityLinkerRDFExtractor , CoreNLPMentionRDFExtractor ,

and CoreNLPRelationRDFExtractor available through the bites-

corenlp (https://github.com/stardog-union/bites-corenlp) repository.

See Entity Extraction and Linking (#_entity_extraction_and_linking) section

for more details about some of these extractors.

Text Extraction

The document store is fully integrated with Stardog’s Search (#_search). As

with RDF extraction, text extraction supports arbitrary �le formats and

pluggable extractors are able to retrieve the textual contents of a document

for indexing. Once a document is added to BITES, its contents can be

searched in the same way as other literals using the standard textMatch

predicate in SPARQL queries.

Managing Documents

CRUD operations on documents can be performed from the command line,

Java API or HTTP API. Please refer to the StardocsConnection

(/docs/�.�.�/java/snarl/com/complexible/stardog/docs/stardocsconnection)

API for details of using the document store from Java.

The following is an example session showing how to manage documents

from the command line:

https://opennlp.apache.org/
https://github.com/stardog-union/bites-corenlp
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/docs/stardocsconnection

/

See the Man Pages (#_man_pages) for more details about the CLI

commands.

We have a document stored in the file `whyfp90.pdf' which we will

add to the document store

$ ls -al whyfp90.pdf

-rw-r--r-- 1 user user 200007 Aug 30 09:46 whyfp90.pdf

We add it to the document store and receive the document's IRI as a

return value

$ bin/stardog doc put myDB whyfp90.pdf

Successfully put document in the document store:

tag:stardog:api:docs:myDB:whyfp90.pdf

Adding the same document again will delete all previous extraction

results and insert new ones.

By setting the correct argument, previous assertions will be kept,

and new ones appended.

$ bin/stardog doc put myDB —keep-assertions -r text whyfp90.pdf

Successfully put document in the document store:

tag:stardog:api:docs:myDB:whyfp90.pdf

Alternatively, we can add it with a different name. Repeated calls

will update the document and refresh extraction results

$ bin/stardog doc put myDB --name why-functional-programming-

matters.pdf whyfp90.pdf

Successfully put document in the document store:

tag:stardog:api:docs:myDB:why-functional-programming-matters.pdf

We can subsequently retrieve documents and store them locally

$ bin/stardog doc get myDB whyfp90.pdf

Wrote document 'whyfp90.pdf' to file 'whyfp90.pdf'

Local files will not be overwritten

$ bin/stardog doc get myDB whyfp90.pdf

File 'whyfp90.pdf' already exists. You must remove it or specify a

different filename.

How many documents are in the document store?

$ bin/stardog doc count myDB

Count: 2 documents

Removing a document will also clear it's named graph and full-text

search index entries

$ bin/stardog doc delete myDB whyfp90.pdf

Successfully executed deletion.

Re-indexing the docstore allows to apply a different rdf or text

extractor

to all the documents, refreshing extraction results

$ bin/stardog doc reindex myDB -r entities

"Re-indexed 1 documents"

/

Named Graphs and Document Queries

Documents in BITES are identi�ed by IRI. As shown in the command line

examples above, the IRI is returned from a document put call. The IRI is a

combination of a pre�x, the database name, and the document name. The

CLI uses the document name to refer to the documents. The RDF index,

and therefore SPARQL queries, use the IRIs to refer to the documents. RDF

assertions extracted from a document are placed into a named graph

identi�ed by the document’s IRI.

Here we can see the results of querying a document’s named graph when

using the default metadata extractor:

Entity Extraction and Linking

$ stardog query execute myDB "select ?p ?o { graph

<tag:stardog:api:docs:myDB:whyfp90.pdf> { ?s ?p ?o } }"

+--+------------------------

--------------+

| p | o

|

+--+------------------------

--------------+

| rdf:type |

http://xmlns.com/foaf/0.1/Document |

| rdf:type |

tag:stardog:api:docs:Document |

| tag:stardog:api:docs:fileSize | 200007

|

| http://purl.org/dc/elements/1.1/identifier | "whyfp90.pdf"

|

| rdfs:label | "whyfp90.pdf"

|

| http://ns.adobe.com/pdf/1.3/PDFVersion | "1.3"

|

| http://ns.adobe.com/xap/1.0/CreatorTool | "TeX"

|

| http://ns.adobe.com/xap/1.0/t/pg/NPages | 23

|

| http://purl.org/dc/terms/created | "2006-05-

19T13:42:00Z"^^xsd:dateTime |

| http://purl.org/dc/elements/1.1/format | "application/pdf;

version=1.3" |

| http://ns.adobe.com/pdf/1.3/encrypted | "false"

|

+--+------------------------

--------------+

Query returned 11 results in 00:00:00.045

/

BITES, by default, uses the tika RDF extractor that only extracts metadata

from documents. Stardog can be con�gured to use the OpenNLP

(http://opennlp.sourceforge.net) library to detect named entities mentioned

in documents and optionally link those mentions to existing resources in the

database.

Stardog can also be con�gured to use Stanford’s CoreNLP

(https://stanfordnlp.github.io/CoreNLP/) library for entity extraction, linking,

and relationship extraction. More information in the bites-corenlp

(https://github.com/stardog-union/bites-corenlp) repository.

TIP

Entity Linking in the Knowledge Graph

(https://www.stardog.com/blog/entity-linking-

in-the-knowledge-graph/)

Extending NLP

(https://www.stardog.com/blog/extending-nlp/)

Link All the Entities!

(https://www.stardog.com/blog/link-all-the-

entities/)

Augmenting Search

(https://www.stardog.com/blog/augmenting-

search/)

The �rst step to use entity extractors is to identify the set of OpenNLP

models that will be used. The following models are always required:

A tokenizer and sentence detector. OpenNLP

(http://opennlp.sourceforge.net/models-�.�/) provides models for

several languages (e.g., en-token.bin and en-sent.bin)

At least one name �nder model. Stardog supports both dictionary-based

(https://opennlp.apache.org/docs/�.�.�/manual/opennlp.html#tools.cli.di

ctionary) and custom trained

(https://opennlp.apache.org/docs/�.�.�/manual/opennlp.html#tools.nam

e�nd.training) models. OpenNLP

(http://opennlp.sourceforge.net/models-�.�/) provides models for

several types of entities and languages (e.g., en-ner-person.bin). We

provide our own name �nder models

(https://complexible.jfrog.io/complexible/stardog-nlp/ner/) created from

http://opennlp.sourceforge.net/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/stardog-union/bites-corenlp
https://www.stardog.com/blog/entity-linking-in-the-knowledge-graph/
https://www.stardog.com/blog/extending-nlp/
https://www.stardog.com/blog/link-all-the-entities/
https://www.stardog.com/blog/augmenting-search/
http://opennlp.sourceforge.net/models-1.5/
https://opennlp.apache.org/docs/1.8.2/manual/opennlp.html#tools.cli.dictionary
https://opennlp.apache.org/docs/1.8.2/manual/opennlp.html#tools.namefind.training
http://opennlp.sourceforge.net/models-1.5/
https://complexible.jfrog.io/complexible/stardog-nlp/ner/

/

Wikipedia and DBPedia, which provide high recall / low precision in

identifying Person, Organization, and Location types from English

language documents.

All these �les should be put in the same directory and, after or during

database creation time, the con�guration option

docs.opennlp.models.path should be set to its location.

For example, suppose you have a folder /data/stardog/opennlp with

�les en-token.bin , en-sent.bin , and en-ner-person.bin . The

database creation command would be as follows:

For consistency, model �lenames should follow speci�c patterns:

*-token.bin for tokenizers (e.g., en-token.bin)

*-sent.bin for sentence detectors (e.g., en-sent.bin)

-ner-.dict for dictionary-based name �nders (e.g.,

dbpedia-en-ner-person.dict)

-ner-.bin for custom trained name �nders (e.g.,

wikipedia-en-ner-organization.bin)

Entities

The entities extractor detects the mentions of named entities based on

the con�gured models and creates RDF statements for those entities. When

we are putting a document we need to specify that we want to use a non-

default extractor. We can use both the tika metadata extractor and the

entities extractor at the same time:

The result of entity extraction will be in a named graph where an auto-

generated IRI is used for the entity:

$ stardog-admin db create -o

docs.opennlp.models.path=/data/stardog/opennlp -n movies

$ stardog doc put --rdf-extractors tika,entities movies

CastAwayReview.pdf

/

Linker

The linker extractor performs the same task as entities but after the

entities are extracted it links those entities to the existing resources in the

database. Linking is done by matching the mention text with the identi�er

and labels of existing resources in the database. This extractor requires the

search feature (#_enabling_search) to be enabled to �nd the matching

candidates and uses string similarity metrics to choose the best match. The

commonly used properties for labels are supported: rdfs:label ,

foaf:name , dc:title , skos:prefLabel and skos:altLabel .

The extraction results of linker will be similar to entities , but only

contain existing resources for which a link was found. The link is available

through the dc:references property.

Dictionary

The dictionary extractor full�lls the same purpose as the linker , but

instead of heuristically trying to match a mention’s text with existent

resources, it uses a user-de�ned dictionary to perform that task. The

<tag:stardog:api:docs:movies:CastAwayReview.pdf> {

 <tag:stardog:api:docs:entity:9ad311b4-ddf8-4da2-a49f-3fa8f79813c2>

rdfs:label "Wilson" .

 <tag:stardog:api:docs:entity:0d25b4ed-9cd4-4e00-ac3d-f984012b67f5>

rdfs:label "Tom Hanks" .

 <tag:stardog:api:docs:entity:e559b828-714f-407d-aa73-7bdc39ee8014>

rdfs:label "Robert Zemeckis" .

}

$ stardog doc put --rdf-extractors linker movies CastAwayReview.pdf

<tag:stardog:api:docs:movies:CastAwayReview.pdf> {

 <tag:stardog:api:docs:entity:0d25b4ed-9cd4-4e00-ac3d-f984012b67f5>

rdfs:label "Tom Hanks" ;

 <http://purl.org/dc/terms/references>

<http://www.imdb.com/name/nm0000158> .

 <tag:stardog:api:docs:entity:e559b828-714f-407d-aa73-7bdc39ee8014>

rdfs:label "Robert Zemeckis" ;

 <http://purl.org/dc/terms/references>

<http://www.imdb.com/name/nm0000709> .

}

/

dictionary provides a set of mappings between text and IRIs. Each mention

found in the document will be searched in the dictionary and, if found, the

IRIs will be added as dc:references links.

Dictionaries are .linker �les, which need to be available in the

docs.opennlp.models.path folder. Stardog provides several dictionaries

(https://complexible.jfrog.io/complexible/stardog-nlp/dictionary/) created

from Wikipedia and DBPedia, which allow users to automatically link entity

mentions to IRIs in those knowledge bases.

When using the dictionary option, all .linker �les in the

docs.opennlp.models.path folder will be used. The output follows the

same syntax as the linker .

User-de�ned dictionaries can be created programmatically. For example,

the Java class below will create a dictionary that links every mention of

Tom Hanks to two IRIs.

$ stardog doc put --rdf-extractors dictionary movies

CastAwayReview.pdf

<tag:stardog:api:docs:movies:CastAwayReview.pdf> {

 <tag:stardog:api:docs:entity:0d25b4ed-9cd4-4e00-ac3d-f984012b67f5>

rdfs:label "Tom Hanks" ;

 <http://purl.org/dc/terms/references>

<http://en.wikipedia.org/wiki/Tom_Hanks> ;

 <http://purl.org/dc/terms/references>

<http://dbpedia.org/resource/Tom_Hanks> .

}

https://complexible.jfrog.io/complexible/stardog-nlp/dictionary/

/

SPARQL

Both entities , linker , and dictionary extractors are also available

as a SPARQL service, which makes them applicable to any data in the

graph, whether stored directly in Stardog or accessed remotely on SPARQL

endpoints or virtual graphs.

The entities extractor is accessed by using the docs:entityExtractor

service, which receives one input argument, docs:text , with the text to

be analyzed. The output will be the extracted named entity mentions,

bound to the variable given in the docs:mention property.

import java.io.File;

import java.io.IOException;

import com.complexible.stardog.docs.nlp.impl.DictionaryLinker;

import com.google.common.collect.ImmutableMultimap;

import com.stardog.stark.model.IRI;

import static ccom.stardog.stark.Values.iri;

public class CreateLinker {

 public static void main(String[] args) throws IOException {

 ImmutableMultimap<String, IRI> aDictionary =

ImmutableMultimap.<String, IRI>builder()

 .putAll("Tom

Hanks", iri("https://en.wikipedia.org/wiki/Tom_Hanks"),

iri("http://www.imdb.com/name/nm0000158"))

 .build();

 DictionaryLinker.Linker aLinker = new

DictionaryLinker.Linker(aDictionary);

 aLinker.to(new File("/data/stardog/opennlp/TomHanks.linker"));

 }

}

prefix docs: <tag:stardog:api:docs:>

select * {

 ?review :content ?text

 service docs:entityExtractor {

 [] docs:text ?text ;

 docs:mention ?mention

 }

}

/

By adding an extra output variable, docs:entity , the linker extractor

will be used instead.

The dictionary extractor is called in a similar way to linker , with an

extra argument docs:mode set to docs:Dictionary .

+---

--------------+------------------+---------------+

| text

| mention | review |

+---

--------------+------------------+---------------+

| "Directed by Robert Zemeckis, featuring Tom Hanks and a volleyball

called Wilson" | "Robert Zemeckis"| :MovieReview |

| "Directed by Robert Zemeckis, featuring Tom Hanks and a volleyball

called Wilson" | "Tom Hanks" | :MovieReview |

| "Directed by Robert Zemeckis, featuring Tom Hanks and a volleyball

called Wilson" | "Wilson" | :MovieReview |

+---

--------------+------------------+---------------+

prefix docs: <tag:stardog:api:docs:>

select * {

 ?review :content ?text

 service docs:entityExtractor {

 [] docs:text ?text ;

 docs:mention ?mention ;

 docs:entity ?entity

 }

}

+-------------------------+------------------+----------------+-------

--------+

| text | mention | entity |

review |

+-------------------------+------------------+----------------+-------

--------+

| "Directed by Robert..." | "Tom Hanks" | imdb:nm0000158 |

:MovieReview |

| "Directed by Robert..." | "Robert Zemeckis"| imdb:nm0000709 |

:MovieReview |

+-------------------------+------------------+----------------+-------

--------+

/

All extractors accept one more output variable, docs:type , which will

output the type of entity (e.g., Person, Organization), when available.

prefix docs: <tag:stardog:api:docs:>

select * {

 ?review :content ?text

 service docs:entityExtractor {

 [] docs:text ?text ;

 docs:mention ?mention ;

 docs:entity ?entity ;

 docs:mode docs:Dictionary

 }

}

+-------------------------+------------------+---------------------+--

-------------+

| text | mention | entity |

review |

+-------------------------+------------------+---------------------+--

-------------+

| "Directed by Robert..." | "Tom Hanks" | imdb:nm0000158 |

:MovieReview |

| "Directed by Robert..." | "Tom Hanks" | wikipedia:Tom_Hanks |

:MovieReview |

+-------------------------+------------------+---------------------+--

-------------+

prefix docs: <tag:stardog:api:docs:>

select * {

 ?review :content ?text

 service docs:entityExtractor {

 [] docs:text ?text ;

 docs:mention ?mention ;

 docs:entity ?entity ;

 docs:type ?type

 }

}

/

Custom Extractors

The included extractors are intentionally basic, especially when compared

to machine learning or text mining algorithms. A custom extractor connects

the document store to algorithms tailored speci�cally to your data. The

extractor SPI allows integration of any arbitrary work�ow or algorithm from

NLP methods like part-of-speech tagging, entity recognition, relationship

learning, or sentiment analysis to machine learning models such as

document ranking and clustering.

Extracted RDF assertions are stored in a named graph speci�c to the

document, allowing provenance tracking and versatile querying. The

extractor must implement the RDFExtractor

(/docs/�.�.�/java/snarl/com/complexible/stardog/docs/extraction/rdfextracto

r) interface. The convenience class TextProvidingRDFExtractor

(/docs/�.�.�/java/snarl/com/complexible/stardog/docs/extraction/tika/textpr

ovidingrdfextractor) is provided which extracts the text from the document

before calling the extractor. Entity linking extractors can be tweaked to

speci�c needs by extending their classes, EntityRDFExtractor

(java/snarl/com/complexible/stardog/docs/nlp/impl/EntityRDFExtractor.html)

and EntityLinkingRDFExtractor

(java/snarl/com/complexible/stardog/docs/nlp/impl/EntityLinkingRDFExtract

or.html).

The text extractor SPI gives you the opportunity to support arbitrary

document formats. Implementations will be given a raw document and be

expected to extract a string of text which will be added to the full-text

search index. Text extractors should implement the TextExtractor

(/docs/�.�.�/java/snarl/com/complexible/stardog/docs/extraction/textextract

or) interface.

+-------------------------+------------------+----------------+-------

----+---------------+

| text | mention | entity |

type | review |

+-------------------------+------------------+----------------+-------

----+---------------+

| "Directed by Robert..." | "Tom Hanks" | imdb:nm0000158 |

:Person | :MovieReview |

| "Directed by Robert..." | "Robert Zemeckis"| imdb:nm0000709 |

:Person | :MovieReview |

+-------------------------+------------------+----------------+-------

----+---------------+

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/docs/extraction/rdfextractor
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/docs/extraction/tika/textprovidingrdfextractor
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/nlp/impl/EntityRDFExtractor.html
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/nlp/impl/EntityLinkingRDFExtractor.html
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/docs/extraction/textextractor

/

Custom extractors are registered with the Java ServiceLoader under the

RDFExtractor

(/docs/�.�.�/java/snarl/com/complexible/stardog/docs/extraction/rdfextracto

r) or TextExtractor

(/docs/�.�.�/java/snarl/com/complexible/stardog/docs/extraction/textextract

or) class names. Custom extractors can be referred to from the command

line or APIs by their fully quali�ed or "simple" class names.

For an example of a custom extractor, see our github repository

(https://github.com/stardog-union/stardog-

examples/tree/develop/examples/docs).

Virtual Transparency

Virtual graphs provide a facility for accessing external data sources by

mapping them to individual named graphs. The example queries shown

previously all specify the source of the data using the virtual graph name.

This �ne-grained declaration can be useful in some circumstances but it’s

also desirable to query over the set of all graphs without enumerating them

individually. Virtual transparency is a feature that, when enabled, will

include results from virtual graphs in queries over the default or set of

named graphs.

How does it work? First you need to enable the VIRTUAL_TRANSPARENCY

(#dbopt-virtual-transparency) database option. When this is enabled,

queries are evaluated not only over local graphs, but also over accessible

virtual graphs. The set of accessible virtual graphs is determined by the

virtual graph access rules (#Virtual Graph Security). It may di�er by

database and user.

Virtual Transparency Query Semantics

The example queries shown previously use explicit graph blocks to name

the source graph of the data, e.g.:

SELECT * {

 GRAPH <virtual://dept> {

 ?person a emp:Employee ;

 emp:name "SMITH"

 }

}

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/docs/extraction/rdfextractor
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/docs/extraction/textextractor
https://github.com/stardog-union/stardog-examples/tree/develop/examples/docs

/

In contrast, a query without a graph block would only return data from the

local default graph:

However, if virtual transparency is enabled, this query will return data from

both the local default graph and any accessible virtual graphs. Note that

this requires the query.all.graphs database property be set to true .

Additionally, a graph block with a variable will bind to both local named

graphs and any accessible virtual graphs. For instance, the original query

can be restated to use a graph variable:

The result would include results from the virtual graph, with ?g bound to

<virtual://dept> , along with any results from local named graphs.

With virtual transparency, the key di�erence between including or omitting

a graph block comes from how triple patterns are joined together. Just as a

graph block over a set of local named graphs limits BGP matches to a

single named graph, a graph block with virtual transparency limits BGP

matches to a single local or virtual graph. To illustrate, consider the query

with a graph block:

If the set of employees is stored in a di�erent virtual graph than the

employee names, this query will return an empty result because the entire

BGP will not match any set of triples in any individual graph. However, if we

SELECT * {

 ?person a emp:Employee ;

 emp:name "SMITH"

}

SELECT * {

 GRAPH ?g {

 ?person a emp:Employee ;

 emp:name "SMITH"

 }

}

SELECT * {

 GRAPH ?g {

 ?person a emp:Employee ;

 emp:name "SMITH"

 }

}

/

remove the graph block, each individual triple pattern will match triples from

di�erent graphs and these results will be joined together. The result is

similar to what we would obtain by specifying the sources manually:

Virtual Transparency Dataset Specification

Fine grained control of virtual graph selection is possible using SPARQL’s

dataset speci�cation. When virtual transparency is enabled, the dataset

speci�cation allows inclusion of virtual graphs in FROM and FROM NAMED

clauses. Arbitrary mixing of local and virtual graphs is allowed. For instance,

the following query will include results from multiple virtual graphs:

The Special Named Graphs (#_special_named_graphs)

tag:stardog:api:context:virtual and

tag:stardog:api:context:all can be used to refer to the set of all

virtual graphs and the union of all virtual and local graphs, respectively.

Virtual Transparency Features and Options

Virtual transparency is compatible with all SPARQL operators with the

exception of "zero or more" and "one or more" property paths. These

constructs are supported on some DBMS platforms when placed inside the

graph block specifying the virtual graph source.

A query hint is provided to disable virtual transparency for all or part of a

query. Placing the hint #pragma virtual.transparency off in a SPARQL

block will disable consideration of virtual graphs for that block.

SELECT * {

 GRAPH <virtual://employees> {

 ?person a emp:Employee

 }

 GRAPH <virtual://names> {

 ?person emp:name "SMITH"

 }

}

SELECT *

FROM <http://local-employees-graph>

FROM <virtual://names>

{

 ?person a emp:Employee ;

 emp:name "SMITH"

}

/

HIGH AVAILABILITY CLUSTER

In this section we explain how to con�gure, use, and administer Stardog

Cluster for uninterrupted operations. Stardog Cluster is a collection of

Stardog Server instances running on one or more virtual or physical

machines that, from the client’s perspective, behave like a single Stardog

Server instance. To fully achieve this e�ect requires DNS (i.e., with SRV

records) and proxy con�guration that’s left as an exercise for the user.

Of course Stardog Cluster should have some di�erent operational

properties, the main one of which is high availability. But from the client’s

perspective Stardog Cluster should be indistinguishable from non-clustered

Stardog. While Stardog Cluster is primarily geared

toward HA, it is also important to remember that it should be tuned for your

speci�c use case. Our detailed blog post

(https://www.stardog.com/blog/tuning-cluster-for-cloud/) discusses a variety

of factors that you should consider when deploying Stardog Cluster as well

as some adjustments you should make depending on your workload.

[�� (#_footnote_��)]

https://www.stardog.com/blog/tuning-cluster-for-cloud/

/

NOTE

Stardog Cluster depends on Apache ZooKeeper.

High Availability requires at least three Stardog

and three ZooKeeper nodes in the Cluster.

ZooKeeper works best, with respect to fault

resiliency, with an ensemble size that is an odd-

number greater than or equal to three: �, �, �,

etc. With respect to performance, larger

Stardog clusters perform better than smaller

ones for reads, while larger cluster sizes perform

worse for writes. It is the responsibility of the

administrator to �nd the right balance.

TIP

Tuning Cluster for Cloud

(https://www.stardog.com/blog/tuning-cluster-for-

cloud/)

Guarantees

A cluster is composed of a set of Stardog servers and a ZooKeeper

ensemble running together. One of the Stardog servers is the Coordinator

and the others are Participants. The Coordinator orchestrates transactions

and maintains consistency by expelling any nodes that fail an operation. An

expelled node must sync with a current member to rejoin the cluster.

In case the Coordinator fails at any point, a new Coordinator will be elected

out of the remaining available Participants. Stardog Cluster supports both

read (e.g., querying) and write (e.g., adding data) requests. All read and

write requests can be handled by any of the nodes in the cluster. When a

client commits a transaction (containing a list of write requests), it will be

acknowledged by the receiving node only after every non-failing peer

node has committed the transaction. If a peer node fails during the

process of committing a transaction, it will be expelled from the cluster by

the Coordinator and put in a temporary failed state. If the Coordinator

fails during the process, the transaction will be aborted. At that point the

client can retry the transaction and it should succeed with the new cluster

coordinator.

[��]

https://www.stardog.com/blog/tuning-cluster-for-cloud/

/

Since failed nodes are not used for any subsequent read or write

requests, if a commit is acknowledged, then Stardog Cluster guarantees

that the data has been accordingly modi�ed at every available node in

the cluster.

While this approach is less performant with respect to write operations than

eventual consistency used by other distributed databases, typically those

databases o�er a much less expressive data model than Stardog, which

makes an eventually consistency model more appropriate for those

systems (and less so for Stardog). But since Stardog’s data model is not

only richly expressive but rests in part on provably correct semantics, we

think that a strong consistency model is worth the cost.

Single Server Migration

It is assumed that Stardog nodes in a Stardog Cluster are always going to

be used within a cluster context. Therefore, if you want to migrate from a

Stardog instance running in single server mode to running in a cluster, it is

advised that you create backups of your current databases and then import

them to the cluster in order to be able to provide the guarantees explained

above. If you simply add a Stardog instance to cluster that was previously

running in single server mode, it will sync to the state of the cluster; local

data could be removed when syncing with the cluster state.

Configuration

In this section we will explain how to manually deploy a Stardog Cluster

using stardog-admin commands and some additional con�guration. If you

are deploying your cluster to AWS then you can use the Stardog Graviton

(#_stardog_graviton) that will automate this process.

You can use the stardog-admin cluster generate command to

bootstrap a cluster con�guration and, thus, to ease installation by simply

passing a list of hostnames or IP addresses for the cluster’s nodes.

See the man page (/man/cluster-generate.html) for the details.

[�� (#_footnote_��)]

$ stardog-admin cluster generate --output-dir /home/stardog 10.0.0.1

10.0.0.2 10.0.0.3

https://www.stardog.com/man/cluster-generate.html

/

In a production environment we strongly recommend that each ZooKeeper

process runs in a di�erent machine and, if possible, that ZooKeeper has a

separate drive for its data directory. If you need a larger cluster, adjust

accordingly.

In the following example we will set up a cluster with total of � nodes.

Zookeeper will be deployed on nodes �-� whereas Stardog will be

deployed on nodes �-�.

�. Install (#_quick_start_guide) Stardog �.�.� on each machine in the

cluster.

NOTE

The best thing to do here, of course, is to use

whatever infrastructure you have in place to

automate software installation. Adapting

Stardog installation to Chef, Puppet,

cfengine, etc. is left as an exercise for the

reader.

�. Make sure a valid Stardog license key (whether Developer, Enterprise,

or a ��-day eval key) for the size of cluster you’re creating exists and

resides in STARDOG_HOME on each node. You must also have a

stardog.properties �le with the following information for each

Stardog node in the cluster:

pack.zookeeper.address is a ZooKeeper connection string where

cluster stores its state. pack.node.address is not a required property.

The local address of the node, by default, is

Flag to enable the cluster, without this flag set, the rest of

the properties have no effect

pack.enabled=true

this node's IP address (or hostname) where other Stardog nodes

are going to connect

this value is optional but if provided it should be unique for

each Stardog node

pack.node.address=196.69.68.4

the connection string for ZooKeeper where cluster state is

stored

pack.zookeeper.address=196.69.68.1:2180,196.69.68.2:2180,196.69.68

.3:2180

/

InetAddress.getLocalhost().getAddress() , which should work for

many deployments. However if you’re using an atypical network

topology and the default value is not correct, you can provide a value

for this property.

�. Create the ZooKeeper con�guration for each ZooKeeper node. This

con�g �le is just a standard ZooKeeper con�guration �le and the same

con�g �le can be used for all ZooKeeper nodes. The following con�g

�le should be su�cient for most cases.

NOTE

The clientPort speci�ed in

zookeeper.properties and the ports used

in pack.cluster.address in

stardog.properties must be the same.

�. dataDir is where ZooKeeper persists cluster state and where it writes

log information about the cluster.

�. ZooKeeper requires a myid �le in the dataDir folder to identify

itself, you will create that �le as follows for node1 , node2 , and

node3 , respectively:

tickTime=3000

Make sure this directory exists and

ZK can write and read to and from it.

dataDir=/data/zookeeperdata/

clientPort=2180

initLimit=5

syncLimit=2

This is an enumeration of all Zk nodes in

the cluster and must be identical in

each node's config.

server.1=196.69.68.1:2888:3888

server.2=196.69.68.2:2888:3888

server.3=196.69.68.3:2888:3888

$ mkdir /data/zookeeperdata # on node 1

$ mkdir /data/zookeeperdata # on node 2

$ mkdir /data/zookeeperdata # on node 3

/

Standby Nodes

NOTE This feature is in Beta.

The notion of a standby node was introduced in Stardog �.�.�. A standby

node runs next to the Stardog cluster and periodically requests updates.

The standby does not service any user requests, neither reads nor writes.

Its purpose is to stay very closely synchronized with the cluster but without

disturbing the cluster with the more di�cult join event. By only drifting

from full synchronization by limited time windows it allows for two important

features:

�. The standby node can safely run backups without taking CPU cycles

from servicing user requests.

�. The standby node can be upgraded to a full node and thereby quickly

join the cluster because it is already closely in sync.

This latter point is important for maintaining HA clusters. If one node goes

down a standby node can be promoted to a real, functional node quickly

quickly restoring the cluster to full strength.

Managing A Standby Node

To start a cluster node as a standby node simply add the following line to

stardog.properties :

This will con�gure the node to be in standby node and to wait � minutes

between synchronization attempts. The interval begins when the

synchronization completes, eg: If a synchronization takes � minutes it will

be � minutes before the next synchronization attempt.

$ echo 1 > /data/zookeeperdata/myid # on node 1

$ echo 2 > /data/zookeeperdata/myid # on node 2

$ echo 3 > /data/zookeeperdata/myid # on node 3

pack.standby=true

pack.standby.node.sync.interval=5m

/

Once a standby node is running it can be converted to a full node with the

stardog-admin command.

Note that you cannot use the IP address of a full cluster node nor that of a

load balancer directing requests to full cluster nodes. You must point

directly to the standby node. Once upgraded it may take a bit of time for the

node to fully join the cluster. Its progress can be monitored with

stardog-admin cluster status .

Another feature of a standby node is the ability to pause synchronization.

To request a pause of synchronization run:

This tells the standby node that you want to pause it, however it does not

mean it is paused. Pausing can take some time if the node is in the middle

of a large synchronization event. The status of pausing can be monitored

with:

A node is not safely paused until the state PAUSED is returned. To resume

synchronization run:

Installation

In the next few steps you will use the Stardog Admin CLI commands to

deploy Stardog Cluster: that is, ZooKeeper and Stardog itself. We’ll also

con�gure HAProxy as an example of how to use Stardog Cluster behind a

proxy for load-balancing and fail-over capability. There’s nothing special

$./stardog-admin --server http://<standby node IP>:5820 cluster

standby-join

$./stardog-admin --server http://<standby node IP>:5820 cluster

standby-pause

$./stardog-admin --server http://<standby node IP>:5820 cluster

standby-status

$./stardog-admin --server http://<standby node IP>:5820 cluster

standby-resume

/

about HAProxy here; you could implement this proxy functionality in many

di�erent ways. For example, Stardog Graviton (#_stardog_graviton) uses

Amazon’s Elastic Load Balancer.

�. Start ZooKeeper instances

First, you need to start ZooKeeper nodes. You can do this using the

standard command line tools that come with ZooKeeper. As a

convenience, we provide a stardog-admin cluster zkstart

subcommand that you can use to start ZooKeeper instances:

This uses the zookeeper.properties con�g �le in ~/stardog and

log its output to ~/stardog/zookeeper.log . If your $STARDOG_HOME

is set to ~/stardog , then you don’t need to specify the --home

option. For more info about the command:

�. Start Stardog instances

Once ZooKeeper is started, you can start Stardog instances:

Important: When starting Stardog instances for the cluster, unlike single

server mode, you need to provide the credentials of a superuser that

will be used for securing the data stored in ZooKeeper and for intra-

cluster communication. Each node should be started with the same

superuser credentials. By default, Stardog comes with a superuser

admin that has password "admin" and that is the default credentials

used by the above command. For a secure installation of Stardog

$./stardog-admin cluster zkstart --home ~/stardog # on node 1

$./stardog-admin cluster zkstart --home ~/stardog # on node 2

$./stardog-admin cluster zkstart --home ~/stardog # on node 3

$./stardog-admin help cluster zkstart

$./stardog-admin server start --home ~/stardog --port 5821 # on

node 4

$./stardog-admin server start --home ~/stardog --port 5821 # on

node 5

$./stardog-admin server start --home ~/stardog --port 5821 # on

node 6

/

cluster you should change these credentials by specifying the

pack.zookeeper.auth setting in stardog.properties and restart the

cluster with new credentials:

And again, if your $STARDOG_HOME is set to ~/stardog , you don’t

need to specify the --home option.

NOTE

Make sure to allocate roughly twice as much

heap for Stardog than you would normally do

for single-server operation since there can

be an additional overhead involved for

replication in the cluster. Also, we start

Stardog here on the non-default port (5821)

so that you can use a proxy or load-balancer

in the same machine which can run on the

default port (5820), meaning that Stardog

clients can act normally (i.e., use the default

port, 5820) since they need to interact with

HAProxy.

�. Start HAProxy (or equivalent)

In most Unix-like systems, HAProxy is available via package managers,

e.g. in Debian-based systems:

At the time of this writing, this will install HAProxy �.�. You can refer to

the o�cial site (http://www.haproxy.org/) to install a later release.

Place the following con�guration in a �le (such as haproxy.cfg) in

order to point HAProxy to the Stardog Cluster. You’ll notice that there

are two backends speci�ed in the con�g �le: stardog_coordinator

and all_stardogs . An ACL is used to route all requests containing

transaction in the path to the coordinator. All other tra�c is routed

pack.zookeeper.auth=username:password

$ sudo apt-get update

$ sudo apt-get install haproxy

http://www.haproxy.org/

/

via the default backend, which is simply round-robin across all of the

Stardog nodes. For some use cases routing transaction-speci�c

operations (e.g. commit) directly to the coordinator performs slightly

better. However, round-robin routing across all of the nodes is generally

su�cient.

/

global

 daemon

 maxconn 256

defaults

 # you should update these values to something that makes

 # sense for your use case

 timeout connect 5s

 timeout client 1h

 timeout server 1h

 mode http

where HAProxy will listen for connections

frontend stardog-in

 option tcpka # keep-alive

 bind *:5820

 # the following lines identify any routes with "transaction"

 # in the path and send them directly to the coordinator, if

 # haproxy is unable to determine the coordinator all requests

 # will fall through and be routed via the default_backend

 acl transaction_route path_sub -i transaction

 use_backend stardog_coordinator if transaction_route

 default_backend all_stardogs

the Stardog coordinator

backend stardog_coordinator

 option tcpka

 # the following line returns 200 for the coordinator node

 # and 503 for non-coordinators so traffic is only sent

 # to the coordinator

 option httpchk GET /admin/cluster/coordinator

 # the check interval can be increased or decreased depending

 # on your requirements and use case, if it is imperative that

 # traffic be routed to the coordinator as quickly as possible

 # after the coordinator changes, you may wish to reduce this

value

 default-server inter 5s

 # replace these IP addresses with the corresponding node

address

 # maxconn value can be upgraded if you expect more concurrent

 # connections

 server stardog1 196.69.68.1:5821 maxconn 64 check

 server stardog2 196.69.68.2:5821 maxconn 64 check

 server stardog3 196.69.68.3:5821 maxconn 64 check

the Stardog servers

backend all_stardogs

 option tcpka # keep-alive

 # the following line performs a health check

 # HAProxy will check that each node accepts connections and

 # that it's operational within the cluster. Health check

 # requires that Stardog nodes do not use --no-http option

 option httpchk GET /admin/healthcheck

 default-server inter 5s

 # replace these IP addresses with the corresponding node

/

If you wish to operate the cluster in HTTP-only mode, you can add the

mode http to backend settings.

Finally,

For more info on con�guring HAProxy please refer to the o�cial

documentation (http://www.haproxy.org/#docs). In production

environments we recommend running multiple proxies to avoid single

point of failures, and use DNS solutions for fail-over.

Now Stardog Cluster is running on � nodes, one each on � machines.

Since HAProxy was conveniently con�gured to use port 5820 you can

execute standard Stardog CLI commands to the Cluster:

If your cluster is running on another machine then you will need to provide

a fully quali�ed connection string (#_how_to_make_a_connection_string) in

the above commands.

Shutdown

In order to shut down the cluster you only need to execute the following

command once:

The cluster stop request will cause all available nodes in the cluster to

shutdown. If a node was expelled from the cluster due to a failure it would

not receive this command and might need to be shutdown manually. In

address

 # maxconn value can be upgraded if you expect more concurrent

 # connections

 server stardog1 196.69.68.1:5821 maxconn 64 check

 server stardog2 196.69.68.2:5821 maxconn 64 check

 server stardog3 196.69.68.3:5821 maxconn 64 check

$ haproxy -f haproxy.cfg

$./stardog-admin db create -n myDb

$./stardog data add myDb /path/to/my/data

$./stardog query myDb "select * { ?s ?p ?o } limit 5"

$./stardog-admin cluster stop

http://www.haproxy.org/#docs

/

order to shutdown a single node in the cluster use the regular

server stop command and be sure to specify the server address:

If you send the server stop command to the load balancer then a

random node selected by the load balancer will shutdown.

In addition to the Stardog cluster you still need to shut down the ZooKeeper

cluster independently. Refer to the ZooKeeper documentation for details.

Automated Deployment

As of Stardog �, we support both AWS and Pivotal Cloud Foundry as �rst-

class deployment environments.

Stardog Graviton

Con�guring and managing highly available cluster applications can be a

complex black art. Graviton is a tool that leverages the power of Amazon

Web Services (http://aws.amazon.com) to make launching the Stardog

cluster easy.

The source code (http://github.com/stardog-union/stardog-graviton) is

available as Apache �.� licensed code.

Download

Linux

OSX

Requirements

A Stardog release zip �le (�.� or later).

A Stardog license.

An AWS (http://aws.amazon.com/) account.

terraform (http://terraform.io/) �.�.�.

packer (https://www.packer.io/) �.��.�.

Setup Your Environment

$./stardog-admin --server http://localhost:5821 server stop

http://aws.amazon.com/
http://github.com/stardog-union/stardog-graviton
http://aws.amazon.com/
http://terraform.io/
https://www.packer.io/

/

In order to use stardog-graviton in its current form the following

environment variables must be set.

The account associated with the access tokens must have the ability to

create IAM credentials and full EC� access.

Both terraform and packer must be in your system path.

The easiest way to launch a cluster is to run stardog-graviton in

interactive mode. This will cause the program to ask a series of questions in

order to get the needed values to launch a cluster. Here is a sample

session:

AWS_ACCESS_KEY_ID=<a valid aws access key>

AWS_SECRET_ACCESS_KEY=<a valid aws secret key>

/

To avoid being asked questions a �le named ~/.graviton/default.json

can be created. An example can be found in the defaults.json.example

(https://github.com/stardog-union/stardog-

graviton/blob/master/defaults.json.example) �le.

All of the components needed to run a Stardog cluster are considered part

of a deployment. Every deployment must be given a name that is unique to

each cloud account. In the above example the deployment name is

mystardog2 .

Status

$ stardog-graviton --log-level=DEBUG launch mystardog423

What version of stardog are you launching?: 4.2.3

What is the path to the Stardog release?:

A value must be provided.

What is the path to the Stardog release?: /Users/bresnaha/stardog-

4.2.3.zip

There is no base image for version 4.2.3.

- Running packer to build the image...

done

AMI Successfully built: ami-c06246a0

Creating the new deployment mystardog423

Would you like to create an SSH key pair? (yes/no): no

EC2 keyname (default): <aws key name>

Private key path: /path/to/private/key

What is the path to your Stardog license?: /path/to/stardog/license

\ Calling out to terraform to create the volumes...

- Calling out to terraform to stop builder instances...

Successfully created the volumes.

\ Creating the instance VMs......

Successfully created the instance.

Waiting for stardog to come up...

The instance is healthy

Changing the default password...

Password changed successfully for user admin.

\ Opening the firewall......

Successfully opened up the instance.

The instance is healthy

The instance is healthy

Stardog is available here: http://mystardog423sdelb-1763823291.us-

west-1.elb.amazonaws.com:5821

ssh is available here: mystardog423belb-124202215.us-west-

1.elb.amazonaws.com

Using 3 stardog nodes

 10.0.101.189:5821

 10.0.100.107:5821

 10.0.100.140:5821

Success.

https://github.com/stardog-union/stardog-graviton/blob/master/defaults.json.example

/

Once the image has been successfully launched its health can be

monitored with the status command:

Cleanup

AWS EC� charges by the hour for the VMs that Graviton runs thus when the

cluster is no longer in use it is important to clean it up with the destroy

command.

More information

For more information about Graviton check out the README

(https://github.com/stardog-union/stardog-

graviton/blob/master/README.md) and the blog post

(https://blog.stardog.com/stardog-graviton-aws-made-easy/).

Pivotal Cloud Foundry

As of Stardog �, we’ve added support for Pivotal Cloud Foundry. More docs

(http://docs.pivotal.io/partners/stardog-service-broker/) are available at PCF.

$ stardog-graviton --log-level=DEBUG status mystardog423

The instance is healthy

Stardog is available here: http://mystardog423sdelb-1763823291.us-

west-1.elb.amazonaws.com:5821

ssh is available here: mystardog423belb-124202215.us-west-

1.elb.amazonaws.com

Using 3 stardog nodes

 10.0.101.189:5821

 10.0.100.107:5821

 10.0.100.140:5821

Success.

stardog-graviton --log-level=DEBUG destroy mystardog423

This will destroy all volumes and instances associated with this

deployment.

Do you really want to destroy? (yes/no): yes

/ Deleting the instance VMs...

Successfully destroyed the instance.

\ Calling out to terraform to delete the images...

Successfully destroyed the volumes.

Success.

https://github.com/stardog-union/stardog-graviton/blob/master/README.md
https://blog.stardog.com/stardog-graviton-aws-made-easy/
http://docs.pivotal.io/partners/stardog-service-broker/

/

Our open source service broker (https://github.com/stardog-union/service-

broker) adheres to the Open Service Broker API

(https://www.openservicebrokerapi.org/) and thus can be used with Cloud

Foundry (https://cloudfoundry.org/), Open Shift (https://www.openshift.org/),

and Kubernetes (http://kubernetes.io/).

Configuration Issues

Topologies & Size

In the con�guration instructions above, we assume a particular Cluster

topology, which is to say, for each node n of a cluster, we run Stardog,

ZooKeeper, and a load balancer. But this is not the only topology supported

by Stardog Cluster. ZooKeeper nodes run independently, so other

topologies— three ZooKeeper servers and �ve Stardog servers are possible

— you just have to point Stardog to the corresponding ZooKeeper

ensemble.

To add more Stardog Cluster nodes, simply repeat the steps for Stardog on

additional machines. Generally, as mentioned above, Stardog Cluster size

should be an odd number greater or equal to �.

WARNING

ZooKeeper uses a very write heavy protocol;

having Stardog and ZooKeeper both writing to

the same disk can yield contention issues,

resulting in timeouts at scale. We recommend at

a minimum having the two services writing to

separate disks to reduce contention or, ideally,

have them run on separate nodes entirely.

Open File Limits

If you expect to use Stardog Cluster with heavy concurrent write workloads,

then you should probably increase the number of open �les that host OS

will permit on each Cluster node. You can typically do this on a Linux

machine with ulimit -n or some variant thereof. Because nodes

https://github.com/stardog-union/service-broker
https://www.openservicebrokerapi.org/
https://cloudfoundry.org/
https://www.openshift.org/
http://kubernetes.io/

/

communicate between themselves and with ZooKeeper, it’s important to

make sure that there are su�cient �le handle resources available.

Connection/Session Timeouts

Stardog nodes connect to the ZooKeeper cluster and establishes a session

(https://zookeeper.apache.org/doc/trunk/zookeeperProgrammers.html#ch_

zkSessions). The session is kept alive by PING requests sent by the client. If

the Stardog node does not send these requests to the ZooKeeper server

(due to network issues, node failure, etc.) the session will timeout and the

Stardog node will get into a suspended state and it will reject any queries or

transactions until it can establish the session again.

If a Stardog node is overloaded then it might fail to send the PING requests

to ZooKeeeper server in a timely manner. This usually happens when

Stardog’s memory usage is close to the limit and there are frequent GC

pauses. This would cause Stardog nodes to be suspended unnecessarily. In

order to prevent this problem make sure Stardog nodes have enough

memory allocated and tweak the timeout options.

There are two di�erent con�guration options that control timeouts for the

ZooKeeper server. The pack.connection.timeout option speci�es the

max time that Stardog waits to establish a connection to ZooKeeper. The

pack.session.timeout option speci�es the session timeout explained

above. You can set these values in stardog.properties as follows:

Note that, ZooKeeper has limitations about how these values can be set

based on the tickTime value speci�ed in the ZooKeeper con�guration

�le. Session timeout needs to be a minimum of � times the tickTime and

a maximum of �� times the tickTime . So a session timeout of 60s

requires the tickTime to be at least 3s (in ZooKepeer con�guration �le

this value should be entered in milliseconds). If the session timeout is not in

the allowed range the ZooKeeper will negotiate a new timeout value and

Stardog will print a warning about this in the stardog.log �le.

Client Usage

[�� (#_fo

otnote_��)]

pack.connection.timeout=15s

pack.session.timeout=60s

https://zookeeper.apache.org/doc/trunk/zookeeperProgrammers.html#ch_zkSessions

/

To use Stardog Cluster with standard Stardog clients and CLI tools in the

ordinary way-- stardog-admin and stardog --you must have Stardog

installed locally. With the provided Stardog binaries in the Stardog Cluster

distribution you can query the state of Cluster:

where ipaddress is the IP address of any of the nodes in the cluster. This

will print the available nodes in the cluster, as well as the roles (participant

or coordinator). You can also input the proxy IP address and port to get the

same information.

To add or remove data, issue stardog data add or remove commands to

any node in the cluster. Queries can be issued to any node in the cluster

using the stardog query command. All the stardog-admin features are

also available in Cluster, which means you can use any of the commands to

create databases, administer users, and the rest of the functionality.

Adding Nodes to a Cluster

Stardog cluster stores the UUID of the last committed transaction for each

database in ZooKeeper. When a new node is joining the cluster it will

compare the local transaction ID of each database with the corresponding

transaction ID stored in ZooKeeper. If there is a mismatch the node will

synchronize the database contents from another node in the cluster. If there

are no nodes in the cluster the new node cannot join the cluster and will

shut itself down. For this reason, if you are starting a new cluster then you

should make sure that the ZooKeeper state is cleared. If you are retaining

an existing cluster then new nodes should be started when there is at least

one node in the cluster.

If there are active transactions in the cluster joining node will wait for those

transactions to �nish and then synchronize its databases. More transactions

may take place during synchronization and in that case the joining node will

continue synchronization and retrieve the data from new transactions. Thus,

it will take longer for a node to join the cluster if there are continuous

transactions. Note that, the new node will not be available for requests until

all the databases are synchronized. The proxy/load-balancer should

perform a health check before forwarding the requests to a new node (as

shown in the above con�guration) so user requests will always be

forwarded to available nodes.

$./stardog-admin --server http://<ipaddress>:5820/ cluster info

/

Upgrading the Cluster

The process to upgrade Stardog Cluster is straightfoward; however, there

are a few extra steps you should take to ensure the upgrade goes as

quickly and smoothly as possible. Before you begin the upgrade, make sure

to place the new Stardog binaries on all of the cluster nodes.

Also make sure to note which node is the coordinator since this is the �rst

node that will be started as part of the upgrade.

stardog-admin cluster info will show the nodes in the cluster and

which one is the coordinator.

Next you should ensure that there are no transactions running, e.g.,

stardog-admin db status <db name> will show if there are any open

transactions for a database. This step is not strictly required, however, it can

minimize downtime and streamline the process, allowing the cluster to stop

quickly and helping avoid non-coordinator nodes from having to re-sync

when they attempt to join the upgraded cluster.

When you are ready to begin the upgrade, you can shutdown the cluster

with stardog-admin cluster stop . Once all nodes have stopped, backup

the STARDOG_HOME directories on all of the nodes.

With the new version of Stardog, bring the cluster up one node at a time,

starting with the previous coordinator. As each node starts make sure that it

is able to join the cluster cleanly before moving on to the next node.

Backing Up the Cluster

Backing up the cluster is similar to single-node backups. However, there are

a few points to be aware of. All nodes in the cluster will perform a backup

unless S� is the backup location, in which case only a single node will

perform the backup to the S� bucket.

If you are backing up to S� then backup.location should be the same on

all nodes in the cluster since any node may perform the backup. However, if

backup.location is used to specify a backup directory mounted on the

Stardog nodes then backup.location can specify di�erent directories on

each node in the cluster, if required.

/

Finally, if --to is passed to the backup command, it will take precedence

over either backup.dir or backup.location speci�ed in

stardog.properties and all nodes will perform a backup to the speci�ed

location.

SEARCH

Stardog’s builtin full-text search system indexes data stored in Stardog for

information retrieval queries. Search is not supported over data in virtual

sources.

Indexing Strategy

The indexing strategy creates a "search document" per RDF literal. Each

document consists of two �elds: literal ID and literal value. See User-

de�ned Lucene Analyzer (#_user_de�ned_lucene_analyzer) for details on

customizing Stardog’s search programmatically.

Enabling Search

Full-text support for a database is disabled by default but can be enabled at

any time by setting the con�guration option search.enabled to true. For

example, you can create a database with full-text support as follows:

Similarly, you can set the option using SearchOptions#SEARCHABLE when

creating the database programmatically:

Integration with SPARQL

$ stardog-admin db create -o search.enabled=true -n myDb

aAdminConnection.newDatabase("myDB")

 .set(SearchOptions.SEARCHABLE, true)

 .create()

/

We use the predicate tag:stardog:api:property:textMatch (or

http://jena.hpl.hp.com/ARQ/property#textMatch) to access the

search index in a SPARQL query.

The textMatch function has one required argument, the search query in

Lucene syntax

(http://lucene.apache.org/core/�_�_�/queryparser/org/apache/lucene/quer

yparser/classic/package-summary.html#package_description) and it

returns, by default, all literals matching the query string. For example,

This query selects all literals which match 'mac'. These literals are then

joined with the generic BGP ?s ?p ?l to get the resources (?s) that have

those literals. Alternatively, you could use ?s rdf:type ex:Book if you

only wanted to select the books which reference the search criteria; you

can include as many other BGPs as you like to enhance your initial search

results.

You can change the number of results textMatch returns by providing an

optional second argument with the limit:

Limit in textMatch only limits the number of literals returned, which is

di�erent than the number of total results the query will return. When a

LIMIT is speci�ed in the SPARQL query, it does not a�ect the full-text

search, rather, it only restricts the size of the result set.

Lucene returns a score

(https://lucene.apache.org/core/�_�_�/core/org/apache/lucene/search/pac

kage-summary.html#scoring) with each match. It is possible to return these

scores and de�ne �lters based on the score:

SELECT DISTINCT ?s ?score

WHERE {

?s ?p ?l.

(?l ?score) <tag:stardog:api:property:textMatch> 'mac'.

}

SELECT DISTINCT ?s ?score

WHERE {

?s ?p ?l.

(?l ?score) <tag:stardog:api:property:textMatch> ('mac' 100).

}

http://lucene.apache.org/core/7_4_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
https://lucene.apache.org/core/7_4_0/core/org/apache/lucene/search/package-summary.html#scoring

/

This query returns �� matching literals where the score is greater than �.�.

Note that, as explained in the Lucene documentation

(https://lucene.apache.org/core/�_�_�/core/org/apache/lucene/search/pac

kage-summary.html#scoring) scoring is very much dependent on the way

documents are indexed and the range of scores might change signi�cantly

between di�erent databases.

Service Form of Search

The textMatch predicate is concise for simple queries. With up to four

input constants and two or more output variables, positional arguments can

become confusing. An alternate syntax based on SPARQL SERVICE clause

is provided. Not only does it make the arguments clear, but also provides

some additional features, such as the ability searching over variable

bindings and return highlighted fragments, both described below.

With the SERVICE clause syntax, we specify each parameter by name.

Here’s an example using a number of di�erent parameters:

Searching over Variable Bindings

Search queries aren’t always as simple as a single constant query. It’s

possible to perform multiple search queries using other bindings in the

SPARQL query as input. This can be accomplished by specifying a variable

SELECT DISTINCT ?s ?score

WHERE {

?s ?p ?l.

(?l ?score) <tag:stardog:api:property:textMatch> ('mac' 0.5 10).

}

prefix fts: <tag:stardog:api:search:>

SELECT * WHERE {

 service fts:textMatch {

 [] fts:query 'Mexico AND city' ;

 fts:threshold 0.6 ;

 fts:limit 10 ;

 fts:offset 5 ;

 fts:score ?score ;

 fts:result ?res ;

 }

}

https://lucene.apache.org/core/7_4_0/core/org/apache/lucene/search/package-summary.html#scoring

/

for the fts:query parameter. In the following example, we use the titles of

new books to �nd related books:

Highlighting Relevant Fragments of Search Results

When building search engines, it’s essential not only to �nd the most

relevant results, but also to display them in a way that helps users select the

entry most relevant to them. To this end, Stardog provides a highlight

argument to the SERVICE clause search syntax. When this argument is

given an otherwise unbound variable, the result will include one or more

fragments from the string literal returned by the search which include the

search terms. The highlightMaxPassages can be used to limit the

maximum number of fragments which will be included in the highlight

result.

To illustrate, an example query and results are given.

prefix fts: <tag:stardog:api:search:>

SELECT * WHERE {

 # Find new books and their titles. Each title will be used as input

to a

 # search query in the full-text index

 ?newBook a :NewBook ; :title ?title .

 service fts:textMatch {

 [] fts:query ?title ;

 fts:score ?score ;

 fts:result ?relatedText ;

 }

 # Bindings of ?relatedText will be used to look up other books in

the database

 ?relatedBook :title ?relatedText .

 filter(?newBook != ?relatedBook)

}

prefix fts: <tag:stardog:api:search:>

SELECT * WHERE {

 service fts:textMatch {

 [] fts:query "mexico AND city" ;

 fts:score ?score ;

 fts:result ?result ;

 fts:highlight ?highlight

 }

}

order by desc(?score)

limit 4

/

The results might include highlighted fragments such as:

Search Syntax

Stardog search is based on Lucene �.�.�: we support all of the search

modi�ers

(http://lucene.apache.org/core/�_�_�/queryparser/org/apache/lucene/quer

yparser/classic/package-summary.html#package_description) that Lucene

supports, with the exception of �elds.

wildcards: ? and *

fuzzy: ~ and ~ with similarity weights (e.g. foo~0.8)

proximities: "semantic web"~5

term boosting

booleans: OR , AND , NOT , + , and ̀ - .

grouping

For a more detailed discussion, see the Lucene docs

(http://lucene.apache.org/core/�_�_�/queryparser/org/apache/lucene/quer

yparser/classic/package-summary.html#package_description).

Escaping Characters in Search

The "/" character must be escaped because Lucene says so. In fact, there

are several characters that are part of Lucene’s query syntax that must be

escaped

(http://lucene.apache.org/core/�_�_�/queryparser/org/apache/lucene/quer

yparser/classic/package-summary.html#Escaping_Special_Characters).

OWL & RULE REASONING

In this chapter we describe how to use Stardog’s reasoning capabilities; we

address some common problems and known issues. We also describe

Stardog’s approach to query answering with reasoning in some detail, as

a city in south central Mexico (southeast of

Mexico

City) on the edge of central Mexican plateau

http://lucene.apache.org/core/7_4_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
http://lucene.apache.org/core/7_4_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
http://lucene.apache.org/core/7_4_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#Escaping_Special_Characters

/

well as a set of guidelines that contribute to e�cient query answering with

reasoning. If you are not familiar with the terminology, you can peruse the

section on terminology.

The semantics of Stardog’s reasoning is based in part on the OWL � Direct

Semantics Entailment Regime (https://www.w�.org/TR/sparql��-

entailment/#OWLRDFBSEntRegime). However, the implementation of

Stardog’s reasoning system is worth understanding as well. For the most

part, Stardog performs reasoning in a lazy and late-binding fashion: it

does not materialize inferences; but, rather, reasoning is performed at

query time according to a user-speci�ed "reasoning type". This approach

allows for maximum �exibility while maintaining

excellent performance. The one exception to this general approach is

equality reasoning which is eagerly materialized. See Same As Reasoning

(#_same_as_reasoning) for more details.

TIP

How to Debug Reasoning

(https://www.stardog.com/blog/how-to-debug-

reasoning/)

Reasoning Types

Reasoning can be enabled or disabled using a simple boolean �ag— in

HTTP, reasoning ; in CLI, -r or --reasoning ; and in Java APIs, a

connection option

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connectioncon�guratio

n#reasoning(boolean)) or a query option

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/query#reasoning(bool

ean)):

false : No axioms or rules are considered; no reasoning is performed.

true : Axioms and rules are considered and reasoning is performed

according to the value of the reasoning.type database option.

Reasoning is disabled by default; that is, no reasoning is performed

without explicitly setting the reasoning �ag to "true".

[�� (#_footnote_��)]

https://www.w3.org/TR/sparql11-entailment/#OWLRDFBSEntRegime
https://www.stardog.com/blog/how-to-debug-reasoning/
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connectionconfiguration#reasoning(boolean)
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/query#reasoning(boolean)

/

When reasoning is enabled by the boolean �ag, the axioms and rules in the

database are �rst �ltered according to the value of the reasoning.type

database option. The default value of reasoning.type is SL and for the

most part users don’t need to worry too much about which reasoning type

is necessary since SL covers all of the OWL � pro�les as well as user-

de�ned rules via SWRL. However, this value may be set to any other

reasoning type that Stardog supports: RDFS is the OWL � axioms allowed

in RDF Schema (http://www.w�.org/TR/rdf-schema/) (mainly subclasses,

subproperties, domain, and ranges); QL for the OWL � QL

(http://www.w�.org/TR/owl�-pro�les/#OWL_�_QL) axioms; RL for the OWL

� RL (http://www.w�.org/TR/owl�-pro�les/#OWL_�_RL) axioms; EL for the

OWL � EL (http://www.w�.org/TR/owl�-pro�les/#OWL_�_EL) axioms; DL

for OWL � DL axioms (http://www.w�.org/TR/����/REC-owl�-syntax-

��������/); and SL for a combination of RDFS, QL, RL, and EL axioms,

plus SWRL rules (http://www.w�.org/Submission/SWRL/). Any axiom outside

the selected type will be ignored by the reasoner.

The DL reasoning type behaves signi�cantly di�erent than other types.

Stardog normally uses the Query Rewriting (#_query_rewriting) technique

for reasoning which scales very well with increasing number of instances;

only the schema needs to be kept in memory. But query rewriting cannot

handle axioms outside the OWL � pro�les; however, DL reasoning type

can be used so that no axiom or rule is ignored as long as they satisfy the

OWL � DL restrictions (http://www.w�.org/TR/����/REC-owl�-syntax-

��������/#Global_Restrictions_on_Axioms_in_OWL_�_DL). With DL

reasoning, both the schema and the instance data need to pulled into

memory, which limits its applicability with large number of instances. DL

reasoning also requires the database to be logically consistent or no

reasoning can be performed. Finally, DL reasoning requires more

computation upfront compared to query rewriting which exhibits a "pay-as-

you-go" behavior.

The reasoning.type can also be set to the special value NONE which will

�lter all axioms and rules thus e�ectively disables reasoning. This value can

be used for the database option to prevent reasoning to be used by any

client even though they might enable it with the boolean �ag on the client

side.

Using Reasoning

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL

/

In order to perform query evaluation with reasoning, Stardog requires a

schema to be present in the database. Since schemas

are serialized as RDF, they are loaded into a Stardog database in the same

way that any RDF is loaded into a Stardog database. Also, note that, since

the schema is just more RDF triples, it may change as needed: it is neither

�xed nor compiled in any special way.

The schema may reside in the default graph, in a speci�c named graph, or

in a collection of graphs. You can tell Stardog where the schema is by

setting the reasoning.schema.graphs property to one or more named

graph URIs. If you want the default graph to be considered part of the

schema, then you can use the special built-in URI

tag:stardog:api:context:default . If you want to use all named graphs

(that is, to tell Stardog to look for the schema in every named graph), you

can use tag:stardog:api:context:all .

NOTE
The default value for this property is to use all

graphs, i.e., tag:stardog:api:context:all .

This design is intended to support both of Stardog’s primary use cases:

�. managing the data that constitutes the schema

�. reasoning with the schema during query evaluation

Query Answering

All of Stardog’s interfaces (API, network, and CLI) support reasoning during

query evaluation. All types of queries (that is, SELECT , ASK , CONSTRUCT ,

PATHS , DESCRIBE , and updates) can be evaluated with reasoning. When

reasoning is enabled, it applies to all query patterns in WHERE and VIA

blocks. However, as of �.� it is possible to selectively disable it for certain

parts of the query using the #pragma reasoning hint as follows:

[�� (#_footnote_��)]

SELECT * WHERE {

 ?person rdf:type :Employee .

 { #pragma reasoning off

 ?person ?p ?o

 }

}

/

This query uses reasoning to select all employees thus retrieves managers,

etc. but returns only asserted properties for each of them. Disabling

reasoning for ?s ?p ?o patterns is often handy since those may cause

performance problems while not providing particularly useful inferences. In

complex queries it is possible to re-enable reasoning for a nested graph

scope with #pragma reasoning on . The hint is ignored when the query is

evaluated without reasoning.

Command Line

In order to evaluate queries in Stardog using reasoning via the command

line, we use the reasoning �ag:

HTTP

For HTTP, the reasoning �ag is speci�ed either with the other HTTP request

parameters:

or, as a segment in the URL:

Reasoning Connection API

In order to use the ReasoningConnection API one needs to enable

reasoning. See the Java Programming (#_java_programming) section for

details.

Currently, the API has two methods:

isConsistent() , which can be used to check if the database is

(logically) consistent with respect to the reasoning type.

$./stardog query --reasoning myDB "SELECT ?s { ?s a :Pet } LIMIT 10"

$ curl -u admin:admin -X GET "http://localhost:5820/myDB/query?

reasoning=true&query=..."

$ curl -u admin:admin -X GET

"http://localhost:5820/myDB/query/reasoning?query=..."

/

isSatisfiable(URI theURIClass) , which can be used to check if the

given class if satis�able with respect to the database and reasoning

type.

Reasoning with Multiple Schemas

There is a default schema associated with each database whose content is

controlled by the reasoning.schema.graphs property as explained above.

However, there are certain use cases where one might need to use

di�erent schemas to answer di�erent queries. Some example use cases are

as follows:

There are two di�erent versions of a schema that evolved over time and

older legacy applications need to use the previous version of the

schema whereas the newer applications need to use the newer version.

Di�erent applications require di�erent rules and business logic, e.g.

threshold for a concept like Low or High might change based on the

context.

There could be a very large number of axioms and rules in the domain

that can be partitioned into smaller schema subsets for performance

reasons.

Starting with version �.�, Stardog supports schema multi-tenancy:

reasoning with multiple schemas and specifying a schema to be used for

answering a query. Each schema has a name and a set of named graphs

and when the schema is selected for answering a query the axioms and

rules stored in the associated graphs will be taken into account. A named

schema can be selected for a query using the --schema parameter:

When the --schema parameter is used the --reasoning parameter does

not need to be speci�ed and will have no e�ect. But using --reasoning

�ag without a --schema parameter is equivalent to specifying

--schema default .

The named schemas are de�ned via the reasoning.schemas

con�guration option that is a set of schema name and graph IRI pairs. There

is convenience functionality provided in the CLI and Java API to manage

$./stardog query --schema petSchema myDB "SELECT ?s { ?s a :Pet }

LIMIT 10"

/

schemas. The named graphs for a new or an existing schema can be set as

follows using stored namespaces or full IRIs:

The schemas can be removed using the reasoning schema --remove

command. The --list option will list all the de�ned schemas and their

named graphs:

Explaining Reasoning Results

Stardog can be used to check if the current database logically entails a set

of triples; moreover, Stardog can explain why this is so.

An explanation of an inference is the minimum set of statements explicitly

stored in the database that, together with the schema and any valid

inferences, logically justify the inference. Explanations are useful for

understanding data, schema, and their interactions, especially when large

number of statements interact with each other to infer new statements.

Explanations can be retrieved using the CLI by providing an input �le that

contains the inferences to be explained:

The output is displayed in a concise syntax designed to be legible; but it

can be rendered in any one of the supported RDF syntaxes if desired.

Explanations are also accessible through Stardog’s extended HTTP

protocol (#_network_programming) and in Java (#_java_programming). See

$./stardog reasoning schema --add dogSchema --graphs :dogGraph

:petGraph -- myDB

$./stardog reasoning schema --list myDB

+-----------+---------------------------------+

| Schema | Graphs |

+-----------+---------------------------------+

| default | <tag:stardog:api:context:local> |

| catSchema | :petGraph, :catGraph |

| dogSchema | :petGraph, :dogGraph |

| petSchema | :petGraph |

+-----------+---------------------------------+

[�� (#_footnote_��)]

$ stardog reasoning explain myDB inference_to_explain.ttl

/

the examples in the stardog-examples Github repo

(https://github.com/stardog-union/stardog-examples/) for more details about

retrieving explanations programmatically.

Proof Trees

Proof trees are a hierarchical presentation of multiple explanations (of

inferences) to make data, schemas, and rules more intelligible. Proof trees

 provide an explanation for an inference or an

inconsistency as a hierarchical structure. Nodes in the proof tree may

represent an assertion in a Stardog database. Multiple assertion nodes are

grouped under an inferred node.

Example

For example, if we are explaining the inferred triple

:Alice rdf:type :Employee , the root of the proof tree will show that

inference:

The children of an inferred node will provide more explanation for that

inference:

The fully expanded proof tree will show the asserted triples and axioms for

every inference:

The CLI explanation command prints the proof tree using indented text; but,

using the SNARL API, it is easy to create a tree widget in a GUI to show the

explanation tree, such that users can expand and collapse details in the

explanation.

[�

� (#_footnote_��)]

INFERRED :Alice rdf:type :Employee

INFERRED :Alice rdf:type :Employee

 ASSERTED :Manager rdfs:subClassOf :Employee

 INFERRED :Alice rdf:type :Manager

INFERRED :Alice rdf:type :Employee

 ASSERTED :Manager rdfs:subClassOf :Employee

 INFERRED :Alice rdf:type :Manager

 ASSERTED :Alice :supervises :Bob

 ASSERTED :supervises rdfs:domain :Manager

https://github.com/stardog-union/stardog-examples/

/

Another feature of proof trees is the ability to merge multiple explanations

into a single proof tree with multiple branches when explanations have

common statements. Consider the following example database:

In this database, there are three di�erent unique explanations for the

inference :Alice rdf:type :Employee :

Explanation �

Explanation �

Explanation �

#schema

:Manager rdfs:subClassOf :Employee

:ProjectManager rdfs:subClassOf :Manager

:ProjectManager owl:equivalentClass (:manages some :Project)

:supervises rdfs:domain :Manager

:ResearchProject rdfs:subClassOf :Project

:projectID rdfs:domain :Project

#instance data

:Alice :supervises :Bob

:Alice :manages :ProjectX

:ProjectX a :ResearchProject

:ProjectX :projectID "123-45-6789"

:Manager rdfs:subClassOf :Employee

:ProjectManager rdfs:subClassOf :Manager

:supervises rdfs:domain :Manager

:Alice :supervises :Bob

:Manager rdfs:subClassOf :Employee

:ProjectManager rdfs:subClassOf :Manager

:ProjectManager owl:equivalentClass (:manages some :Project)

:ResearchProject rdfs:subClassOf :Project

:Alice :manages :ProjectX

:ProjectX a :ResearchProject

:Manager rdfs:subClassOf :Employee

:ProjectManager rdfs:subClassOf :Manager

:ProjectManager owl:equivalentClass (:manages some :Project)

:projectID rdfs:domain :Project

:Alice :manages :ProjectX

:ProjectX :projectID "123-45-6789"

/

All three explanations have some triples in common; but when explanations

are retrieved separately, it is hard to see how these explanations are

related. When explanations are merged, we get a single proof tree where

alternatives for subtrees of the proof are shown inline. In indented text

rendering, the merged tree for the above explanations would look as

follows:

In the merged proof tree, alternatives for an explanation are shown with a

number id. In the above tree, :Alice a :Manager is the �rst inference for

which we have multiple explanations so it gets the id 1 . Then each

alternative explanation gets an id appended to this (so explanations 1.1

and 1.2 are both alternative explanations for inference 1). We also have

multiple explanations for inference :ProjectX a :Project so its

alternatives get ids 2.1 and 2.2 .

User-defined Rule Reasoning

Many reasoning problems may be solved with OWL’s axiom-based

approach; but, of course, not all reasoning problems are amenable to this

approach. A user-de�ned rules approach complements the OWL axiom-

based approach nicely and increases the expressive power of a reasoning

system from the user’s point of view. Many RDF databases support user-

de�ned rules only. Stardog is the only RDF database that comprehensively

INFERRED :Alice a :Employee

 ASSERTED :Manager rdfs:subClassOf :Employee

 1.1) INFERRED :Alice a :Manager

 ASSERTED :supervises rdfs:domain :Manager

 ASSERTED :Alice :supervises :Bob

 1.2) INFERRED :Alice a :Manager

 ASSERTED :ProjectManager rdfs:subClassOf :Manager

 INFERRED :Alice a :ProjectManager

 ASSERTED :ProjectManager owl:equivalentClass (:manages some

:Project)

 ASSERTED :Alice :manages :ProjectX

 2.1) INFERRED :ProjectX a :Project

 ASSERTED :projectID rdfs:domain :Project

 ASSERTED :ProjectX :projectID "123-45-6789"

 2.2) INFERRED :ProjectX a :Project

 ASSERTED :ResearchProject rdfs:subClassOf :Project

 ASSERTED :ProjectX a :ResearchProject

/

supports both axioms and rules. Some problems (and some people) are

simply a better �t for a rules-based approach to modeling and reasoning

than to an axioms-based approach (and, of course, vice versa).

NOTE

There isn’t a one-size-�ts-all answer to the

question "rules or axioms or both?" Use the thing

that makes the most sense given the task at

hand. This is engineering, not religion.

Stardog supports user-de�ned rule reasoning together with a rich set of

built-in functions using the SWRL (http://www.w�.org/Submission/SWRL/)

syntax and builtins library. In order to apply SWRL user-de�ned rules, you

must include the rules as part of the database’s schema: that is, put your

rules where your axioms are, i.e., in the schema. Once the rules are part of

the schema, they will be used for reasoning automatically when using the

SL reasoning type.

Assertions implied by the rules will not be materialized. Instead, rules are

used to expand queries just as regular axioms are used.

NOTE
To trigger rules to �re, execute a relevant query—

simple and easy as the truth.

Stardog Rules Syntax

Stardog supports two di�erent syntaxes for de�ning rules. The �rst is native

Stardog Rules syntax and is based on SPARQL, so you can re-use what you

already know about SPARQL to write rules. Unless you have speci�c

requirements otherwise, you should use this syntax for user-de�ned

rules in Stardog. The second is the de facto standard RDF/XML syntax for

SWRL. It has the advantage of being supported in many tools; but it’s not

fun to read or to write. You probably don’t want to use it. Better: don’t use

this syntax!

Stardog Rules Syntax is basically SPARQL "basic graph patterns" (BGPs)

plus some very explicit new bits (IF-THEN) to denote the head and the

body of a rule. You de�ne URI pre�xes in the normal[�� (#_footnote_��)]

http://www.w3.org/Submission/SWRL/

/

way (examples below) and use regular SPARQL variables for rule variables.

As you can see, some SPARQL �.� syntactic sugar— property paths,

especially, but also bnode syntax— make complex Stardog Rules concise

and elegant.

NOTE

Starting in Stardog �.�, it’s legal to use any valid

Stardog function in Stardog Rules (see rule

limitations below for few exceptions).

How to Use Stardog Rules

There are three things to sort out:

�. Where to put these rules?

�. How to represent these rules?

�. What are the gotchas?

First, the rules go into the database, of course. Unless you’ve changed the

value of reasoning.schema.graphs option, you can store the rules in any

named graph (or the default graph) in the database and you will be �ne; that

is, just add the rules to the database and it will all work out.

Second, you include the rules directly in a Turtle �le loaded into Stardog.

Rules can be mixed with triples in the �le. Here’s an example:

That’s pretty easy. Third, what are the gotchas?

[�� (#_footnote_

��)]

:r a :Rectangle ;

 :width 5 ;

 :height 8 .

IF {

 ?r a :Rectangle ;

 :width ?w ;

 :height ?h

 BIND (?w * ?h AS ?area)

}

THEN {

 ?r :area ?area

}

/

Rule Representation Options

Inline rules in Turtle data can be named for later reference and

management. We assign an IRI, :FatherRule in this example, to the rule

and use it as the subject of other triples:

In addition to the inline Turtle representation of rules, you can represent the

rules with specially constructed RDF triples. This is useful for maintaining

Turtle compatibility or for use with SPARQL INSERT DATA . This example

shows the object of a triple which contains one rule in Stardog Rules syntax

embedded as literal.

Rule Limitations & Gotchas

�. The RDF serialization of rules in, say, a Turtle �le has to use the

tag:stardog:api:rule: namespace URI and then whatever pre�x, if

any, mechanism that’s valid for that serialization. In the examples here,

we use Turtle. Hence, we use @prefix , etc.

@prefix : <http://example.org/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

RULE :FatherRule

IF {

 ?x a <http://example.org/Male> , <http://example.org/Parent> .

}

THEN {

 ?x a <http://example.org/Father> .

}

:FatherRule rdfs:comment "This rule defines fathers" ;

 a :MyRule .

@prefix rule: <tag:stardog:api:rule:> .

[] a rule:SPARQLRule;

 rule:content """

 IF {

 ?r a :Rectangle ;

 :width ?w ;

 :height ?h

 BIND (?w * ?h AS ?area)

 }

 THEN {

 ?r :area ?area

 }

 """.

/

�. However, the namespace URIs used by the literal embedded rules can

be de�ned in two places: the string that contains the rule— in the

example above, you can see the default namespace is urn:test: --or

in the Stardog database in which the rules are stored. Either place will

work; if there are con�icts, the "closest de�nition wins", that is, if

foo:Example is de�ned in both the rule content and in the Stardog

database, the de�nition in the rule content is the one that Stardog will

use.

�. Stardog Rule Syntax has the same expressivity of SWRL

(https://www.w�.org/Submission/SWRL/) which means the SPARQL

features allowed in rules are limited. Speci�cally, a triple pattern in a

rule should be in one of the following forms:

a) term rdf:type class-uri

b) term prop-uri term

where class-uri is a URI referring to a user-de�ned class and prop-uri is

a URI referring to a user-de�ned property.

Only type of property paths allowed in rules are inverse paths (^p),

sequence paths (p1 / p2) and alternative paths (p1 | p2) but these

paths should not violate the above conditions. For example, the

property path rdf:type/rdfs:label is not valid because according

to the SPARQL spec (https://www.w�.org/TR/sparql��-

query/#propertypath-syntaxforms) this would mean the object of a

rdf:type triple pattern is a variable and not a user-de�ned class.

Rule body (IF) and only rule body may optionally contain UNION ,

BIND or FILTER clauses. However, functions EXISTS , NOT EXISTS ,

or NOW() cannot be used in rules. User-de�ned functions (UDF) may

be used in rules but if the UDF is not a pure function

(https://en.wikipedia.org/wiki/Pure_function) then the results are

unde�ned.

Other SPARQL features are not allowed in rules.

�. Having the same predicate both in the rule body (IF) and the rule

head (THEN) are supported in a limited way. Cycles are allowed only if

the rule body does not contain type triples or �lters and the triples in

the rule body are linear (i.e. no cycles in the rule body either).

�

� �

[�� (#_footnote_��)]

https://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/sparql11-query/#propertypath-syntaxforms
https://en.wikipedia.org/wiki/Pure_function

/

In other words, a property used in the rule head depends on a property

in the rule body and this dependency graph may contain cycles under

some limits. One of these is that a rule body should not contain type

triples or �lters. Tree-like dependencies are always allowed.

Of course the rule body may also contain triple patterns, which

constitute a di�erent kind of graph: it should be linear when edge

directions are ignored. So no cycles or trees are allowed in this graph

pattern. Linear when directions are ignored means that

{ ?x :p ?y . ?x :p ?z } is linear but

{ ?x :p ?y . ?x :p ?z . ?x :p ?t } is not because there are three

edges for the node represented by ?x .

The reason for these limits boils down to the fact that recursive rules

and axioms are rewritten as SPARQL property paths. This is why rule

bodies cannot contain anything but property atoms. Cycles are allowed

as long as we can express these as a regular grammar. Another way to

think about this is that these rules should be as expressive as OWL

property chains and the same restrictions de�ned for property chains

apply here, too.

Let’s consider some examples.

These rules are acceptable since no cycles appear in dependencies:

These rules are not acceptable since there is a cycle:

IF

 { ?x :hasFather ?y . ?y :hasBrother ?z }

THEN

 { ?x :hasUncle ?z }

IF

 { ?x :hasUncle ?y . ?y :hasWife ?z }

THEN

 { ?x :hasAuntInLaw ?z }

IF

 { ?x :hasFather ?y . ?y :hasBrother ?z }

THEN

 { ?x :hasUncle ?z }

/

This kind of cycle is allowed:

NOTE

(�) is a general limitation, not speci�c to Stardog

Rules Syntax: recursion or cycles can occur

through multiple rules, or it may occur as a result

of interaction of rules with other axioms (or just

through axioms alone).

Stardog Rules Examples

This example is self-contained: it contains some data (the :Product…

triples) and a rule. It also demonstrates the use of SPARQL’s FILTER to do

numerical (and other) comparisons.

Here’s a more complex example that includes four rules and, again, some

data.

IF

 { ?x :hasChild ?y . ?y :hasUncle ?z }

THEN

 { ?x :hasBrother ?z }

IF

 { ?x :hasChild ?y . ?y :hasSibling ?z }

THEN

 { ?x :hasChild ?z }

PREFIX rule: <tag:stardog:api:rule:>

PREFIX : <urn:test:>

PREFIX gr: <http://purl.org/goodrelations/v1#>

:Product1 gr:hasPriceSpecification [gr:hasCurrencyValue 100.0] .

:Product2 gr:hasPriceSpecification [gr:hasCurrencyValue 500.0] .

:Product3 gr:hasPriceSpecification [gr:hasCurrencyValue 2000.0] .

IF {

 ?offering gr:hasPriceSpecification ?ps .

 ?ps gr:hasCurrencyValue ?price .

 FILTER (?price >= 200.00).

}

THEN {

 ?offering a :ExpensiveProduct .

}

/

PREFIX rule: <tag:stardog:api:rule:>

PREFIX : <urn:test:>

:c a :Circle ;

 :radius 10 .

:t a :Triangle ;

 :base 4 ;

 :height 10 .

:r a :Rectangle ;

 :width 5 ;

 :height 8 .

:s a :Rectangle ;

 :width 10 ;

 :height 10 .

IF {

 ?r a :Rectangle ;

 :width ?w ;

 :height ?h

 BIND (?w * ?h AS ?area)

}

THEN {

 ?r :area ?area

}

IF {

 ?t a :Triangle ;

 :base ?b ;

 :height ?h

 BIND (?b * ?h / 2 AS ?area)

}

THEN {

 ?t :area ?area

}

IF {

 ?c a :Circle ;

 :radius ?r

 BIND (math:pi() * math:pow(?r, 2) AS ?area)

}

THEN {

 ?c :area ?area

}

IF {

 ?r a :Rectangle ;

 :width ?w ;

 :height ?h

 FILTER (?w = ?h)

}

THEN {

/

This example also demonstrates how to use SPARQL’s BIND to introduce

intermediate variables and do calculations with or to them.

Let’s look at some other rules, but just the rule content this time for

concision, to see some use of other SPARQL features.

This rule says that a person between �� and �� (inclusive) years of age is a

teenager:

This rule says that a male person with a sibling who is the parent of a

female is an "uncle with a niece":

We can use SPARQL �.� property paths (and bnodes for unnecessary

variables (that is, ones that aren’t used in the THEN)) to render this rule

even more concisely:

 ?r a :Square

}

PREFIX swrlb: <http://www.w3.org/2003/11/swrlb#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

IF {

 ?x a :Person; hasAge ?age.

 FILTER (?age >= 13 && ?age <= 19)

}

THEN {

 ?x a :Teenager.

}

IF {

 ?x a Person; a :Male; :hasSibling ?y;

 ?y :isParentOf ?z;

 ?z a :Female.

}

THEN {

 ?x a :UncleOfNiece.

}

IF {

 ?x a :Person, :Male; :hasSibling/:isParentOf [a :Female]

}

THEN {

 ?x a :UncleOfNiece.

}

/

Aside: that’s pure awesome.

And of course a person who’s male and has a niece or nephew is an uncle

of his niece(s) and nephew(s):

Next rule example: a super user can read all of the things!

Supported Built-Ins

Stardog supports a wide variety of functions from SPARQL, XPath, SWRL,

and some native Stardog functions, too. All of them may be used in either

Stardog Rules syntax or in SWRL syntax. The supported functions are

enumerated here (#_sparql_query_functions).

Special Predicates

Stardog supports some builtin predicates with special meaning in order to

make queries and rules easier to read and write. These special predicates

are primarily syntactic sugar for more complex structures.

Direct/Strict Subclasses, Subproperties, & Direct Types

Besides the standard RDF(S) predicates rdf:type , rdfs:subClassOf

and rdfs:subPropertyOf , Stardog supports the following special built-in

predicates:

IF {

 ?x a :Male; :isSiblingOf/:isParentOf ?z

}

THEN {

 ?x :isUncleOf ?z.

}

IF {

 ?x a :SuperUser.

 ?y a :Resource.

 ?z a <http://www.w3.org/ns/sparql#UUID>.

}

THEN {

 ?z a :Role.

 ?x :hasRole ?z; :readPermission ?y.

}

/

sp:directType

sp:directSubClassOf

sp:strictSubClassOf

sp:directSubPropertyOf

sp:strictSubPropertyOf

Where the sp pre�x binds to tag:stardog:api:property: . Stardog also

recognizes sesame:directType , sesame:directSubClassOf , and

sesame:strictSubClassOf predicates where the pre�x sesame binds to

http://www.openrdf.org/schema/sesame#

(http://www.openrdf.org/schema/sesame#)

.

We show what these each of these predicates means by relating them to an

equivalent triple pattern; that is, you can just write the predicate rather than

the (more unwieldy) triple pattern.

#c1 is a subclass of c2 but not equivalent to c2

:c1 sp:strictSubClassOf :c2 => :c1 rdfs:subClassOf :c2 .

 FILTER NOT EXISTS {

 :c1 owl:equivalentClass

:c2 .

 }

#c1 is a strict subclass of c2 and there is no c3 between c1 and c2 in

#the strict subclass hierarchy

:c1 sp:directSubClassOf :c2 => :c1 sp:strictSubClassOf :c2

.

 FILTER NOT EXISTS {

 :c1 sp:strictSubClassOf

:c3 .

 :c3 sp:strictSubClassOf

:c2 .

 }

#ind is an instance of c1 but not an instance of any strict subclass

of c1

:ind sp:directType :c1 => :ind rdf:type :c1 .

 FILTER NOT EXISTS {

 :ind rdf:type :c2 .

 :c2 sp:strictSubClassOf

:c1 .

 }

http://www.openrdf.org/schema/sesame#

/

The predicates sp:directSubPropertyOf and sp:strictSubPropertyOf

are de�ned analogously.

New Individuals with SWRL

Stardog also supports a special predicate that extends the expressivity of

SWRL rules. According to SWRL, you can’t create new individuals (i.e., new

instances of classes) in a SWRL rule.

NOTE

Don’t get hung up by the tech vocabulary here…

"new individual" just means that you can’t have a

rule that creates a new instance of some RDF or

OWL class as a result of the rule �ring.

This restriction is well-motivated; without it, you can easily create rules that

do not terminate, that is, never reach a �xed point. Stardog’s user-de�ned

rules weakens this restriction in some crucial aspects, subject to the

following restrictions, conditions, and warnings.

WARNING

This special predicate is basically a loaded gun

with which you may shoot yourselves in the foot if

you aren’t very careful.

So despite the general restriction in SWRL, in Stardog we actually can

create new individuals with a rule by using the function UUID() as follows:

IF {

 ?p a :Parent .

 BIND (UUID() AS ?parent) .

}

THEN {

 ?parent a :Person .

}

/

NOTE

Alternatively, we can use the predicate

http://www.w�.org/ns/sparql#UUID as a unary

SWRL built-in.

This rule will create a random URI for each instance of the class :Parent

and also assert that each new instance is an instance of :Person --parents

are people, too!

Remarks

�. The URIs for the generated individuals are meaningless in the sense

that they should not be used in further queries; that is to say, these

URIs are not guaranteed by Stardog to be stable.

�. Due to normalization, rules with more than one atom in the head are

broken up into several rules.

Thus,

will be normalized into two rules:

IF {

 ?person a :Person .

 BIND (UUID() AS ?parent) .

}

THEN {

 ?parent a :Parent ;

 a :Male .

}

IF {

 ?person a :Person .

 BIND (UUID() AS ?parent) .

}

THEN {

 ?parent a :Parent .

}

IF {

 ?person a :Person .

 BIND (UUID() AS ?parent) .

}

THEN {

 ?parent a :Male .

}

http://www.w3.org/ns/sparql#UUID

/

As a consequence, instead of stating that the new individual is both an

instance of :Male and :Parent , we would create two di�erent new

individuals and assert that one is male and the other is a parent. If you need

to assert various things about the new individual, we recommend the use of

extra rules or axioms. In the previous example, we can introduce a new

class (:Father) and add the following rule to our schema:

And then modify the original rule accordingly:

Query Rewriting

Reasoning in Stardog is based (mostly) on a query rewriting technique:

Stardog rewrites the user’s query with respect to any schema or rules, and

then executes the resulting expanded query (EQ) against the data in the

normal way. This process is completely automated and requires no

intervention from the user.

As can be seen in Figure �, the rewriting process involves �ve di�erent

phases.

IF {

 ?person a :Father .

}

THEN {

 ?parent a :Parent ;

 a :Male .

}

IF {

 ?person a :Person .

 BIND (UUID() AS ?parent) .

}

THEN {

 ?parent a :Father .

}

/

�. Figure � Query Answering

�. Figure �. Query Rewriting

We illustrate the query answering process by means of an example.

Consider a Stardog database, MyDB , containing the following schema:

Which says that a senior manager manages at least one manager, that

every person that manages an employee is a manager, and that every

manager is also an employee.

Let’s also assume that MyDB contains the following data assertions:

�

 :SeniorManager rdfs:subClassOf :manages some :Manager

 :manages some :Employee rdfs:subClassOf :Manager

 :Manager rdfs:subClassOf :Employee

�

/

Finally, let’s say that we want to retrieve the set of all employees. We do this

by posing the following query:

To answer this query, Stardog �rst rewrites it using the information in the

schema. So the original query is rewritten into four queries:

Then Stardog executes these queries over the data as if they were written

that way to begin with. In fact, Stardog can’t tell that they weren’t.

Reasoning in Stardog just is query answering in nearly every case.

The form of the EQ depends on the reasoning type. For OWL � QL, every

EQ produced by Stardog is guaranteed to be expanded into a set of

queries. If the reasoning type is OWL � RL or EL, then the EQ may (but may

not) include a recursive rule. If a recursive rule is included, Stardog’s

answers may be incomplete with respect to the semantics of the

reasoning type.

Why Query Rewriting?

Query rewriting has several advantages over materialization. In

materialization, the data gets expanded with respect to the schema, not

with respect to any actual query. And it’s the data— all of the data— that gets

expanded, whether any actual query subsequently requires reasoning or

not. The schema is used to generate new triples, typically when data is

added or removed from the system. However, materialization introduces

several thorny issues:

:Bill rdf:type :SeniorManager

:Robert rdf:type :Manager

:Ana :manages :Lucy

:Lucy rdf:type :Employee

SELECT ?employee WHERE { ?employee rdf:type :Employee }

SELECT ?employee WHERE { ?employee rdf:type :Employee }

SELECT ?employee WHERE { ?employee rdf:type :Manager }

SELECT ?employee WHERE { ?employee rdf:type :SeniorManager }

SELECT ?employee WHERE { ?employee :manages ?x. ?x rdf:type :Employee

}

/

�. data freshness. Materialization has to be performed every time the

data or the schema change. This is particularly unsuitable for

applications where the data changes frequently.

�. data size. Depending on the schema, materialization can signi�cantly

increase the size of the data, sometimes dramatically so. The cost of

this data size blowup may be applied to every query in terms of

increased I/O.

�. OWL � pro�le reasoning. Given the fact that QL, RL, and EL are not

comparable with respect to expressive power, an application that

requires reasoning with more than one pro�le would need to maintain

di�erent corresponding materialized versions of the data.

�. Resources. Depending on the size of the original data and the

complexity of the schema, materialization may be computationally

expensive. And truth maintenance, which materialization requires, is

always computationally expensive.

Same As Reasoning

Stardog �.� adds full support for OWL � sameAs reasoning. However,

sameAs reasoning works in a di�erent way than the rest of the reasoning

mechanism. The sameAs inferences are computed and indexed eagerly so

that these materialized inferences can be used directly at query rewriting

time. The sameAs index is updated automatically as the database is

modi�ed so the di�erence is not of much direct concern to users.

In order to use sameAs reasoning, the database con�guration option

reasoning.sameas should be set either at database creation time or at a

later time when the database is o�ine. This can be done using the

command line as follows:

There are legal three values for this option:

OFF disables all sameAs inferences, that is, only asserted sameAs

triples will be included in query results.

$./stardog-admin db create -o reasoning.sameas=FULL -n myDB

[�� (#_footnote_��)]

/

ON computes sameAs inferences using only asserted sameAs triples,

considering the re�exivity, symmetry and transitivity of the sameAs

relation.

FULL same as ON but also considers OWL functional properties,

inverse functional properties, and hasKey axioms while computing

sameAs inferences.

NOTE

The way sameAs reasoning works di�ers from

the OWL semantics slightly in the sense that

Stardog designates one canonical individual for

each sameAs equivalence set and only returns

the canonical individual. This avoids the

combinatorial explosion in query results while

providing the data integration bene�ts.

Let’s see an example showing how sameAs reasoning works. Consider the

following database where sameAs reasoning is set to ON :

Now consider the following query and its results:

dbpedia:Elvis_Presley

 dbpedia-owl:birthPlace dbpedia:Mississippi ;

 owl:sameAs freebase:en.elvis_presley .

nyt:presley_elvis_per

 nyt:associated_article_count 35 ;

 rdfs:label "Elvis Presley" ;

 owl:sameAs dbpedia:Elvis_Presley .

freebase:en.elvis_presley

 freebase:common.topic.official_website <http://www.elvis.com/> .

$./stardog query --reasoning elvis 'SELECT * { ?s dbpedia-

owl:birthPlace ?o; rdfs:label "Elvis Presley" }'

+-----------------------+---------------------+

| s | o |

+-----------------------+---------------------+

| nyt:presley_elvis_per | dbpedia:Mississippi |

+-----------------------+---------------------+

/

Let’s unpack this carefully. There are three things to note.

First, the query returns only one result even though there are three di�erent

URIs that denote Elvis Presley. Second, the URI returned is �xed but chosen

randomly. Stardog picks one of the URIs as the canonical URI and always

returns that and only that canonical URI in the results. If more sameAs

triples are added the chosen canonical individual may change. Third, it is

important to point out that even though only one URI is returned, the e�ect

of sameAs reasoning is visible in the results since the rdfs:label and

dbpedia-owl:birthPlace properties were asserted about di�erent

instances (i.e., di�erent URIs).

Now, you might be inclined to write queries such as this to get all the

properties for a speci�c URI:

However, this is completely unnecessary; rather, you can write the following

query and get the same results since sameAs reasoning would

automatically merge the results for you. Therefore, the query

would return these results:

SELECT * {

 nyt:presley_elvis_per owl:sameAs ?elvis .

 ?elvis ?p ?o

}

SELECT * {

 nyt:presley_elvis_per ?p ?o

}

+--+-----------------------+

| p | o |

+--+-----------------------+

| rdfs:label | "Elvis Presley" |

| dbpedia-owl:birthPlace | dbpedia:Mississippi |

| nyt:associated_article_count | 35 |

| freebase:common.topic.official_website | http://www.elvis.com/ |

| rdf:type | owl:Thing |

+--+-----------------------+

/

NOTE

The URI used in the query does not need to be

the same one returned in the results. Thus, the

following query would return the exact same

results, too:

The only time Stardog will return a non-canonical URI in the query results is

when you explicitly query for the sameAs inferences as in this next

example:

In the FULL sameAs reasoning mode, Stardog will also take other OWL

axioms into account when computing sameAs inferences. Consider the

following example:

SELECT * {

 dbpedia:Elvis_Presley ?p ?o

}

$./stardog query -r elvis 'SELECT * { freebase:en.elvis_presley

owl:sameAs ?elvis }'

+---------------------------+

| elvis |

+---------------------------+

| dbpedia:Elvis_Presley |

| freebase:en.elvis_presley |

| nyt:presley_elvis_per |

+---------------------------+

/

For this database, with sameAs reasoning set to FULL , we would get the

following answers:

We can follow the chain of inferences to understand how these results were

computed:

#Everyone has a unique SSN number

:hasSSN a owl:InverseFunctionalProperty , owl:DatatypeProperty .

:JohnDoe :hasSSN "123-45-6789" .

:JDoe :hasSSN "123-45-6789" .

#Nobody can work for more than one company (for the sake of the

example)

:worksFor a owl:FunctionalProperty , owl:ObjectProperty ;

 rdfs:domain :Employee ;

 rdfs:range :Company .

:JohnDoe :worksFor :Acme .

:JDoe :worksFor :AcmeInc .

#For each company, there can only be one employee with the same

employee ID

:Employee owl:hasKey (:employeeID :worksFor).

:JohnDoe :employeeID "1234-ABC" .

:JohnD :employeeID "1234-ABC" ;

 :worksFor :AcmeInc .

:JD :employeeID "5678-XYZ" ;

 :worksFor :AcmeInc .

:John :employeeID "1234-ABC" ;

 :worksFor :Emca .

$./stardog query -r acme "SELECT * {?x owl:sameAs ?y}"

+----------+----------+

| x | y |

+----------+----------+

| :JohnDoe | :JohnD |

| :JDoe | :JohnD |

| :Acme | :AcmeInc |

+----------+----------+

/

�. :JohnDoe owl:sameAs :JohnD can be computed due to the fact that

both have the same SSN numbers and hasSSN property is inverse

functional.

�. We can infer :Acme owl:sameAs :AcmeInc since :JohnDoe can work

for at most one company.

�. :JohnDoe owl:sameAs :JohnD can be inferred using the owl:hasKey

de�nition since both individuals are known to work for the same

company and have the same employee ID.

�. No more sameAs inferences can be computed due to the key

de�nition, since other employees either have di�erent IDs or work for

other companies.

Removing Unwanted Inferences

Sometimes reasoning can produce unintended inferences. Perhaps there

are modeling errors in the schema or incorrect assertions in the data. After

an unintended inference is detected, it might be hard to �gure out how to

�x it, because there might be multiple di�erent reasons for the inference.

The reasoning explain command can be used to see the di�erent

explanations and the reasoning undo command can be used to generate

a SPARQL update query that will remove the minimum amount of triples

necessary to remove the unwanted inference:

Performance Hints

The query rewriting approach suggests some guidelines for more e�cient

query answering.

Hierarchies and Queries

Avoid unnecessarily deep class/property hierarchies.

$./reasoning undo myDB ":AcmeInc a :Person"

/

If you do not need to model several di�erent types of a given class or

property in your schema, then don’t do that! The reason shallow

hierarchies are desirable is that the maximal hierarchy depth in the

schema partly determines the maximal size of the EQs produced by

Stardog. The larger the EQ, the longer it takes to evaluate, generally.

For example, suppose our schema contains a very thorough and detailed

set of subclasses of the class :Employee :

If we wanted to retrieve the set of all employees, Stardog would produce

an EQ containing a query of the following form for every subclass :Ci

of :Employee :

Thus, ask the most speci�c query su�cient for your use case. Why?

More general queries— that is, queries that contain concepts high up in

the class hierarchy de�ned by the schema— will typically yield larger EQs.

Domains and Ranges

Specify domain and range of the properties in the schema.

These types of axiom can improve query performance signi�cantly.

Consider the following query asking for people and the employees they

manage:

:Manager rdfs:subClassOf :Employee

:SeniorManager rdfs:subClassOf :Manager

...

:Supervisor rdfs:subClassOf :Employee

:DepartmentSupervisor rdfs:subClassOf :Supervisor

...

:Secretary rdfs:subClassOf :Employee

...

SELECT ?employee WHERE { ?employee rdf:type :Ci }

SELECT ?manager ?employee WHERE

 { ?manager :manages ?employee.

 ?employee rdf:type :Employee. }

/

We know that this query would cause a large EQ given a deep hierarchy

of :Employee subclasses. However, if we added the following single

range axiom:

then the EQ would collapse to

which is considerably easier to evaluate.

Very Large Schemas

If you are working with a very large schema like SNOMED then there are

couple things to note. First of all, Stardog reasoning works by pulling the

complete schema into memory. This means you might need to increase the

default memory settings for Stardog for a large schema. Stardog performs

all schema reasoning upfront and only once but waits until the �rst

reasoning query arrives. With a large schema, this step can be slow but

subsequent reasoning queries will be fast. Also note that, Stardog will

update schema reasoning results automatically after the database is

modi�ed so there will be some processing time spent then.

Reasoning with very expressive schemas can be time consuming and use a

lot of memory. To get the best performance out of Stardog with large

schemas, limit the expressivity of your schema to OWL � EL

(http://www.w�.org/TR/����/REC-owl�-pro�les-��������/#OWL_�_EL).

You can also set the reasoning type of the database to EL and Stardog will

automatically �lter any axiom outside the EL expressivity. See Reasoning

Types (#_reasoning_types) for more details on reasoning types. OWL � EL

allows range declarations for properties and user-de�ned datatypes but

avoiding these two constructs will further improve schema reasoning

performance in Stardog.

Not Seeing Expected Results?

Here’s a few things that you might want to consider.

:manages rdfs:range :Employee

 SELECT ?manager ?employee WHERE { ?manager :manages ?employee }

http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/#OWL_2_EL

/

Are variable types ambiguous?

When a SPARQL query gets executed, each variable is bound to a URI,

blank node, or to a literal to form a particular result (a collection of these

results is a result set). In the context of reasoning, URIs might represent

di�erent entities: individuals, classes, properties, etc. According to the

relevant standard (http://www.w�.org/TR/sparql��-

entailment/#OWLDSEnRegime), every variable in a SPARQL query must

bind to at most one of these types of entity.

Stardog can often �gure out the right entity type from the query itself (e.g.,

given the triple pattern ?i ?p "a literal" , we know ?p is supposed to

bind to a data property); however, sometimes this isn’t possible (e.g.,

?s ?p ?o). In case the types can’t be determined automatically, Stardog

logs a message and evaluates the query by making some assumptions,

which may not be what the query writer intended, about the types of

variables.

You can add one or more type triples to the query to resolve these

ambiguities.

These "type triples" have the form ?var a TYPE , where TYPE is a URI

representing the type of entity to which the variable ?var is supposed to

bind: the most common are owl:ObjectProperty or

owl:DatatypeProperty ; in some cases, you might want

owl:NamedIndividual , or owl:Class . For instance, you can use the

following query to retrieve all object properties and their characteristics;

without the type triple, ?s will bind only to individuals:

Since Stardog now knows that ?s should bind to an object property, it can

now infer that ?o binds to property characteristics of ?s .

Is the schema where you think it is?

Starting in Stardog �.�, Stardog will extract the schema from all named

graphs and the default graph.

[�� (#_footnote_��)]

 SELECT ?o

 WHERE {

 ?s rdf:type ?o.

 ?s a owl:ObjectProperty.

 }.

http://www.w3.org/TR/sparql11-entailment/#OWLDSEnRegime

/

If you require that the schema only be extracted from one or more speci�c

named graphs, then you must tell Stardog where to �nd the schema. See

database con�guration options (#_con�guration_options) for details. You

can also use the reasoning schema

(https://stardog.com/docs/man/reasoning-schema) command to export the

contents of the schema to see exactly what is included in the schema that

Stardog uses.

Are you using the right reasoning type?

Perhaps some of the modeling constructs (a.k.a. axioms) in your database

are being ignored. By default, Stardog uses the SL reasoning type. You

can �nd out which axioms are being ignored by looking at the Stardog log

�le.

Are you using DL?

Stardog supports full OWL � DL reasoning but only for data that �ts into

main memory.

Are you using SWRL?

SWRL rules— whether using SWRL syntax or Stardog Rules Syntax— are only

taken into account using the SL reasoning type.

Do you know what to expect?

The OWL � primer (http://www.w�.org/TR/owl�-primer/) is a good place to

start.

Known Issues

Stardog �.�.� does not

Follow ontology owl:imports statements automatically; any imported

OWL ontologies that are required must be loaded into a Stardog

database in the normal way.

Handle recursive queries. If recursion is necessary to answer the query

with respect to the schema, results will be sound (no wrong answers)

but potentially incomplete (some correct answers not returned) with

https://stardog.com/docs/man/reasoning-schema
http://www.w3.org/TR/owl2-primer/

/

respect to the requested reasoning type.

Terminology

This chapter uses the following terms of art.

Databases

A database (DB), a.k.a. ontology, is composed of two di�erent parts: the

schema or Terminological Box (TBox) and the data or Assertional Box

(ABox). Analogus to relational databases, the TBox can be thought of as the

schema, and the ABox as the data. In other words, the TBox is a set of

axioms, whereas the ABox is a set of assertions.

As we explain in OWL � Pro�les (#_owl_�_pro�les), the kinds of assertion

and axiom that one might use for a particular database are determined by

the fragment of OWL � to which you’d like to adhere. In general, you should

choose the OWL � pro�le that most closely �ts the data modeling needs of

your application.

The most common data assertions are class and property assertions. Class

assertions are used to state that a particular individual is an instance of a

given class. Property assertions are used to state that two particular

individuals (or an individual and a literal) are related via a given property.

For example, suppose we have a DB MyDB that contains the following

data assertions. We use the usual standard pre�xes for RDF(S) and OWL.

Which says that :complexible is a company, and that :complexible

maintains :Stardog .

The most common schema axioms are subclass axioms. Subclass axioms

are used to state that every instance of a particular class is also an instance

of another class. For example, suppose that MyDB contains the following

TBox axiom:

�

:complexible rdf:type :Company

:complexible :maintains :Stardog

�

:Company rdfs:subClassOf :Organization

/

stating that companies are a type of organization.

Queries

When reasoning is enabled, Stardog executes SPARQL queries depending

on the type of Basic Graph Patterns they contain. A BGP is said to be an

"ABox BGP" if it is of one of the following forms:

term rdf:type uri

term uri term

term owl:differentFrom term

term owl:sameAs term

A BGP is said to be a TBox BGP if it is of one of the following forms:

term rdfs:subClassOf term

term owl:disjointWith term

term owl:equivalentClass term

term rdfs:subPropertyOf term

term owl:equivalentProperty term

term owl:inverseOf term

term owl:propertyDisjointWith term

term rdfs:domain term

term rdfs:range term

A BGP is said to be a Hybrid BGP if it is of one of the following forms:

term rdf:type ?var

term ?var term

where term (possibly with subscripts) is either an URI or variable; uri is a

URI; and ?var is a variable.

When executing a query, ABox BGPs are handled by Stardog. TBox BGPs

are executed by Pellet embedded in Stardog. Hybrid BGPs by a

combination of both.

Reasoning

Intuitively, reasoning with a DB means to make implicit knowledge explicit.

There are two main use cases for reasoning: to infer implicit knowledge and

to discover modeling errors.

�

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

�

� �

/

With respect to the �rst use case, recall that MyDB contains the following

assertion and axiom:

From this DB, we can use Stardog in order to infer that :complexible is

an organization:

Using reasoning in order to infer implicit knowledge in the context of an

enterprise application can lead to simpler queries. Let us suppose, for

example, that MyDB contains a complex class hierarchy including several

types of organization (including company). Let us further suppose that our

application requires to use Stardog in order to get the list of all considered

organizations. If Stardog were used with reasoning, then we would need

only issue the following simple query:

In contrast, if we were using Stardog with no reasoning, then we would

have to issue a more complex query that considers all possible types of

organization, thus coupling queries to domain knowledge in a tight way:

Which of these queries seems more loosely coupled and more resilient to

change?

Stardog can also be used in order to discover modeling errors in a DB. The

most common modeling errors are unsatis�able classes and inconsistent

DBs.

An unsatis�able class is simply a class that cannot have any instances. Say,

for example, that we added the following axioms to MyDB :

�

 :complexible rdf:type :Company

 :Company rdfs:subClassOf :Organization

:complexible rdf:type :Organization

�

SELECT ?org WHERE { ?org rdf:type :Organization}

SELECT ?org WHERE

 { { ?org rdf:type :Organization } UNION

 { ?org rdf:type :Company } UNION

...

}

�

/

stating that companies cannot be organizations and vice versa, and that an

LLC is a company and an organization. The disjointness axiom causes the

class :LLC to be unsatis�able because, for the DB to be free of any logical

contradiction, there can be no instances of :LLC .

Asserting (or inferring) that an unsatis�able class has an instance, causes

the DB to be inconsistent. In the particular case of MyDB , we know that

:complexible is a company and an organization; therefore, we also know

that it is an instance of :LLC , and as :LLC is known to be unsatis�able,

we have that MyDB is inconsistent.

Using reasoning in order to discover modeling errors in the context of an

enterprise application is useful in order to maintain a correct contradiction-

free model of the domain. In our example, we discovered that :LLC is

unsatis�able and MyDB is inconsistent, which leads us to believe that

there is a modeling error in our DB. In this case, it is easy to see that the

problem is the disjointness axiom between :Company and

:Organization .

OWL � Profiles

As explained in the OWL � Web Ontology Language Pro�les Speci�cation

(http://www.w�.org/TR/owl�-pro�les/), an OWL � pro�le is a reduced version

of OWL � that trades some expressive power for e�ciency of reasoning.

There are three OWL � pro�les, each of which achieves e�ciency

di�erently.

OWL � QL (http://www.w�.org/TR/owl�-pro�les/#OWL_�_QL) is aimed at

applications that use very large volumes of instance data, and where

query answering is the most important reasoning task. The expressive

power of the pro�le is necessarily limited; however, it includes most of

the main features of conceptual models such as UML class diagrams

and ER diagrams.

OWL � EL (http://www.w�.org/TR/owl�-pro�les/#OWL_�_EL) is

particularly useful in applications employing ontologies that contain very

large numbers of properties and classes. This pro�le captures the

 :Company owl:disjointWith :Organization

 :LLC owl:equivalentClass :Company and :Organization

�

�

�

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

/

expressive power used by many such ontologies and is a subset of OWL

� for which the basic reasoning problems can be performed in time that

is polynomial with respect to the size of the ontology.

OWL � RL (http://www.w�.org/TR/owl�-pro�les/#OWL_�_RL) is aimed at

applications that require scalable reasoning without sacri�cing too much

expressive power. It is designed to accommodate OWL � applications

that can trade the full expressivity of the language for e�ciency, as well

as RDF(S) applications that need some added expressivity.

Each pro�le restricts the kinds of axiom and assertion that can be used in a

DB. Colloquially, QL is the least expressive of the pro�les, followed by RL

and EL; however, strictly speaking, no pro�le is more expressive than any

other as they provide incomparable sets of constructs.

Stardog supports the three pro�les of OWL �. Notably, since TBox BGPs are

handled completely by Pellet, Stardog supports reasoning for the whole of

OWL � for queries containing TBox BGPs only.

VALIDATING CONSTRAINTS

Stardog Integrity Constraint Validation ("ICV") validates RDF data stored in a

Stardog database according to constraints described by users and that

make sense for their domain, application, and data. These constraints may

be written in SPARQL, OWL, or SWRL. Support for SHACL constraints have

been added as of version �.�. This chapter explains how to use ICV.

The use of high-level languages (OWL �, SWRL, and SPARQL) to validate

RDF data using closed world semantics is one of Stardog’s unique

capabilities. Using high level languages like OWL, SWRL, and SPARQL as

schema or constraint languages for RDF and Linked Data has several

advantages:

Unifying the domain model with data quality rules

Aligning the domain model and data quality rules with the integration

model and language (i.e., RDF)

Being able to query the domain model, data quality rules, integration

model, mapping rules, etc with SPARQL

Being able to use automated reasoning about all of these things to

insure logical consistency, explain errors and problems, etc.

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL

/

TIP

See the extended ICV tutorial

(https://github.com/stardog-union/stardog-

examples/tree/develop/examples/cli/icv) in the

stardog-examples repo on Github and our blog

post Data Quality with ICV

(https://www.stardog.com/blog/data-quality-with-

icv/) for more details about using ICV.

Using ICV from CLI

To add constraints to a database:

To drop all constraints from a database:

To remove one or more speci�c constraints from a database:

To convert new or existing constraints into SPARQL queries for export:

To explain a constraint violation:

To export constraints:

To validate a database (or some named graphs) with respect to constraints:

$ stardog-admin icv add myDb constraints.rdf

$ stardog-admin icv drop myDb

$ stardog-admin icv remove myDb constraints.rdf

$ stardog icv convert myDb constraints.rdf

$ stardog icv explain --contexts http://example.org/context1

http://example.org/context2 -- myDb

$ stardog icv export myDb constraints.rdf

https://github.com/stardog-union/stardog-examples/tree/develop/examples/cli/icv
https://www.stardog.com/blog/data-quality-with-icv/

/

ICV & OWL � Reasoning

An integrity constraint may be satis�ed or violated in either of two ways:

by an explicit statement in a Stardog database or by a statement that’s

been validly inferred by Stardog.

When ICs are being validated the user needs to specify if reasoning will be

used or not. So ICV is performed with three inputs:

�. a Stardog database,

�. a set of constraints, and

�. a reasoning �ag (which may be, of course, set to false for no

reasoning).

This is the case because domain modelers, ontology developers, or

integrity constraint authors must consider the interactions between explicit

and inferred statements and how these are accounted for in integrity

constraints.

ICV Guard Mode

Stardog will also apply constraints as part of its transactional cycle and fail

transactions that violate constraints. We call this "guard mode". It must be

enabled explicitly in the database con�guration options. Using the

command line, these steps are as follows:

Once guard mode is enabled, modi�cations of the database (via SPARQL

Update or any other method), whether adds or deletes, that violate the

integrity constraints will cause the transaction to fail.

$ stardog icv validate --contexts http://example.org/context1

http://example.org/context2 -- myDb

$./stardog-admin db offline myDb #take the database offline

$./stardog-admin metadata set -o icv.enabled=true myDb #enable ICV

$./stardog-admin db online myDb #put the database online

/

Explaining ICV Violations

ICV violations can be explained using Stardog’s Proof Trees

(#_proof_trees). The following command will explain the IC violations for

constraints stored in the database:

The command is �exible to change the number of violations displayed, and

to explain violations for external constraints by passing the �le with

constraints as an additional argument:

Security Note

WARNING

There is a security implication in this design that

may not be obvious. Changing the reasoning

type associated with a database and integrity

constraint validation may have serious security

implications with respect to a Stardog database

and, thus, may only be performed by a user role

with su�cient privileges for that action.

Repairing ICV Violations

Stardog �.� adds support for automatic repair of some kinds of integrity

violation. This can be accomplished programmatically via API, as well as via

CLI using the icv fix subcommand.

Repair plans are emitted as a sequence of SPARQL Update queries, which

means they can be applied to any system that understands SPARQL

Update. If you pass --execute the repair plan will be applied immediately.

$ stardog icv explain --reasoning "myDB"

$ stardog icv explain --reasoning --limit 2 "myDB" constraints.ttl

$ stardog help icv fix

/

icv fix will repair violations of all constraints in the database; if you’d

prefer to �x the violations for only some constraints, you can pass those

constraints as an additional argument. Although a possible (but trivial) �x for

any violation is to remove one or more constraints, icv fix does not

suggest that kind of repair, even though it may be appropriate in some

cases.

SHACL Constraints

As of version �.�, Stardog supports validation of SHACL constraints. SHACL

constraints can be managed like any other constraint Stardog supports and

all the existing validation commands work with SHACL constraints.

Normally constraints are stored in the system database and managed with

special commands icv add and icv remove . This is still possible with

SHACL constraints but if desired SHACL constraints can be loaded into the

database along with regular data using data add . Validation results will be

the same in both cases.

SHACL support comes with a new validation command that outputs the

SHACL validation report (https://www.w�.org/TR/shacl/#validation-report):

SHACL Support Limitations

Stardog supports all the features in the core SHACL language

(https://www.w�.org/TR/shacl/) with the following exceptions:

�. Stardog does not support quali�ed value shape constraints

(https://www.w�.org/TR/shacl/#Quali�edValueShapeConstraintCompon

ent)

�. Stardog supports SPARQL-based constraints but does not support

prebinding (https://www.w�.org/TR/shacl/#sparql-constraints-prebound)

the $shapesGraph or $currentShape variables in SPARQL

�. Stardog does not support property validators

(https://www.w�.org/TR/shacl/#sparql-constraint-components)

$ stardog icv report myDb

https://www.w3.org/TR/shacl/#validation-report
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/#QualifiedValueShapeConstraintComponent
https://www.w3.org/TR/shacl/#sparql-constraints-prebound
https://www.w3.org/TR/shacl/#sparql-constraint-components

/

�. Stardog does not support the Advanced Features

(https://www.w�.org/TR/shacl-af/) or the JavaScript Extensions

(https://www.w�.org/TR/shacl-js/)

OWL Constraint Examples

Let’s look at some OWL constraint examples that show these constraints

work. These examples use OWL � Manchester syntax, and they assume a

simple data schema, which is available as an OWL ontology

(/icv/company.owl) and as a UML diagram (/icv/ClassDiagram.png). The

examples assume that the default namespace is

http://example.com/company.owl#

(http://example.com/company.owl#) and

that xsd: is bound to the standard,

http://www.w�.org/����/XMLSchema#

(http://www.w�.org/����/XMLSchema#)

.

Reference Java code (https://gist.github.com/�������) is available for each

of the following examples and is also distributed with Stardog.

Subsumption Constraints

This kind of constraint guarantees certain subclass and superclass (i.e.,

subsumption) relationships exist between instances.

Managers must be employees.

Constraint

Database A (invalid)

Database B (valid)

:Manager rdfs:subClassOf :Employee

:Alice a :Manager .

:Alice a :Manager , :Employee .

https://www.w3.org/TR/shacl-af/
https://www.w3.org/TR/shacl-js/
https://www.stardog.com/icv/company.owl
https://www.stardog.com/icv/ClassDiagram.png
http://example.com/company.owl#
http://www.w3.org/2001/XMLSchema#
https://gist.github.com/1333767

/

This constraint says that if an RDF individual is an instance of Manager ,

then it must also be an instance of Employee . In A, the only instance of

Manager , namely Alice , is not an instance of Employee ; therefore, A is

invalid. In B, Alice is an instance of Database both Manager and

Employee ; therefore, B is valid.

Domain-Range Constraints

These constraints control the types of subjects and objects used with a

property.

Only project leaders can be responsible for projects.

Constraint

Database A (invalid)

Database B (invalid)

Database C (valid)

This constraint says that if two RDF instances are related to each other via

the property is_responsible_for , then the subject must be an instance

of Project_Leader and the object must be an instance of Project . In

Database A, there is only one pair of individuals related via

is_responsible_for , namely (Alice, MyProject) , and MyProject is

an instance of Project ; but Alice is not an instance of

Project_Leader . Therefore, A is invalid. In B, Alice is an instance of

:is_responsible_for rdfs:domain :Project_Leader ;

 rdfs:range :Project .

:Alice :is_responsible_for :MyProject .

:MyProject a :Project .

:Alice a :Project_Leader ;

 :is_responsible_for :MyProject .

:Alice a :Project_Leader ;

 :is_responsible_for :MyProject .

:MyProject a :Project .

/

Project_Leader , but MyProject is not an instance of Project ;

therefore, B is not valid. In C, Alice is an instance of Project_Leader ,

and MyProject is an instance of Project ; therefore, C is valid.

Only employees can have an SSN.

Constraint

Database A (invalid)

Database B (valid)

This constraint says that if an RDF instance i has a data assertion via the

the property SSN , then i must be an instance of Employee . In A, Bob is

not an instance of Employee but has SSN ; therefore, A is invalid. In B,

Bob is an instance of Employee ; therefore, B is valid.

A date of birth must be a date.

Constraint

Database A (invalid)

Database B (valid)

This constraint says that if an RDF instance i is related to a literal l via

the data property DOB , then l must have the XML Schema type

xsd:date . In A, Bob is related to the untyped literal "1970-01-01" via

:ssn rdfs:domain :Employee

:Bob :ssn "123-45-6789" .

:Bob a :Employee ;

 :ssn "123-45-6789" .

:dob rdfs:range xsd:date

:Bob :dob "1970-01-01" .

:Bob :dob "1970-01-01"^^xsd:date

/

DOB so A is invalid. In B, the literal "1970-01-01" is properly typed so it’s

valid.

Participation Constraints

These constraints control whether or not an RDF instance participates in

some speci�ed relationship.

Each supervisor must supervise at least one employee.

Constraint

Database A (valid)

Database B (invalid)

Database C (invalid)

Database D (valid)

This constraint says that if an RDF instance i is of type Supervisor , then

i must be related to an individual j via the property supervises and

also that j must be an instance of Employee . In A, Supervisor has no

instances; therefore, A is trivially valid. In B, the only instance of

Supervisor , namely Alice , is related to no individual; therefore, B is

invalid. In C, Alice is related to Bob via supervises , but Bob is not an

:Supervisor rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty :supervises ;

 owl:someValuesFrom :Employee

] .

:Alice a owl:Thing .

:Alice a :Supervisor .

:Alice a :Supervisor ;

 :supervises :Bob .

:Alice a :Supervisor ;

 :supervises :Bob .

:Bob a :Employee

/

instance of Employee ; therefore, C is invalid. In D, Alice is related to

Bob via supervises , and Bob is an instance of Employee ; hence, D is

valid.

Each project must have a valid project number.

Constraint

Database A (valid)

Database B (invalid)

Database C (invalid)

Database D (invalid)

Database E (valid)

This constraint says that if an RDF instance i is of type Project , then i

must be related via the property number to an integer between 0 and

5000 (inclusive)—that is, projects have project numbers in a certain range.

:Project rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty :number ;

 owl:someValuesFrom

 [a rdfs:Datatype ;

 owl:onDatatype xsd:integer ;

 owl:withRestrictions ([xsd:minInclusive 0] [

xsd:maxExclusive 5000])

]

] .

:MyProject a owl:Thing .

:MyProject a :Project

:MyProject a :Project ;

 :number "23" .

:MyProject a :Project ;

 :number "6000"^^xsd:integer .

:MyProject a :Project ;

 :number "23"^^xsd:integer .

/

In A, the individual MyProject is not known to be an instance of Project

so the constraint does not apply at all and A is valid. In B, MyProject is an

instance of Project but doesn’t have any data assertions via number so

A is invalid. In C, MyProject does have a data property assertion via

number but the literal "23" is untyped— that is, it’s not an integer—

therefore, C is invalid. In D, MyProject is related to an integer via number

but it is out of the range: D is invalid. Finally, in E, MyProject is related to

the integer 23 which is in the range of [0,5000] so E is valid.

Cardinality Constraints

These constraints control the number of various relationships or property

values.

Employees must not work on more than � projects.

Constraint

Database A (valid)

Database B (valid)

Database C (invalid)

:Employee rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty :works_on;

 owl:maxQualifiedCardinality

"3"^^xsd:nonNegativeInteger ;

 owl:onClass :Project

] .

:Bob a owl:Thing.

:Bob a :Employee ;

 :works_on :MyProject .

:MyProject a :Project .

/

If an RDF instance i is an Employee , then i must not be related via the

property works_on to more than � instances of Project . In A, Bob is

not known to be an instance of Employee so the constraint does not apply

and the A is valid. In B, Bob is an instance of Employee but is known to

work on only a single project, namely MyProject , so B is valid. In C, Bob

is related to � instances of Project via works_on .

NOTE

Stardog ICV implements a weak form of the

unique name assumption, that is, it assumes that

things which have di�erent names are, in fact,

di�erent things.

Since Stardog ICV uses closed world (instead of open world) semantics,

 it assumes that the di�erent projects with di�erent names

are, in fact, separate projects, which (in this case) violates the constraint

and makes C invalid.

Departments must have at least � employees.

Constraint

Database A (valid)

:Bob a :Employee ;

 :works_on :MyProject , :MyProjectFoo , :MyProjectBar ,

:MyProjectBaz .

:MyProject a :Project .

:MyProjectFoo a :Project .

:MyProjectBar a :Project .

:MyProjectBaz a :Project .

[��]

[��

(#_footnote_��)]

:Department rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty [owl:inverseOf :works_in] ;

 owl:minQualifiedCardinality

"2"^^xsd:nonNegativeInteger ;

 owl:onClass :Employee

] .

/

Database B (invalid)

Database C (valid)

This constraint says that if an RDF instance i is a Department , then there

should exist at least � instances j and k of class Employee which are

related to i via the property works_in (or, equivalently, i should be

related to them via the inverse of works_in). In A, MyDepartment is not

known to be an instance of Department so the constraint does not apply.

In B, MyDepartment is an instance of Department but only one instance

of Employee , namely Bob , is known to work in it, so B is invalid. In C,

MyDepartment is related to the individuals Bob and Alice , which are

both instances of Employee and (again, due to weak Unique Name

Assumption in Stardog ICV), are assumed to be distinct, so C is valid.

Managers must manage exactly � department.

Constraint

Database A (valid)

:MyDepartment a owl:NamedIndividual .

:MyDepartment a :Department .

:Bob a :Employee ;

 :works_in :MyDepartment .

:MyDepartment a :Department .

:Alice a :Employee ;

 :works_in :MyDepartment .

:Bob a :Employee ;

 :works_in :MyDepartment .

:Manager rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty :manages ;

 owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ;

 owl:onClass :Department

] .

 Individual: Isabella

/

Database B (invalid)

Database C (invalid)

Database D (valid)

Database E (invalid)

This constraint says that if an RDF instance i is a Manager , then it must

be related to exactly � instance of Department via the property manages .

In A, the individual Isabella is not known to be an instance of Manager

so the constraint does not apply and A is valid. In B, Isabella is an

instance of Manager but is not related to any instances of Department , so

B is invalid. In C, Isabella is related to the individual MyDepartment via

the property manages but MyDepartment is not known to be an instance

of Department , so C is invalid. In D, Isabella is related to exactly one

instance of Department , namely MyDepartment , so D is valid. Finally, in E,

Isabella is related to two (assumed to be) distinct (again, because of

weak UNA) instances of Department , namely MyDepartment and

MyDepartment1 , so E is invalid.

Entities may have no more than one name.

Constraint

:Isabella a :Manager .

:Isabella a :Manager ;

 :manages :MyDepartment .

:Isabella a :Manager ;

 :manages :MyDepartment .

:MyDepartment a :Department .

:Isabella a :Manager ;

 :manages :MyDepartment , :MyDepartment1 .

:MyDepartment a :Department .

:MyDepartment1 a :Department .

:name a owl:FunctionalProperty .

/

Database A (valid)

Database B (valid)

Database C (invalid)

This constraint says that no RDF instance i can have more than one

assertion via the data property name . In A, MyDepartment does not have

any data property assertions so A is valid. In B, MyDepartment has a single

assertion via name , so the ontology is also valid. In C, MyDepartment is

related to � literals, namely "Human Resources" and "Legal" , via name ,

so C is invalid.

Property Constraints

These constraints control how instances are related to one another via

properties.

The manager of a department must work in that department.

Constraint

Database A (invalid)

Database B (valid)

This constraint says that if an RDF instance i is related to j via the

property manages , then i must also be related to j via the property

works_in . In A, Bob is related to MyDepartment via manages , but not

:MyDepartment a owl:Thing .

:MyDepartment :name "Human Resources" .

:MyDepartment :name "Human Resources" , "Legal" .

:manages rdfs:subPropertyOf :works_in .

:Bob :manages :MyDepartment

:Bob :works_in :MyDepartment ;

 :manages :MyDepartment .

/

via works_in , so A is invalid. In B, Bob is related to MyDepartment via

both manages and works_in , so B is valid.

Department managers must supervise all the department’s
employees.

Constraint

Database A (invalid)

Database B (valid)

This constraint says that if an RDF instance i is related to j via the

property manages and k is related to j via the property works_in ,

then i must be related to k via the property is_supervisor_of . In A,

Jose is related to MyDepartment via manages , Diego is related to

MyDepartment via works_in , but Jose is not related to Diego via any

property, so A is invalid. In B, Jose is related to Maria and Diego --who

are both related to MyDepartment by way of works_in --via the property

is_supervisor_of , so B is valid.

Complex Constraints

Constrains may be arbitrarily complex and include many conditions.

Employee Constraints

:is_supervisor_of owl:propertyChainAxiom (:manages [owl:inverseOf

:works_in]) .

:Jose :manages :MyDepartment ;

 :is_supervisor_of :Maria .

:Maria :works_in :MyDepartment .

:Diego :works_in :MyDepartment .

:Jose :manages :MyDepartment ;

 :is_supervisor_of :Maria , :Diego .

:Maria :works_in :MyDepartment .

:Diego :works_in :MyDepartment .

/

Each employee works on at least one project, or supervises at least one

employee that works on at least one project, or manages at least one

department.

Constraint

Database A (invalid)

Database B (invalid)

Database C (valid)

:Employee rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty :works_on ;

 owl:someValuesFrom

 [owl:unionOf (:Project

 [a owl:Restriction ;

 owl:onProperty :supervises ;

 owl:someValuesFrom

 [owl:intersectionOf

(:Employee

 [

a owl:Restriction ;

owl:onProperty :works_on ;

owl:someValuesFrom :Project

])

]

]

 [a owl:Restriction ;

 owl:onProperty :manages ;

 owl:someValuesFrom :Department

])

]

] .

:Esteban a :Employee .

:Esteban a :Employee ;

 :supervises :Lucinda .

:Lucinda a :Employee .

/

Database D (valid)

Database E (valid)

This constraint says that if an individual i is an instance of Employee ,

then at least one of three conditions must be met:

it is related to an instance of Project via the property works_on

it is related to an instance j via the property supervises and j is

an instance of Employee and is also related to some instance of

Project via the property works_on

it is related to an instance of Department via the property manages .

A and B are invalid because none of the conditions are met. C meets the

second condition: Esteban (who is an Employee) is related to Lucinda

via the property supervises whereas Lucinda is both an Employee

and related to MyProject , which is a Project , via the property

works_on . D meets the third condition: Esteban is related to an instance

of Department , namely MyDepartment , via the property manages .

Finally, E meets the �rst and the third conditions because in addition to

managing a department Esteban is also related an instance of Project ,

namely MyProject , via the property works_on .

:Esteban a :Employee ;

 :supervises :Lucinda .

:Lucinda a :Employee ;

 :works_on :MyProject .

:MyProject a :Project .

:Esteban a :Employee ;

 :manages :MyDepartment .

:MyDepartment a :Department .

:Esteban a :Employee ;

 :manages :MyDepartment ;

 :works_on :MyProject .

:MyDepartment a :Department .

:MyProject a :Project .

/

Employees and US government funding

Only employees who are American citizens can work on a project that

receives funds from a US government agency.

Constraint

Database A (valid)

Database B (invalid)

Database C (valid)

[owl:intersectionOf (:Project

 [a owl:Restriction ;

 owl:onProperty :receives_funds_from ;

 owl:someValuesFrom :US_Government_Agency

]) .

] rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty [owl:inverseOf :works_on] ;

 owl:allValuesFrom [owl:intersectionOf (:Employee

 [a

owl:Restriction ;

 owl:hasValue

"US" ;

owl:onProperty :nationality

])

]

] .

:MyProject a :Project ;

 :receives_funds_from :NASA .

:NASA a :US_Government_Agency

:MyProject a :Project ;

 :receives_funds_from :NASA .

:NASA a :US_Government_Agency .

:Andy a :Employee ;

 :works_on :MyProject .

/

Database D (invalid)

Database E (valid)

This constraint says that if an individual i is an instance of Project and

is related to an instance of US_Government_Agency via the property

receives_funds_from , then any individual j which is related to i via

the property works_on must satisfy two conditions:

it must be an instance of Employee

:MyProject a :Project ;

 :receives_funds_from :NASA .

:NASA a :US_Government_Agency .

:Andy a :Employee ;

 :works_on :MyProject ;

 :nationality "US" .

:MyProject a :Project ;

 :receives_funds_from :NASA .

:NASA a :US_Government_Agency .

:Andy a :Employee ;

 :works_on :MyProject ;

 :nationality "US" .

:Heidi a :Supervisor ;

 :works_on :MyProject ;

 :nationality "US" .

:MyProject a :Project ;

 :receives_funds_from :NASA .

:NASA a :US_Government_Agency .

:Andy a :Employee ;

 :works_on :MyProject ;

 :nationality "US" .

:Heidi a :Supervisor ;

 :works_on :MyProject ;

 :nationality "US" .

:Supervisor rdfs:subClassOf :Employee .

 SubClassOf: Employee

/

it must not be related to any literal other than "US" via the data

property nationality .

A is valid because there is no individual related to MyProject via

works_on , so the constraint is trivially satis�ed. B is invalid since Andy is

related to MyProject via works_on , MyProject is an instance of

Project and is related to an instance of US_Government_Agency , that is,

NASA , via receives_funds_from , but Andy does not have any data

property assertions. C is valid because both conditions are met. D is not

valid because Heidi violated the �rst condition: she is related to

MyProject via works_on but is not known to be an instance of

Employee . Finally, this is �xed in E— by way of a handy OWL axiom— which

states that every instance of Supervisor is an instance of Employee , so

Heidi is inferred to be an instance of Employee and, consequently, E is

valid.

If you made it this far, you deserve a drink!

Constraints Formats

In addition to OWL, ICV constraints can be expressed in SPARQL and

Stardog Rules. In both cases, the constraints de�ne queries and rules to

�nd violations. These constraints can be added individually, or de�ned

together in a �le as shown below:

[�� (#_footnote_��)]

/

Using ICV Programmatically

Here we describe how to use Stardog ICV via the SNARL APIs. For more

information on using SNARL in general, please refer to the chapter on Java

Programming (#_java_programming).

There is command-line interface support for many of the operations

necessary to using ICV with a Stardog database; please see Administering

Stardog (#_administering_stardog) for details.

To use ICV in Stardog, one must:

@prefix rule: <tag:stardog:api:rule:> .

@prefix icv: <tag:stardog:api:icv:> .

Rule Constraint

[] a rule:SPARQLRule ;

 rule:content """

 prefix : <http://example.org/>

 IF {

 ?x a :Employee .

 }

 THEN {

 ?x :employeeNum ?number .

 }

 """ .

SPARQL Constraint

[] a icv:Constraint ;

 icv:query """

 prefix : <http://example.org/>

 select * {

 ?x a :Employee .

 FILTER NOT EXISTS {

 ?x :employeeNum ?number .

 }

 }

 """ .

/

�. create some constraints

�. associate those constraints with a Stardog database

Creating Constraints

Constraints

(/docs/�.�.�/java/snarl/com/complexible/stardog/icv/constraint) can be

created using the ConstraintFactory

(/docs/�.�.�/java/snarl/com/complexible/stardog/icv/constraintfactory)

which provides methods for creating integrity constraints.

ConstraintFactory expects your constraints, if they are de�ned as OWL

axioms, as RDF triples (or graph). To aid in authoring constraints in OWL,

ExpressionFactory

(/docs/�.�.�/java/snarl/com/complexible/common/openrdf/util/expressionfa

ctory) is provided for building the RDF equivalent

(http://www.w�.org/TR/owl�-mapping-to-rdf/) of the OWL axioms of your

constraint.

You can also write your constraints in OWL in your favorite editor and load

them into the database from your OWL �le.

We recommend de�ning your constraints as OWL axioms, but you are free

to de�ne them using SPARQL SELECT queries. If you choose to de�ne a

constraint using a SPARQL SELECT query, please keep in mind that if your

query returns results, those are interpreted as the violations of the integrity

constraint.

An example of creating a simple constraint using ExpressionFactory :

Adding Constraints to Stardog

IRI Product = Values.iri("urn:Product");

IRI Manufacturer = Values.iri("urn:Manufacturer");

IRI manufacturedBy = Values.iri("urn:manufacturedBy");

// we want to say that a product should be manufactured by a

Manufacturer:

Constraint aConstraint =

ConstraintFactory.constraint(subClassOf(Product,

some(manufacturedBy, Manufacturer)));

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/icv/constraint
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/icv/constraintfactory
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/common/openrdf/util/expressionfactory
http://www.w3.org/TR/owl2-mapping-to-rdf/

/

The ICVConnection

(/docs/�.�.�/java/snarl/com/complexible/stardog/icv/api/icvconnection)

interface provides programmatic access to the ICV support in Stardog. It

provides support for adding, removing and clearing integrity constraints in

your database as well as methods for checking whether or not the data is

valid; and when it’s not, retrieving the list of violations.

This example shows how to add an integrity constraint to a Stardog

database.

Here we show how to add a set of constraints as de�ned in a local OWL

ontology.

IC Validation

Checking whether or not the contents of a database are valid is easy. Once

you have an ICVConnection

(/docs/�.�.�/java/snarl/com/complexible/stardog/icv/api/icvconnection) you

can simply call its isValid()

(/docs/�.�.�/java/snarl/com/complexible/stardog/icv/api/icvconnection#isVal

id()) method which will return whether or not the contents of the database

are valid with respect to the constraints associated with that database.

Similarly, you can provide some constraints

(/docs/�.�.�/java/snarl/com/complexible/stardog/icv/constraint) to the

isValid() method to see if the data in the database is invalid for those

speci�c constraints; which can be a subset of the constraints associated

with the database, or they can be new constraints you are working on.

// We'll start out by creating a validator from our SNARL Connection

ICVConnection aValidator = aConn.as(ICVConnection.class);

// add add a constraint, which must be done in a transaction.

aValidator.addConstraint(aConstraint);

// We'll start out by creating a validator from our SNARL Connection

ICVConnection aValidator = aConn.as(ICVConnection.class);

// add add a constraint

aValidator.addConstraints()

 .format(RDFFormat.RDFXML)

 .file(Paths.get("myConstraints.owl"));

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/icv/api/icvconnection
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/icv/api/icvconnection
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/icv/api/icvconnection#isValid()
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/icv/constraint

/

If the data is invalid for some constraints—either the explicit constraints in

your database or a new set of constraints you have authored—you can get

some information about what the violation was from the SNARL IC

Connection. ICVConnection.getViolationBindings()

(/docs/�.�.�/java/snarl/com/complexible/stardog/icv/api/icvconnection#get

ViolationBindings()) will return the constraints which are violated, and for

each constraint, you can get the violations as the set of bindings that

satis�ed the constraint query. You can turn the bindings into the individuals

which are in the violation using ICV.asIndividuals()

(/docs/�.�.�/java/snarl/com/complexible/stardog/icv/icv#asIndividuals()).

ICV and Transactions

In addition to using the ICConnection as a data oracle to tell whether or not

your data is valid with respect to some constraints, you can also use

Stardog’s ICV support to protect your database from invalid data by using

ICV as a guard within transactions.

When guard mode for ICV is enabled in Stardog, each commit is inspected

to ensure that the contents of the database are valid for the set of

constraints that have been associated with it. Should someone attempt to

commit data which violates one or more of the constraints de�ned for the

database, the commit will fail and the data will not be added/removed from

your database.

By default, reasoning is not used when you enable guard mode, however

you are free to specify any of the reasoning types supported by Stardog

when enabling guard mode. If you have provided a speci�c reasoning type

for guard mode it will be used during validation of the integrity constraints.

This means you can author your constraints with the expectation of

inference results satisfying a constraint.

try (AdminConnection dbms =

AdminConnectionConfiguration.toEmbeddedServer().credentials("admin",

"admin").connect()) {

 dbms.disk("icvWithGuard") // disk db named 'icvWithGuard'

 .set(ICVOptions.ICV_ENABLED, true) // enable icv guard mode

 .set(ICVOptions.ICV_REASONING_ENABLED, true) // specify that

guard mode should use reasoning

 .create(new File("data/sp2b_10k.n3")); // create the db, bulk

loading the file(s) to start

}

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/icv/api/icvconnection#getViolationBindings()
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/icv/icv#asIndividuals()

/

This illustrates how to create a persistent disk database with ICV guard

mode and reasoning enabled. Guard mode can also be enabled when the

database is created on the CLI (#_command_line_interface).

Terminology

This chapter may make more sense if you read this section on terminology

a few times.

ICV, Integrity Constraint Validation

The process of checking whether some Stardog database is valid with

respect to some integrity constraints. The result of ICV is a boolean value

(true if valid, false if invalid) and, optionally, an

explanation of constraint violations .

Schema, TBox

A schema (or "terminology box" a.k.a., TBox) is a set of statements that

de�ne the relationships between data elements, including property and

class names, their relationships, etc. In practical terms, schema statements

for a Stardog database are RDF Schema and OWL � terms, axioms, and

de�nitions.

Data, ABox

All of the triples in a Stardog database that aren’t part of the schema are

part of the data (or "assertional box" a.k.a. ABox).

Integrity Constraint

A declarative expression of some rule or constraint which data must

conform to in order to be valid. Integrity Constraints are typically domain

and application speci�c. They can be expressed in OWL � (any legal

syntax), SWRL rules, or (a restricted form of) SPARQL queries.

Constraints

/

Constraints that have been associated with a Stardog database and which

are used to validate the data it contains. Each Stardog may optionally have

one and only one set of constraints associated with it.

Closed World Assumption, Closed World Reasoning

Stardog ICV assumes a closed world with respect to data and constraints:

that is, it assumes that all relevant data is known to it and included in a

database to be validated. It interprets the meaning of Integrity Constraints

in light of this assumption; if a constraint says a value must be present, the

absence of that value is interpreted as a constraint violation and, hence, as

invalid data.

Open World Assumption, Open World Reasoning

A legal OWL � inference may violate or satisfy an Integrity Constraint in

Stardog. In other words, you get to have your cake (OWL as a constraint

language) and eat it, too (OWL as modeling or inference language). This

means that constraints are applied to a Stardog database

with respect to an OWL 2 profile .

Monotonicity

OWL is a monotonic language: that means you can never add anything to

a Stardog database that causes there to be fewer legal inferences. Or, put

another way, the only way to decrease the number of legal inferences is to

delete something.

Monotonicity interacts with ICV in the following ways:

�. Adding data to or removing it from a Stardog database may make it

invalid.

�. Adding schema statements to or removing them from a Stardog

database may make it invalid.

�. Adding new constraints to a Stardog database may make it invalid.

�. Deleting constraints from a Stardog database cannot make it invalid.

/

GRAPHQL QUERIES

Introduction

Stardog supports querying data stored (or mapped) in a Stardog database

using GraphQL (http://graphql.org/) queries. You can load data into Stardog

as usual and execute GraphQL queries without creating a GraphQL

schema. You can also associate one or more GraphQL schemas

(#_graphql_schemas) with a database and execute GraphQL queries

against one of those schemas.

The following table shows the correspondence between RDF concepts and

GraphQL:

RDF GraphQL

Node Object

Class Type

Property Field

Literal Scalar

Execution of GraphQL queries in Stardog does not follow the procedural

rules de�ned in the GraphQL spec

(https://facebook.github.io/graphql/October����/#sec-Executing-Selection-

Sets). Instead Stardog translates GraphQL queries to SPARQL and then

SPARQL results to GraphQL results based on the correspondences shown

in the preceding table. Each RDF node represents a GraphQL object.

Properties of the node are the �elds of the object with the exception of

rdf:type property which represents the type of the object. Literals in RDF

are mapped to GraphQL scalars.

RDF GraphQL

xsd:integer IntValue

xsd:float FloatValue

xsd:string StringValue

http://graphql.org/
https://facebook.github.io/graphql/October2016/#sec-Executing-Selection-Sets

/

xsd:boolean BooleanValue

UNDEF NullValue

IRI EnumValue

In the following sections we will use a slightly modi�ed version of the

canonical GraphQL Star Wars example to explain how GraphQL queries

work in Stardog. The following graph shows the core elements of the

dataset and links between those nodes:

�. Subset of the Star Wars Graph

The full dataset in Turtle format is available in the examples repo

(https://github.com/stardog-union/stardog-

examples/blob/develop/examples/api/data/starwars.ttl).

Executing GraphQL Queries

GraphQL queries can be run via the CLI (/docs/�.�.�/man/data-add), the

Java API

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/graphql/graphqlconne

ction) or the HTTP API (#_execute_graphql_query).

The GraphQL command can be executed by providing a query string:

or a �le containing the query:

$ stardog graphql starwars "{ Human { name }}"

https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/data/starwars.ttl
https://www.stardog.com/docs/7.0.3/man/data-add
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/graphql/graphqlconnection

/

The --reasoning �ag can be used with the CLI command to enable

reasoning.

The HTTP command can be used to execute GraphQL queries. The

endpoint for GraphQL queries is

http://HOST:PORT/{db}/graphql

(http://HOST:PORT/{db}/graphql) . The following

command uses curl to execute a GraphQL query:

Reasoning can be enabled by setting a special variable @reasoning in the

GraphQL query variables.

Any standard GraphQL client, like GraphiQL

(https://github.com/graphql/graphiql), can be used with Stardog:

$ stardog graphql starwars query.file

$ curl -G -vsku admin:admin --data-urlencode query="{ Human { name }}"

localhost:5820/starwars/graphql

https://github.com/graphql/graphiql

/

NOTE

Stardog by default uses HTTP basic access

authentication. In order to use GraphiQL with

Stardog you either need to start the Stardog

server with --disable-security option so it

won’t require credentials or set the HTTP header

Authorization in the request. If the default

credentials admin/admin are being used in non-

production settings, the HTTP header

Authorization may be set to the value

Basic YWRtaW46YWRtaW4= in the GraphiQL UI.

The curl example above can be used to see

the correct value of the header for your

credentials.

Fields and Selection Sets

A top-level element in GraphQL by default represents a type and will return

all the nodes with that type. The �elds in the query will return matching

properties:

Query Result

Each �eld in the query is treated as a required property of the node (unless

an @optional directive is used) so any node without corresponding

properties will not appear in the results:

{

 Human {

 name

 }

}

{

 "data" : [{

 "name" : "Luke Skywalker"

 }, {

 "name" : "Han Solo"

 }, {

 "name" : "Leia Organa"

 }, {

 "name" : "Darth Vader"

 }, {

 "name" : "Wilhuff Tarkin"

 }]

}

https://en.wikipedia.org/wiki/Basic_access_authentication#Client_side

/

Query Result

If a node in the graph has multiple properties, then in the query results

those results will be returned as an array:

Query Result

Also note that Stardog does not enforce the GraphQL requirement that leaf

�elds must be scalars

(https://facebook.github.io/graphql/October����/#sec-Leaf-Field-

Selections). In the previous example friends of a droid are objects but the

query does not provide any �elds. In those cases, the identi�er of the node

will be returned as a string.

Arguments

{

 Human {

 name

 homePlanet

 }

}

{

 "data" : [{

 "name" : "Luke Skywalker",

 "homePlanet" : "Tatooine"

 }, {

 "name" : "Leia Organa",

 "homePlanet" : "Alderaan"

 }, {

 "name" : "Darth Vader",

 "homePlanet" : "Tatooine"

 }]

}

{

 Droid {

 name

 friends

 }

}

{

 "data" : [{

 "name" : "C-3PO",

 "friends" : ["luke",

"han", "leia", "artoo"]

 }, {

 "name" : "R2-D2",

 "friends" : ["luke",

"han", "leia"]

 }]

}

https://facebook.github.io/graphql/October2016/#sec-Leaf-Field-Selections

/

In GraphQL �elds are, conceptually, functions which return values and may

accept arguments (https://facebook.github.io/graphql/October����/#sec-

Language.Arguments) that alter their behavior. Arguments have no

prede�ned semantics but the typical usage is for de�ning lookup values for

�elds. Stardog adopts this usage and treats arguments as �lters for the

query. The following query return only the node whose id �eld is 1000 :

Query Result

Arrays can be used to specify multiple values for a �eld in which case

nodes matching any �eld will be returned:

Query Result

Reasoning

{

 Human(id: 1000) {

 id

 name

 homePlanet

 }

}

{

 "data": {

 "name": "Luke Skywalker",

 "id": 1000,

 "homePlanet": "Tatooine"

 }

}

{

 Human(id: [1000, 1003]) {

 id

 name

 homePlanet

 }

}

{

 "data": [

 {

 "name": "Luke

Skywalker",

 "id": 1000,

 "homePlanet": "Tatooine"

 },

 {

 "name": "Leia Organa",

 "id": 1003,

 "homePlanet": "Alderaan"

 }

]

}

https://facebook.github.io/graphql/October2016/#sec-Language.Arguments

/

GraphQL queries by default only return results based on explicit nodes and

edges in the graph. Reasoning may be enabled in the usual ways to run

queries with inferred nodes and edges, e.g. to perform type inheritance. In

the example graph, Human and Droid are de�ned as subclasses of the

Character class. The following query will return no results without

reasoning but when reasoning is enabled Character will act like a

GraphQL interface (https://facebook.github.io/graphql/October����/#sec-

Interfaces) and the query will return both humans and droids:

Query Result

Query Variables

Fragments

Stardog supports GraphQL fragments (both inline

(https://facebook.github.io/graphql/October����/#sec-Inline-Fragments) or

via fragment de�nitions

(https://facebook.github.io/graphql/October����/#sec-

Language.Fragments)). This query shows how fragments can be combined

with reasoning to select di�erent �elds for subtypes:

Query Result

{

 Character {

 name

 }

}

{

 "data" : [{

 "name" : "Luke Skywalker"

 }, {

 "name" : "Han Solo"

 }, {

 "name" : "Leia Organa"

 }, {

 "name" : "C-3PO"

 }, {

 "name" : "R2-D2"

 }, {

 "name" : "Darth Vader"

 }, {

 "name" : "Wilhuff Tarkin"

 }]

}

{

 "@reasoning": true

}

https://facebook.github.io/graphql/October2016/#sec-Interfaces
https://facebook.github.io/graphql/October2016/#sec-Inline-Fragments
https://facebook.github.io/graphql/October2016/#sec-Language.Fragments

/

Aliases

By default, the key in the response object will use the �eld name queried.

However, you can de�ne a di�erent name by specifying an alias

(https://facebook.github.io/graphql/October����/#sec-Field-Alias). The

following query renames both of the �elds in the query:

Query Result

{

 Character {

 name

 ... on Human {

 friends

 }

 ... on Droid {

 primaryFunction

 }

 }

}

{

 "data" : [{

 "name" : "Luke Skywalker",

 "friends" : ["threepio",

"artoo", "han", "leia"]

 }, {

 "name" : "Han Solo",

 "friends" : ["leia",

"artoo", "luke"]

 }, {

 "name" : "Leia Organa",

 "friends" : ["threepio",

"artoo", "luke", "han"]

 }, {

 "name" : "C-3PO",

 "primaryFunction" :

"Protocol"

 }, {

 "name" : "R2-D2",

 "primaryFunction" :

"Astromech"

 }, {

 "name" : "Darth Vader",

 "friends" : "tarkin"

 }, {

 "name" : "Wilhuff Tarkin",

 "friends" : "vader"

 }]

}

https://facebook.github.io/graphql/October2016/#sec-Field-Alias

/

Variables

A GraphQL query can be parameterized with variables

(https://facebook.github.io/graphql/October����/#sec-Language.Variables)

which must be de�ned at the top of an operation. Variables are in scope

throughout the execution of that operation. A value should be provided for

GraphQL variables before execution or an error will occur. The following

query will return a single result when executed with the input

{"id": 1000} :

Query Result

Query Variables

{

 Human {

 fullName: name

 bornIn: homePlanet

 }

}

{

 "data": [

 {

 "fullName": "Luke

Skywalker",

 "bornIn": "Tatooine"

 },

 {

 "fullName": "Leia

Organa",

 "bornIn": "Alderaan"

 },

 {

 "fullName": "Darth

Vader",

 "bornIn": "Tatooine"

 }

]

}

query getHuman($id: Integer) {

 Human(id: $id) {

 id

 name

 }

}

{

 "data": {

 "name": "Luke Skywalker",

 "id": 1000

 }

}

https://facebook.github.io/graphql/October2016/#sec-Language.Variables

/

Ordering Results

The results of GraphQL queries may be randomly ordered. A special

argument orderBy can be used at the top level to specify which �eld to

use for ordering the results. The following query uses the values of the

name �eld for ordering the results:

Query Result

The results are ordered in ascending order by default. We can sort results

in descending order as follows:

Query Result

{

 "id": 1000

}

{

 Human(orderBy: name) {

 name

 }

}

{

 "data": [

 { "name": "Darth Vader" },

 { "name": "Han Solo" },

 { "name": "Leia Organa" },

 { "name": "Luke Skywalker"

},

 { "name": "Wilhuff Tarkin"

}

]

}

/

Multiple ordering criteria can be used:

Query Result

We �rst use the homePlanet �eld for ordering and the results with no

home planet come up �rst. If two results have the same value for the �rst

order criteria, e.g. Luke Skywalker and Darth Vader , then the second

criteria is used for ordering.

Paging Results

{

 Human(orderBy: {field: name,

desc: true}) {

 name

 }

}

{

 "data": [

 { "name": "Wilhuff Tarkin"

},

 { "name": "Luke Skywalker"

},

 { "name": "Leia Organa" },

 { "name": "Han Solo" },

 { "name": "Darth Vader" }

]

}

{

 Human(orderBy: [homePlanet,

 {field:

name, desc: false}]) {

 name

 homePlanet @optional

 }

}

{

 "data": [

 { "name": "Wilhuff Tarkin"

},

 { "name": "Han Solo" },

 { "name": "Leia Organa",

 "homePlanet": "Alderaan"

},

 { "name": "Luke

Skywalker",

 "homePlanet": "Tatooine"

},

 { "name": "Darth Vader",

 "homePlanet": "Tatooine"

}

]

}

/

Paging through the GraphQL results is accomplished with first and

skip arguments used at the top level. The following query returns the �rst

three results:

Query Result

The following query skips the �rst result and returns the next two results:

Query Result

Directives

Directives provide a way to describe alternate runtime execution and type

validation behavior in GraphQL. The spec de�nes two built-in directives

(https://facebook.github.io/graphql/October����/#sec-Type-

System.Directives): @skip and @include . Stardog supports both

directives and introduces several others.

@skip(if: EXPR)

The skip directive includes a �eld value in the result conditionally. If the

provided expression evaluates to true the �eld will not be included.

Stardog allows arbitrary SPARQL expressions

{

 Human(orderBy: name, first:

3) {

 name

 }

}

{

 "data": [

 { "name": "Darth Vader" },

 { "name": "Han Solo" },

 { "name": "Leia Organa" }

]

}

{

 Human(orderBy: name, skip:1,

first: 2) {

 name

 }

}

{

 "data": [

 { "name": "Han Solo" },

 { "name": "Leia Organa" }

]

}

https://facebook.github.io/graphql/October2016/#sec-Type-System.Directives
https://www.w3.org/TR/sparql11-query/#expressions

/

(https://www.w�.org/TR/sparql��-query/#expressions) to be used as the

conditions. Any of the supported SPARQL Query Functions

(#_sparql_query_functions) can be used in these expressions. The

expression can refer to any �eld in the same selection set and is not limited

to the �eld directive is attached to. The following query returns the name

�eld only if the name does not start with the letter L :

Query Result

@include(if: EXPR)

The @include directive works negation of the @skip directive; that is,

the �eld is included only if the expression evaluates to true . We can use

variables (#_variables) inside the conditions, too. The following example

executed with input {"withFriends": false} will not include friends in

the results:

Query Result

{

 Human {

 id

 name @skip(if:

"strstarts($name, 'L')")

 }

}

{

 "data": [

 {

 "id": 1000

 },

 {

 "name": "Han Solo",

 "id": 1002

 },

 {

 "id": 1003

 },

 {

 "name": "Darth Vader",

 "id": 1001

 },

 {

 "name": "Wilhuff

Tarkin",

 "id": 1004

 }

]

}

https://www.w3.org/TR/sparql11-query/#expressions

/

Query Variables

@filter(if: EXPR)

The @filter directive looks similar to @skip and @include but �lters

the whole object instead of just a single �eld. In that regard it works more

like arguments (#_arguments) but arbitrary expressions can be used to

select speci�c nodes. The next query returns all humans whose id is less

than 1003 :

Query Result

query

HumanAndFriends($withFriends:

Boolean) {

 Human @type {

 name

 friends @include(if:

$withFriends) {

 name

 }

 }

}

{

 "data": [

 {

 "name": "Luke Skywalker"

 },

 {

 "name": "Han Solo"

 },

 {

 "name": "Leia Organa"

 },

 {

 "name": "Darth Vader"

 },

 {

 "name": "Wilhuff Tarkin"

 }

]

}
{

 "withFriends": false

}

/

Unlike the previous two �lters it doesn’t matter which �eld the @filter

directive is syntactically adjacent to since it applies to the whole selection

set.

@optional

Stardog treats every �eld as required by default and will not return any

nodes if they don’t have a matching value for the �elds in the selection set.

The @optional directive can be used to mark a �eld as optional. The

following query returns the home planets for humans if it exists but skips

that �eld if it doesn’t:

Query Result

{

 Human {

 name

 id @filter(if: "$id <

1003")

 }

}

{

 "data": [

 {

 "name": "Luke

Skywalker",

 "id": 1000

 },

 {

 "name": "Han Solo",

 "id": 1002

 },

 {

 "name": "Darth Vader",

 "id": 1001

 }

]

}

/

@type

By default every �eld in the GraphQL query other than the topmost �eld

represents a property in the graph. Sometimes we might want to �lter some

nodes based on their types; that is, based on the values of the special built-

in property rdf:type . Stardog provides a directive as a shortcut for this

purpose. The following query returns only the droid friends of humans

because the Droid �eld is marked with the @type directive:

Query Result

{

 Human {

 name

 homePlanet @optional

 }

}

{

 "data": [

 {

 "name": "Luke

Skywalker",

 "homePlanet": "Tatooine"

 },

 {

 "name": "Han Solo"

 },

 {

 "name": "Leia Organa",

 "homePlanet": "Alderaan"

 },

 {

 "name": "Darth Vader",

 "homePlanet": "Tatooine"

 },

 {

 "name": "Wilhuff Tarkin"

 }

]

}

/

@bind(to: EXPR)

Fields bind to properties in the graph but it is also possible to have �elds

with computed values. When @bind directive is used for a �eld the value

of that �eld will be compared by evaluating the given SPARQL expression

(https://www.w�.org/TR/sparql��-query/#expressions). The following

example splits the name �eld on a space to compute firstName and

lastName �elds:

Query Result

{

 Human {

 name

 friends {

 Droid @type

 name

 }

 }

}

{

 "data": [

 {

 "name": "Luke

Skywalker",

 "friends": [

 {

 "name": "R2-D2"

 },

 {

 "name": "C-3PO"

 }

]

 },

 {

 "name": "Han Solo",

 "friends": {

 "name": "R2-D2"

 }

 },

 {

 "name": "Leia Organa",

 "friends": [

 {

 "name": "R2-D2"

 },

 {

 "name": "C-3PO"

 }

]

 }

]

}

}

https://www.w3.org/TR/sparql11-query/#expressions

/

@hide

Query results can be �attened using the @hide directive. For example, in

our data characters are linked to episode instances that have an index

property. The following query retrieves the episode indexes but, by hiding

the intermediate episode instances, humans are directly linked to the

episode index:

Query Result

{

 Human {

 name @hide

 firstName @bind(to:

"strbefore($name, ' ')")

 lastName @bind(to:

"strafter($name, ' ')")

 }

}

{

 "data": [

 {

 "firstName": "Luke",

 "lastName": "Skywalker"

 },

 {

 "firstName": "Han",

 "lastName": "Solo"

 },

 {

 "firstName": "Leia",

 "lastName": "Organa"

 },

 {

 "firstName": "Darth",

 "lastName": "Vader"

 },

 {

 "firstName": "Wilhuff",

 "lastName": "Tarkin"

 }

]

}

/

Namespaces

RDF uses IRIs as identi�ers whereas in GraphQL we have simple names as

identi�ers. The examples so far use a single default namespace where

names in GraphQL are treated as local names in that namespace. If a

Stardog graph uses multiple namespaces, then it is possible to use them in

GraphQL queries in several di�erent ways.

If there are stored namespaces (#Namespacing) in the database then the

associated pre�xes can be used in the queries. For example, suppose we

have the pre�x foaf associated with the namespace

http://xmlns.com/foaf/�.�/

(http://xmlns.com/foaf/�.�/) in the database. In

SPARQL the pre�xed name foaf:Person would be used for the IRI

http://xmlns.com/foaf/�.�/Person

(http://xmlns.com/foaf/�.�/Person) . In

{

 Human {

 name

 appearsIn @hide {

 episodes: index

 }

 }

}

{

 "data": [

 {

 "name": "Luke

Skywalker",

 "episodes": [4, 5, 6]

 },

 {

 "name": "Han Solo",

 "episodes": [4, 5, 6]

 },

 {

 "name": "Leia Organa",

 "episodes": [4, 5, 6]

 },

 {

 "name": "Darth Vader",

 "episodes": [4, 5, 6]

 },

 {

 "name": "Wilhuff

Tarkin",

 "episodes": 4

 }

]

}

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person

/

GraphQL, the : character cannot be used in �eld names so instead

Stardog uses the _ character: the pre�xed name here would be

foaf_Person . The query using FOAF namespace would look like this:

If the namespace is not stored in the database an inline pre�x de�nition can

be provided with the @prefix directive:

NOTE

Sometimes �eld names might use the underscore

character and it might not indicate a pre�x. To

di�erentiate two cases Stardog looks at the

pre�x before the underscore and checks if it is

de�ned in the query or if it is stored in the

database. In some cases the IRI local name might

be using characters like - that is not allowed in

GraphQL names. In those cases an alias can be

de�ned to map a �eld name to an IRI. These

aliases are de�ned in a @config directive at the

query level as follows:

{

 foaf_Person {

 foaf_name

 foaf_mbox

 }

}

query withPrefixes @prefix(foaf: "http://xmlns.com/foaf/0.1/") {

 foaf_Person {

 foaf_name

 foaf_mbox

 }

}

/

Named Graphs

GraphQL queries by default are evaluated over the union of all graphs

stored in the Stardog database. It is possible to limit the scope of the query

to one or more speci�c named graphs. Suppose we partition the Star Wars

dataset by moving instances of each type to a di�erent named graph using

the following SPARQL update query:

The following queries (with reasoning) will return � humans, � droids and all

� characters respectively:

Query Result

Query Result

query withAliases @config(alias: {myType: "http://example.com/my-

type",

 myProp: "http://example.com/my-

prop"})

{

 myType {

 myProp

 }

}

DELETE { ?s ?p ?o }

INSERT { GRAPH ?type { ?s ?p ?o } }

WHERE { ?s a ?type ; ?p ?o }

query onlyHumanGraph

@config(graph: Human) {

 Character {

 name

 }

}

{

 "data": [

 { "name": "Luke Skywalker"

},

 { "name": "Han Solo" },

 { "name": "Leia Organa" },

 { "name": "Darth Vader" },

 { "name": "Wilhuff Tarkin"

}

]

}

/

Query Result

GraphQL Schemas

GraphQL is a strongly-typed language where the �elds used in a query

should conform to the type de�nitions in a GraphQL schema

(http://graphql.org/learn/schema/). By default, Stardog relaxes this

restriction and allows queries to be executed without an explicit schema.

However, if desired, one or more GraphQL schemas can be added to the

database and used during query execution. The bene�ts of using an explicit

schema are as follows:

Queries will be validated with strict typing

Default translation of RDF values to GraphQL values can be overridden

Only the parts of the graph de�ned in the schema will be exposed to the

user

Here is an example schema that can be used with the Star Wars dataset:

query onlyDroidGraph

@config(graph: Droid) {

 Character {

 name

 }

}

{

 "data": [

 { "name": "C-3PO" },

 { "name": "R2-D2" }

]

}

query bothGraphs

@config(graph: [Human, Droid])

{

 Character {

 name

 }

}

{

 "data": [

 { "name": "Luke Skywalker"

},

 { "name": "Han Solo" },

 { "name": "Leia Organa" },

 { "name": "C-3PO" },

 { "name": "R2-D2" },

 { "name": "Darth Vader" },

 { "name": "Wilhuff Tarkin"

}

]

}

http://graphql.org/learn/schema/

/

Each GraphQL schema de�nes a query type which speci�es the top-level

�eld that can be used in a query. In Stardog the query type is simply an

enumeration of classes in the database that we want to expose in queries.

For example, the schema de�nes the Episode type but does not list it

under QueryType which means you cannot query for episodes directly.

Note that, without a schema each top-level type can have various built-in

arguments like first or skip . In this schema we chose to de�ne them

for the Human type but not for others. This means a query like

{ Droid(first: 1) { name } } will be invalid with respect to this schema

and rejected even though it is valid if executed without a schema.

schema {

 query: QueryType

}

type QueryType {

 Character: Character

 Human(id: Int, first: Int, skip: Int, orderBy: ID): Human

 Droid(id: Int): Droid

}

interface Character {

 id: Int!

 name: String!

 friends(id: Int): [Character]

 appearsIn: [Episode]

}

type Human implements Character {

 iri: ID!

 id: Int!

 name: String!

 friends(id: Int): [Character]

 appearsIn: [Episode]

}

type Droid implements Character {

 id: Int!

 name: String!

 friends(id: Int): [Character]

 appearsIn: [Episode]

 primaryFunction: String

}

type Episode {

 index: Int!

 name: String!

}

/

This schema can be added to the database by giving it a name:

We can then execute the query by specifying the schema name along with

the query:

When a schema is speci�ed for a query it gets added to the query

parameters using a special variable named @schema . When using the

HTTP API directly this variable can be set to choose the schema for a query

by sending the query variable {"schema": "characters" } .

Query Result

Query Variables

Note that the friends �eld in the result is an array value due to the

corresponding de�nition in the schema. This query executed with a schema

would return the single object value for the �eld.

An important point about schemas is that the types de�ned in the schema

do not �lter the query results. For example, we can de�ne a much simpler

humans schema against the Star Wars dataset:

$ stardog graphql schema --add characters starwars characters.graphqls

Added schema characters

$ stardog graphql --schema characters starwars "{ Human { name friends

{ name } } }"

{

 Human(id: 1004) {

 name

 friends {

 name

 }

 }

}

{

 "data": [

 {

 "name": "Wilhuff

Tarkin",

 "friends": [

 {

 "name": "Darth

Vader"

 }

]

 }

]

}

{

 "@schema": "characters"

}

/

This query allows only Human instances to be queried at the top level and

declares that the friend of each Human is also a Human . This schema

de�nition is incompatible with the data since humans have droid friends.

Stardog does not check if the schema is correct with respect to the data

and will not enforce type restrictions in the results. So if we ask for the

friends of a human, then the droids will also be returned in the results:

Query Result

Query Variables

Introspection

schema {

 query: QueryType

}

type QueryType {

 Human(id: [Int]): Human

}

type Human {

 id: Int!

 name: String!

 friends: [Human]

}

{

 Human(id: 1000) {

 name

 friends {

 name

 }

 }

}

{

 "data": [

 {

 "name": "Luke

Skywalker",

 "friends": [

 { "name": "Han Solo"

},

 { "name": "Leia

Organa" },

 { "name": "C-3PO" },

 { "name": "R2-D2" }

]

 }

]

}{ "@schema": "humans" }

/

Stardog supports GraphQL introspection

(http://graphql.org/learn/introspection/) which means GraphQL tooling

works out of the box with Stardog. Introspection allows schema queries to

be discovered, exposed, and executed and to retrieve information about

the types and �elds de�ned in a schema. This feature is used in GraphQL

tools to support features like autocompletion, query validation, etc.

Stardog supports introspection queries for the GraphQL schemas

(#_graphql_schemas) registered in the system. There is a separate

dedicated endpoint for each schema registered in the system in the form

http://HOST:PORT/{db}/graphql/{schema}

(http://HOST:PORT/{db}/graphql/{schema})

. The introspection queries executed against this endpoint will be answered

using the corresponding schema.

Introspection queries are not supported by the default GraphQL endpoint

as there is no dedicated schema associated with the default endpoint.

Implementation

Stardog translates GraphQL queries to SPARQL and SPARQL results to

JSON. The CLI command graphql explain can be used to see the

generated SPARQL query and the low-level query plan created for the

http://graphql.org/learn/introspection/

/

SPARQL query which is useful for debugging correctness and performance

issues:

The variables in the SPARQL query will be mapped to objects and �eld

values in the JSON results. The binding for variable 0 will be the root

object. The FIELDS output show that 0 is linked to 1 via the name �eld

and linked to 2 via the knows �eld (note that knows is an alias and in

the actual query we have the pattern ?0 :friends ?2).

The GraphQL query plans can also be retrieved by setting the special query

variable @explain to true when executing a query.

$ stardog graphql explain starwars "{

 Human(id: 1000) {

 name

 knows: friends {

 name

 }

 }

}"

SPARQL:

SELECT *

FROM <tag:stardog:api:context:all>

{

?0 rdf:type :Human .

?0 :id "1000"^^xsd:integer .

?0 :name ?1 .

?0 :friends ?2 .

?2 :name ?3 .

}

FIELDS:

0 -> {1=name, 2=knows}

2 -> {3=name}

PLAN:

prefix : <http://api.stardog.com/>

From all

Projection(?0, ?1, ?2, ?3) [#3]

`─ MergeJoin(?2) [#3]
 +─ Sort(?2) [#3]
 │ `─ NaryJoin(?0) [#3]
 │ +─ Scan[POSC](?0, :id,
"1000"^^<http://www.w3.org/2001/XMLSchema#integer>) [#1]

 │ +─ Scan[POSC](?0, <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type>, :Human) [#5]

 │ +─ Scan[PSOC](?0, :name, ?1) [#10]
 │ `─ Scan[PSOC](?0, :friends, ?2) [#20]
 `─ Scan[PSOC](?2, :name, ?3) [#10]

/

PATH QUERIES

Stardog extends SPARQL to �nd paths between nodes in the RDF graph,

which we call path queries. They are similar to SPARQL �.� property paths

(https://www.w�.org/TR/sparql��-query/#propertypaths) which traverse an

RDF graph and �nd pairs of nodes connected via a complex path of edges.

But SPARQL property paths only return the start and end nodes of a path

and do not allow variables in property path expressions. Stardog path

queries return all intermediate nodes on each path— that is, they return a

path from start to end— and allow arbitrary SPARQL graph patterns to be

used in the query.

TIP

A Path of Our Own

(https://www.stardog.com/blog/a-path-of-our-

own/)

GraphQL and Paths

(https://www.stardog.com/blog/graphql-and-

paths/)

Path Query Syntax

We add path queries as a new top-level query form, i.e. separate from

SELECT , CONSTRUCT or other query types. The syntax is as follows:

The graph pattern in the VIA clause must bind both ?s and ?e

variables.

PATHS [SHORTEST|ALL] [CYCLIC] [<DATASET>]

START ?s [= <IRI> | <GRAPH PATTERN>] END ?e [= <IRI> | <GRAPH

PATTERN>]

VIA <GRAPH PATTERN> | <VAR> | <PATH>

[MAX LENGTH <int>]

[ORDER BY <condition>]

[OFFSET <int>]

[LIMIT <int>]

https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.stardog.com/blog/a-path-of-our-own/
https://www.stardog.com/blog/graphql-and-paths/

/

Next we informally present examples of common path queries and �nally

the formal Path Query Evaluation Semantics

(#_path_query_evaluation_semantics).

Shortest Paths

Suppose we have a simple social network where people are connected via

di�erent relationships:

�. Simple Graph

If we want to �nd all the people Alice is connected to and how she is

connected to them we can use the following path query:

We specify a start node for the path query but the end node is unrestricted.

So all paths starting from Alice will be returned. Note that we use the

shortcut VIA ?p instead of a graph pattern to match each edge in the

path. This is a syntactic sugar for VIA { ?s ?p ?e } . Similarly we could use

a predicate, e.g. VIA :knows or a property path expression, e.g.

VIA :knows | :worksWith .

This query is e�ectively equivalent to the SPARQL property path

:Alice :knows+ ?y , but the results will include the nodes in the path(s).

The path query results are printed in a tabular format by default:

PATHS START ?x = :Alice END ?y VIA ?p

/

Each row of the result table shows one edge and adjacent edges on a path

are printed on subsequent rows of the table. Multiple paths in the results

are separated by an empty row. We can change the output format to text

which serializes the results in a property graph like syntax:

Execution happens by recursively evaluating the graph pattern in the query

and replacing the start variable with the binding of the end variable in the

previous execution. If the query speci�es a start node, that value is used for

the �rst evaluation of the graph pattern. If the query speci�es an end node,

which our example doesn’t, execution stops when we reach the end node.

Only simple cycles, i.e. paths where the start and the end nodes coincide,

are allowed in the results.

+----------+------------+----------+

| x | p | y |

+----------+------------+----------+

| :Alice | :knows | :Bob |

| | | |

| :Alice | :knows | :Bob |

| :Bob | :knows | :David |

| | | |

| :Alice | :knows | :Bob |

| :Bob | :worksWith | :Charlie |

| | | |

| :Alice | :knows | :Bob |

| :Bob | :worksWith | :Charlie |

| :Charlie | :parentOf | :Eve |

+----------+------------+----------+

Query returned 4 paths in 00:00:00.055

$ stardog query -f text exampleDB "PATHS START ?x = :Alice END ?y VIA

?p"

(:Alice)-[p=:knows]->(:Bob)

(:Alice)-[p=:knows]->(:Bob)-[p=:knows]->(:David)

(:Alice)-[p=:knows]->(:Bob)-[p=:worksWith]->(:Charlie)

(:Alice)-[p=:knows]->(:Bob)-[p=:worksWith]->(:Charlie)-[p=:parentOf]->

(:Eve)

Query returned 4 paths in 00:00:00.047

/

NOTE

The Stardog optimizer may choose to traverse

paths backwards, i.e. from the end node to the

start, for performance reasons but it does not

a�ect the results.

We can specify the end node in the query and restrict the kind of patterns in

paths to a speci�c property as in the next example that queries how Alice

is connected to David via knows relationships:

This query would return a single path with two edges:

Complex Paths

Graph patterns inside the path queries can be arbitrarily complex. Suppose,

we want to �nd undirected paths between Alice and David in this

graph. Then we can make the graph pattern to match both outgoing and

incoming edges:

Sometimes a relationship between two nodes might be implicit and there

might not be an explicit link between those two nodes in the RDF graph.

Consider the following set of triples that show some movies and actors who

starred in those movies:

PATHS START ?x = :Alice END ?y = :David VIA :knows

+--------+--------+

| x | y |

+--------+--------+

| :Alice | :Bob |

| :Bob | :David |

+--------+--------+

$ stardog query exampleDB "PATHS START ?x = :Alice END ?y = :David VIA

^:knows | :knows"

+--------+--------+

| x | y |

+--------+--------+

| :Alice | :Bob |

| :Bob | :David |

+--------+--------+

/

There is an implicit relationship between actors based on the movies they

appeared together. We can use a basic graph pattern with multiple triple

patterns in the path query to extract this information:

This query executed against the above set of triples would return three

paths:

If the movie is irrelevant, then a more concise version can be used:

All Paths

:Apollo_13 a :Film ; :starring :Kevin_Bacon , :Gary_Sinise .

:Spy_Game a :Film ; :starring :Brad_Pitt , :Robert_Redford .

:Sleepers a :Film ; :starring :Kevin_Bacon , :Brad_Pitt .

:A_Few_Good_Men a :Film ; :starring :Kevin_Bacon , :Tom_Cruise .

:Lions_for_Lambs a :Film ; :starring :Robert_Redford , :Tom_Cruise .

:Captain_America a :Film ; :starring :Gary_Sinise , :Robert_Redford .

PATHS START ?x = :Kevin_Bacon END ?y = :Robert_Redford

VIA { ?movie a :Film ; :starring ?x , ?y }

+--------------+------------------+-----------------+

| x | movie | y |

+--------------+------------------+-----------------+

| :Kevin_Bacon | :Apollo_13 | :Gary_Sinise |

| :Gary_Sinise | :Captain_America | :Robert_Redford |

| | | |

| :Kevin_Bacon | :Sleepers | :Brad_Pitt |

| :Brad_Pitt | :Spy_Game | :Robert_Redford |

| | | |

| :Kevin_Bacon | :A_Few_Good_Men | :Tom_Cruise |

| :Tom_Cruise | :Lions_for_Lambs | :Robert_Redford |

+--------------+------------------+-----------------+

PATHS START ?x = :Kevin_Bacon END ?y = :Robert_Redford VIA

^:starring/:starring

/

Path queries return only shortest paths by default. We can use the ALL

keyword in the query to retrieve all paths between two nodes. For example,

the query above returned only one path between Alice and David . We

can get all paths as follows:

CAUTION
The ALL quali�er can dramatically increase the

number of paths so use with caution.

Cyclic Paths

There’s a special keyword CYCLIC to speci�cally query for cyclic paths in

the data. For example, there might be a dependsOn relationship in the

database and we might want to query for cyclic dependencies:

Again, arbitrary cycles in the paths are not allowed to ensure a �nite

number of results.

Limiting Paths

In a highly connected graph the number of possible paths between two

nodes can be impractically high. There are two di�erent ways we can limit

the results of path queries. The �rst possibility is to use the LIMIT

$ stardog query exampleDB "PATHS ALL START ?x = :Alice END ?y = :David

VIA { {?x ?p ?y} UNION {?y ?p ?x} }"

+----------+------------+----------+

| x | p | y |

+----------+------------+----------+

| :Alice | :knows | :Bob |

| :Bob | :knows | :David |

| | | |

| :Alice | :knows | :Bob |

| :Bob | :worksWith | :Charlie |

| :Charlie | :parentOf | :Eve |

| :Eve | :knows | :David |

+----------+------------+----------+

PATHS CYCLIC START ?start END ?end VIA :dependsOn

/

keyword just like in other query types. We can ask for at most � paths

starting from Alice as follows:

This query would return � results as expected :

Note that, the path from Alice to Charlie is not included in this result

even though it is not any longer than the path between Alice and David

. This is because with LIMIT the query will stop producing results as soon

as the maximum number of paths are returned.

The other alternative for limiting the results is by specifying the maximum

length of paths that can be returned. The following query shows how to

query for paths thar are at most �-edge long:

This time we will get � results:

It is also possible to use both LIMIT and MAX LENGTH keywords in a

single query.

PATHS START ?x = :Alice END ?y VIA ?p LIMIT 2

+----------+------------+----------+

| x | p | y |

+----------+------------+----------+

| :Alice | :knows | :Bob |

| | | |

| :Alice | :knows | :Bob |

| :Bob | :knows | :David |

+----------+------------+----------+

PATHS START ?x = :Alice END ?y VIA ?p MAX LENGTH 2

+----------+------------+----------+

| x | p | y |

+----------+------------+----------+

| :Alice | :knows | :Bob |

| | | |

| :Alice | :knows | :Bob |

| :Bob | :knows | :David |

| | | |

| :Alice | :knows | :Bob |

| :Bob | :worksWith | :Charlie |

+----------+------------+----------+

/

Path Queries With Start and End Patterns

In all examples presented so far the start and end variables were either free

variables or bound to a single IRI. This is insu�cient for navigating paths

which must begin at multiple nodes satisfying certain conditions and

terminate at nodes satisfying some other conditions. Assume the movie and

actor data above is extended with information about the date of birth of

each actor:

Now, having only variables and constants as valid path start and end

expressions would make it hard to write a query to �nd all connections

between Kevin Bacon and actors over �� years old. The following attempt,

for example, won’t match any data:

The problem is that the age �lter is applied at each recursive step, i.e. the

query is looking for paths where every intermediate actor is over ��, but

none of those co-starred with Kevin Bacon (in our toy dataset). Instead we

need a query which checks the condition only at candidate end nodes:

This query will return the expected results along with the date of birth for

end nodes:

:Kevin_Bacon :birthdate "1958-07-08"^^xsd:date

:Gary_Sinise :birthdate "1957-03-17"^^xsd:date

:Brad_Pitt :birthdate "1963-12-18"^^xsd:date

:Robert_Redford :birthdate "1936-08-18"^^xsd:date

:Tom_Cruise :birthdate "1962-07-03"^^xsd:date

PATHS START ?x = :Kevin_Bacon END ?y VIA {

 ?movie a :Film ; :starring ?x , ?y .

 ?y :birthdate ?date .

 FILTER (year(?date) - year(now()) >= 80)

}

PATHS START ?x = :Kevin_Bacon

END ?y { ?y :birthdate ?date .

 FILTER (year(?date) - year(now()) >= 80) }

VIA ^:starring/:starring

/

Path Queries With Reasoning

As other kinds of queries, path queries can be evaluated with reasoning. If

reasoning is enabled, a path query will return paths in the inferred graph,

i.e. each edge corresponds to a relationship between the nodes which is

inferred from the data based on the schema.

Consider the following example:

Adding the following rule (or an equivalent OWL sub-property chain axiom)

infers :partOf edges based on compositions of :partOf and

:locatedIn edges:

Now the following path query will �nd the inferred path from :Arlington

to :NorthAmerica via :DCArea and :US :

+------------------+---------------------+------------------------+

| x | y | date |

+------------------+---------------------+------------------------+

| test:Kevin_Bacon | test:Gary_Sinise | |

| test:Gary_Sinise | test:Robert_Redford | "1936-08-18"^^xsd:date |

| | | |

| test:Kevin_Bacon | test:Brad_Pitt | |

| test:Brad_Pitt | test:Robert_Redford | "1936-08-18"^^xsd:date |

| | | |

| test:Kevin_Bacon | test:Tom_Cruise | |

| test:Tom_Cruise | test:Robert_Redford | "1936-08-18"^^xsd:date |

+------------------+---------------------+------------------------+

:Arlington :partOf :DCArea .

:DCArea :locatedIn :EastCoast .

:EastCoast :partOf :US .

:US :locatedIn :NorthAmerica .

IF

 { ?x :partOf ?y . ?y :locatedIn ?z }

THEN

 { ?x :partOf ?z }

/

NOTE

This feature should be used with care. There may

be a lot more paths than one expects. Also keep

in mind that some patterns are particularly

expensive with reasoning, e.g. triple patterns with

the unbound predicate variable or with a variable

in the object position of rdf:type .

Path Query Evaluation Semantics

Given a pair of variable names s and e a path is a sequence of SPARQL

solutions S[1], … , S[n] s.t. S[i](t) = S[i-1](s) for i from 2 to n .

We call the S[0](s) and S[n](t) values the start and end nodes of the

path, resp. Each solution in the sequence is called an edge.

The evaluation semantics of path queries is based on the following

recursive extension of SPARQL solution:

Informally such extensions allow us to represent each path as a single

solution where a distinguished variable (in the sequel called path variable)

is mapped to an ordered array of solutions representing edges.

We �rst consider simple path queries for ALL paths with only variables

after the START and END keywords, i.e. queries of the form

PQ(s, e, p, P) , where s and e are start and end variable names, p is

PATHS START ?x = :Arlington END ?y = :NorthAmerica VIA {

 ?x :partOf ?y

}

(1) Solution := { (V -> Value)* } // solution: mapping from

variables to values (as in SPARQL)

(2) Value := RDF-Term // an RDF term is a value (as in

SPARQL)

(3) Value := Solution // a solution is a value

(extension)

(4) Value := [Value*] // an array of values is a value

(extension)

/

a path variable name, and P is a SPARQL graph pattern. Given a dataset

D with the active graph G , abbreviated as D(G) , we de�ne

eval(PQ(s, e, P), D(G)) as a set of all such (extended) solutions S that:

where sub(P, var, t) is a graph pattern obtained by substituting the

variable var by the �xed RDF term t .

Informally conditions (�) and (�) state that each edge in a path is obtained

by evaluating the path pattern with the start variable substituted by the end

variable value of the previous edge (to ensure connectedness). The

conditions (�) and (�) bind the s and e variables in the top level solution.

Next we de�ne the semantics of path queries with start and end patterns:

where PS and PE are start and end graph patterns which must bind s

and e variables, respectively. Here Join stands for the standard SPARQL

join semantics which does not require extensions since joins are performed

on variables s and e which bind to RDF terms only, rather than arrays or

solutions (conditions (�) and (�) above ensure that).

Finally we note that path queries with start or end constants are a special

case of path queries with the corresponding singleton VALUES patterns,

e.g.

is a syntactic sugar for

(1) S(p) is a path Sp[1] ... Sp[n] w.r.t. s and e

(2) Sp(1) is in eval(P, D(G))

(3) Sp[i] is a solution to eval(sub(P, s, Sp[i-1](e), D(G)) for i = 2

... n

(4) S(s) = Sp[1](s)

(5) S(e) = Sp[n](e)

(6) All terms which s and e bind to in all Sp[i] are unique except

that Sp[1](s) could be equal to Sp[n](e)

eval(PQ(s, PS, e, PE, PQ) = Join(PS, Join(PE, eval(PQ(s, e, PQ), DG)))

PATHS START ?s = :Alice END ?e = :Dave VIA :knows

PATHS START ?s { VALUES ?s { :Alice } } END ?e { VALUES ?e { :Dave } }

VIA :knows

/

Keywords SHORTEST (default) and CYCLIC are self-explanatory and place

further restrictions on each S(p) : the sequence should be the shortest

among all results or represent a simple cycle. The solution modi�ers

ORDER BY , LIMIT , and OFFSET have the exact same semantics as in

SPARQL �.�.

GEOSPATIAL QUERY

Stardog supports geospatial queries over data encoded using WGS ��

(http://www.w�.org/����/��/geo/) or the OGC’s GeoSPARQL vocabulary

(http://www.opengeospatial.org/standards/geosparql). Any RDF data stored

in Stardog using one or both of these vocabularies will be automatically

indexed for geospatial queries.

TIP

Geospatial: A Primer

(https://www.stardog.com/blog/geospatial-a-

primer/)

Enabling Geospatial Support

To get started using Stardog’s geospatial support, you’ll need to create a

database with geospatial support enabled. You can do this by setting the

option spatial.enabled to true :

Similarly, you can set the option using

GeospatialOptions#SPATIAL_ENABLED when creating the database

programmatically:

Precision & Accuracy

stardog-admin db create -o spatial.enabled=true -n mySpatialDb

aAdminConnection.disk("mySpatialDb")

 .set(GeospatialOptions.SPATIAL_ENABLED, true)

 .create()

http://www.w3.org/2003/01/geo/
http://www.opengeospatial.org/standards/geosparql
https://www.stardog.com/blog/geospatial-a-primer/

/

When creating a database with geospatial support, you can specify the

precision with which the features are indexed. The database property

spatial.precision or programmatically via

GeospatialOptions#SPATIAL_PRECISION , which can only be speci�ed

when the database is created, can control the index precision. The default

value is 11 which yields sub-meter precision; a value of 8 will give a

precision +/- ��m. Setting the precision value lower than the default can

improve the performance of spatial queries at the cost of accuracy.

Geospatial Data

The WGS�� or OGC vocabularies can be used to encode geospatial

features within your dataset. When data is committed, Stardog will look for

these vocabularies and automatically extract all features and insert them

into the geospatial index. Here is an example of using WKT to de�ne the

location of the White House:

Note that for WKT formatted points, the location is <long, lat> . The

location of the White House can also be encoded using the WGS ��

vocabulary:

SPARQL Integration

Once your data has been indexed, you can perform several type of

geospatial queries on the data. These are seamlessly integrated into

SPARQL so you can query for non-spatial information about features in your

dataset alongside the geospatial queries.

:whiteHouse a geo:Feature ;

 rdfs:label "White House" ;

 geo:hasGeometry :whiteHouseGeo .

:whiteHouseGeo a geo:Geometry ;

 geo:asWKT "Point(-77.03653 38.897676)"^^geo:wktLiteral .

:whiteHouse a :Location ;

 rdfs:label "White House" ;

 wgs:lat "38.897676"^^xsd:float ;

 wgs:long "-77.03653"^^xsd:float .

/

The operators supported by Stardog are geof:relate , geof:distance ,

geof:within , geof:nearby and geof:area . The geof namespace is

http://www.opengis.net/def/function/geosparql/

(http://www.opengis.net/def/function/geosparql/)

.

This query gets all features within �km of Complexible HQ in DC:

More query examples can be found on our blog

(https://www.stardog.com/blog/geospatial-a-primer).

Geospatial Datatypes

The QUDT (http://www.qudt.org/) ontology, namespace

http://qudt.org/vocab/unit#

(http://qudt.org/vocab/unit#) , is used to specify

units for distances; Kilometer , Meter , Centimeter , MileUSStatute ,

Yard , Foot , Inch . Additionally, the OGC units vocabulary

http://www.opengis.net/def/uom/OGC/�.�/

(http://www.opengis.net/def/uom/OGC/�.�/)

de�nes degree , radian and metre .

Enhanced Polygons

Stardog’s geospatial support covers the use of basic WKT formatted

shapes; speci�cally points and rectangles. However, WKT can encode more

complex spatial structures, most notably, polygons.

To enable support for these more complex shapes, download JTS

(http://central.maven.org/maven�/com/vividsolutions/jts-core/�.��.�/jts-

core-�.��.�.jar) and include the JAR in Stardog’s classpath by placing it into

the server/ext folder of the installation (you may need to create this

folder) or into the folder speci�ed by the STARDOG_EXT environment

select ?name where {

 ?loc rdfs:label ?name .

 ?loc geo:hasGeometry ?feature .

 ?hq geo:hasGeometry ?hqGeo ; rdfs:label "Complexible Headquarters" .

 ?feature geof:nearby (?hqGeo 2

<http://qudt.org/vocab/unit#Kilometer>).

}

http://www.opengis.net/def/function/geosparql/
https://www.stardog.com/blog/geospatial-a-primer
http://www.qudt.org/
http://qudt.org/vocab/unit#
http://www.opengis.net/def/uom/OGC/1.0/
http://central.maven.org/maven2/com/vividsolutions/jts-core/1.14.0/jts-core-1.14.0.jar

/

variable. Then set spatial.use.jts=true in your stardog.properties

�le. When you restart Stardog, it will pick up JTS and you’ll be able to use

more complex WKT formatted shapes.

MACHINE LEARNING

In this section, you’ll learn how to use Stardog’s machine learning

capabilities for the general problem of predictive analytics. We’ll show you

how to build a machine learning model and use it for prediction, plus best

practices on modelling your data and improving the quality of results.

TIP

Machine Learning Tutorial

(https://github.com/stardog-union/stardog-

examples/tree/develop/examples/machinelear

ning)

Learning to Predict

(https://www.stardog.com/blog/learning-to-

predict/)

Boosting Machine Learning

(https://www.stardog.com/blog/boosting-

machine-learning/)

Predictive Analytics

Suppose you have data about movies. But that data is incomplete; some

movies are missing the genre �eld. Filling out that missing data is time

consuming, and you would like to do it automatically using all the

information you already have about the movies. This is where Stardog’s

predictive analytics comes into the game. Using the data you have about

movies with genre, you can create a machine learning model that will

predict the genre for the movies that are missing it. Isn’t that sweet?

Supervised learning is the basis of this capability. You give Stardog some

data about the domain you’re interested in, and it will learn a model that

can be used to make predictions about properties of that data.

https://github.com/stardog-union/stardog-examples/tree/develop/examples/machinelearning
https://www.stardog.com/blog/learning-to-predict/
https://www.stardog.com/blog/boosting-machine-learning/

/

Learning a Model

First step is learning a model, by de�ning which data will be used in the

learning and the target that we are actually trying to predict.

With Stardog, all this is naturally done via SPARQL. The best way to

understand the syntax is through an example. Here, we learn a model to

predict the genre of a movie given its director, year, and studio.

The WHERE clause selects the data and a special graph, spa:model , is

used to specify the parameters of the training. :myModel is the unique

identi�er given to this model and is composed of � mandatory properties.

First, we need to de�ne the type of learning we are performing:

classi�cation, spa:ClassificationModel , if we are interested in

predicting a categorical value that has a limited set of possible values

(e.g., genre of a movie)

regression, spa:RegressionModel , if we predict a numerical value that

can naturally have an unlimited set of values (e.g., box o�ce of a movie)

similarity, spa:SimilarityModel , if we want to predict the degree of

similarity between two objects (e.g., most similar movies)

The second property, spa:arguments , de�nes the variables from the

WHERE clause that will be used as features when learning the model. Here

is where you de�ne the data that you think will help to predict the third

property, given by spa:predict .

prefix spa: <tag:stardog:api:analytics:>

INSERT {

 graph spa:model {

 :myModel a spa:ClassificationModel ;

 spa:arguments (?director ?year ?studio) ;

 spa:predict ?genre .

 }

}

WHERE {

 ?movie :directedBy ?director ;

 :year ?year ;

 :studio ?studio ;

 :genre ?genre .

}

/

In this case, our model will be trained to predict the value of ?genre based

on the values of ?director , ?year , and ?studio .

Properly de�ning this � properties is the main task when creating any

model. Using more advanced parameters is covered in the Mastering the

Machine (#_mastering_the_machine) section.

Making Predictions

Now that we’ve learned a model, we can move on to more exciting stu� and

use it to actually predict things.

We select a movie’s properties and use them as arguments to the model

Stardog previously learned. The magic comes with the ?predictedGenre

variable; during query execution, its value is not going to come from the

data itself (like ?originalGenre), but will instead be predicted by the

model, based on the values of the arguments.

The result of the query will look like this:

Our model seems to be predicting correctly the genre for The Godfather.

Yee!

prefix spa: <tag:stardog:api:analytics:>

SELECT * WHERE {

 graph spa:model {

 :myModel spa:arguments (?director ?year ?studio) ;

 spa:predict ?predictedGenre .

 }

 :TheGodfather :directedBy ?director ;

 :year ?year ;

 :studio ?studio ;

 :genre ?originalGenre .

}

| director | year | studio | originalGenre |

predictedGenre |

| ------------------- | ---- | ------------------ | ------------- | --

------------ |

| :FrancisFordCoppola | 1972 | :ParamountPictures | Drama |

Drama |

/

Query Syntax Restrictions

At this point, only basic graph patterns can be used directly inside the

prediction query. If more advanced constructs, like OPTIONAL or FILTER ,

are necessary, that part of the query needs to be in a sub-query, e.g.:

Selecting a Library

For classi�cation and regression, Stardog can use two distinct machine

learning libraries under the covers: Vowpal Wabbit

(https://github.com/JohnLangford/vowpal_wabbit) (default) and XGBoost

(https://xgboost.readthedocs.io/en/latest/). Both support the same set of

functionalities, and can be used interchangeably.

At model creation, the desired library can be selected with the

spa:library property: spa:VowpalWabbit or spa:XGBoost .

prefix spa: <tag:stardog:api:analytics:>

SELECT * WHERE {

 graph spa:model {

 :myModel spa:arguments (?director ?year ?studio) ;

 spa:predict ?predictedGenre .

 }

 {

 SELECT * WHERE {

 ?movie :directedBy ?director ;

 :year ?year ;

 :genre ?originalGenre .

 OPTIONAL { ?movie :studio ?studio }

 FILTER (?year > 2000)

 }

 }

}

https://github.com/JohnLangford/vowpal_wabbit
https://xgboost.readthedocs.io/en/latest/

/

Vowpal Wabbit is recommended for large, sparse, datasets, while XGBoost

is known to perform better in domains with numeric values. We recommend

testing both libraries, as their strengths are largely dependent on

particularities of the data.

NOTE

Learning models with large datasets might

exceed the default max query execution time,

especially with XGBoost. In those cases, it is

recommended to increase the value for the

query.timeout con�guration. Increasing the

amount of memory available to Stardog might

also make the learning faster.

Assessing Model Quality

Metrics

We provide some special aggregate operators that help quantify the quality

of a model.

For classi�cation and similarity problems, one of the most important

measures is accuracy , that is, the frequency that we predict the target

variable correctly.

prefix spa: <tag:stardog:api:analytics:>

INSERT {

 graph spa:model {

 :myModel a spa:ClassificationModel ;

 spa:library spa:XGBoost ;

 spa:arguments (?director ?year ?studio) ;

 spa:predict ?genre .

 }

}

...

/

For regression, we provide three di�erent measures:

Mean absolute error, or, on average, how far away is the prediction from

the real target number: spa:mae(?originalValue, ?predictedValue)

Mean square error, on average, how much is the squared di�erence

between prediction and the target number:

spa:mse(?originalValue, ?predictedValue)

Root mean square error, the square root of the mean square error:

spa:rmse(?originalValue, ?predictedValue)

Automatic Evaluation

Classi�cation and regression models are automatically evaluated with the

data used in their training. The score and respective metric can be queried

from spa:model .

prefix spa: <tag:stardog:api:analytics:>

SELECT (spa:accuracy(?originalGenre, ?predictedGenre) as ?accuracy)

WHERE {

 graph spa:model {

 :myModel spa:arguments (?director ?year ?studio) ;

 spa:predict ?predictedGenre .

 }

 ?movie :directedBy ?director ;

 :year ?year ;

 :studio ?studio ;

 :genre ?originalGenre .

}

+---------------------+

| accuracy |

| ------------------- |

| 0.92488254018 |

+---------------------+

prefix spa: <tag:stardog:api:analytics:>

SELECT * WHERE {

 graph spa:model {

 :myModel spa:evaluationMetric ?metric ;

 spa:evaluationScore ?score .

 }

}

/

By default, spa:accuracy is used for classi�cation problems, and

spa:mae for regression. This metric can be changed during model

learning, by setting the spa:evaluationMetric argument.

Cross Validation

The default automatic evaluation technique of measuring the accuracy of

the model on the same data as training might be prone to over�tting. The

most accurate measure we can have is testing on data that the model has

never seen before.

We provide a spa:crossValidation property, which will automatically

apply K-Fold cross validation on the training data, with the number of folds

given as an argument.

+------------------------------------+-------+

| metric | score |

+------------------------------------+-------+

| tag:stardog:api:analytics:accuracy | 1.0 |

+------------------------------------+-------+

prefix spa: <tag:stardog:api:analytics:>

INSERT {

 graph spa:model {

 :myModel a spa:RegressionModel ;

 spa:evaluationMetric spa:rmse ;

 ...

 }

}

...

prefix spa: <tag:stardog:api:analytics:>

INSERT {

 graph spa:model {

 :myModel a spa:RegressionModel ;

 spa:crossValidation 10 ;

 spa:evaluationMetric spa:rmse ;

 ...

 }

}

 ...

/

Modelling Data

The way you input data into Stardog during model learning is of utmost

importance in order to achieve good quality predictions.

Data Representation

For better results, each individual you are trying to model should be

encoded in a single SPARQL result.

For example, suppose you want to add information about actors into the

previous model. The query selecting the data would look as follow:

prefix spa: <tag:stardog:api:analytics:>

SELECT * WHERE {

 graph spa:model {

 :myModel spa:evaluation ?validation ;

 spa:evaluationMetric ?metric ;

 spa:evaluationScore ?score .

 }

}

+-------------+------------------------------------+-------+

| validation | metric | score |

+-------------+------------------------------------+-------+

| "KFold=10" | tag:stardog:api:analytics:rmse | 0.812 |

+-------------+------------------------------------+-------+

SELECT * WHERE {

 ?movie :actor ?actor ;

 :directedBy ?director ;

 :year ?year ;

 :studio ?studio ;

 :genre ?genre .

}

/

Due to the nature of relational query languages like SPARQL, results are

returned for all the combinations between the values of the selected

variables.

In order to properly model relational domains like this, we introduced a

special aggregate operator, set . Used in conjunction with GROUP BY , we

can easily model this kind of data as a single result per individual.

Data Types

Carefully modelling your data with the correct datatypes can dramatically

increase the quality of your model.

As of �.�.�, Stardog does special treatment on values of the following

types:

| movie | actor | director | year | studio

| genre |

| ------------- | ------------- | ------------------- | ---- | -------

----------- | ------ |

| :TheGodfather | :MarlonBrando | :FrancisFordCoppola | 1972 |

:ParamountPictures | Drama |

| :TheGodfather | :AlPacino | :FrancisFordCoppola | 1972 |

:ParamountPictures | Drama |

prefix spa: <tag:stardog:api:analytics:>

SELECT ?movie (spa:set(?actor) as ?actors) ?director ?studio ?genre

WHERE {

 ?movie :actor ?actor ;

 :directedBy ?director ;

 :year ?year ;

 :studio ?studio ;

 :genre ?genre .

}

GROUP BY ?movie ?director ?studio ?genre

| movie | actors | director |

year | studio | genre |

| ------------- | ------------------------- | ------------------- | --

-- | ------------------ | ------ |

| :TheGodfather | [:MarlonBrando :AlPacino] | :FrancisFordCoppola |

1972 | :ParamountPictures | Drama |

/

Numbers, such as xsd:int , xsd:short , xsd:byte , xsd:float , and

xsd:double , are treated internally as weights and properly model the

di�erence between values

Strings, xsd:string and rdf:langString , are tokenized and used in

a bag-of-words fashion

Sets, created with the spa:set operator, are interpreted as a bag-of-

words of categorical features

Booleans, xsd:boolean , are modeled as binary features

Everything else is modeled as categorical features.

Setting the correct data type for the target variable, given through

spa:predict , is extremely important:

with regression, make sure values are numeric

with classi�cation, individuals of the same class should have consistent

data types and values

with similarity, use values that uniquely identify an object, e.g., an IRI

For evertything else, using the datatype that is closer to its original meaning

is a good rule of thumb.

Mastering the Machine

Let’s look at some other issues around the daily care and feeding of

predictive analytics and models in Stardog.

Overwriting Models

By default, you cannot create a new model with the same identi�er as an

already existent one. If you try to do so, you’ll be greeted with a

Model already exists error.

In order to reuse an existent identi�er, users can set the spa:overwrite

property to True . This will delete the previous model and save the new

one in its place.

/

Deleting Models

Finding good models is an iterative process, and sometimes you’ll want to

delete your old---not as awesome and now unnecessary---models. This can

be achieved with DELETE DATA and the spa:deleteModel property

applied to the model identi�er.

Classification and Similarity with Confidence Levels

Sometimes, besides predicting the most probable value for a property, you

will be interested to know the con�dence of that prediction. By providing

the spa:confidence property, you can get con�dence levels for all the

possible predictions.

prefix spa: <tag:stardog:api:analytics:>

INSERT {

 graph spa:model {

 :myModel a spa:RegressionModel ;

 spa:overwrite True ;

 ...

 }

}

 ...

prefix spa: <tag:stardog:api:analytics:>

DELETE DATA {

 graph spa:model {

 [] spa:deleteModel :myModel .

 }

}

/

These values can be interpreted as the probability of the given prediction

being the correct one and are useful for tasks like ranking and multi-label

classi�cation.

Tweaking Parameters

Both Vowpal Wabbit

(https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-

arguments), XGBoost

(https://xgboost.readthedocs.io/en/latest//parameter.html), and similarity

search can be con�gured with the spa:parameters property.

prefix spa: <tag:stardog:api:analytics:>

SELECT * WHERE {

 graph spa:model {

 :myModel spa:arguments (?director ?year ?studio) ;

 spa:confidence ?confidence ;

 spa:predict ?predictedGenre .

 }

 :TheGodfather :directedBy ?director ;

 :year ?year ;

 :studio ?studio .

}

ORDER BY DESC(?confidence)

LIMIT 3

| director | year | studio | predictedGenre |

confidence |

| ------------------- | ---- | ------------------ | -------------- | -

------------- |

| :FrancisFordCoppola | 1972 | :ParamountPictures | Drama |

0.649688932 |

| :FrancisFordCoppola | 1972 | :ParamountPictures | Crime |

0.340013045 |

| :FrancisFordCoppola | 1972 | :ParamountPictures | Sci-fi |

0.010298023 |

https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments
https://xgboost.readthedocs.io/en/latest//parameter.html

/

Parameter names for both libraries are valid properties in the spa pre�x,

and their values can be set during model creation.

Vowpal Wabbit

By default, models are learned with

[spa:loss_function "logistic"; spa:probabilities true; spa:oaa

true]

in classi�cation mode, and [spa:loss_function "squared"] in

regression. Those parameters are overwritten when using the

spa:arguments property with regression, and appended in classi�cation.

Check the o�cial documentation

(https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-

arguments) for a full list of parameters. Some tips that might help with your

choices:

Use cross-validation when tweaking parameters. Otherwise, make sure

your testing set is not biased and represents a true sample of the

original data.

The most important parameter to tweak is the learning rate spa:l .

Values between � and �.�� usually give the best results.

To prevent over�tting, set spa:l1 or spa:l2 parameters, preferably

with a very low value (e.g., �.������).

If number of distinct features is large, make sure to increase the number

of bits spa:b to a larger value (e.g., ��).

prefix spa: <tag:stardog:api:analytics:>

INSERT {

 graph spa:model {

 :myModel a spa:ClassificationModel ;

 spa:library spa:VowpalWabbit ;

 spa:parameters [

 spa:learning_rate 0.1 ;

 spa:sgd True ;

 spa:hash 'all'

] ;

 spa:arguments (?director ?year ?studio) ;

 spa:predict ?genre .

 }

}

...

https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments

/

Each argument given with spa:arguments has its own namespace,

identi�ed by its numeric position in the list (starting with �). For example,

to create quadratic features between ?director and ?studio , set

spa:q "02" .

If caching is enabled (e.g., with spa:passes), always use the

[spa:k true; spa:cache_file "fname"] parameters, where fname

is a unique �lename for that model.

In regression, the target variable given with spa:predict is internally

normalized into the [0-1] range, and denormalized back to its normal

range during query execution. For certain problems where numeric

arguments have large values, performance might be improved by

performing a similar normalization as a pre-processing step.

XGBoost

Models are learned with spa:objective "multi:softprob" in

classi�cation, and spa:objective "reg:linear" in regression. See this

list (https://xgboost.readthedocs.io/en/latest//parameter.html) for a complete

set of available parameters.

Similarity Search

The underlying algorithm is based on cluster pruning

(https://nlp.stanford.edu/IR-book/html/htmledition/cluster-pruning-�.html), an

approximate search algorithm which groups items based on their similarity

in order to speed up query performance.

The minimum number of items per cluster can be con�gured with the

spa:minClusterSize property, which is set to ��� by default.

prefix spa: <tag:stardog:api:analytics:>

INSERT {

 graph spa:model {

 :myModel a spa:SimilarityModel ;

 spa:parameters [

 spa:minClusterSize 100 ;

] ;

 spa:arguments (?director ?year ?studio) ;

 spa:predict ?movie .

 }

}

...

https://xgboost.readthedocs.io/en/latest//parameter.html
https://nlp.stanford.edu/IR-book/html/htmledition/cluster-pruning-1.html

/

This number should be increased with datasets containing many near-

duplicate items.

During prediction, there are two parameters available:

spa:limit , which restricts the number of top N items to return; by

default, it returns only the top item, or all items if using

spa:confidence .

spa:clusters , which sets the number of similarity clusters used during

the search, with a default value of �. Larger numbers will increase recall,

at the expense of slower query time.

For example, the following query will return the top � most similar items and

their con�dence scores, restricting the search to �� clusters.

Hyperparameter Optimization

Finding the best parameters for a model is a time consuming, laborious,

process. Stardog helps to ease the pain by performing an exhaustive

search through a manually speci�ed subset of parameter values.

prefix spa: <tag:stardog:api:analytics:>

SELECT * WHERE {

 graph spa:model {

 :myModel spa:parameters [

 spa:limit 3 ;

 spa:clusters 10 .

] ;

 spa:confidence ?confidence ;

 spa:arguments (?director ?year ?studio) ;

 spa:predict ?similar .

 }

}

...

/

All possible sets of parameter con�gurations that can be built from the

given values (spa:learning_rate 0.1 ; spa:hash 'all' ,

spa:learning_rate 1 ; spa:hash 'all' , and so on) will be evaluated

(#Automatic Validation). The best con�guration will be chosen, and its

model saved in the database.

Afterwards, parameters are available for querying, just like any other model

metadata.

Native Library Errors

Stardog ships with a pre-compiled version of Vowpal Wabbit (VW) that

works out of the box with most MacOSX/Linux ��bit distributions.

prefix spa: <tag:stardog:api:analytics:>

INSERT {

 graph spa:model {

 :myModel a spa:ClassificationModel ;

 spa:library spa:VowpalWabbit ;

 spa:parameters [

 spa:learning_rate (0.1 1 10) ;

 spa:hash ('all' 'strings')

] ;

 spa:arguments (?director ?year ?studio) ;

 spa:predict ?genre .

 }

}

...

prefix spa: <tag:stardog:api:analytics:>

SELECT * WHERE {

 graph spa:model {

 :myModel spa:parameters [?parameter ?value]

 }

}

+-------------------+-------+

| parameter | value |

+-------------------+-------+

| spa:hash | "all" |

| spa:learning_rate | 1 |

+-------------------+-------+

/

If you have a �� bit operating system, or an older version of Linux, you will

be greeted with a Unable to load analytics native library error when

trying to create your �rst model.

In this case, you will need to install VW manually. Fear not! Instructions are

easy to follow.

You might need to install some dependencies, namely zlib-devel ,

automake , libtool , and autoconf .

After this process is �nished, restart the Stardog server and everything

should work as expected.

PROPERTY GRAPHS

In addition to RDF, SPARQL, and OWL, Stardog supports the non-semantic

property graph model (http://tinkerpop.incubator.apache.org/docs/�.�.�-

incubating/#intro), Gremlin graph traversal language, and Apache

TinkerPop � (http://tinkerpop.com/) APIs. For information on how to use the

TinkerPop �, please refer to its documentation

(http://tinkerpop.incubator.apache.org/docs/�.�.�-incubating). Details about

Stardog’s support for TinkerPop � Features

(http://tinkerpop.incubator.apache.org/docs/�.�.�-incubating/#_features)

Exception in thread "main" java.lang.RuntimeException: Unable to load

analytics native library. Please refer to

http://www.stardog.com/docs/#_native_library_errors

 at

vowpalWabbit.learner.VWLearners.loadNativeLibrary(VWLearners.java:94)

 at

vowpalWabbit.learner.VWLearners.initializeVWJni(VWLearners.java:76)

 at vowpalWabbit.learner.VWLearners.create(VWLearners.java:44)

 ...

Caused by: java.lang.RuntimeException: Unable to load vw_jni library

for Linux (i386)

git clone https://github.com/cpdomina/vorpal.git

cd vorpal/build-jni/

./build.sh

sudo cp transient/lib/vw_wrapper/vw_jni.lib /usr/lib/libvw_jni.so

http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#intro
http://tinkerpop.com/
http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating
http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#_features

/

can be found in Stardog Feature Set

(/docs/�.�.�/java/snarl/com/complexible/stardog/gremlin/features/stardogfe

atureset).

NOTE
Stardog 7.0.3 supports TinkerPop

3.0.2-incubating .

Motivation & Implementation

Stardog’s implementation of TinkerPop � is based ultimately on a (seamless

and opaque) translation to and from RDF, in which Stardog persists all

vertices, edges and properties. In order to support edge properties in the

RDF model, Stardog includes a rei�cation function which allows statement

identi�ers to be used as the subject of an RDF quad; this extends the RDF

Quad model used in Stardog to have a notion of virtual "quints".

Having virtual quints in Stardog lets us manipulate existing RDF content as a

property graph; but, most importantly, it lets us use Stardog capabilities

(reasoning, ICV, etc) with property graphs. Rei�cation extends existing

Stardog graph database and let users add edge properties if required via

the TinkerPop � or even SPARQL.

Okay, so why add property graph support to Stardog? A few reasons:

�. sometimes you need to traverse, rather than query, a graph

�. sometimes you need to traverse a semantic graph

Example

Loading the TinkerGraph Modern

(http://tinkerpop.incubator.apache.org/docs/�.�.�-incubating/#intro) graph

via TinkerPop � (using Gremlin Console), using the described Graph

Con�guration (#_graph_con�guration):

�. Get the Graph from the StardogGraphFactory

Graph graph = StardogGraphFactory.open(...) (1)

graph.io(graphml()).readGraph('data/tinkerpop-modern.xml') (2)

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/gremlin/features/stardogfeatureset
http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#intro

/

�. Load the graph tinkerpop-modern included in Gremlin Console

distribution at data/tinkerpop-modern.xml .

That produces the following internal representation in Stardog:

/

@prefix : <http://api.stardog.com/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix stardog: <tag:stardog:api:> .

@prefix tp: <https://www.tinkerpop.com/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

tp:software-bd37dbca-b8d5-4989-abb7-58b82e14411e tp:name "ripple" ;

 rdfs:label "software" ;

 tp:lang "java" .

tp:person-5c8001e5-2bfa-4816-9a76-c69d77e19b62 tp:name "josh" ;

 tp:age "32"^^xsd:int ;

 rdfs:label "person" ;

 tp:created-aac3d5b1-e5ff-460f-aaf3-267b3d11b710 tp:software-

5964a0af-1bb4-4469-b362-6b7db5e617e2 ;

 tp:created-33504b11-6393-4ab8-a762-280bf5914e0b tp:software-

bd37dbca-b8d5-4989-abb7-58b82e14411e .

tp:software-5964a0af-1bb4-4469-b362-6b7db5e617e2 tp:name "lop" ;

 rdfs:label "software" ;

 tp:lang "java" .

<tag:stardog:api:id:21115cc5c645c6d35b7571acb4ff3756> rdfs:label

"created" ;

 tp:weight 4.0E-1 .

<tag:stardog:api:id:83775dcbec39e9ef064557f9e7fdee47> rdfs:label

"created" ;

 tp:weight 1.0E0 .

tp:person-c56860db-505d-4805-abd0-eecd7698149a tp:name "peter" ;

 tp:age "35"^^xsd:int ;

 rdfs:label "person" ;

 tp:created-6d0837a6-c891-4419-b320-80136651a645 tp:software-

5964a0af-1bb4-4469-b362-6b7db5e617e2 .

<tag:stardog:api:id:b751315c74567c781eb95dba9be6ba94> rdfs:label

"created" ;

 tp:weight 2.0E-1 .

tp:person-344dd010-dfc4-4356-aca8-f580c07f52d7 tp:name "vadas" ;

 tp:age "27"^^xsd:int ;

 rdfs:label "person" .

tp:person-adb00b0b-7912-4308-8be2-158af3d7879a tp:name "marko" ;

 tp:age "29"^^xsd:int ;

 rdfs:label "person" ;

 tp:created-640f018f-a2ef-4486-9dea-a7add6b26ce8 tp:software-

5964a0af-1bb4-4469-b362-6b7db5e617e2 ;

 tp:knows-463a4473-6a1f-46df-a893-de0f4236ee83 tp:person-344dd010-

dfc4-4356-aca8-f580c07f52d7 ;

 tp:knows-22569d6b-b7bb-47c5-b0c4-71a2c78ef900 tp:person-5c8001e5-

2bfa-4816-9a76-c69d77e19b62 .

/

WARNING

This translation between RDF and property graph

models is transparent to the user. It just works.

But, of course, since in the end it’s just RDF, you

can always query or interact with it as RDF

directly using SPARQL, Jena, Sesame, or SNARL

code, etc. However, the mapping between

Property Graphs and RDF is not considered part

of Stardog’s contract so it may change without

notice. You’ve been warned!

Getting properties for in-edges for a vertex from the previous graph, using

the TinkerPop � API:

�. Get a traversal that can be reused

�. Get a vertex using its IRI Id and list in-edge properties

�. Get a vertex �ltering by name and list in-edge properties

Integration with SPARQL

Access to the rei�cation function is available via SPARQL in order to be able

to query edge properties created via the TinkerPop � API, e.g. query to �nd

the �rst �� edge properties, excluding the label:

<tag:stardog:api:id:b46d0155b1c5558598e8c3425432ab81> rdfs:label

"created" ;

 tp:weight 4.0E-1 .

<tag:stardog:api:id:19f7ef4ca398cf79850e3b6463f776bd> rdfs:label

"knows" ;

 tp:weight 5.0E-1 .

<tag:stardog:api:id:f1ed3591ab20391a1b169d85dc74be5a> rdfs:label

"knows" ;

 tp:weight 1.0E0 .

g = graph.traversal() (1)

g.V('https://www.tinkerpop.com/software-5964a0af-1bb4-4469-b362-

6b7db5e617e2').inE().properties() (2)

g.V().has('name','lop').inE().properties() (3)

/

�. Using the stardog:identifier() (aka "rei�cation") function.

Database Configuration

Any Stardog database should work out-of-the-box with the Stardog

TinkerPop � implementation, but given that Stardog enables by default RDF

literal canonicalization

(/docs/�.�.�/java/snarl/com/complexible/stardog/index/indexoptions#CANO

NICAL_LITERALS), some property value types may not be as expected

when fetching them from the TinkerPop � graph. To allow for better

compatibility between TinkerPop � and Stardog, the setting

index.literals.canonical must be disabled in the database at creation

time, using the following command:

Graph Configuration

In order to create TinkerPop � graphs, a con�guration object must be

created to set up the graph. The TinkerPop � implementation for Stardog

contains a tool for creating this con�guration easily, supporting many of the

features available in Stardog, such as reasoning and named-graphs. The

StardogGraphCon�guration

(/docs/�.�.�/java/snarl/com/complexible/stardog/gremlin/stardoggraphcon�

guration), is available via the API or the Gremlin Console in Groovy.

select ?srcName ?edgeLabel ?destName ?edgeProp ?val where {

 ?src ?pred ?dest .

 ?src tp:name ?srcName .

 ?dest tp:name ?destName .

 BIND(stardog:identifier(?src, ?pred, ?dest) as ?edgeId) . (1)

 ?edgeId rdfs:label ?edgeLabel .

 ?edgeId ?edgeProp ?val .

 FILTER (?edgeProp != rdfs:label) .

} limit 10

$ stardog-admin db create -o index.literals.canonical=false -n

<dbname>

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERALS
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/gremlin/stardoggraphconfiguration

/

Stardog & Gremlin Console

Stardog’s TinkerPop � implementation includes a plugin for Gremlin

Console (http://tinkerpop.incubator.apache.org/docs/�.�.�-

incubating/#gremlin-console).

Installation

The following steps describe how to install the Stardog plugin into the

Gremlin console:

�. Create stardog-gremlin/plugin directory within the ext/ directory

in the Gremlin console directory.

�. Flat-copy all Stardog client jar �les to the directory created in the

previous step.

gremlin> graphConf = StardogGraphConfiguration.builder()

...

gremlin>

graphConf.connectionString("http://localhost:5820/mygraph").credential

s("admin", "admin")

...

gremlin>

graphConf.baseIRI("http://tinkerpop.incubator.apache.org/").reasoning(

false)

==>gremlin.graph=tag:stardog:api:context:default

stardog.computer.cache_size=5000

stardog.label_iri=http://www.w3.org/2000/01/rdf-schema#label

stardog.connection=http://localhost:5820/mygraph

stardog.user=admin

stardog.password=admin

stardog.base_iri=http://tinkerpop.incubator.apache.org/

stardog.reasoning_enabled=false

gremlin> graph = StardogGraphFactory.open(graphConf.build())

==>cachedstardoggraph[cachedstardoggraph]

~/gremlin-console/ext/$ mkdir -p stardog-gremlin/plugin

~/gremlin-console/ext/stardog-gremlin/plugin$ find stardog/client -

iname '*.jar' -exec cp \{\} . \;

http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#gremlin-console

/

�. Make sure the jar �le stardog-gremlin-X.X.X.jar is contained in the

stardog-gremlin/plugin directory along with all other Stardog jars;

copy the jar if it doesn’t exist.

�. Start the Gremlin Console and make sure the complexible.stardog

plugin has been loaded.

�. Activate the complexible.stardog plugin in Gremlin Console

�. You’re done installing the stardog-gremlin plugin for Gremlin Console.

Now you can create a StardogGraph and start exploring the

TinkerPop � API with Stardog.

Using a Stardog Graph

The following describes the process to create a StardogGraph and

explore data in Stardog using the TinkerPop � API via the Gremlin Console.

The only requirement is that you have an existent database in Stardog as

directed in Database Con�guration (#_database_con�guration), which

could be in-memory or disk based. Assuming you already installed the

Stardog plugin for the Gremlin Console and it is active, start the Gremlin

Console.

~/gremlin-console$ bin/gremlin.sh

 \,,,/

 (o o)

-----oOOo-(3)-oOOo-----

plugin activated: tinkerpop.server

plugin activated: tinkerpop.utilities

plugin activated: tinkerpop.tinkergraph

gremlin> :plugin list

==>tinkerpop.server[active]

==>tinkerpop.gephi

==>tinkerpop.utilities[active]

==>tinkerpop.sugar

==>complexible.stardog

==>tinkerpop.tinkergraph[active]

gremlin> :plugin use complexible.stardog

==>complexible.stardog activated

gremlin-console$ bin/gremlin.sh

/

In the Gremlin Console, create the con�guration settings for opening the

StardogGraph . Assuming the Stardog server is running in

localhost:5820 , the user is admin and password admin .

Named Graphs

The previous commands will create a Graph within the default graph of

the Stardog database mygraph . A database can contain multiple graphs,

which would be the equivalent to named-graphs in Stardog.

To create a StardogGraph over a speci�c named-graph, just set the

named-graph URI in the Graph Con�guration (#_graph_con�guration) for

the StardogGraph to create:

NOTE

by default, the property gremlin.graph is set to

the default graph in a Stardog database; setting

the stardog.named_graph con�guration option

will override the graph option.

gremlin> graphConf = StardogGraphConfiguration.builder()

...

gremlin>

graphConf.connectionString("http://localhost:5820/mygraph").credential

s("admin", "admin").baseIRI("http://tinkerpop.incubator.apache.org/")

==>gremlin.graph=tag:stardog:api:context:default

stardog.computer.cache_size=5000

stardog.label_iri=http://www.w3.org/2000/01/rdf-schema#label

stardog.connection=http://localhost:5820/mygraph

stardog.user=admin

stardog.password=admin

stardog.base_iri=http://tinkerpop.incubator.apache.org/

gremlin> graph = StardogGraphFactory.open(graphConf.build())

==>cachedstardoggraph[cachedstardoggraph]

gremlin> graphConf.namedGraph("tag:graph1")

==>gremlin.graph=tag:stardog:api:context:default

...

stardog.named_graph=tag:graph1

...

/

Stardog & Gremlin Server

The TinkerPop � implementation for Stardog includes a plugin for Gremlin

Server (http://tinkerpop.incubator.apache.org/docs/�.�.�.M�-

incubating/#gremlin-server).

Installation

The following steps describe how to install the Stardog plugin into the

gremlin server:

�. Create stardog-gremlin/plugin directory within the ext/ directory

in the gremlin server directory.

�. Flat-copy all Stardog client jar �les to the directory created in the

previous step.

�. Make sure the jar �le stardog-gremlin-X.X.X.jar is contained in the

stardog-gremlin/plugin directory along with all other Stardog jars;

copy the jar if it doesn’t exist.

Configure Stardog Graphs

To setup a graph for use with the Gremlin Server you need to create a

con�guration �le in conf/ with the Stardog graph properties. The

following example �le, stardoggraph-mygraph.properties , contains the

required properties to use a Stardog graph, described in Graph

Con�guration (#_graph_con�guration):

~/gremlin-server/ext/$ mkdir -p stardog-gremlin/plugin

~/gremlin-server/ext/stardog-gremlin/plugin$ find ~/stardog/client -

iname '*.jar' -exec cp \{\} . \;

Properties for creating a StardogGraph in Gremlin Server

gremlin.graph=com.complexible.stardog.gremlin.structure.StardogGraph

stardog.connection=http://localhost:5820/mygraph

stardog.user=admin

stardog.password=admin

stardog.named_graph=tag:stardog:api:graph:default

stardog.reasoning_enabled=false

http://tinkerpop.incubator.apache.org/docs/3.0.0.M9-incubating/#gremlin-server

/

In the previous example, gremlin.graph de�nes the TinkerPop Class

implementation to use, in this case is the StardogGraph . The property

gremlin.stardog.named_graph is required when con�guring a graph in

Gremlin Server, if the graph is contained in the Stardog DB’s default graph,

the value to use is: tag:stardog:api:graph:default as shown in the

example; if other named-graph is used, just set the value to the named-

graph’s URI . The rest of the properties are just connection settings to the

Stardog server.

Now you need to point to the Stardog graph properties �le from the server

con�guration �le, conf/gremlin-server.yaml , and enable the Stardog

plugin. the following are the relevant parts of the con�guration �le that

need to be set:

�. set the stardog graph properties

�. enable the stardog gremlin plugin

Running the Gremlin Server

Having a Stardog server running, at this point you’re ready to start the

Gremlin Server.

You should see that the Gremlin Server creates an instance of the

StardogGraph , named graph , based on the properties �le con�gured.

CACHE MANAGEMENT

graphs: {

 graph: conf/stardoggraph-mygraph.properties (1)

}

plugins:

 - complexible.stardog (2)

...

~/gremlin-server$ bin/gremlin-server.sh

[INFO] Graphs - Graph [graph] was successfully configured via

[conf/stardoggraph-mygraph.properties].

/

In the �.�.� release, Stardog introduced the notion of a distributed cache. A

set of cached datasets can be run in conjunction with a Stardog server or

cluster. A dataset can be an entire graph, a virtual graph, or a query result

(currently experimental). This feature gives users the following abilities:

Reduce Load on Upstream Database Servers When using virtual

graphs it can be the case that the upstream server is slow, overworked,

far away, or lacks operational capacity. This feature addresses this by

allowing operators to create a cached data set running in its own node.

In this way the upstream database can be largely avoided and cache

refreshes can be scheduled for times when the its workload is lighter.

Read Scale-out for a Stardog Cluster Cache nodes allow operators to

add read capacity of slowly moving data to a cluster without a�ecting

write capacity. The Stardog cluster is a consistent database that

replicates out writes to every node, so as you add consistent read

nodes, write capacity is strained. However, when serving slowly moving

data that doesn’t need to be fully consistent, a cache graph node can be

added to provide additional read capacity.

Partial Materialization of Slowly Changing Data A cache dataset can

be created that contains a portion of a virtual graph that does not

update frequently while allowing federated virtual graph queries as

needed over portions of the data that update more frequently.

Architecture

Running inside of a Stardog server (either a cluster or single node) is a

component called the cache manager. The cache manager is responsible

for tracking what caches exist, where they are, and what is in them. The

query planner must work with the cache manager to determine whether or

not it can use a cache in the plan.

Cache Targets

Cache targets are separate processes that look a lot like a Single node

Stardog server in the inside. They contain a single database into which

cached information is loaded and updated. Many caches can be on a single

cache target. How to balance them is up to each operator as they consider

their own resource and locality needs.

/

The following diagram shows how the distributed cache can be used to

answer queries where some of the data is cached and some still remains in

it original source.

Setting Up A Distributed Cache

To setup Stardog running with a distributed cache �rst start a Stardog

server as described in (Administering Stardog (#_administering_stardog)).

For every cache target needed another Stardog server must be run.

Stardog servers are con�gured to be cache targets with the following

options:

Flag to run this server as a cache target

cache.target.enabled=true

If using the cache target with a cluster we need to tell it where

the clusters zookeeper installation is running

pack.zookeeper.address=196.69.68.1:2180,196.69.68.2:2180,196.69.68.3:2

180

Flag to automatically register this cache target on startup. This

is

only applicable when using a cluster.

cache.target.autoregister=false

The name to use for this cache target on auto register. This

defaults

to the hostname

cache.target.name = "mycache"

/

Once both are running we need to register the cache target with Stardog.

That is done in the following way:

Once Stardog knows of the existing cache target datasets can be cached

on it. To cache a graph run a command similar to the following:

This is will create a cache named cache://cache1 which will hold the

contents of the virtual graph virtual://dataset which is associated with

the database movies and store that cache on the target ctarget .

KUBERNETES

With Stardog �.�.� we released our distributed Knowledge Graph platform,

adding support for Elastic Stack, in addition to Stardog Cluster and cache

targets, running in Kubernetes (k�s).

Helm Charts

Support for k�s is provided as Helm charts, which makes it easy to deploy

and test in k�s. Helm charts describe the services and applications to run in

k�s and how they should be deployed, providing a single means for

repeatable application deployment. The Helm charts packaged with

Stardog specify an initial set of defaults for the deployment, for example,

that the deployment should launch � Stardog nodes and � ZooKeeper

servers that run on di�erent physical hosts. You can override the defaults of

a deployment by setting di�erent values when you install the Helm chart.

You can get started with Helm by following Helm’s quickstart

documentation (https://helm.sh/docs/using_helm/#quickstart), which covers

installation of Helm and Tiller (the portion of Helm that runs inside k�s).

Stardog Cluster in Kubernetes

stardog-admin --server http://<cluster IP>:5820 cache target add

<target name> <target hostname>:5820 admin <admin pw>

stardog-admin --server http://<cluster ip>:5820 cache create

cache://cache1 --graph virtual://dataset --target ctarget --database

movies

https://helm.sh/docs/using_helm/#quickstart

/

The �rst Helm chart deploys Stardog Cluster, including the Stardog nodes,

ZooKeeper ensemble, and the necessary secrets and con�guration �les for

a deployment.

To launch the cluster you need to copy a license into helm/cluster and

helm/cachetarget directories of the release zip in order for Helm to

access it.

The default username and password, both admin , are used if you don’t

override them.

To launch the cluster, run the following:

You can monitor its progress with the kubectl command. Once you see

all the Stardog nodes running the cluster should be available. For example:

The cluster is available at 34.74.76.223 and it can now be used as any

other Stardog server.

�. Table of Helm Stardog Cluster Con�guration Options

Option Default Description

helm install --namespace <your namespace> cluster

$ kubectl -n <your namespace> get all

NAME READY STATUS RESTARTS AGE

pod/stardog-cluster-0 1/1 Running 0 4d

pod/stardog-cluster-1 1/1 Running 0 4d

pod/stardog-cluster-2 1/1 Running 0 4d

pod/zk-0 1/1 Running 0 4d

pod/zk-1 1/1 Running 0 4d

pod/zk-2 1/1 Running 0 4d

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

service/stardog-cluster-service LoadBalancer 10.35.244.167

34.74.76.223 5820:31350/TCP 4d

service/zk-service ClusterIP None

<none> 2888/TCP,3888/TCP 4d

NAME DESIRED CURRENT AGE

statefulset.apps/stardog-cluster 3 3 4d

statefulset.apps/zk 3 3 4d

/

zookeeper.count � The number of

ZooKeeper nodes to

deploy

(recommended it be

an odd number � or

larger).

zookeeper.minAvailabl

e

� The minimum number

of ZooKeeper servers

k�s should keep

running (e.g., if

performing a rolling

restart or

maintenance).

zookeeper.requests.cp

u

� The number of CPU

units requested by

each ZooKeeper pod

for k�s to schedule

(roughly equivalent to

� AWS vCPU). For

additional information

about k�s CPU

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

cpu-resource/#cpu-

units).

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units

/

zookeeper.requests.m

emory

�Gi The amount of

memory requested by

each ZooKeeper pod

for k�s to schedule.

The pod can use

more memory if it is

available, however, at

least this much

memory must be

available on the host

in order for k�s to

schedule the pod. For

more information

about k�s memory

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

memory-resource/).

zookeeper.requests.di

sk

�Gi The size of the

volume for the

ZooKeeper data and

log directories.

dockerrepo.url https://registry.hub.do

cker.com/v�/repositor

ies

(https://registry.hub.d

ocker.com/v�/reposit

ories)

The Docker

repository to pull

containers from.

dockerrepo.username The username for the

Docker repository that

containers are pulled

from.

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://registry.hub.docker.com/v1/repositories

/

dockerrepo.password The password for the

Docker repository that

containers are pulled

from.

stardog.count � The number of

Stardog Cluster

nodes to deploy.

stardog.requests.cpu � The number of CPU

units requested by

each Stardog Cluster

pod for k�s to

schedule (roughly

equivalent to � AWS

vCPU). For additional

information about k�s

CPU requests see the

k�s documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

cpu-resource/#cpu-

units).

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units

/

stardog.requests.mem

ory

�Gi The amount of

memory requested by

each Stardog Cluster

pod for k�s to

schedule. The pod

can use more

memory if it is

available, however, at

least this much

memory must be

available on the host

in order for k�s to

schedule the pod. For

more information

about k�s memory

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

memory-resource/).

stardog.requests.disk ��Gi The size of the

Stardog home

volume.

stardog.jvm.minHeap �g The minimum heap

size for Stardog (-

Xms).

stardog.jvm.maxHeap �g The max heap size for

Stardog (-Xmx).

stardog.jvm.directMe

m

�g The direct memory

size for Stardog (-

XX:MaxDirectMemory

Size).

stardog.port ���� The port to expose for

Stardog.

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

/

stardog.tmpDir /tmp The tmp directory for

Stardog.

stardog.version latest The version of the

Stardog Docker

container to retrieve.

stardog.name stardog-cluster The name to use for

k�s resources that

are created.

stardog.container stardog/stardog The Stardog Docker

image name.

stardog.admin.passwo

rd

admin The Stardog admin

password.

Customizing the Stardog Image

To customize the Stardog image in k�s we recommend extending the base

Stardog image and pushing your custom image into a container registry,

either a local or on-prem registry, or a cloud-based one, such as

DockerHub, Elastic Container Registry (ECR), Google Container Registry

(GCR), or Azure Container Registry (ACR).

As an example, to con�gure an image with extra client drivers, create a

Docker�le:

This de�nes a simple Docker image, based on Stardog’s o�cial image

hosted on DockerHub, which adds the Elastic Search client and sets the

STARDOG_EXT environment variable. When this image is run the

ENTRYPOINT for the stardog/stardog:latest image will be used to start

Stardog but with the additions included in the custom Docker�le.

After creating the Docker�le, you need to build, tag, and push it into your

registry (authenticating as required). Below we build the image and push it

to ECR with a custom tag:

FROM stardog/stardog:latest

RUN mkdir -p /var/opt/drivers/

COPY ./elasticsearch-rest-client-7.4.0.jar /var/opt/drivers/

ENV STARDOG_EXT=/var/opt/drivers/

/

Once your image is available, you can set the dockerrepo. and

stardog.container parameters for Helm to deploy Stardog cluster into

k�s with your custom image. For the example above dockerrepo. values

should be con�gured with your ECR credentials and stardog.container

should be set to the image name provided by ECR, e.g.,

123456789.dkr.ecr.us-west-1.amazonaws.com/customstardog:0.0.1

You can read more about the various container registries in their respective

documentations: ECR

(https://docs.aws.amazon.com/AmazonECR/latest/userguide/images.html),

GCR (https://cloud.google.com/container-registry/docs/), and ACR

(https://docs.microsoft.com/en-us/azure/container-registry/).

Managing Cache Targets in Kubernetes

Cache targets are single-server Stardog nodes that hold a cache of a

dataset. While cache targets are part of a deployment, they are not Stardog

Cluster members, participating in coordination and synchronization of the

Stardog Cluster databases.

Prior to launching a cache target we need to create a graph and the

database associated with it. The cache target deployment also needs to be

given a name. This name is used for k�s resources that are created, such as

the pod. Many targets can be created within the same deployment but they

each must have a unique name.

In addition to a cache target, that command will also create a refresh

service that will update the cache, once a day by default.

Once the target is running you can verify that it is associated with the

cluster and graph by running the following commands.

docker build . -t customstardog:0.0.1

$(aws ecr get-login --region us-west-1 --no-include-email)

docker push customstardog:0.0.1

helm install --namespace <your namespace> --set "stardog.name=<target

name>" --set 'stardog.database=<database name>' --set 'stardog.graph=

<virtual graph name>' cachetarget

https://docs.aws.amazon.com/AmazonECR/latest/userguide/images.html
https://cloud.google.com/container-registry/docs/
https://docs.microsoft.com/en-us/azure/container-registry/

/

��. Table of Helm Stardog Target Con�guration Options

Option Default Description

dockerrepo.url https://registry.hub.do

cker.com/v�/repositor

ies

(https://registry.hub.d

ocker.com/v�/reposit

ories)

The Docker

repository to pull

containers from.

dockerrepo.username The username for the

Docker repository that

containers are pulled

from.

dockerrepo.password The password for the

Docker repository that

containers are pulled

from.

cluster.name stardog-cluster The name of the

Stardog Cluster

deployed as the �rst

step.

$ stardog-admin --server http://34.74.76.223:5820 cache target list

+----------+------------------+-------+

| Name | Hostname | Port |

+----------+------------------+-------+

| example1 | example1-service | 5820 |

+----------+------------------+-------+

$ stardog-admin --server http://34.74.76.223:5820 cache status -a

+-----------------------------------+-------+----------+--------+-----

--------------------+

| Name | Type | Target | Size |

Last Refreshed |

+-----------------------------------+-------+----------+--------+-----

--------------------+

| cache://example1-movies-boxoffice | graph | example1 | 451000 |

2019-04-24T19:10:45.529 |

+-----------------------------------+-------+----------+--------+-----

--------------------+

https://registry.hub.docker.com/v1/repositories

/

Option Default Description

cluster.port ���� The port Stardog

Cluster is listening on.

stardog.requests.cpu � The number of CPU

units requested by

each Stardog Cluster

pod for k�s to

schedule (roughly

equivalent to � AWS

vCPU). For additional

information about k�s

CPU requests see the

k�s documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

cpu-resource/#cpu-

units).

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units

/

Option Default Description

stardog.requests.mem

ory

�Gi The amount of

memory requested by

each Stardog Cluster

pod for k�s to

schedule. The pod

can use more

memory if it is

available, however, at

least this much

memory must be

available on the host

in order for k�s to

schedule the pod. For

more information

about k�s memory

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

memory-resource/).

stardog.requests.disk ��Gi The size of the

Stardog home

volume.

stardog.jvm.minHeap �g The minimum heap

size for Stardog (-

Xms).

stardog.jvm.maxHeap �g The max heap size for

Stardog (-Xmx).

stardog.jvm.directMe

m

�g The direct memory

size for Stardog (-

XX:MaxDirectMemory

Size).

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

/

Option Default Description

stardog.port ���� The port to expose for

Stardog.

stardog.tmpDir /tmp The tmp directory for

Stardog.

stardog.version latest The version of the

Stardog Docker

container to retrieve.

stardog.container stardog/stardog The Stardog Docker

image name.

stardog.admin.passwo

rd

admin The Stardog admin

password.

stardog.cache.updates

ched

� � * * * A cron format string

describing the

schedule of when the

cache refresh script

will be called.

Elastic Stack

Elastic Stack (https://www.elastic.co/products/elastic-stack) provides a

central service to gather, search, and analyze Stardog Cluster logs. It

consists of Elasticsearch (https://www.elastic.co/products/elasticsearch),

Kibana (https://www.elastic.co/products/kibana), and, for our deployment,

Fluentd (https://www.�uentd.org). Fluentd runs on all of the hosts in your

k�s cluster and watches Stardog and ZooKeeper logs. It sends the contents

of them to Elasticsearch, and Kibana provides the visualization dashboard

for Elasticsearch.

Similar to Stardog Cluster and cache targets, Elastic Stack can be deployed

with a single Helm command, which is precon�gured to gather and store

Stardog and ZooKeeper logs.

helm install --namespace <your namespace> elasticstack

https://www.elastic.co/products/elastic-stack
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.fluentd.org/

/

Once the pods are running, you can connect to Kibana with:

Then you can point your browser to http://localhost:����

(http://localhost:����) to access Kibana. You can explore the full

functionality of Kibana in its documentation

(https://www.elastic.co/guide/en/kibana/�.�/index.html).

��. Table of Helm Elastic Stack Con�guration Options

Option Default Description

elasticsearch.count � The size of the

Elasticsearch cluster.

elasticsearch.image docker.elastic.co/elast

icsearch/elasticsearch

-oss:�.�.�

The Elasticsearch

image to deploy.

elasticsearch.rest.port ���� The Elasticsearch

REST port.

elasticsearch.internod

e.port

���� The Elasticsearch port

used for

communication in the

cluster.

kubectl -n <your namespace> port-forward <name of the Kibana pod>

5601:5601

http://localhost:5601/
https://www.elastic.co/guide/en/kibana/7.1/index.html

/

Option Default Description

elasticsearch.requests

.cpu

� The number of CPU

units requested by

each Elasticsearch

pod for k�s to

schedule (roughly

equivalent to � AWS

vCPU). For additional

information about k�s

CPU requests see the

k�s documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

cpu-resource/#cpu-

units).

elasticsearch.requests

.memory

�Gi The amount of

memory requested by

each Elasticsearch

pod for k�s to

schedule. The pod

can use more

memory if it is

available, however, at

least this much

memory must be

available on the host

in order for k�s to

schedule the pod. For

more information

about k�s memory

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

memory-resource/).

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

/

Option Default Description

elasticsearch.requests

.disk

��Gi The size of the

volume for

Elasticsearch data.

elasticsearch.javaOpts "-Xms�g -Xmx�g" The Java options for

Elasticsearch.

kibana.image docker.elastic.co/kiba

na/kibana-oss:�.�.�

The Kibana image to

deploy.

kibana.port ���� The port for Kibana.

kibana.requests.cpu � The number of CPU

units requested by

the Kibana pod for

k�s to schedule

(roughly equivalent to

� AWS vCPU). For

additional information

about k�s CPU

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

cpu-resource/#cpu-

units).

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units

/

Option Default Description

kibana.requests.memo

ry

�Gi The amount of

memory requested by

the Kibana pod for

k�s to schedule. The

pod can use more

memory if it is

available, however, at

least this much

memory must be

available on the host

in order for k�s to

schedule the pod. For

more information

about k�s memory

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

memory-resource/).

�uentd.image �uent/�uentd-

kubernetes-

daemonset:v�.�.�-

debian-elasticsearch-

�.�

The �uentd image to

deploy.

�uentd.elasticsearch.s

cheme

http The connection

scheme for

Elasticsearch.

�uentd.elasticsearch.u

ser

foo The Elasticsearch

user for �uentd to

use.

�uentd.elasticsearch.p

assword

bar The Elasticsearch

password for �uentd

to use.

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

/

Option Default Description

�uentd.requests.cpu � The number of CPU

units requested by

each Fluentd pod for

k�s to schedule

(roughly equivalent to

� AWS vCPU). For

additional information

about k�s CPU

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

cpu-resource/#cpu-

units).

�uentd.requests.mem

ory

���Mi The amount of

memory requested by

each Fluentd pod for

k�s to schedule. The

pod can use more

memory if it is

available, however, at

least this much

memory must be

available on the host

in order for k�s to

schedule the pod. For

more information

about k�s memory

requests see the k�s

documentation

(https://kubernetes.io/

docs/tasks/con�gure-

pod-container/assign-

memory-resource/).

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

/

BUSINESS INTELLIGENCE TOOLS AND SQL
QUERIES

NOTE This feature is in Beta

BI & SQL Introduction

Stardog provides a facility to bridge the �exible schema of the graph data

model to the traditional relational model required by business intelligence

tools using SQL. This enables seamless use of business intelligence and

visualization tools such as Tableau and Power BI.

Using this feature requires creating a schema mapping from Stardog’s data

model to a relational data model. This mapping will be used to generate a

relational schema. After creating the schema, the full power of SQL

becomes available to relational clients.

IMPORTANT

Authentication requirements dictate that users

created in versions of Stardog prior to �.�.� will

need to have their password reset before

connecting through the BI server.

Configuring the BI Server

To integrate with business intelligence applications, Stardog includes a BI

Server that makes Stardog communicate like a fully SQL-compliant RDBMS.

The BI Server can be con�gured to run inside Stardog using the following

con�guration options in stardog.properties :

�. sql.server.enabled : Turns on the BI Server. Must be set to true to

use this feature.

�. sql.server.port : Controls the TCP port which the SQL query

endpoint listens on. The default port is 5806 .

/

�. sql.server.commit.invalidates.schema : Controls when changes to

the schema mappings are visible to new BI connections. The default

value is true . If true , changes to the schema mappings will be

visible to newly created connections. This can lead to unnecessary

load if the mappings rarely change. If false , changes to the schema

mappings will only a�ect the schema after the database is taken o�ine.

In all cases, users with long running connections will not see schema

changes until they reconnect.

The schema mapping is stored in a named graph identi�ed by the

sql.schema.graph property. The default is value is

tag:stardog:api:sql:schema . This property can also be set as a

database con�guration option.

BI Server Supported Clients

Clients connect to the BI Server using the MySQL client/server protocol.

This means that a wide range of clients are supported including MySQL

ODBC, JDBC and ADO.NET drivers.

Currently the two BI tools are o�cially supported:

Tableau, which requires the MySQL Connector/ODBC

(https://dev.mysql.com/downloads/connector/odbc/) driver.

Power BI, which requires the MySQL Connector/NET

(https://dev.mysql.com/downloads/connector/net/) driver.

Once the appropriate client driver is installed, select the option to connect

to a MySQL server, enter your Stardog hostname (if running locally, use your

IP address instead of localhost) and con�gured BI server port and

provide credentials for a Stardog user.

Although not o�cially supported, other visualization and reporting tools

should work with the BI Server. Please let us know

(https://community.stardog.com/c/tech-support) if you’re using a di�erent

tool and have any questions or di�culties.

SQL Schema Mappings

https://dev.mysql.com/downloads/connector/odbc/
https://dev.mysql.com/downloads/connector/net/
https://community.stardog.com/c/tech-support

/

A schema mapping de�nes a view over the RDF triples in a database in

terms of tables in a relational schema. A schema mapping is expressed as

RDF and stored in a named graph (as identi�ed by sql.schema.graph) in

the same database where the data to query is stored. The top-level

elements in the schema mapping are table mappings. A table mapping

de�nes the relationship between a subset of triples in the database and a

set of rows conforming to a �xed schema table view of the data. A table

mapping consists of a set of �eld mappings. Field mappings de�ne the

schema of the table as well as specify which values are present in each

row.

To de�ne a table mapping, you should add an entity of type

tag:stardog:api:sql:TableMapping . Field mappings can be included in

a table mapping using the tag:stardog:api:sql:hasField property. The

name of the table can be provided using the

tag:stardog:api:sql:tableName property. Field mappings can be freely

created outside of table mappings and re-used in multiple table mappings.

The table mapping is used to match a set of triples in the database and

transform them into rows in the table. Triples are joined together implicitly

with a shared subject. The shared subject is mapped to a �eld named id .

For instance, if you map a name and age property, this would give the

same results as the SPARQL query:

Table mappings can include constraints. Constraints provide the ability to

restrict the set of triples present in a mapped table. Constraints are similar

to �eld mappings in that they require a property which will be linked to the

shared subject. However, the object is speci�ed as a constant. A common

usage is to require the rows in a table to be mapped from instances of a

given class. The tag:stardog:api:sql:hasConstraint property can be

used to specify constraints for a table mapping.

Example SQL Schema Mapping

The following example is composed of several elements:

�. A Stardog database

SELECT ?id, ?name, ?age {

 ?id :name ?name ; :age ?age

}

/

�. A SQL schema mapping de�ning the schema and it’s relationship to the

triples in the database

�. A SQL table schema which is auto-generated by Stardog

�. SQL queries and results

The contents of the database:

The SQL schema de�nition:

The generated SQL table schema:

Example query and result:

@prefix : <http://example.com/> .

:Alice a :Person ;

 :name "Alice" ;

 :nationality :USA .

:Bob a :Person ;

 :name "Bob" ;

 :nationality :UK .

@prefix sql: <tag:stardog:api:sql:> .

@prefix : <http://example.com/> .

:PersonTableMapping a sql:TableMapping ;

 sql:tableName "Person" ;

 sql:hasConstraint [sql:property rdf:type ; sql:object :Person] ;

 sql:hasField [sql:property :name ; sql:fieldName "person_name"] ;

 sql:hasField [sql:property :nationality] .

CREATE TABLE Person (

 id varchar NOT NULL,

 person_name varchar NOT NULL,

 nationality NOT NULL,

 PRIMARY KEY (id)

)

SELECT id, person_name, nationality FROM Person

/

If you have multiple tables, you can use tag:stardog:api:sql:refersTo

to create a foreign key type relationship. For example, if your database

looks like this:

You could create a schema mapping with two tables that looks like this:

SQL Schema Field Mapping Options

Field mappings may contain the following properties:

�. tag:stardog:api:sql:property - Specify which RDF property from

the database is used to provide data for the �eld. This property is

required for each �eld mapping.

| id | person_name | nationality |

|--------------------------+-------------+-------------|

| http://example.com/Alice | Alice | USA |

| http://example.com/Bob | Bob | UK |

@prefix : <http://example.com/> .

:Alice a :Person ;

 :name "Alice" ;

 :nationality :USA .

:Bob a :Person ;

 :name "Bob" ;

 :nationality :UK .

:UK a :Country ;

 :name "United Kingdom" .

:USA a :Country ;

 :name "United States of America" .

@prefix sql: <tag:stardog:api:sql:> .

@prefix : <http://example.com/> .

:PersonTableMapping a sql:TableMapping ;

 sql:tableName "Person" ;

 sql:hasConstraint [sql:property rdf:type ; sql:object :Person] ;

 sql:hasField [sql:property :name ; sql:fieldName "person_name"] ;

 sql:hasField [sql:property :nationality ; :refersTo

:CountryTableMapping] .

:CountryTableMapping a sql:TableMapping ;

 sql:tableName "Country" ;

 sql:hasConstraint [sql:property rdf:type ; sql:object :Country] ;

 sql:hasField [sql:property :name ; sql:fieldName "country_name"] .

/

�. tag:stardog:api:sql:fieldName - Specify the name of the �eld in

the SQL schema. If this property is omitted, the local name of IRI given

for the :property is used.

�. tag:stardog:api:sql:inverse - When true , the shared id �eld

of the triple is assumed to be in the object position of the triple instead

of the subject position. An example �eld mapping

sql:hasField [sql:property knows ; sql:fieldName

"is_known_by" ; sql:inverse true]

will include values for the subject position in the is_known_by �eld

and join to the other triple patterns using the value from the object

position. The default value is false .

�. tag:stardog:api:sql:optional - When true , no triples are

assumed to be present when querying for a row. If they are not present,

a NULL is included in the �eld. Additionally, the SQL schema will omit

the NOT NULL constraint. The default value is false .

�. tag:stardog:api:sql:refersTo - Optionally specify a reference to

another table mapping. This is analogous to de�ning a foreign key in a

SQL schema. While not strictly necessary, this type of relationship can

be de�ned once in the SQL schema mapping and will allow

introspection of relationships in query generation tools.

�. tag:stardog:api:sql:type - Optionally specify the type of the �eld.

The value is an XSD datatype. If values cannot be converted to the

speci�ed type, a default value will be returned, e.g. � for a �eld

specifying an integer type but returning a value which cannot be

interpreted as an integer. The default value is xsd:string.

SQL Schema Constraint Options

Constraints are generally expressed using the

tag:stardog:api:sql:hasConstraint predicate linking the table

mapping to the constraint. The constraint may contain the following

properties:

�. tag:stardog:api:sql:property - Specify which RDF property from

the database is used to constrain the data in the table. This property is

required.

/

�. tag:stardog:api:sql:object - Specify which constant object (i.e.

the IRI or literal) from the database is used to constrain the data in the

table. This property is required. To constrain to multiple values, use one

tag:stardog:api:sql:object relationship per value.

�. tag:stardog:api:sql:inverse - When true , the shared id �eld

of the triple is assumed to be in the object position of the triple instead

of the subject position. The default value is false .

To constrain table contents to be instances of the Person class, we can

use the hasConstraint form as follows.

We can also use a constraint to include only Stardog users via the

isStardogUser predicate:

Or an constraint with inverse set if we want to �nd people in�uenced by

Einstein:

@prefix sql: <tag:stardog:api:sql:> .

@prefix : <http://example.com/> .

:PersonTableMapping a sql:TableMapping ;

 sql:tableName "Person" ;

 sql:hasConstraint [sql:property rdf:type ; sql:object :Person] ;

 sql:hasField [sql:property t:name ; sql:fieldName "person_name"] .

@prefix sql: <tag:stardog:api:sql:> .

@prefix : <http://example.com/> .

:PersonTableMapping a sql:TableMapping ;

 sql:tableName "StardogUsers" ;

 sql:hasConstraint [sql:property :isStardogUser ; sql:object true]

;

 sql:hasField [sql:property :name ; sql:fieldName "person_name"] .

@prefix sql: <tag:stardog:api:sql:> .

@prefix : <http://example.com/> .

:PersonTableMapping a sql:TableMapping ;

 sql:tableName "EinsteinPupils" ;

 sql:hasConstraint [sql:property :influencedBy ; sql:object

:Einstein ; sql:inverse true] ;

 sql:hasField [sql:property :name ; sql:fieldName "person_name"] .

/

Restricting contents of a table to those of a speci�ed class can be done

with the shorthand predicate tag:stardog:api:sql:class . When using

this, the sql:tableName property may be omitted and the table name will

default to the name of the class. Here’s an example of a table mapping

which includes only instances of :Person .

Mapping SPARQL Queries in a Schema Mapping

In addition to table mappings, stored SPARQL SELECT queries can be

treated as tables. They will automatically be added to the schema if visible

from the database.

Reasoning and BI Server Queries

Stardog’s reasoning capabilities are available to BI Server queries. The

reasoning schema (see Reasoning with Multiple Schemas

(#_reasoning_with_multiple_schemas)) can be selected at any time during

a connection by setting the reasoning_schema session variable. To use

the default reasoning schema by executing

set @@reasoning_schema = 'default' , or you can explicitly set a schema

by by executing set @@reasoning_schema = 'other_schema'

The reasoning schema can be set at the connection level in various ways:

�. The initstmt (https://dev.mysql.com/doc/connector-

odbc/en/connector-odbc-con�guration-connection-parameters.html)

option can be set on the MySQL Connector/ODBC connection.

�. The sessionVariables (https://dev.mysql.com/doc/connector-

j/�.�/en/connector-j-reference-con�guration-properties.html) option can

be set on a MySQL Connector/J (JDBC) connection. This can be added

@prefix sql: <tag:stardog:api:sql:> .

@prefix : <http://example.com/> .

:PersonTableMapping a sql:TableMapping ;

 sql:class :Person ;

 sql:hasField [sql:property :name ; sql:fieldName "person_name"] .

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-connection-parameters.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-configuration-properties.html

/

directly to the connection URL, eg

jdbc:mysql://localhost:5806/db?

sessionVariables=reasoning_schema='default'

.

�. The Tableau MySQL connection dialog has an option in the bottom left

called Initial SQL… . Clicking this option will open a dialog where the

statement to set the reasoning schema can be provided.

�. The Power BI MySQL connection dialog has an "Advanced Options"

section which can be expanded to reveal a "SQL statement" option.

SECURITY

Stardog’s security model is based on standard role-based access control:

users have permissions over resources during sessions; permissions can

be grouped into roles; and roles can be assigned to users.

Stardog uses Apache Shiro (http://shiro.apache.org/) for authentication,

authorization, and session management and jBCrypt

(http://www.mindrot.org/projects/jBCrypt/) for password hashing.

Resources

A resource is some Stardog entity or service to which access is controlled.

Resources are identi�ed by their type and their name. A particular resource

is denoted as type_prefix:name . The valid resource types with their

pre�xes are shown below.

��. Table of System Resources

Resource Pre�x Description

User user A user (e.g.,

user:admin)

Role role A role assigned to a

user (role:reader)

Database db A database (db:myDB)

http://shiro.apache.org/
http://www.mindrot.org/projects/jBCrypt/

/

Resource Pre�x Description

Named Graph named-graph A named graph

(graph subset) (

named-

graph:myDb\named-

graph-id

)

Virtual Graph virtual-graph A virtual graph (

virtual-

graph:virtual://dep

t

)

Database Metadata metadata Metadata of a

database (

metadata:myDB)

Database Admin admin Database admin tasks

(e.g., admin:myDB)

Integrity Constraints icv-constraints Integrity constraints

associated with a

database (e.g.,

icv-

constraints:myDB

)

Permissions

Permissions are composed of a permission subject, an action, and a

permission object, which is interpreted as the subject resource can

perform the speci�ed action over the object resource.

Permission subjects can be of type user or role only. Permission

objects can be of any valid type.

/

NOTE

write permission in Stardog refers to graph

contents, including mutative operations

performed via SPARQL Update (i.e., INSERT ,

DELETE , etc.). The other permissions, i.e.,

create and delete , apply to resources of the

system itself, i.e., users, databases, database

metadata, etc.

Valid actions include the following:

read

Permits reading the resource properties

write

Permits changing the resource properties

create

Permits creating new resources

delete

Permits deleting a resource

grant

Permits granting permissions over a resource

revoke

Permits revoking permissions over a resource

execute

Permits executing administration actions over a database

all

Special action type that permits all previous actions over a resource

Wildcards

Stardog understands the use of wildcards to represent sets of resources. A

wildcard is denoted with the character * . Wildcards can be used to create

complex permissions; for instance, we can give a user the ability to create

/

any database by granting it a create permission over db:* . Similarly,

wildcards can be used in order to revoke multiple permissions

simultaneously.

Superusers

It is possible at user-creation time to specify that a given user is a

superuser. Being a superuser is equivalent to having been granted an all

permission over every resource, i.e., *:* . Therefore, as expected,

superusers are allowed to perform any valid action over any existing (or

future) resource.

Database Owner Default Permissions

When a user creates a resource, it is automatically granted delete ,

write , read , grant , and revoke permissions over the new resource.

If the new resource is a database, then the user is additionally granted

write , read , grant , and revoke permissions over

icv-constraints:theDatabase and execute permission over

admin:theDatabase . These latter two permissions give the owner of the

database the ability to administer the ICV constraints for the database and

to administer the database itself.

Default Security Configuration

WARNING

Out of the box, the Stardog security setup is

minimal and insecure: user:admin with

password set to "admin" is a superuser;

user:anonymous with password "anonymous"

has the "reader" role; role:reader allows

read of any resource.

Do not deploy Stardog in production or in hostile environments with the

default security settings.

Setting Password Constraints

/

To setup the constraints used to validate passwords when adding new

users, con�gure the following settings in the stardog.properties

con�guration �le.

password.length.min : Sets the password policy for the minimum

length of user passwords, the value can’t be less than � or greater than

password.length.max . Default: 4 .

password.length.max : Sets the password policy for the maximum

length of user passwords, the value can’t be greater than ���� or less

than �. Default: 20 .

password.regex : Sets the password policy of accepted chars in user

passwords, via a Java regular expression. Default: [\w@#$%!&]+

Using a Password File

To avoid putting passwords into scripts or environment variables, you can

put them into a suitably secured password �le. If no credentials are passed

explicitly in CLI invocations, or you do not ask Stardog to prompt you for

credentials interactively, then it will look for credentials in a password �le.

On a Unix system, Stardog will look for a �le called .sdpass in the home

directory of the user Stardog is running as; on a Windows system, it will look

for sdpass.conf in Application Data\stardog in the home directory of

the user Stardog is running as. If the �le is not found in these locations,

Stardog will look in the location provided by the stardog.passwd.file

system property.

Password File Format

The format of the password �le is as follows:

any line that starts with a # is ignored

each line contains a single password in the format:

hostname:port:database:username:password .

wildcards, * , are permitted for any �eld but the password �eld; colons

and backslashes in �elds are escaped with \ .

For example,

/

Of course you should secure this �le carefully, making sure that only the

user that Stardog runs as can read it.

Named Graph Security

Stardog’s security model is based on standard RBAC notions: users have

permissions over resources during sessions; permissions can be grouped

into roles; and roles can be assigned to users. Stardog de�nes a database

resource type so that users and roles can be given read or write access to a

database. With Named Graph Security added in Stardog �.�, Stardog lets

you specify which named graphs a user can read from or write to; that is,

named graphs are now an explicit resource type in Stardog’s security

model.

Example

To grant a user permissions to a named graph,

Note the use of "\" to separate the name of the database ("myDB") from the

named graph identi�er ("http://example.org/g�").

IMPORTANT

Named Graph Security is disabled by default (for

backwards compatibility with the installed base).

It can be enabled globally (or per database) by

setting security.named.graphs=true , in

stardog.properties globally, or per database.

Named Graph Operations

#this is my password file; there are no others like it and this one is

mine anyway...

::*:flannery:aNahthu8

::summercamp:jemima:foh9Moaz

$ stardog-admin user grant -a read -o named-

graph:myDB\http://example.org/g1 myUser

$ stardog-admin user grant -a write -o named-

graph:myDB\http://example.org/g2 myUser

/

Stardog does not support the notion of an empty named graph; thus, there

is no operation to create a named graph. Deleting a named graph is simply

removing all the triples in that named graph; so it’s also not a special

operation. For this reason, only read and write permissions can be used

with named graphs and create and delete permissions cannot be used with

named graphs.

How Named Graph Permissions Work

The set of named graphs to which a user has read or write access is the

union of named graphs for which it has been given explicit access plus

the named graphs for which the user’s roles have been given access.

Querying

An e�ect of named graph permissions is changing the RDF Dataset

associated with a query. The default and named graphs speci�ed for an

RDF Dataset will be �ltered to match the named graphs that a user has read

access to.

NOTE

A read query never triggers a security exception

due to named graph permissions. The graphs

that a user cannot read from would be silently

dropped from the RDF dataset for the query,

which may cause the query to return no answers,

despite there being matching triples in the

database.

The RDF dataset for SPARQL update queries will be modi�ed similarly

based on read permissions.

NOTE
The RDF dataset for an update query a�ects only

the WHERE clause.

Writing

/

Write permissions are enforced by throwing a security exception whenever

a named graph is being updated by a user that does not have write access

to the graph. Adding a triple to an unauthorized named graph will raise an

exception even if that triple already exists in the named graph. Similarly

trying to remove a non-existent triple from an unauthorized graph raises an

error.

NOTE

The unauthorized graph may not exist in the

database; any graph that is not explicitly listed in

a user’s permissions is unauthorized.

Updates either succeed as a whole or fail. If an update request tries to

modify both an authorized graph an unauthorized graph, it would fail

without making any modi�cations.

Reasoning

Stardog allows a set of named graphs to be used as the schema for

reasoning. The OWL axioms and rules de�ned in these graphs are

extracted and used in the reasoning process. The schema graphs are

speci�ed in the database con�guration and a�ect all users running

reasoning queries.

Named graph permissions do not a�ect the schema axioms used in

reasoning and every reasoning query will use the same schema axioms

even though some users might not have been granted explicit read access

to schema graphs. But non-schema axioms in those named graphs would

not be visible to users without authorization.

Enterprise Authentication

Stardog can use an LDAP server to authenticate enterprise users. Stardog

assumes the existence of two di�erent groups to identify regular and

superusers, respectively. Groups must be identi�ed with the cn attribute

and be instances of the groupOfNames object class. Users must be

speci�ed using the member attribute.

For example,

/

Credentials and other user information are stored as usual:

Configuring Stardog

In order to enable LDAP authentication in Stardog, we need to include the

following mandatory properties in stardog.properties :

security.realms : with a value of ldap

ldap.provider.url : The URL of the LDAP server

ldap.security.principal : An LDAP user allowed to retrieve group

members from the LDAP server

ldap.security.credentials : The principal’s password

ldap.user.dn.template : A template to form LDAP names from

Stardog usernames

ldap.group.lookup.string : A string to lookup the Stardog user

groups

ldap.users.cn : The cn of the group identifying regular Stardog

users

ldap.superusers.cn : The cn of the group identifying Stardog super

users

ldap.cache.invalidate.time : The time duration to invalidate cache

entries, default to 24h .

Here’s an example properties �le:

dn: cn=stardogSuperUsers,ou=group,dc=example,dc=com

cn: stardogSuperUsers

objectclass: groupOfNames

member: uid=superuser,ou=people,dc=example,dc=com

dn: cn=stardogUsers,ou=group,dc=example,dc=com

cn: stardogUsers

objectclass: groupOfNames

member: uid=regularuser,ou=people,dc=example,dc=com

member: uid=anotherregularuser,ou=people,dc=example,dc=com

dn: uid=superuser,ou=people,dc=example,dc=com

objectClass: inetOrgPerson

cn: superuser

sn: superuser

uid: superuser

userPassword: superpassword

/

User Management

Users can no longer be added/removed/modi�ed via Stardog. User

management is delegated to the LDAP server.

An LDAP Quirk

When Stardog manages users, instead of delegating to LDAP, when a user

is created, they are assigned the permission read:user:$NEW_USER . But

when user management is delegated to LDAP, this permission is not

automatically created at new user creation time in Stardog and, therefore, it

should be added manually to Stardog. If this doesn’t happen, users may not

be able to perform basic tasks.

Authenticated User Cache

Stardog includes a time constrained cache with a con�gurable time for

eviction, default to �� hours. To disable the cache, the eviction time must

be set to 0ms .

Authorization

The LDAP server is used for authentication only. Permissions and roles are

assigned in Stardog.

Stale Permissions/Roles

Permissions and roles in Stardog might refer to users that no long exist, i.e.,

those that were deleted from the LDAP server. This is safe as these users

will not be able to authenticate (see above). It is possible to con�gure

Stardog to periodically clean up the list of permissions and roles according

to the latest users in the LDAP server. In order to do this, we pass a Quartz

security.realms = ldap

ldap.provider.url = ldap://localhost:5860

ldap.security.principal = uid=admin,ou=people,dc=example,dc=com

ldap.security.credentials = secret

ldap.user.dn.template = uid={0},ou=people,dc=example,dc=com

ldap.group.lookup.string = ou=group,dc=example,dc=com

ldap.users.cn = stardogUsers

ldap.superusers.cn = stardogSuperUsers

ldap.cache.invalidate.time = 1h

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

/

cron expression (http://www.quartz-scheduler.org/documentation/quartz-

�.x/tutorials/crontrigger) using the

ldap.consistency.scheduler.expression property:

Managing Stardog Securely

Stardog resources can be managed securely by using the tools included in

the admin CLI or by programming against Stardog APIs. In this section we

describe the permissions required to manage various Stardog resources

either by CLI or API.

Users

Create a user

create permission over user:* . Only superusers can create other

superusers.

Delete a user

delete permission over the user.

Enable/Disable a user

User must be a superuser.

Change password of a user

User must be a superuser or user must be trying to change its own

password.

Check if a user is a superuser

read permission over the user or user must be trying to get its own info.

Check if a user is enabled

read permission over the user or user must be trying to get its own info.

List users

Execute the consistency cleanup at 6pm every day

ldap.consistency.scheduler.expression = 0 0 18 * * ?

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

/

Superusers can see all users. Other users can see only users over which

they have a permission.

Roles

Create a role

create permission over role:* .

Delete a role

delete permission over the role.

Assign a role to a user

grant permission over the role and user must have all the permissions

associated to the role.

Unassign a role from a user

revoke permission over the role and user must have all the permissions

associated to the role.

List roles

Superusers can see all roles. Other users can see only roles they have

been assigned or over which they have a permission.

Databases

Create a database

create permission over db:* .

Delete a database

delete permission over db:theDatabase .

Add/Remove integrity constraints to a database

write permission over icv-constraints:theDatabase .

Verify a database is valid

read permission over icv-constraints:theDatabase .

Online/O�ine a database

execute permission over admin:theDatabase .

/

Migrate a database

execute permission over admin:theDatabase .

Optimize a database

execute permission over admin:theDatabase .

List databases

Superusers can see all databases. Regular users can see only databases

over which they have a permission.

Permissions

Grant a permission

grant permission over the permission object and user must have the

permission that it is trying to grant.

Revoke a permission from a user or role over an object resource

revoke permission over the permission object and user must have the

permission that it is trying to revoke.

List user permissions

User must be a superuser or user must be trying to get its own info.

List role permissions

User must be a superuser or user must have been assigned the role.

Deploying Stardog Securely

To ensure that Stardog’s RBAC access control implementation will be

e�ective, all non-administrator access to Stardog databases should occur

over network (i.e., non-native) database connections.

To ensure the con�dentiality of user authentication credentials when using

remote connections, the Stardog server should only accept connections

that are encrypted with SSL.

Configuring Stardog to use SSL

[�� (#_footnote_��)]

/

Stardog HTTP server includes native support for SSL. To enable Stardog to

optionally support SSL connections, just pass --enable-ssl to the server

start command. If you want to require the server to use SSL only, that is, to

reject any non-SSL connections, then use --require-ssl .

When starting from the command line, Stardog will use the standard Java

properties for specifying keystore information:

javax.net.ssl.keyStorePassword (the password)

javax.net.ssl.keyStore (location of the keystore)

javax.net.ssl.keyStoreType (type of keystore, defaults to JKS)

These properties are checked �rst in stardog.properties ; then in JVM

args passed in from the command line, e.g.

-Djavax.net.ssl.keyStorePassword=mypwd . If you’re creating a Server

programmatically via ServerBuilder , you can specify values for these

properties using the appropriate ServerOptions when creating the server.

These values will override anything speci�ed in stardog.properties or

via normal JVM args.

Configuring Stardog Client to use SSL

Stardog HTTP client supports SSL when the https: scheme is used in the

database connection string. For example, the following invocation of the

Stardog command line utility will initiate an SSL connection to a remote

database:

If the client is unable to authenticate to the server, then the connection will

fail and an error message like the following will be generated.

The most common cause of this error is that the server presented a

certi�cate that was not issued by an authority that the client trusts. The

Stardog client uses standard Java security components to access a store of

$ stardog query https://stardog.example.org/sp2b_10k "ask { ?s ?p ?o

}"

Error during connect. Cause was SSLPeerUnverifiedException: peer not

authenticated

/

trusted certi�cates. By default, it trusts a list of certi�cates installed with the

Java runtime environment, but it can be con�gured to use a custom trust

store.

The client can be directed to use a speci�c Java KeyStore �le as a trust

store by setting the javax.net.ssl.trustStore system property. To

address the authentication error above, that trust store should contain the

issuer of the server’s certi�cate. Standard Java tools can create such a �le.

The following invocation of the keytool utility creates a new trust store

named my-truststore.jks and initializes it with the certi�cate in

my-trusted-server.crt . The tool will prompt for a passphrase to

associate with the trust store. This is not used to encrypt its contents, but

can be used to ensure its integrity.

The following Stardog command line invocation uses the newly created

truststore.

For custom Java applications that use the Stardog client, the system

property can be set programmatically or when the JVM is initialized.

The most common deployment approach requiring a custom trust store is

when a self-signed certi�cate is presented by the Stardog server. For

connections to succeed, the Stardog client must trust the self-signed

certi�cate. To accomplish this with the examples given above, the self-

signed certi�cate should be in the my-trusted-server.crt �le in the

keytool invocation.

A client may also fail to authenticate to the server if the hostname in the

Stardog database connection string does not match a name contained in

the server certi�cate.

This will cause an error message like the following

[�� (#_footnote_��)]

[�� (#_footnote_��)]

$ keytool -importcert -keystore my-truststore.jks -alias stardog-

server -file my-trusted-server.crt

$ STARDOG_SERVER_JAVA_ARGS="-Djavax.net.ssl.trustStore=my-

truststore.jks"

$ stardog query https://stardog.example.org/sp2b_10k "ask { ?s ?p ?o

}"

[�� (#_footnote_��)]

/

The client does not support connecting when there’s a mismatch; therefore,

the only workarounds are to replace the server’s certi�cate or modify the

connection string to use an alias for the same server that matches the

certi�cate.

PROGRAMMING STARDOG

You can program Stardog in Java, over HTTP, JavaScript, Clojure, Groovy,

Spring, and .Net.

Sample Code

There’s a Github repo of example Java code (https://github.com/stardog-

union/stardog-examples) that you can fork and use as the starting point for

your Stardog projects. Feel free to add new examples using pull requests in

Github.

JAVA PROGRAMMING

In the Network Programming (#_network_programming) section, we look at

how to interact with Stardog over a network via HTTP. In this chapter we

describe how to program Stardog from Java using SNARL Stardog Native

API for the RDF Language, Sesame, and Jena. We prefer SNARL to Sesame

to Jena and recommend them— all other things being equal— in that order.

If you’re a Spring developer, you might want to read Spring Programming

(#_spring_programming) or if you prefer a ORM-style approach, you might

want to checkout Empire (https://github.com/mhgrove/Empire), an

implementation of JPA

(http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-

������.html) for RDF that works with Stardog.

Examples

Error during connect. Cause was SSLException: hostname in certificate

didn't match

https://github.com/stardog-union/stardog-examples
https://github.com/mhgrove/Empire
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

/

The best way to learn to program Stardog with Java is to study the

examples:

�. SNARL (https://github.com/stardog-union/stardog-

examples/blob/develop/examples/api/main/src/com/complexible/stardo

g/examples/api/ConnectionAPIExample.java)

�. Sesame bindings (https://github.com/stardog-union/stardog-

examples/blob/develop/examples/api/main/src/com/complexible/stardo

g/examples/sesame/SesameExample.java)

�. Jena bindings (https://github.com/stardog-union/stardog-

examples/blob/develop/examples/api/main/src/com/complexible/stardo

g/examples/jena/JenaExample.java)

�. SNARL and OWL � reasoning (https://github.com/stardog-

union/stardog-

examples/blob/develop/examples/api/main/src/com/complexible/stardo

g/examples/api/ReasoningExample.java)

�. SNARL and Connection Pooling (https://github.com/stardog-

union/stardog-

examples/blob/develop/examples/api/main/src/com/complexible/stardo

g/examples/api/ConnectionPoolsExample.java)

�. SNARL and Searching (https://github.com/stardog-union/stardog-

examples/blob/develop/examples/api/main/src/com/complexible/stardo

g/examples/api/WaldoAPIExample.java)

We o�er some commentary on the interesting parts of these examples

below.

Creating & Administering Databases

AdminConnection provides simple programmatic access to all

administrative functions available in Stardog.

Creating a Database

You can create an empty database with default con�guration options in one

line of code:

https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/api/ConnectionAPIExample.java
https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/sesame/SesameExample.java
https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/jena/JenaExample.java
https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/api/ReasoningExample.java
https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/api/ConnectionPoolsExample.java
https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/api/WaldoAPIExample.java

/

WARNING

It’s crucially important to always clean up

connections to the database by calling

AdminConnection#close(). Using ̀ try-with-

resources

where possible is a good practice.

The newDatabase

(java/snarl/com/complexible/stardog/api/admin/AdminConnection.html##ne

wDatabase-java.lang.String-) function returns a DatabaseBuilder

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/admin/databasebuilder

) object which you can use to con�gure the options of the database you’d

like to create. The create

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/admin/databasebuilder

#create) function takes the list of �les to bulk load into the database when

you create it and returns a valid ConnectionConfiguration

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connectioncon�guratio

n) which can be used to create new Connections

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connection) to your

database.

This illustrates how to create a temporary memory database named test

which supports full text search via [Searching] (#Searching).

try (AdminConnection aAdminConnection =

AdminConnectionConfiguration.toEmbeddedServer().credentials("admin",

"admin").connect()) {

 aAdminConnection.newDatabase("testConnectionAPI").create();

}

try (AdminConnection aAdminConnection =

AdminConnectionConfiguration.toEmbeddedServer().credentials("admin",

"admin").connect()) {

 aAdminConnection.newDatabase("waldoTest")

 .set(SearchOptions.SEARCHABLE, true)

 .create();

}

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/api/admin/AdminConnection.html##newDatabase-java.lang.String-
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/admin/databasebuilder
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/admin/databasebuilder#create
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connectionconfiguration
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connection

/

This illustrates how to create a persistent disk database with ICV guard

mode and reasoning enabled. For more information on what the available

options for set are and what they mean, see the Database Admin

(#_database_admin) section. Also note, Stardog database administration

can be performed from the CLI (#_command_line_interface).

Creating a Connection String

As you can see, the ConnectionConfiguration

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connectioncon�guratio

n) in com.complexible.stardog.api

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/package-summary)

package class is where the initial action takes place:

The to

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connectioncon�guratio

n#to) method takes a Database Name as a string; and then connect

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connectioncon�guratio

n#connect) connects to the database using all speci�ed properties on the

con�guration. This class and its constructor methods are used for all of

Stardog’s Java APIs: SNARL native Stardog API, Sesame, Jena, as well as

HTTP. In the latter cases, you must also call server

try (AdminConnection dbms =

AdminConnectionConfiguration.toEmbeddedServer().credentials("admin",

"admin").connect()) {

 aAdminConnection.newDatabase("icvWithGuard") // disk db

named 'icvWithGuard'

 .set(ICVOptions.ICV_ENABLED, true) // enable

icv guard mode

 .set(ICVOptions.ICV_REASONING_ENABLED, true) //

specify that guard mode should use reasoning

 .create(Paths.get("data/sp2b_10k.n3")); // create

the db, bulk loading the file(s) to start

}

Connection aConn = ConnectionConfiguration

 .to("exampleDB") // the name of the db to

connect to

 .credentials("admin", "admin") // credentials to use while

connecting

 .connect();

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connectionconfiguration
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/package-summary
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connectionconfiguration#to
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connectionconfiguration#connect
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connectionconfiguration#serverjava.lang.String

/

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connectioncon�guratio

n#serverjava.lang.String) and pass it a valid URL to the Stardog server using

HTTP.

Without the call to server , ConnectionConfiguration will attempt to

connect to a local, embedded version of the Stardog server. The

Connection still operates in the standard client-server mode, the only

di�erence is that the server is running in the same JVM as your application.

NOTE

Whether using SNARL, Sesame, or Jena, most, if

not all, Stardog Java code will use

ConnectionConfiguration to get a handle on a

Stardog database— whether embedded or

remote— and, after getting that handle, can use

the appropriate API.

See the ConnectionConfiguration

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connectioncon�guratio

n) API docs or How to Make a Connection String

(#_how_to_make_a_connection_string) for more information.

Managing Security

We discuss the security system in Stardog in Security (#_security). When

logged into the Stardog DBMS

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/admin/adminconnectio

n) you can access all security related features detailed in the security

section using any of the core security interfaces for managing users

(/docs/�.�.�/java/snarl/com/complexible/stardog/security/usermanager),

roles

(/docs/�.�.�/java/snarl/com/complexible/stardog/security/rolemanager), and

permissions

(/docs/�.�.�/java/snarl/com/complexible/stardog/security/permissionmanag

er).

Using SNARL

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connectionconfiguration#serverjava.lang.String
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connectionconfiguration
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/admin/adminconnection
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/security/usermanager
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/security/rolemanager
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/security/permissionmanager

/

In examples � and � above, you can see how to use SNARL in Java to

interact with Stardog. The SNARL API will give the best performance overall

and is the native Stardog API. It uses some Sesame domain classes but is

otherwise a clean-sheet API and implementation.

The SNARL API is �uent with the aim of making code written for Stardog

easier to write and easier to maintain. Most objects are easily re-used to

make basic tasks with SNARL as simple as possible. We are always

interested in feedback on the API, so if you have suggestions or comments,

please send them to the mailing list.

Let’s take a closer look at some of the interesting parts of SNARL.

Adding Data

You must always enclose changes to a database within a transaction begin

and commit or rollback. Changes are local until the transaction is committed

or until you try and perform a query operation to inspect the state of the

database within the transaction.

By default, RDF added will go into the default context unless speci�ed

otherwise. As shown, you can use Adder

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/adder) directly to add

statements and graphs to the database; and if you want to add data from a

�le or input stream, you use the io

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/io), format , and

stream chain of method invocations.

aConn.begin();

aConn.add()

 .io()

 .file(Paths.get("data/test.ttl"));

Collection<Statement> aGraph = Collections.singleton(

 Values.statement(Values.iri("urn:subj"),

 Values.iri("urn:pred"),

 Values.iri("urn:obj")));

Resource aContext = Values.iri("urn:test:context");

aConn.add().graph(aGraph, aContext);

aConn.commit();

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/adder
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/io

/

See the SNARL API (java/snarl) Javadocs for all the gory details.

Removing Data

Let’s look at removing

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/remover) data via

SNARL; in the example above, you can see that �le or stream-based

removal is symmetric to �le or stream-based addition, i.e., calling remove

in an io chain with a �le or stream call. See the SNARL API docs for more

details about �ner-grained deletes, etc.

Parameterized SPARQL Queries

// first start a transaction

aConn.begin();

aConn.remove()

 .io()

 .file(Paths.get("data/remove_data.nt"));

// and commit the change

aConn.commit();

https://www.stardog.com/docs/java/snarl
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/remover

/

SNARL also lets us parameterize SPARQL queries. We can make a Query

object by passing a SPARQL query in the constructor. Simple. Obvious.

// A SNARL connection provides parameterized queries which you can use

to easily

// build and execute SPARQL queries against the database. First,

let's create a

// simple query that will get all of the statements in the database.

SelectQuery aQuery = aConn.select("select * where { ?s ?p ?o }");

// But getting *all* the statements is kind of silly, so let's

actually specify a limit, we only want 10 results.

aQuery.limit(10);

// We can go ahead and execute this query which will give us a result

set. Once we have our result set, we can do

// something interesting with the results.

// NOTE: We use try-with-resources here to ensure that our results

sets are always closed.

try(SelectQueryResult aResult = aQuery.execute()) {

 System.out.println("The first ten results...");

 QueryResultWriters.write(aResult, System.out,

TextTableQueryResultWriter.FORMAT);

}

// Query objects are easily parameterized; so we can bind the "s"

variable in the previous query with a specific value.

// Queries should be managed via the parameterized methods, rather

than created by concatenating strings together,

// because that is not only more readable, it helps avoid SPARQL

injection attacks.

IRI aIRI =

Values.iri("http://localhost/publications/articles/Journal1/1940/Artic

le1");

aQuery.parameter("s", aIRI);

// Now that we've bound 's' to a specific value, we're not going to

pull down the entire database with our query

// so we can go head and remove the limit and get all the results.

aQuery.limit(SelectQuery.NO_LIMIT);

// We've made our modifications, so we can re-run the query to get a

new result set and see the difference in the results.

try(SelectQueryResult aResult = aQuery.execute()) {

 System.out.println("\nNow a particular slice...");

 QueryResultWriters.write(aResult, System.out,

TextTableQueryResultWriter.FORMAT);

}

/

Next, let’s set a limit for the results: aQuery.limit10 ; or if we want no limit,

aQuery.limitQuery.NO_LIMIT . By default, there is no limit imposed on

the query object; we’ll use whatever is speci�ed in the query. But you can

use limit to override any limit speci�ed in the query, however specifying

NO_LIMIT will not remove a limit speci�ed in a query, it will only remove any

limit override you’ve speci�ed, restoring the state to the default of using

whatever is in the query.

We can execute that query with executeSelect and iterate over the

results. We can also rebind the "?s" variable easily:

aQuery.parameter"s", aURI , which will work for all instances of "?s" in

any BGP in the query, and you can specify null to remove the binding.

Query objects are re-usable, so you can create one from your original query

string and alter bindings, limit, and o�set in any way you see �t and re-

execute the query to get the updated results.

We strongly recommend the use of SNARL’s parameterized queries over

concatenating strings together in order to build your SPARQL query. This

latter approach opens up the possibility for SPARQL injection attacks unless

you are very careful in scrubbing your input.

Getter Interface

[�� (#_footnote_��)]

/

SNARL also supports some sugar for the classic statement-level getSPO --

scars, anyone?--interactions. We ask in the �rst line of the snippet above for

an iterator over the Stardog connection, based on aURI in the subject

position. Then a while-loop, as one might expect… You can also

parameterize

Getter`s by binding different positions of the ̀ Getter which acts

like a kind of RDF statement �lter— and then iterating as usual.

aConn.get()

 .subject(aURI)

 .statements()

 .forEach(System.out::println);

// `Getter` objects are parameterizable just like `Query`, so you can

easily modify and re-use them to change

// what slice of the database you'll retrieve.

Getter aGetter = aConn.get();

// We created a new `Getter`, if we iterated over its results now,

we'd iterate over the whole database; not ideal. So

// we will bind the predicate to `rdf:type` and now if we call any of

the iteration methods on the `Getter` we'd only

// pull back statements whose predicate is `rdf:type`

aGetter.predicate(RDF.TYPE);

// We can also bind the subject and get a specific type statement, in

this case, we'll get all the type triples

// for *this* individual. In our example, that'll be a single triple.

aGetter.subject(aURI);

System.out.println("\nJust a single statement now...");

aGetter.statements()

 .forEach(System.out::println);

// `Getter` objects are stateful, so we can remove the filter on the

predicate position by setting it back to null.

aGetter.predicate(null);

// Subject is still bound to the value of `aURI` so we can use the

`graph` method of `Getter` to get a graph of all

// the triples where `aURI` is the subject, effectively performing a

basic describe query.

Stream<Statement> aStatements = aGetter.statements();

System.out.println("\nFinally, the same results as earlier, but as a

graph...");

RDFWriters.write(System.out, RDFFormats.TURTLE,

aStatements.collect(Collectors.toList()));

/

NOTE

the aIter.close which is important for Stardog

databases to avoid memory leaks. If you need to

materialize the iterator as a graph, you can do

that by calling graph .

The snippet doesn’t show object or context parameters on a Getter ,

but those work, too, in the obvious way.

Reasoning

Stardog supports query-time reasoning (#_owl_rule_reasoning) using a

query rewriting technique. In short, when reasoning is requested, a query is

automatically rewritten to n queries, which are then executed. As we

discuss below in Connection Pooling, reasoning is enabled at the

Connection layer and then any queries executed over that connection are

executed with reasoning enabled; you don’t need to do anything up front

when you create your database if you want to use reasoning.

In this code example, you can see that it’s trivial to enable reasoning for a

Connection : simply call reasoning with true passed in.

Search

Stardog’s search (#Searching) system can be used from Java. The �uent

Java API for searching in SNARL looks a lot like the other search interfaces:

We create a Searcher instance with a �uent constructor: limit sets a

limit on the results; query contains the search query, and threshold sets

a minimum threshold for the results.

ReasoningConnection aReasoningConn = ConnectionConfiguration

 .to("reasoningExampleTest")

 .credentials("admin", "admin")

 .reasoning(true)

 .connect()

 .as(ReasoningConnection.class);

/

Then we call the search method of our Searcher instance and iterate

over the results i.e., SearchResults . Last, we can use offset on an

existing Searcher to grab another page of results.

Stardog also supports performing searches over the full-text index within a

SPARQL query via the LARQ SPARQL syntax

(http://jena.apache.org/documentation/larq/). This provides a powerful

mechanism for querying both your RDF index and full-text index at the same

time while also giving you a more performant option to the SPARQL regex

�lter.

User-defined Lucene Analyzer

Stardog’s Semantic Search (#_search) capability uses Lucene’s default text

analyzer (https://lucene.apache.org/core/�_�_�/analyzers-

common/org/apache/lucene/analysis/standard/StandardAnalyzer.html),

// Let's create a Searcher that we can use to run some full text

searches over the database.

// Here we will specify that we only want results over a score of

`0.5`, and no more than `50` results

// for things that match the search term `mac`. Stardog's full text

search is backed by [Lucene](http://lucene.apache.org)

// so you can use the full Lucene search syntax in your queries.

Searcher aSearch = aSearchConn.search()

 .limit(50)

 .query("mac")

 .threshold(0.5);

// We can run the search and then iterate over the results

SearchResults aSearchResults = aSearch.search();

try (CloseableIterator<SearchResult> resultIt =

aSearchResults.iterator()) {

 System.out.println("\nAPI results: ");

 while (resultIt.hasNext()) {

 SearchResult aHit = resultIt.next();

 System.out.println(aHit.getHit() + " with a score of: " +

aHit.getScore());

 }

}

// The `Searcher` can be re-used if we want to find the next set of

results. We already found the

// first fifty, so lets grab the next page.

aSearch.offset(50);

aSearchResults = aSearch.search();

http://jena.apache.org/documentation/larq/
https://lucene.apache.org/core/4_7_2/analyzers-common/org/apache/lucene/analysis/standard/StandardAnalyzer.html

/

which may not be ideal for your data or application. You can implement a

custom analyzer that Stardog will use by implementing

org.apache.lucene.analysis.Analyzer . That lets you customize

Stardog to support di�erent natural languages, domain-speci�c stop word

lists, etc.

See Custom Analyzers (https://github.com/stardog-union/stardog-

examples/tree/develop/examples/analyzer) in the stardog-examples Github

repo for a complete description of the API, registry, sample code, etc.

User-defined Functions and Aggregates

Stardog may be extended via Function and Aggregate extensibility APIs,

which are fully documented, including sample code, in the stardog-

examples Github repo (https://github.com/stardog-union/stardog-

examples/blob/develop/examples/function/readme.md) section about

function extensibility.

In short you can extend Stardog’s SPARQL query evaluation with custom

functions and aggregates easily. Function extensibility corresponds to built-

in expressions used in FILTER , BIND and SELECT expressions, as well

as aggregate operators in a SPARQL query like COUNT or SAMPLE .

SNARL Connection Views

SNARL Connections

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connection#) support

obtaining a speci�ed type of Connection . This lets you extend and

enhance the features available to a Connection while maintaining the

standard, simple Connection API. The Connection as

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connection#as)

method takes as a parameter the interface, which must be a sub-type of a

Connection , that you would like to use. as will either return the

Connection as the view you’ve speci�ed, or it will throw an exception if

the view could not be obtained for some reason.

An example of obtaining an instance of a SearchConnection

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/search/searchconnecti

on) to use Stardog’s full-text search support would look like this:

https://github.com/stardog-union/stardog-examples/tree/develop/examples/analyzer
https://github.com/stardog-union/stardog-examples/blob/develop/examples/function/readme.md
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connection#
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connection#as
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/search/searchconnection

/

SNARL API Docs

Please see SNARL API (java/snarl/) docs for more information.

Using Sesame

Stardog supports the Sesame API; thus, for the most part, using Stardog

and Sesame is not much di�erent from using Sesame with other RDF

databases. There are, however, at least two di�erences worth pointing out.

Wrapping connections with StardogRepository

As you can see from the code snippet, once you’ve created a

ConnectionConfiguration with all the details for connecting to a Stardog

database, you can wrap that in a StardogRepository which is a Stardog-

speci�c implementation of the Sesame Repository interface. At this point,

you can use the resulting Repository like any other Sesame

Repository implementation. Each time you call

Repository.getConnection , your original ConnectionConfiguration

will be used to spawn a new connection to the database.

Autocommit

SearchConnection aSearchConn = aConn.as(SearchConnection.class);

// Create a Sesame Repository from a Stardog ConnectionConfiguration.

The configuration will be used

// when creating new RepositoryConnections

Repository aRepo = new StardogRepository(ConnectionConfiguration

 .to("testSesame")

 .credentials("admin",

"admin"));

// init the repo

aRepo.initialize();

// now you can use it like a normal Sesame Repository

RepositoryConnection aRepoConn = aRepo.getConnection();

// always best to turn off auto commit

aRepoConn.setAutoCommit(false);

https://www.stardog.com/docs/java/snarl/

/

Stardog’s RepositoryConnection implementation will, by default, disable

autoCommit status. When enabled, every single statement added or

deleted via the Connection will incur the cost of a transaction, which is

too heavyweight for most use cases. You can enable autoCommit and it

will work as expected; but we recommend leaving it disabled.

Using RDF�J

Stardog also supports RDF�J (http://rdf�j.org), the follow-up to Sesame. Its

use is nearly identical to the Stardog Sesame API, mostly with package

name updates.

Wrapping connections with StardogRepository

The RDF�J API uses

com.complexible.stardog.rdf4j.StardogRepository , which works the

same way as the Sesame StardogRepository mentioned above. Its

constructor will take either a ConnectionConfiguration like Sesame’s or

a Connection String (#_how_to_make_a_connection_string).

Autocommit

The major di�erence between the RDF�J and Sesame APIs is that the

RDF�J one will leave the autoCommit mode ON by default, instead of

disabling it. This is because as of RDF�J’s �.�.� release, they have

deprecated the setAutoCommit method in favor of assuming it to be

always on unless begin()/commit() are used, which we still VERY highly

recommend.

Using Jena

Stardog supports Jena via a Sesame-Jena bridge, so it’s got more overhead

than Sesame or SNARL. YMMV. There are two points in the Jena example

to emphasize.

Init in Jena

http://rdf4j.org/

/

The initialization in Jena is a bit di�erent from either SNARL or Sesame; you

can get a Jena Model instance by passing the Connection instance

returned by ConnectionConfiguration to the Stardog factory,

SDJenaFactory .

Add in Jena

Jena also wants to add data to a Model one statement at a time, which

can be less than ideal. To work around this restriction, we recommend

adding data to a Model in a single Stardog transaction, which is initiated

with aModel.begin . Then to read data into the model, we recommend

using RDF/XML, since that triggers the BulkUpdateHandler in Jena or

grab a BulkUpdateHandler directly from the underlying Jena graph.

The other options include using the Stardog CLI

(#_command_line_interface) client to bulk load a Stardog database or to

use SNARL for loading and then switch to Jena for other operations,

processing, query, etc.

// obtain a Jena model for the specified stardog database connection.

Just creating an in-memory

// database; this is roughly equivalent to

ModelFactory.createDefaultModel.

Model aModel = SDJenaFactory.createModel(aConn);

// start a transaction before adding the data. This is not required,

// but it is faster to group the entire add into a single transaction

rather

// than rely on the auto commit of the underlying stardog connection.

aModel.begin();

// read data into the model. note, this will add statement at a time.

// Bulk loading needs to be performed directly with the

BulkUpdateHandler provided

// by the underlying graph, or by reading in files in RDF/XML format,

which uses the

// bulk loader natively. Alternatively, you can load data into the

Stardog

// database using SNARL, or via the command line client.

aModel.getReader("N3").read(aModel, new

FileInputStream("data/sp2b_10k.n3"), "");

// done!

aModel.commit();

/

Client-Server Stardog

Using Stardog from Java in either embedded or client-server mode is very

similar--the only visible di�erence is the use of url in a

ConnectionConfiguration : when it’s present, we’re in client-server

model; else, we’re in embedded mode.

That’s a good and a bad thing: it’s good because the code is symmetric and

uniform. It’s bad because it can make reasoning about performance di�cult,

i.e., it’s not entirely clear in client-server mode which operations trigger or

don’t trigger a round trip with the server and, thus, which may be more

expensive than they are in embedded mode.

In client-server mode, everything triggers a round trip with these

exceptions:

closing a connection outside a transaction

any parameterizations or other of a query or getter instance

any database state mutations in a transaction that don’t need to be

immediately visible to the transaction; that is, changes are sent to the

server only when they are required, on commit, or on any query or read

operation that needs to have the accurate up-to-date state of the data

within the transaction.

Stardog generally tries to be as lazy as possible; but in client-server mode,

since state is maintained on the client, there are fewer chances to be lazy

and more interactions with the server.

Connection Pooling

Stardog supports connection pools for SNARL Connection objects for

e�ciency and programmer sanity. Here’s how they work:

/

Per standard practice, we �rst initialize security and grab a connection, in

this case to the testConnectionPool database. Then we setup a

ConnectionPoolConfig , using its �uent API, which establishes the

parameters of the pool:

using Sets which ConnectionCon�guration we want to pool; this

is what is used to actually create the connections.

// We need a configuration object for our connections, this is all the

information about

// the database that we want to connect to.

ConnectionConfiguration aConnConfig = ConnectionConfiguration

.to("testConnectionPool")

 .credentials("admin",

"admin");

// We want to create a pool over these objects. See the javadoc for

ConnectionPoolConfig for

// more information on the options and information on the defaults.

ConnectionPoolConfig aConfig = ConnectionPoolConfig

 .using(aConnConfig)

// use my connection configuration to spawn new connections

 .minPool(10)

// the number of objects to start my pool with

 .maxPool(1000)

// the maximum number of objects that can be in the pool (leased or

idle)

 .expiration(1, TimeUnit.HOURS)

// Connections can expire after being idle for 1 hr.

 .blockAtCapacity(1,

TimeUnit.MINUTES); // I want obtain to block for at most 1 min

while trying to obtain a connection.

// now i can create my actual connection pool

ConnectionPool aPool = aConfig.create();

// if I want a connection object...

Connection aConn = aPool.obtain();

// now I can feel free to use the connection object as usual...

// and when I'm done with it, instead of closing the connection, I

want to return it to the pool instead.

aPool.release(aConn);

// and when I'm done with the pool, shut it down!

aPool.shutdown();

/

minPool

,

maxPool

Establishes min and max pooled objects; max pooled

objects includes both leased and idled objects.

expirat

ion
Sets the idle life of objects; in this case, the pool reclaims

objects idled for � hour.

blockAt

Capacit

y

Sets the max time in minutes that we’ll block waiting for an

object when there aren’t any idle ones in the pool.

Whew! Next we can create the pool using this ConnectionPoolConfig

thing.

Finally, we call obtain on the ConnectionPool when we need a new

one. And when we’re done with it, we return it to the pool so it can be re-

used, by calling release . When we’re done, we shutdown the pool.

Since reasoning (#_owl_rule_reasoning) in Stardog is enabled per

Connection , you can create two pools: one with reasoning connections,

one with non-reasoning connections; and then use the one you need to

have reasoning per query; never pay for more than you need.

API Deprecation

Methods and classes in SNARL API that are marked with the

com.google.common.annotations.Beta are subject to change or removal

in any release. We are using this annotation to denote new or experimental

features, the behavior or signature of which may change signi�cantly before

it’s out of "beta".

We will otherwise attempt to keep the public APIs as stable as possible, and

methods will be marked with the standard @Deprecated annotation for a

least one full revision cycle before their removal from the SNARL API. See

Compatibility Policies (#_compatibility_policies) for more information about

API stability.

Anything marked @VisibleForTesting is just that, visible as a

consequence of test case requirements; don’t write any important code that

depends on functions with this annotation.

/

Using Maven

As of Stardog �.�, we support Maven for both client and server JARs. The

following table summarizes the type of dependencies that you will have to

include in your project, depending on whether the project is a Stardog

client, or server, or both. Additionally, you can also include the Jena or

Sesame bindings if you would like to use them in your project. The Stardog

dependency list below follows the Gradle (http://www.gradle.org)

convention and is of the form: groupId:artifactId:VERSION . Versions

�.� and higher are supported.

��. Table of client type dependencies

Type Stardog Dependency Type

client com.complexible.st

ardog:client-

http:VERSION

pom

server com.complexible.st

ardog:server:VERSI

ON

pom

rdf�j com.complexible.st

ardog.rdf4j:stardo

g-rdf4j:VERSION

jar

sesame com.complexible.st

ardog.sesame:stard

og-sesame-

core:VERSION

jar

jena com.complexible.st

ardog.jena:stardog

-jena:VERSION

jar

gremlin com.complexible.st

ardog.gremlin:star

dog-

gremlin:VERSION

jar

http://www.gradle.org/

/

You can see an example of their usage in our examples repository on

Github (https://github.com/stardog-union/stardog-

examples/blob/develop/examples/api/build.gradle#L�-L��).

WARNING

If you’re using Maven as your build tool, then

client-http and server dependencies

require that you specify the packaging type as

POM (pom):

�. The dependency type must be set to pom .

Note: Though Gradle may still work without doing this, it is still best practice

to specify the dependency type there as well:

Public Maven Repo

The public Maven repository for the current Stardog release is

https://maven.stardog.com (https://maven.stardog.com). To get started, you

need to add the following endpoint to your preferred build system, e.g. in

your Gradle build script:

Similarly, if you’re using Maven you’ll need to add the following to your

Maven pom.xml :

<dependency>

 <groupId>com.complexible.stardog</groupId>

 <artifactId>client-http</artifactId>

 <version>$VERSION</version>

 <type>pom</type> (1)

</dependency>

compile "com.complexible.stardog:client-http:${VERSION}@pom"

repositories {

 maven {

 url "https://maven.stardog.com"

 }

}

https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/build.gradle#L3-L14
https://maven.stardog.com/

/

Private Maven Repo

CUSTOMER ACCESS

This feature or service is available to Stardog customers. For

information about licensing, please contact (/contact) us.

For access to nightly builds, priority bug �xes, priority feature access, hot

�xes, etc. Enterprise Premium Support customers have access to their own

private Maven repository that is linked to our internal development

repository. We provide a private repository which you can either proxy from

your preferred Maven repository manager— e.g. Artifactory or Nexus— or

add the private endpoint to your build script.

Connecting to Your Private Maven Repo

Similar to our public Maven repo, we will provide you with a private URL

and credentials to your private repo, which you will refer to in your Gradle

build script like this:

Or if you’re using Maven, add the following to your pom.xml :

<repositories>

 <repository>

 <id>stardog-public</id>

 <url>https://maven.stardog.com</url>

 </repository>

</repositories>

repositories {

 maven {

 url $yourPrivateUrl

 credentials {

 username $yourUsername

 password $yourPassword

 }

 }

}

https://www.stardog.com/contact

/

Then in your ~/.m2/settings.xml add:

NETWORK PROGRAMMING

In the Java Programming (#_java_programming) section, we consider

interacting with Stardog programmatically from a Java program. In this

section we consider interacting with Stardog over HTTP. In some use cases

or deployment scenarios, it may be necessary to interact with or control

Stardog remotely over an IP-based network.

Stardog supports SPARQL �.� HTTP Protocol (http://www.w�.org/TR/rdf-

sparql-protocol/); the SPARQL �.� Graph Store HTTP Protocol

(http://www.w�.org/TR/sparql��-http-rdf-update/); and the Stardog HTTP

Protocol.

SPARQL Protocol

Stardog supports the standard SPARQL Protocol HTTP bindings, as well as

additional functionality via HTTP. Stardog also supports SPARQL �.�’s

Service Description format. See the spec (https://www.w�.org/TR/sparql��-

service-description/) if you want details.

Stardog HTTP Protocol

<repositories>

 <repository>

 <id>stardog-private</id>

 <url>$yourPrivateUrl</url>

 </repository>

</repositories>

<settings>

 <servers>

 <server>

 <id>stardog-private</id>

 <username>$yourUsername</username>

 <password>$yourPassword</password>

 </server>

 </servers>

</settings>

http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/sparql11-http-rdf-update/
https://www.w3.org/TR/sparql11-service-description/

/

The Stardog HTTP Protocol supports SPARQL Protocol �.� and additional

resource representations and capabilities. The Stardog HTTP API v� is also

available on Apiary: http://docs.stardog.apiary.io/

(http://docs.stardog.apiary.io/). The Stardog Linked Data API (aka "Annex") is

also documented on Apiary: http://docs.annex.apiary.io/

(http://docs.annex.apiary.io/).

Generating URLs

If you are running the HTTP server at

To form the URI of a particular Stardog Database, the Database Short Name

is the �rst URL path segment appended to the deployment URI. For

example, for the Database called cytwombly , deployed in the above

example HTTP server, the Database Network Name might be

All the resources related to this database are identi�ed by URL path

segments relative to the Database Network Name; hence:

In what follows, we use URI Template (http://code.google.com/p/uri-

templates/)) notation to parameterize the actual request URLs, thus:

/{db}/size .

We also abuse notation to show the permissible HTTP request types and

default MIME types in the following way:

REQ | REQ /resource/identifier → mime_type | mime_type . In a few

cases, we use void as short hand for the case where there is a response

code but the response body may be empty.

HTTP Headers: Content-Type & Accept

All HTTP requests that are mutative (add or remove) must include a valid

Content-Type header set to the MIME type of the request body, where

"valid" is a valid MIME type for N-Triples, Trig, Trix, Turtle, NQuads, JSON-LD,

http://localhost:12345/

http://localhost:12345/cytwombly

http://localhost:12345/cytwombly/size

http://docs.stardog.apiary.io/
http://docs.annex.apiary.io/
http://code.google.com/p/uri-templates/)

/

or RDF/XML:

RDF/XML application/rdf+xml

Turtle application/x-turtle or text/turtle

N-Triples application/n-triples

TriG application/trig

TriX application/trix

N-Quads application/n-quads

JSON-LD application/ld+json

SPARQL CONSTRUCT queries must also include a Accept header set to

one of these RDF serialization types.

When issuing a SELECT query the Accept header should be set to one of

the valid MIME types for SELECT results:

SPARQL XML Results

Format

application/sparql-results+xml

SPARQL JSON Results

Format

application/sparql-results+json

SPARQL Boolean Results text/boolean

SPARQL Binary Results application/x-binary-rdf-results-

table

Response Codes

Stardog uses the following HTTP response codes:

/

��. Table of HTTP Response Codes

200 Operation has succeeded.

202 Operation was received successfully and will be processed

shortly.

400 Indicates parse errors or that the transaction identi�er speci�ed

for an operation is invalid or does not correspond to a known

transaction.

401 Request is unauthorized.

403 User attempting to perform the operation does not exist, their

username or password is invalid, or they do not have the proper

credentials to perform the action.

404 A resource involved in the request— for example the database or

transaction— does not exist.

409 A con�ict for some database operations; for example, creating a

database that already exists.

500 A unspeci�ed failure in some internal operation… Call your o�ce,

Senator!

There are also Stardog-speci�c error codes in the SD-Error-Code header

in the response from the server. These can be used to further clarify the

reason for the failure on the server, especially in cases where it could be

ambiguous. For example, if you received a 404 from the server trying to

commit a transaction denoted by the path

/myDb/transaction/commit/293845klf9f934 … it’s probably not clear what

is missing: it’s either the transaction or the database. In this case, the value

of the SD-Error-Code header will clarify.

The enumeration of SD-Error-Code values and their meanings are as

follows:

0 Authentication error

1 Authorization error

/

2 Query evaluation error

3 Query contained parse errors

4 Query is unknown

5 Transaction not found

6 Database not found

7 Database already exists

8 Database name is invalid

9 Resource (user, role, etc) already exists

10 Invalid connection parameter(s)

11 Invalid database state for the request

12 Resource in use

13 Resource not found

14 Operation not supported by the server

15 Password speci�ed in the request was invalid

In cases of error, the message body of the result will include any error

information provided by the server to indicate the cause of the error.

Stardog Resources

/

To interact with Stardog over HTTP, use the following resource

representations, HTTP response codes, and resource identi�ers.

Database Size

Returns the number of RDF triples in the database.

Query Evaluation

The SPARQL endpoint for the database. The valid Accept types are listed

above in the HTTP Headers (#_http_headers_content_type_accept)

section.

To issue SPARQL queries with reasoning over HTTP, see Using Reasoning

(#_using_reasoning).

SPARQL update

The SPARQL endpoint for updating the database with SPARQL Update. The

valid Accept types are application/sparql-update

or application/x-www-form-urlencoded . Response is the result of the

update operation as text, eg true or false .

Query Plan

Returns the explanation for the execution of a query, i.e., a query plan. All

the same arguments as for Query Evaluation are legal here; but the only

MIME type for the Query Plan resource is text/plain .

Transaction Begin

GET /{db}/size → text/plain

GET | POST /{db}/query

GET | POST /{db}/update → text/boolean

GET | POST /{db}/explain → text/plain

/

Returns a transaction identi�er resource as text/plain , which is likely to

be deprecated in a future release in favor of a hypertext format. POST to

begin a transaction accepts neither body nor arguments.

Transaction Security Considerations

WARNING

Stardog’s implementation of transactions with

HTTP is vulnerable to man-in-the-middle attacks,

which could be used to violate Stardog’s isolation

guarantee (among other nasty side e�ects).

Stardog’s transaction identi�ers are ��-bit GUIDs and, thus, pretty hard to

guess; but if you can grab a response in-�ight, you can steal the transaction

identi�er if basic access auth or RFC ���� digest auth is in use. You’ve

been warned.

In a future release, Stardog will use RFC ���� HTTP Digest Authentication

(http://tools.ietf.org/html/rfc����), which is less vulnerable to various attacks

and will never ask a client to use a di�erent authentication type, which

should lessen the likelihood of MitM attacks for properly restricted Stardog

clients— that is, a Stardog client that treats any request by a proxy server or

origin server (i.e., Stardog) to use basic access auth or RFC ���� digest

auth as a MitM attack. See RFC ���� (http://tools.ietf.org/html/rfc����) for

more information.

Transaction Commit

Returns a representation of the committed transaction; 200 means the

commit was successful. Otherwise a 500 error indicates the commit failed

and the text returned in the result is the failure message.

As you might expect, failed commits exit cleanly, rolling back any changes

that were made to the database.

POST /{db}/transaction/begin → text/plain

POST /{db}/transaction/commit/{txId} → void | text/plain

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617

/

Transaction Rollback

Returns a representation of the transaction after it’s been rolled back. 200

means the rollback was successful, otherwise 500 indicates the rollback

failed and the text returned in the result is the failure message.

Querying (Transactionally)

Returns a representation of a query executed within the txId transaction.

Queries within transactions will be slower as extra processing is required to

make the changes visible to the query. Again, the valid Accept types are

listed above in the HTTP Headers section.

The SPARQL endpoint for updating the database with SPARQL Update.

Update queries are executed within the speci�ed transaction txId and

are not atomic operations as with the normal SPARQL update endpoint. The

updates are executed when the transaction is committed like any other

change. The valid Accept types are application/sparql-update

or application/x-www-form-urlencoded . Response is the result of the

update operation as text, eg true or false .

Adding Data (Transactionally)

Returns a representation of data added to the database of the speci�ed

transaction. Accepts an optional parameter, graph-uri , which speci�es

the named graph the data should be added to. If a named graph is not

speci�ed, the data is added to the default (i.e., unnamed) context. The

response codes are 200 for success and 500 for failure.

Deleting Data (Transactionally)

POST /{db}/transaction/rollback/{txId} → void | text/plain

GET | POST /{db}/{txId}/query

GET | POST /{db}/{txId}/update → text/boolean

POST /{db}/{txId}/add → void | text/plain

/

Returns a representation of data removed from the database within the

speci�ed transaction. Also accepts graph-uri with the analogous

meaning as above--Adding Data (Transactionally)

(#_adding_data_transactionally). Response codes are also the same.

Clear Database

Removes all data from the database within the context of the transaction.

200 indicates success; 500 indicates an error. Also takes an optional

parameter, graph-uri , which removes data from a named graph. To clear

only the default graph, pass DEFAULT as the value of graph-uri .

Export Database

Exports the default graph in the database in Turtle format. Also takes an

optional parameter, graph-uri , which selects a named graph to export.

The valid Accept types are the ones de�ned above in HTTP Headers

(#_http_headers_content_type_accept) for RDF Formats.

Explanation of Inferences

Returns the explanation of the axiom which is in the body of the POST

request. The request takes the axioms in any supported RDF format and

returns the explanation for why that axiom was inferred as Turtle.

Explanation of Inconsistency

POST /{db}/{txId}/remove → void | text/plain

POST /{db}/{txId}/clear → void | text/plain

GET /{db}/export → RDF

POST /{db}/reasoning/explain → RDF
POST /{db}/reasoning/{txId}/explain → RDF

GET | POST /{db}/reasoning/explain/inconsistency → RDF

/

If the database is logically inconsistent, this returns an explanation for the

inconsistency.

Consistency

Returns whether or not the database is consistent w.r.t to the TBox.

Listing Integrity Constraints

Returns the integrity constraints for the speci�ed database serialized in any

supported RDF format.

Adding Integrity Constraints

Accepts a set of valid integrity constraints serialized in any RDF format

supported by Stardog and adds them to the database in an atomic action.

��� return code indicates the constraints were added successfully, ���

indicates that the constraints were not valid or unable to be added.

Removing Integrity Constraints

Accepts a set of valid integrity constraints serialized in any RDF format

supported by Stardog and removes them from the database in a single

atomic action. 200 indicates the constraints were successfully remove;

500 indicates an error.

Clearing Integrity Constraints

GET | POST /{db}/reasoning/consistency → text/boolean

GET /{db}/icv → RDF

POST /{db}/icv/add

POST /{db}/icv/remove

POST /{db}/icv/clear

/

Drops all integrity constraints for a database. 200 indicates all constraints

were successfully dropped; 500 indicates an error.

Validating Constraints

Validates that the data in the database conforms to the integrity constraints.

The message body can optionally include the constraints to be validated. If

not, the constraints that have already been added to the database will be

used for validation. Accepts an optional parameter, graph-uri , which

speci�es the named graphs that will be validates. If a named graph is not

speci�ed, all the graphs in the database will be validated.

Getting SHACL Validation Report

Returns a SHACL validation report

(https://www.w�.org/TR/shacl/#validation-report:) for the database. The

message body can optionally include the constraint to be validated. If not,

the SHACL constraints that have already been added to the database will

be used for validation. Accepts an optional parameter, graph-uri , which

speci�es the named graphs that will be validated. If a named graph is not

speci�ed, all the graphs in the database will be validated. The shapes

parameter can be used to provide a list of shape IRIs to validate only a

subset of the SHACL constraints in the database. The nodes parameter

can be used to specify a subset of RDF nodes in the database for

validation. The countLimit parameter, if provided, will limit the number of

validation results returned.

Converting Constraints to SPARQL Queries

The body of the POST is a single integrity constraint, serialized in any

supported RDF format, with Content-type set appropriately. Returns

either a text/plain result containing a single SPARQL query; or it returns

POST /{db}/icv/validate → text/boolean | application/json

POST /{db}/icv/report → RDF

POST /{db}/icv/convert

https://www.w3.org/TR/shacl/#validation-report:

/

400 if more than one constraint was included in the input.

Execute GraphQL Query

Executes a GraphQL query. The GET request accepts a query variable

which should be a GraphQL query and an optional variables property

that is a JSON document for representing input variable bindings. The body

of the POST request should be a JSON document with query and

(optionally) variables �elds. Reasoning can be enabled by setting the

@reasoning variable to true in the variables . A schema for the query

can be used by setting the @schema variable to the name of the schema.

Adding GraphQL Schemas

Adds a GraphQL schema to the database. The name of the schema is

speci�ed by the path variable schema .

Getting GraphQL Schemas

Returns the contents of the speci�ed GraphQL schema. The name of the

schema is speci�ed by the path variable schema . The response is the

GraphQL schema document.

Removing GraphQL Schemas

Removes a GraphQL schema from the database. The name of the schema

is speci�ed by the path variable schema .

Removing All GraphQL Schemas

GET | POST /{db}/graphql → application/json

PUT /{db}/graphql/schemas/{schema}

GET /{db}/graphql/schemas/{schema} → application/graphql

DELETE /{db}/graphql/schemas/{schema}

/

Removes all GraphQL schemas from the database.

List GraphQL Schemas

Lists all the GraphQL schemas in the database. The response is a JSON

document where the schemas �eld is a list of schema names.

Admin Resources

To administer Stardog over HTTP, use the following resource

representations, HTTP response codes, and resource identi�ers.

List databases

Lists all the databases available.

Output JSON example:

Create a new database

Creates a new database; expects a multipart request with a JSON

specifying database name, options and �lenames followed by (optional) �le

contents as a multipart POST request.

Expected input (application/json):

DELETE /{db}/graphql/schemas

GET /{db}/graphql/schemas → application/json

GET /admin/databases → application/json

{ "databases" : ["testdb", "exampledb"] }

POST /admin/databases

/

Drop an existing database

Drops an existing database db and all the information that it contains.

Goodbye Callahan!

Repair a database

Repairs a corrupted Stardog database. This command needs a running

Stardog server and the database to be o�ine.

Backup a database

Creates a backup of a database. A backup is a physical copy of the

database and preserves database metadata in addition to the database

contents. By default, backups are stored in the '.backup' directory in your

Stardog home (or the 'backup.dir' property speci�ed in your

'stardog.con�guration') but the to parameter can be used to specify a

di�erent location.

Restore a database from a backup

{

 "dbname" : "testDb",

 "options" : {

 "icv.active.graphs" : "http://graph, http://another",

 "search.enabled" : true,

 ...

 },

 "files" : [{ "filename":"fileX.ttl", "context":"some:context" },

...]

}

DELETE /admin/databases/{db}

PUT /admin/databases/{db}/repair

PUT /admin/databases/{db}/backup[?to={backup_location}]

PUT /admin/databases?from={backup_location}[&name={new_name}][&force=

{true|false}]

/

Restores a database from its backup. The location of the backup should be

the full path to the backup on the server side. If you wish to restore the

backup to a di�erent database, a new name can be provided. A backup will

not be restored over an existing database of the same name; the force �ag

should be used to overwrite the database.

Optimize a database

Optimizes a database for query answering after a database has been

heavily modi�ed.

Note that in Stardog �, optimization is also a factor in improving data usage

by removing unnecessary versions of data. This process ("vacuuming") is

automatically performed during normal operations as well but can be

explicitly triggered by setting the option optimize.vacuum.data=true

Sets an existing database online.

Request message to set an existing database online.

Sets an existing database offline.

Request message to set an existing database o�ine; receives optionally a

JSON input to specify a timeout for the o�ine operation. When not

speci�ed, defaults to � minutes as the timeout; the timeout should be

provided in milliseconds. The timeout is the amount of time the database

will wait for existing connections to complete before going o�ine. This will

allow open transaction to commit/rollback, open queries to complete, etc.

After the timeout has expired, all remaining open connections are closed

and the database goes o�ine.

Optional input (application/json):

PUT /admin/databases/{db}/optimize

PUT /admin/databases/{db}/online

PUT /admin/databases/{db}/offline

/

Set option values to an existing database.

Set options in the database passed through a JSON object speci�cation, i.e.

JSON Request for option values. Database options can be found here

(#_con�guring_a_database).

Expected input (application/json):

Get option values of an existing database.

Retrieves a set of options passed via a JSON object. The JSON input has

empty values for each key, but will be �lled with the option values in the

database in the output.

Expected input:

Output JSON example:

{ "timeout" : timeout_in_ms}

POST /admin/databases/{db}/options

{

 "database.name" : "DB_NAME",

 "icv.enabled" : true | false,

 "search.enabled" : true | false,

 ...

}

PUT /admin/databases/{db}/options → application/json

{

 "database.name" : ...,

 "icv.enabled" : ...,

 "search.enabled" : ...,

 ...

}

/

Add a new user to the system.

Adds a new user to the system; allows a con�guration option for superuser

as a JSON object. Superuser con�guration is set as default to false. The

password must be provided for the user.

Expected input:

Change user password.

Changes user’s password in the system. Receives input of new password as

a JSON Object.

Expected input:

Check if user is enabled.

Veri�es if user is enabled in the system.

Output JSON example:

{

 "database.name" : "testdb",

 "icv.enabled" : true,

 "search.enabled" : true,

 ...

}

POST /admin/users

{

 "username" : "bob",

 "superuser" : true | false

 "password" : "passwd"

}

PUT /admin/users/{user}/pwd

{"password" : "xxxxx"}

GET /admin/users/{user}/enabled → application/json

/

Check if user is superuser.

Veri�es if the user is a superuser:

Listing users.

Retrieves a list of users.

Output JSON example:

Listing user roles.

Retrieves the list of the roles assigned to user.

Output JSON example:

Deleting users.

{

 "enabled": true

}

GET /admin/users/{user}/superuser → application/json

{

 "superuser": true

}

GET /admin/users → application/json

{

 "users": ["anonymous", "admin"]

}

GET /admin/users/{user}/roles → application/json

{

 "roles": ["reader"]

}

/

Removes a user from the system.

Enabling users.

Enables a user in the system; expects a JSON object in the following format:

Setting user roles.

Sets roles for a given user; expects a JSON object specifying the roles for

the user in the following format:

Adding new roles.

Adds the new role to the system.

Expected input:

Listing roles.

DELETE /admin/users/{user}

PUT /admin/users/{user}/enabled

{

 "enabled" : true

}

PUT /admin/users/{user}/roles

{

 "roles" : ["reader","secTestDb-full"]

}

POST /admin/roles

{

 "rolename" : ""

}

/

Retrieves the list of roles registered in the system.

Output JSON example:

Listing users with a specified role.

Retrieves users that have the role assigned.

Output JSON example:

Deleting roles.

Deletes an existing role from the system; the force parameter is a boolean

�ag which indicates if the delete call for the role must be forced.

Assigning permissions to roles.

Creates a new permission for a given role over a speci�ed resource;

expects input JSON Object in the following format:

GET /admin/roles → application/json

{

 "roles": ["reader"]

}

GET /admin/roles/{role}/users → application/json

{

 "users": ["anonymous"]

}

DELETE /admin/roles/{role}?force={force}

PUT /admin/permissions/role/{role}

/

Assigning permissions to users.

Creates a new permission for a given user over a speci�ed resource;

expects input JSON Object in the following format:

Deleting permissions from roles.

Deletes a permission for a given role over a speci�ed resource; expects

input JSON Object in the following format:

Deleting permissions from users.

{

 "action" : "read" | "write" | "create" | "delete" | "revoke" |

"execute" | "grant" | "*",

 "resource_type" : "user" | "role" | "db" | "named-graph" |

"metadata" | "admin" | "icv-constraints" | "*",

 "resource" : ""

}

PUT /admin/permissions/user/{user}

{

 "action" : "read" | "write" | "create" | "delete" | "revoke" |

"execute" | "grant" | "*",

 "resource_type" : "user" | "role" | "db" | "named-graph" |

"metadata" | "admin" | "icv-constraints" | "*",

 "resource" : ""

}

POST /admin/permissions/role/{role}/delete

{

 "action" : "read" | "write" | "create" | "delete" | "revoke" |

"execute" | "grant" | "*",

 "resource_type" : "user" | "role" | "db" | "named-graph" |

"metadata" | "admin" | "icv-constraints" | "*",

 "resource" : ""

}

POST /admin/permissions/user/{user}/delete

/

Deletes a permission for a given user over a speci�ed resource; expects

input JSON Object in the following format:

Listing role permissions.

Retrieves permissions assigned to the role.

Output JSON example:

Listing user permissions.

Retrieves permissions assigned to the user.

Output JSON example:

Listing user effective permissions.

Retrieves e�ective permissions assigned to the user.

{

 "action" : "read" | "write" | "create" | "delete" | "revoke" |

"execute" | "grant" | "*",

 "resource_type" : "user" | "role" | "db" | "named-graph" |

"metadata" | "admin" | "icv-constraints" | "*",

 "resource" : ""

}

GET /admin/permissions/role/{role} → application/json

{

 "permissions": ["stardog:read:*"]

}

GET /admin/permissions/user/{user} → application/json

{

 "permissions": ["stardog:read:*"]

}

GET /admin/permissions/effective/user/{user} → application/json

/

Output JSON example:

Get nodes in cluster.

Retrieves the list of nodes in the cluster; the elected cluster coordinator is

the �rst element in the array. This route is only available when Stardog is

running within a cluster setup.

Output JSON example:

Shutdown server.

Shuts down the Stardog Server. If successful, returns a 202 to indicate that

the request was received and that the server will be shut down shortly.

List stored queries.

The results will be returned in RDF, for example:

{

 "permissions": ["stardog:*"]

}

GET /admin/cluster

{

 "nodes": [

 "192.168.69.1:5820 (Available)",

 "192.168.69.2:5820 (Available)",

 "192.168.69.3:5820 (Available)"

]

}

POST /admin/shutdown

GET /admin/queries/stored -> RDF

/

Get stored query.

Add stored query.

Input RDF example:

Update stored query.

See above for example RDF input.

Clear stored queries.

@prefix system: <http://system.stardog.com/> .

system:QueryExportAll a system:StoredQuery , system:SharedQuery ;

 system:queryName "ExportAll" ;

 system:queryString """construct where {?s ?p ?o}""" ;

 system:queryCreator "admin" ;

 system:queryDatabase "*" .

system:QuerylistDroids a system:StoredQuery , system:ReasoningQuery ;

 system:queryName "listDroids" ;

 system:queryString "select ?x { ?x a :Droid }" ;

 system:queryCreator "luke" ;

 system:queryDatabase "starwars" .

GET /admin/queries/stored/{name} -> application/json

POST /admin/queries/stored

@prefix system: <http://system.stardog.com/> .

system:QueryExportAll a system:StoredQuery , system:SharedQuery ;

 system:queryName "ExportAll" ;

 system:queryDescription "Exports all the triples from the default

graph" ;

 system:queryString """construct where {?s ?p ?o}""" ;

 system:queryCreator "admin" ;

 system:queryDatabase "*" .

PUT /admin/queries/stored

/

Remove stored query.

Query Version Metadata

Issue a query over the version history metadata using SPARQL. Method has

the same arguments and outputs as the normal query method of a

database.

Versioned Commit

Input example:

Accepts a commit message in the body of the request and performs a VCS

commit of the speci�ed transaction

Create Tag

Input example:

Create a tag from the given revision id with the speci�ed commit message.

Delete Tag

DELETE /admin/queries/stored

DELETE /admin/queries/stored/{name}

GET | POST /{db}/vcs/query

POST /{db}/vcs/{tid}/commit_msg

This is the commit message

POST /{db}/vcs/tags/create

"f09c0e02350627480839da4661b8e9cbd70f6372", "This is the commit

message"

/

Input example:

Delete the tag with the given revision.

Revert to Tag

Input example:

Perform a revert of a revision to the speci�ed revision with the given

commit message.

EXTENDING STARDOG

In this chapter we discuss the various ways you can extend the Stardog

Knowledge Graph Platform. Stardog’s extension mechanisms utilize the JDK

Service Loader

(http://docs.oracle.com/javase/�/docs/api/java/util/ServiceLoader.html) to

load new services at runtime and make them available to the various parts

of the system.

To register an extension, a �le should be placed in META-INF/services

whose name is the fully-quali�ed of the extension type. This must be

included in the jar �le with the compile source of the extension. The jar then

should be placed somewhere in Stardog’s classpath, usually either

server/ext or a folder speci�ed by the environment variable

STARDOG_EXT . Stardog will pick up the implementations on startup by

using the JDK ServiceLoader framework.

POST /{db}/vcs/tags/delete

"f09c0e02350627480839da4661b8e9cbd70f6372"

POST /{db}/vcs/revert

"f09c0e02350627480839da4661b8e9cbd70f6372",

"893220fba7910792084dd85207db94292886c4d7", "This is the revert

message"

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

/

HTTP Server

Your extension to the server should extend

com.stardog.http.server.undertow.HttpService . You’ll need a service

de�nition in META-INF/services called

com.stardog.http.server.undertow.HttpService , which contains the

fully-quali�ed class name(s) of your extension(s). That service de�nition

should be included in your jar �le and dropped into the classpath. On

(re)start, Stardog will �nd the service and auto load it into the server.

An HttpService uses a subset of the JAX-RS (https://jax-rs-spec.java.net/)

speci�cation for route de�nition. All

HttpService`s are scanned when the server starts and the routes

are extracted, compiled into lambdas to avoid the overhead of

`java.lang.reflect

and passed into the server for route handling.

For example, if you wanted to de�ne a route that will accept only POST

requests whose body is JSON and produces binary output, it would look

like this:

There’s a couple things to note here. First, the path of the route is partially

de�ned by the @Path annotation. That value is post-�xed to any root

@Path speci�ed on the service itself. That complete path is normally with

respect to the root of the server. However, services can have sub-services,

in which case it would be relative to the parent service, or you can simply

override this altogether by overriding the routes method. Similarily, you

can override the routes method if you would like to de�ne child services

for the route. Here’s how the transaction service mounts the SPARQL

protocol and SPARQL Update protocol as child services:

@POST

@Path("/path/to/my/service")

@Consumes("application/json")

@Produces("application/octet-stream")

public void myMethod(final HttpServerExchange theExchange) {

 // implementation goes here

}

https://jax-rs-spec.java.net/

/

Further, note that the route method takes a single parameter:

HttpServerExchange . This is the raw Undertow HttpServerExchange

(http://undertow.io/javadoc/�.�.x/io/undertow/server/HttpServerExchange.ht

ml). No attempt is made to parse out arguments such as

javax.ws.rs.QueryParam , that is left to the implementor. The only part of

the exchange that is parsed is any path variables. If your path is

/myservice/{db}/myaction then db is a variable and will match

whatever is included in that segment of the path. This is included in

HttpServerExchange#getQueryParameters .

An HttpService should either have a no-argument constructor, or a

constructor that accepts a single argument of type

HttpServiceLoader.ServerContext . The ServerContext argument will

contain information about the server: initialization options such as port, or

whether security is disabled, as well as a reference to Stardog itself in the

event your service needs a handle to Stardog. If your service is extending

Stardog in some way, for convenience, you can extend from

KernelHttpService .

The implementation of the route itself should conform to Undertow’s guide

(http://undertow.io/undertow-docs/undertow-docs-

�.�.�/index.html#undertow-handler-authors-guide).

Here’s the implementation of user list :

public Iterable<Route> routes(@Nonnull final HttpPath thePath) {

 List<HttpService> aServices = Lists.newArrayList(

 new SPARQLProtocol(mKernel),

 new SPARQLUpdate(mKernel)

);

 final HttpPath aRoot = thePath.var(VAR_TX);

 return () -> Iterators.concat(aServices.stream()

 .flatMap(aService ->

Streams.stream(aService.routes(aRoot)))

 .iterator(),

HttpService.super.routes(thePath).iterator());

}

http://undertow.io/javadoc/1.4.x/io/undertow/server/HttpServerExchange.html
http://undertow.io/undertow-docs/undertow-docs-1.4.0/index.html#undertow-handler-authors-guide

/

Query Functions

The Stardog com.complexible.stardog.plan.�lter.functions.Function

(/docs/�.�.�/java/snarl/com/complexible/stardog/plan/�lter/functions/functio

n) interface is the extension point for section ��.� (Extensible Value Testing)

of the SPARQL spec (https://www.w�.org/TR/sparql��-

query/#extensionFunctions).

Function corresponds to built-in expressions used in FILTER , BIND and

SELECT expressions, as well as aggregate operators in a SPARQL query.

Examples include && and || and functions de�ned in the SPARQL spec

like sameTerm , str , and now .

Implementing Custom Functions

The starting point for implementing your own custom function is to extend

AbstractFunction

(/docs/�.�.�/java/snarl/com/complexible/stardog/plan/�lter/functions/abstra

ctfunction). This class provides much of the basic sca�olding for

implementing a new Function from scratch.

@GET

@Produces("application/json")

public void listUsers(final HttpServerExchange theExchange) {

 JsonArray aUsers = new JsonArray();

 mKernel.get().getUserManager().getAllUsers().stream()

 .map(JsonPrimitive::new)

 .forEach(aUsers::add);

 JsonObject aObj = new JsonObject();

 aObj.add(HTTPAdminProtocolConsts.COLLECTION_USERS, aUsers);

 final String aJSON = aObj.toString();

 HttpServerExchanges.Responses.contentType(theExchange,

"application/json");

 HttpServerExchanges.Responses.contentLength(theExchange,

aJSON.length());

 theExchange.getResponseSender().send(aJSON);

}

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/plan/filter/functions/function
https://www.w3.org/TR/sparql11-query/#extensionFunctions
https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/plan/filter/functions/abstractfunction

/

If your new function falls into one of the existing categories, it should

implement the appropriate marker interface:

com.complexible.stardog.plan.filter.functions.cast.CastFunct

ion

com.complexible.stardog.plan.filter.functions.datetime.DateT

imeFunction

com.complexible.stardog.plan.filter.functions.hash.HashFunct

ion

com.complexible.stardog.plan.filter.functions.numeric.MathFu

nction

com.complexible.stardog.plan.filter.functions.rdfterm.RDFTer

mFunction

com.complexible.stardog.plan.filter.functions.string.StringF

unction

If not, then it must implement

com.complexible.stardog.plan.filter.functions.UserDefinedFuncti

on

. Extending one of these marker interfaces is required for the Function to

be traverseable via the visitor pattern.

A zero-argument constructor must be provided which delegates some

initialization to super , providing �rst the int number of required

arguments followed by one or more URIs which identify the function. Any

these URIs can be used to identify the function in a SPARQL query. The

URIs are typed as String but should be valid URIs.

For functions which take a range of arguments, for example a minimum of �,

but no more than � values, a Range (http://docs.guava-

libraries.googlecode.com/git-

history/release/javadoc/com/google/common/collect/Range.html) can be

used as the �rst parameter passed to super rather than an int .

Function extends from Copyable , therefore implementations should

also provide a "copy constructor" which can be called from the copy

method:

http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/collect/Range.html

/

Evaluating the function is handled by

Value internalEvaluate(final Value…) The parameters of this method

correspond to the arguments passed into the function; it’s the values of the

variables for each solution of the query. Here we can perform whatever

actions are required for our function. AbstractFunction will have already

taken care of validating that we’re getting the correct number of arguments

to the function, but we still have to validate the input. AbstractFunction

provides some convenience methods to this end, for example assertURI

and assertNumericLiteral for requiring that inputs are either a valid URI,

or a literal with a numeric datatype respectively.

Errors that occur in the evaluation of the function should throw a

com.complexible.stardog.plan.filter.ExpressionEvaluationExcepti

on

; this corresponds to the ValueError concept de�ned in the SPARQL

speci�cation.

Registering Custom Functions

Create a �le called

com.complexible.stardog.plan.filter.functions.Function in the

META-INF/services directory with the name of your custom Function

class.

Using Custom Functions

Functions are identi�ed by their URI; you can reference them in a query

using their fully-quali�ed URI, or specify pre�xes for the namespaces and

utilize only the qname. For this example, if the namespace

tag:stardog:api: is associated with the pre�x stardog and within that

namespace we have our function myFunc we can invoke it from a SPARQL

query as: bind(stardog:myFunc(?var) as ?tc)

private MyFunc(final MyFunc theFunc) {

 super(myFunc);

 // make copies of any local data structures

}

@Override

public MyFunc copy() {

 return new MyFunc(this);

}

/

Custom Aggregates

While the SPARQL speci�cation has an extension point for value testing and

allows for custom functions in FILTER / BIND / SELECT expressions, there

is no similar mechanism for aggregates. The space of aggregates is closed

by de�nition, all legal aggregates are enumerated in the spec itself.

However, as with custom functions, there are many use cases for creating

and using custom aggregate functions. Stardog provides a mechanism for

creating and using custom aggregates without requiring custom SPARQL

syntax.

Implementing Custom Aggregates

To implement a custom aggregate, you should extend AbstractAggregate

(java/snarl/com/complexible/stardog/plan/aggregates/AbstractAggregate.ht

ml).

The rules regarding constructor, "copy constructor" and the copy method

for Function apply to Aggregate as well.

Two methods must be implemented for custom aggregates,

Value _getValue() throws ExpressionEvaluationException and

void aggregate(final Value theValue, final long theMultiplicity)

throws ExpressionEvaluationException

. _getValue returns the computed aggregate value while aggregate

adds a Value to the current running aggregation. In terms of the COUNT

aggregate, aggregate would increment the counter and _getValue

would return the �nal count.

The multiplicity argument to aggregate corresponds to the fact that

intermediate solution sets have a multiplicity associated with them. It’s most

often �, but joins and choice of the indexes used for the scans internally can

a�ect this. Rather than repeating the solution N times, we associate a

multiplicity of N with the solution. Again, in terms of COUNT , this would

mean that rather than incrementing the count by 1 , it would be

incremented by the multiplicity.

Registering Custom Aggregates

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/plan/aggregates/AbstractAggregate.html

/

Aggregates such as COUNT or SAMPLE are implementations of Function

in the same way sameTerm or str are and are registered with Stardog in

the exact same manner.

Using Custom Aggregates

You can use your custom aggregates just like any other aggregate function.

Assuming we have a custom aggregate gmean de�ned in the

tag:stardog:api: namespace, we can refer to it within a query as such:

Database Archetypes

The Stardog database archetypes

(http://docs.stardog.com/#_database_archetypes) provide a simple way to

associate one or more ontologies and optionally a set of constraints with a

database. Stardog provides two built-in database archetypes out-of-the-

box: PROV and SKOS.

Running FOAF Example

This example shows a user-de�ne archetype for FOAF

(http://xmlns.com/foaf/spec/).

First build the jar �le for this example using gradle:

Copy the jar �le to your Stardog installation directory and (re)start the

server:

Create a new database using the FOAF archetype:

PREFIX : <http://www.example.org>

PREFIX stardog: <tag:stardog:api:>

SELECT (stardog:gmean(?O) AS ?C)

WHERE { ?S ?P ?O }

$./gradlew jar

$ cp examples/foaf/build/libs/foaf-*.jar $STARDOG/server/dbms/

$ $STARDOG/bin/stardog-admin server start

http://docs.stardog.com/#_database_archetypes
http://xmlns.com/foaf/spec/

/

That’s it. Even though you created a database without any data you will see

that there is a default namespace, ontology and constraints associated with

this database:

Registering Archetypes

User-de�ned archetypes are loaded to Stardog through JDK

ServiceLoader framework. Create a �le called

com.complexible.stardog.db.DatabaseArchetype in the

META-INF/services directory. The contents of this �le should be all of the

fully-quali�ed class names for your custom archetypes.

Search Analyzers

By default, the full-text index in Stardog uses Lucene’s StandardAnalyzer

(https://lucene.apache.org/core/�_�_�/analyzers-

common/org/apache/lucene/analysis/standard/StandardAnalyzer.html).

$ $STARDOG/bin/stardog-admin db create -o database.archetypes="foaf" -

n foafDB

$ bin/stardog namespace list foafDB

+---------+---+

| Prefix | Namespace |

+---------+---+

| foaf | http://xmlns.com/foaf/0.1/ |

| owl | http://www.w3.org/2002/07/owl# |

| rdf | http://www.w3.org/1999/02/22-rdf-syntax-ns# |

| rdfs | http://www.w3.org/2000/01/rdf-schema# |

| stardog | tag:stardog:api: |

| xsd | http://www.w3.org/2001/XMLSchema# |

+---------+---+

$ bin/stardog reasoning schema foafDB

foaf:publications a owl:ObjectProperty

foaf:jabberID a owl:InverseFunctionalProperty

foaf:jabberID a owl:DatatypeProperty

foaf:interest rdfs:domain foaf:Agent

foaf:workInfoHomepage a owl:ObjectProperty

foaf:schoolHomepage rdfs:range foaf:Document

foaf:status a owl:DatatypeProperty

foaf:currentProject rdfs:domain foaf:Person

...

$ bin/stardog icv export foafDB

AxiomConstraint{foaf:isPrimaryTopicOf a owl:InverseFunctionalProperty}

https://lucene.apache.org/core/4_7_2/analyzers-common/org/apache/lucene/analysis/standard/StandardAnalyzer.html

/

However, any class implementing

org.apache.lucene.analysis.Analyzer can be used in place of the

default analyzer. To specify a di�erent Analyzer a service named

com.complexible.stardog.search.AnalyzerFactory should be

registered. AnalyzerFactory returns the desired Analyzer

implementation to be used when creating the Lucene index from the RDF

contained in the database.

This is an example of an AnalyzerFactory which uses the built-in Lucene

analyzer for the French language:

Any of the common Lucene analyzers

(https://lucene.apache.org/core/�_�_�/analyzers-common/index.html) can

be used as well as any custom implementation of Analyzer . In the latter

case, be sure your implementation is in Stardog’s class path.

Create a �le called com.complexible.stardog.search.AnalyzerFactory

in the META-INF/services directory. The contents of this �le should be

the fully-quali�ed class name of your AnalyzerFactory .

Note, as of Stardog �.�, only one AnalyzerFactory can be registered at a

time, attempts to register more than one will yield errors on startup.

JAVASCRIPT PROGRAMMING

Source code and documentation for stardog.js are available available on

Github and npm.

stardog.js

public final class FrenchAnalyzerFactory implements AnalyzerFactory {

 /**

 * {@inheritDoc}

 */

 @Override

 public Analyzer get() {

 return new FrenchAnalyzer(Version.LUCENE_47);

 }

}

https://lucene.apache.org/core/4_7_2/analyzers-common/index.html
https://github.com/stardog-union/stardog.js
https://npmjs.org/package/stardog

/

This framework wraps all the functionality of a client for the Stardog DBMS

and provides access to a full set of functions such as executing SPARQL

Queries, administration tasks on Stardog, and the use of the Reasoning API.

The implementation uses the HTTP protocol, since most of Stardog

functionality is available using this protocol. For more information, see

Network Programming (#_network_programming).

The framework is currently supported for node.js and the browser, including

test cases for both environments. You’ll need npm to run the test cases and

install the dependencies.

CLOJURE PROGRAMMING

The stardog-clj source code is available as Apache �.� licensed code.

Installation

Stardog-clj is available from Clojars. To use, just include the following

dependency:

Starting with Stardog �.�.�, the stardog-clj version always matches the

latest release of Stardog.

Overview

Stardog-clj provides a set of functions as API wrappers to the native SNARL

API. These functions provide the basis for working with Stardog, starting

with connection management, connection pooling, and the core parts of the

API, such as executing a SPARQL query or adding and removing RDF from

the Stardog database. Over time, other parts of the Stardog API will be

appropriately wrapped with Clojure functions and idiomatic Clojure data

structures.

Stardog-clj provides the following features:

[stardog-clj "6.0.1"]

http://github.com/stardog-union/stardog-clj

/

�. Speci�cation based descriptions for connections, and corresponding

"connection" and "with-connection-pool" functions and macros

�. Functions for query, ask, graph, and update to execute SELECT , ASK ,

CONSTRUCT , and SPARQL Update queries respectively

�. Functions for insert and remove, for orchestrating the Adder and

Remover APIs in SNARL

�. Macros for resource handling, including with-connection-tx, with-

connection-pool, and with-transaction

�. Support for programming Stardog applications with either the

connection pool or direct handling of the connection

�. Idiomatic clojure handling of data structures, with converters that can

be passed to query functions

The API with source docs can be found in the stardog.core and

stardog.values namespaces.

API Overview

The API provides a natural progression of functions for interacting with

Stardog

This creates a connection space for use in connect or make-datasource

with the potential parameters:

Create a single Connection using the database spec. Can be used with

with-open , with-transaction , and with-connection-tx macros.

(create-db-spec "testdb" "http://localhost:5820/" "admin" "admin"

"none")

{:url "http://localhost:5820/" :db "testdb" :pass "admin" :user

"admin" :max-idle 100 :max-pool 200 :min-pool 10 :reasoning false}

(connect db-spec)

/

Creates a data source, i.e. ConnectionPool , using the database spec. Best

used within the with-connection-pool macro.

Executes the body with a transaction on each of the connections. Or

establishes a connection and a transaction to execute the body within.

Evaluates body in the context of an active connection obtained from the

connection pool.

Examples

Here are some examples of using stardog-clj

Create a connection and run a query

Insert data

(make-datasource db-spec)

(with-transaction [connection...] body)

(with-connection-tx binding-forms body)

(with-connection-pool [con pool] .. con, body ..)

=> (use 'stardog.core)

=> (def c (connect {:db "testdb" :url "snarl://localhost"}))

=> (def results (query c "select ?n { }"))

=> (take 5 results)

({:n #<StardogURI http://example.org/math#2>} {:n #<StardogURI

http://example.org/math#3>} {:n #<StardogURI

http://example.org/math#5>} {:n #<StardogURI

http://example.org/math#7>} {:n #<StardogURI

http://example.org/math#11>})

=> (def string-results (query c "select ?n { }" {:converter

str}))

=> (take 5 string-results)

({:n "http://example.org/math#2"} {:n "http://example.org/math#3"} {:n

"http://example.org/math#5"} {:n "http://example.org/math#7"} {:n

"http://example.org/math#11"})

/

Run a query with a connection pool

SPARQL Update

Graph function for Construct queries

(let [c (connect test-db-spec)]

 (with-transaction [c]

 (insert! c ["urn:test" "urn:test:clj:prop2" "Hello

World"])

 (insert! c ["urn:test" "urn:test:clj:prop2" "Hello

World2"]))

myapp.core=> (use 'stardog.core)

nil

myapp.core=> (def db-spec (create-db-spec "testdb"

"snarl://localhost:5820/" "admin" "admin" "none"))

#'myapp.core/db-spec

myapp.core=> (def ds (make-datasource db-spec))

myapp.core=> (with-connection-pool [conn ds]

 #_=> (query conn "SELECT ?s ?p ?o WHERE { ?s ?p ?o } LIMIT

2"))

({:s #<URI urn:test1>, :p #<URI urn:test:predicate>, :o "hello world"}

{:s #<URI urn:test1>, :p #<URI urn:test:predicate>, :o "hello

world2"})

;; First, add a triple

;; Then run an udpate query, which is its own transaction

;; Finally, confirm via ask

 (with-open [c (connect test-db-spec)]

 (with-transaction [c]

 (insert! c ["urn:testUpdate:a1" "urn:testUpdate:b"

"aloha world"]))

 (update c "DELETE { ?a ?b \"aloha world\" } INSERT { ?a

?b \"shalom world\" } WHERE { ?a ?b \"aloha world\" }"

 {:parameters {"?a" "urn:testUpdate:a1" "?b"

"urn:testUpdate:b"}})

 (ask c "ask { ?s ?p \"shalom world\" }") => truthy)

;; Graph results converted into Clojure data using the values methods

(with-open [c (connect test-db-spec)]

 (let [g (graph c "CONSTRUCT { <urn:test> ?p ?o } WHERE

{ <urn:test> ?p ?o } ")]

 g) => (list [(as-uri "urn:test") (as-uri

"urn:test:clj:prop3") "Hello World"]))

/

Ask function for ASK queries

.NET PROGRAMMING

In the Network Programming section, we looked at how to interact with

Stardog over a network via HTTP. The HTTP API can be used from .Net

applications but there are third-party libraries that provide a more

convenient way to work with Stardog.

.dotNetRDF

The open source dotNetRDF (http://www.dotnetrdf.org) library provides

functionality to parse, manage, query and write RDF graphs along with a

custom Stardog connector

(https://github.com/dotnetrdf/dotnetrdf/wiki/UserGuide-Storage-Stardog).

See the documentation

(https://bitbucket.org/dotnetrdf/dotnetrdf/wiki/Home) for using dotNetRDF

with Stardog.

NOTE

.dotNetRDF is an open source library developed

and supported by third parties; questions or

issues with the .Net API should be directed to

http://www.dotnetrdf.org.

You should also be aware that dotNetRDF uses the HTTP API for all

communication with Stardog so you must enable the HTTP server to use

Stardog from .Net. It’s enabled by default so most users should not need to

do anything to ful�ll this requirement.

Trinity RDF

;; Ask returns a Boolean

(with-open [c (connect test-db-spec)]

 (ask c "ask { ?s

<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teacherOf> ?o

}")) => truthy)

http://www.dotnetrdf.org/
https://github.com/dotnetrdf/dotnetrdf/wiki/UserGuide-Storage-Stardog
https://bitbucket.org/dotnetrdf/dotnetrdf/wiki/Home
http://www.dotnetrdf.org/

/

Another possibility for using Stardog within .Net applications is the Trinity

RDF (https://trinity-rdf.net) library which provides an Object Mapping layer

for RDF graphs. Trinity lets users map RDF/OWL terms to .NET objects and

uses byte-code manipulation at compilation time to generate e�cient

programs. See Trinity documentation (https://trinity-rdf.net/doc/) for more

details about using Trinity RDF.

SPRING PROGRAMMING

The Spring for Stardog source code (http://github.com/stardog-

union/stardog-spring) is available on Github. Binary releases are available

on the Github release page (https://github.com/stardog-union/stardog-

spring/releases).

As of �.�.�, Stardog-Spring and Stardog-Spring-Batch can both be retrieved

from Maven central:

com.complexible.stardog:stardog-spring:2.1.3

com.complexible.stardog:stardog-spring-batch:2.1.3

The corresponding Stardog Spring version will match the Stardog release,

e.g. stardog-spring-�.�.� for Stardog �.�.�.

Overview

Spring for Stardog makes it possible to rapidly build Stardog-backed

applications with the Spring Framework. As with many other parts of Spring,

Stardog’s Spring integration uses the template design pattern for

abstracting standard boilerplate away from application developers.

Stardog Spring can be included via Maven with

com.complexible.stardog:stardog-spring:version and

com.complexible.stardog:stardog-spring-batch for Spring Batch

support. Both of these dependencies require the public Stardog repository

to be included in your build script, and the Stardog Spring packages

installed in Maven. Embedded server is still supported, but via providing an

implementatino of the Provider interface. This enables users of the

embedded server to have full control over how to use the embedded

server.

https://trinity-rdf.net/
https://trinity-rdf.net/doc/
http://github.com/stardog-union/stardog-spring
https://github.com/stardog-union/stardog-spring/releases

/

At the lowest level, Spring for Stardog includes

�. DataSouce and DataSourceFactoryBean for managing Stardog

connections

�. SnarlTemplate for transaction- and connection-pool safe Stardog

programming

�. DataImporter for easy bootstrapping of input data into Stardog

In addition to the core capabilities, Spring for Stardog also integrates with

the Spring Batch framework. Spring Batch enables complex batch

processing jobs to be created to accomplish tasks such as ETL or legacy

data migration. The standard ItemReader and ItemWriter interfaces are

implemented with a separate callback writing records using the SNARL

Adder API.

Basic Spring

There are three Beans to add to a Spring application context:

DataSourceFactoryBean :

com.complexible.stardog.ext.spring.DataSourceFactoryBean

SnarlTemplate :

com.complexible.stardog.ext.spring.SnarlTemplate

DataImporter :

com.complexible.stardog.ext.spring.DataImporter

DataSourceFactoryBean is a Spring FactoryBean that con�gures and

produces a DataSource . All of the Stardog ConnectionConfiguration

and ConnectionPoolConfig methods are also property names of the

DataSourceFactoryBean --for example, "to", "url", "createIfNotPresent". If

you are interested in running an embedded server, use the Provider

interface and inject it into the DataSourceFactoryBean . Note: all of the

server jars must be added to your classpath for using the embedded server.

javax.sql.DataSource , that can be used to retrieve a Connection from

the ConnectionPool . This additional abstraction serves as place to add

Spring-speci�c capabilities (e.g. spring-tx support in the future) without

directly requiring Spring in Stardog.

/

SnarlTemplate provides a template abstraction over much of Stardog’s

native API, SNARL (#_java_programming), and follows the same approach

of other Spring template, i.e., JdbcTemplate , JmsTemplate , and so on.

Spring for Stardog also comes with convenience mappers, for automatically

mapping result set bindings into common data types. The

SimpleRowMapper projects the BindingSet as a List> and a

SingleMapper that accepts a constructor parameter for binding a single

parameter for a single result set.

The key methods on SnarlTemplate include the following:

query() executes the SELECT query with provided argument list, and

invokes the mapper for result rows.

doWithAdder() is a transaction- and connection-pool safe adder call.

doWithGetter() is the connection pool boilerplate method for the

Getter interface, including the programmatic �lters.

doWithRemover() As above, the remover method that is transaction and

pool safe.

execute() lets you work with a connection directly; again, transaction and

pool safe.

query(String sparqlQuery, Map args, RowMapper)

doWithAdder(AdderCallback)

doWithGetter(String subject, String predicate, GetterCallback)

doWithRemover(RemoverCallback)

execute(ConnectionCallback)

construct(String constructSparql, Map args, GraphMapper)

/

construct() executes a SPARQL CONSTRUCT query with provided

argument list, and invokes the GraphMapper for the result set.

DataImporter is a new class that automates the loading of RDF �les into

Stardog at initialization time.

It uses the Spring Resource API, so �les can be loaded anywhere that is

resolvable by the Resource API: classpath, �le, url, etc. It has a single load

method for further run-time loading and can load a list of �les at initialization

time. The list assumes a uniform set of �le formats, so if there are many

di�erent types of �les to load with di�erent RDF formats, there would be

di�erent DataImporter beans con�gured in Spring.

Spring Batch

In addition to the base DataSource and SnarlTemplate , Spring Batch

support adds the following:

SnarlItemReader :

com.complexible.stardog.ext.spring.batch.SnarlItemReader

SnarlItemWriter :

com.complexible.stardog.ext.spring.batch.SnarlItemWriter

BatchAdderCallback :

com.complexible.stardog.ext.spring.batch.BatchAdderCallback

GROOVY PROGRAMMING

Groovy (http://http://groovy.codehaus.org/) is an agile and dynamic

programming language for the JVM, making popular programming features

such as closures available to Java developers. Stardog’s Groovy support

makes life easier for developers who need to work with RDF, SPARQL, and

OWL by way of Stardog.

The Groovy for Stardog source code (http://github.com/stardog-

union/stardog-groovy) is available on Github.

http://http//groovy.codehaus.org/
http://github.com/stardog-union/stardog-groovy

/

Binary releases are available on the Github release page

(https://github.com/stardog-union/stardog-groovy/releases) and via Maven

central as of version �.�.� and beyond using the following dependency

declaration (Gradle style)

com.complexible.stardog:stardog-groovy:2.1.3 .

As of version �.�.�, Stardog-Groovy can be included via

"com.complexible.stardog:stardog-groovy:�.�.�" from Maven central.

NOTE

You must include our public repository in your

build script to get the Stardog client

dependencies into your local repository.

Using the embedded server with Stardog Groovy is not supported in �.�.�,

due to con�icts of the asm library for various third party dependencies. If

you wish to use the embedded server with similar convenience APIs, please

try Stardog with Spring (#_spring_programming). Also �.�.� and beyond of

Stardog-Groovy no longer requires the use of the Spring framework.

The Stardog-Groovy version always matches the Stardog release, e.g. for

Stardog �.�.� use stardog-groovy-�.�.�.

Overview

Groovy for Stardog provides a set of Groovy API wrappers for developers to

build applications with Stardog and take advantage of native Groovy

features. For example, you can create a Stardog connection pool in a single

line, much like Groovy SQL support. In Groovy for Stardog, queries can be

iterated over using closures and transaction safe closures can be executed

over a connection.

For the �rst release, Groovy for Stardog includes

com.complexible.stardog.ext.groovy.Stardog with the following

methods:

�. Stardog(map) constructor for managing Stardog connection pools

�. each(String, Closure) for executing a closure over a query’s

results, including projecting SPARQL result variables into the closure.

https://github.com/stardog-union/stardog-groovy/releases

/

�. query(String, Closure) for executing a closure over a query’s

results, passing the BindingSet to the closure

�. insert(List) for inserting a list of vars as a triple, or a list of list of

triples for insertion

�. remove(List) for removing a triple from the database

�. withConnection for executing a closure with a transaction safe

instance of Connection

(/docs/�.�.�/java/snarl/com/complexible/stardog/api/connection)

Examples

Here are some examples of the more interesting parts of Stardog Groovy.

Create a Connection

SPARQL Vars Projected into Groovy Closures

Add & Remove Triples

def stardog = new Stardog([url: "snarl://localhost:5820/",

to:"testdb", username:"admin", password:"admin"])

stardog.query("select ?x ?y ?z WHERE { ?x ?y ?z } LIMIT 2", { println

it })

// in this case, it is a BindingSet, ie TupleQueryResult.next() called

until exhausted and closure executed

// there is also a projection of the results into the closure's

binding

// if x, y, or z are not populated in the answer, then they are still

valid binidng but are null

stardog.each("select ?x ?y ?z WHERE { ?x ?y ?z } LIMIT 2", {

 println x

 println y

 println z // may be a LiteralImpl, so you get full access to

manipulate Value objects

 }

)

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/api/connection

/

withConnection Closure

SPARQL Update Support

MIGRATION GUIDE

// insert and remove

stardog.insert([["urn:test3", "urn:test:predicate", "hello world"],

 ["urn:test4", "urn:test:predicate", "hello world2"]])

stardog.remove(["urn:test3", "urn:test:predicate", "hello world"])

stardog.remove(["urn:test4", "urn:test:predicate", "hello world2"])

// withConnection, tx safe

stardog.withConnection { con ->

 def queryString = """

 SELECT ?s ?p ?o

 {

 ?s ?p ?o

 }

 """

 TupleQueryResult result = null;

 try {

 Query query = con.query(queryString);

 result = query.executeSelect();

 while (result.hasNext()) {

 println result.next();

 }

 result.close();

 } catch (Exception e) {

 println "Caught exception ${e}"

 }

}

// Accepts the SPARQL Update queries

stardog.update("DELETE { ?a ?b \"hello world2\" } INSERT { ?a ?b

\"aloha world2\" } WHERE { ?a ?b \"hello world2\" }")

def list = []

stardog.query("SELECT ?x ?y ?z WHERE { ?x ?y \"aloha world2\" } LIMIT

2", { list << it })

assertTrue(list.size == 1)

/

Please be aware of the following incompatible changes in major releases of

Stardog and plan migrations accordingly.

Migrating to Stardog �

Stardog � introduces a new storage engine and snapshot isolation

(https://en.wikipedia.org/wiki/Snapshot_isolation) for concurrent

transactions. This section provides an overview of those changes and how

they a�ect users and programs written against previous versions.

The new storage engine in Stardog � introduces a completely new disk

index format and databases created by previous versions of Stardog must

be migrated in order to work with Stardog �. There is a dedicated CLI

command for migrating the contents of an existing Stardog home directory

(i.e., all of the databases in a multi-tenant system).

NOTE

The following instructions are for migrating all the

databases in an existing STARDOG_HOME

directory. Instead of migrating all the databases

you can start with a new empty home directory

and restore select databases using backups

created by Stardog versions � or �. If you use the

following instructions with very large databases

then you should increase the memory settings by

setting the environment variable

STARDOG_SERVER_JAVA_ARGS.

Migrating Single-Server Stardog

The steps for a single server migration:

Stop the existing Stardog server; do not start Stardog � or have either

server running

Create a new empty Stardog home folder (we’ll call it NEW_HOME)

Copy your license �le to NEW_HOME

Download Stardog � using Maven (#_using_maven), Docker (#_docker),

or the Download page.

Unzip the Stardog � distribution and move to its �nal location

cd to where you’ve put Stardog � and run the following command:

https://en.wikipedia.org/wiki/Snapshot_isolation

/

Set STARDOG_HOME (in your bashrc pro�le or otherwise) to be equal

to NEW_HOME.

The command will migrate the contents of the each database along with

the system database that contains users, roles, permissions, and other

metadata. Progress for the migration will be printed to STDOUT and can

take a signi�cant amount of time if you have large databases. The

stardog.properties (if it exists) �le will not be copied automatically. See

Disk Usage and Layout (#_disk_usage_and_layout) for changes to the

con�guration options and other information.

Migrating Docker-hosted Stardog

The migration process for Stardog running in Docker is e�ectively the same

with a couple of Docker-speci�c di�erences.

Stop your Docker container.

Create a new directory on the Docker host machine (we’ll call it

NEW_HOME).

Copy your license �le to NEW_HOME

Run the Stardog � Docker container in the following way, which will

bring you to a command prompt within the container:

OLD_HOME is the STARDOG_HOME before you start the migration

$ docker run -v <path to NEW_HOME>:/var/opt/stardog -v <path to

OLD_HOME>:/old_stardog \

--entrypoint /bin/bash -it complexible-eps-

docker.jfrog.io/stardog:6.0.0-alpha

Run the Stardog � migration tool in the following way:

$ /opt/stardog/bin/stardog-admin server migrate /old_stardog

/var/opt/stardog

Set STARDOG_HOME (in your bashrc pro�le or otherwise) to be equal

to NEW_HOME.

Migrating Stardog Cluster

The migration steps for the cluster:

OLD_HOME is the STARDOG_HOME before you start the migration

$./bin/stardog-admin server migrate OLD_HOME NEW_HOME

/

Stop all of the cluster nodes, but not the ZK cluster

Follow the above steps for single server migration on any one cluster

node

Run the command stardog-admin zk clear

Start the node where migration completed with Stardog �

On the other cluster nodes, create empty home folders

Start another node, wait for the node to join the cluster, and then repeat

for each cluster node

Disk Usage and Layout

The layout of data in Stardog � home directory is di�erent than in all

previous versions. Previously the data stored in a database was stored

under a directory with the name of the database. In Stardog � the data for

all databases is stored in a directory named data in the home directory.

The database directories still exist but they contain only index metadata

along with search and spatial index if those features are enabled.

The disk usage requirements for Stardog � are higher than Stardog �. The

actual di�erence will depend on the characteristics of your data, but you

should expect to see ��% to ��% increase in disk usage. Similar to Stardog

�, the disk usage of bulk loaded databases, e.g. when data is loaded by the

stardog-admin db create command, will be lower than the disk usage

when the same data is added incrementally, that is, in smaller transactions

over time.

Web Console Removed

The web console, which had been deprecated in Stardog �, has been

removed entirely from Stardog �. We encourage you to use Stardog Studio

(#_stardog_studio) instead.

Memory Databases

Stardog � no longer supports in-memory databases. If keeping all data in

memory is desired, we recommend placing the home directory on a RAM

disk and create databases in the usual way.

Memory Configuration

/

Stardog � uses a new storage engine (RocksDB) which is a native library.

No changes to the Java JVM memory settings are required, as Stardog will

allocate memory to the storage engine from its o�-heap pool. As with

Stardog �, users provide limits for the Java heap memory (-Xmx option) and

the o�-heap memory (-XX:MaxDirectMemorySize option). See Memory

usage (#_memory_usage) for details.

Database Optimization & Compaction

Similar to Stardog �, Stardog � performance degrades over time as the

database is updated with transactions. The disk usage will continue to

increase and data deleted by transactions will not be removed from disk.

The existing db optimize (https://www.stardog.com/docs/man/db-

optimize)command can be used to perform index compaction on disk to

improve the performance of reads and writes. The optimize command now

provides additional options for the administrators to instruct which exact

optimization steps to perform. Please see the CLI help

(https://www.stardog.com/docs/man/db-optimize) for details.

Database Configuration

All server and database options and their meanings are unchanged in

Stardog �, with the following exceptions:

Options starting with index.differential . Stardog � has a new

mechanism which replaces the previous implementation of Di�erential

Indexes.

transaction.isolation needs to be set to SERIALIZABLE for ICV

Guard Mode (#_icv_guard_mode) in order to ensure data integrity w.r.t.

the constraints.

Snapshot Isolation

Stardog � uses a multi-versioned concurrency control (MVCC) model

providing lock-free transactions with snapshot isolation guarantees. Stardog

� provided a weaker snapshot isolation mechanism that required writers to

acquire locks that sometimes blocked other transactions for a very long

time, which is no longer the case. As a result, the performance of

concurrent updates is greatly improved in Stardog �, especially in the

cluster setting.

https://www.stardog.com/docs/man/db-optimize
https://www.stardog.com/docs/man/db-optimize

/

There are two di�erent modes for the MVCC transactions based on how

con�icting changes made by two concurrent transactions will be handled by

setting the transaction.write.conflict.strategy option.

Last Commit Wins

This is the default behavior (

transaction.write.conflict.strategy=last_commit_wins) where the

change made by the last committed transaction will be accepted. If two

concurrent transactions try to add or remove the same quad the change

made by the transaction last committed will be accepted while the other

change is silently ignored. This is similar to Stardog � behavior which uses

locks to achieve the same e�ect in a less e�cient way.

This option provides the best write throughput performance but it also

means Stardog cannot maintain the aggregate indexes it otherwise uses for

statistics and answering some queries. For this reason, the option

index.aggregate is set to off in this mode.

This also means Stardog cannot track the exact size of the database

without introducing additional overhead. In this mode, when you ask for the

size of the database using the data size CLI command or

Connection.size() API call you will get an approximate number. For

example, if you add a quad that already exists in the database it might be

double counted. Stardog will periodically update this number to be accurate

but the accuracy is not guaranteed in general. The option to retrieve the

exact size of the database is provided both in the CLI and the Java API but

it will require scanning the contents of whole database which might be slow

for large databases.

Abort on Conflict

In this mode (

transaction.write.conflict.strategy=abort_on_conflict), if two

concurrent transactions try to add or remove the same quad, one of the

transactions will be aborted with a transaction con�ict. The client then

should decide if con�icted transactions should be retried or aborted. This

check introduces additional overhead for write transactions but makes it

possible to maintain additional indexes and provide exact size information

by setting the option index.aggregate to on .

/

Configuration for new Stardog � features

You may want to do additional con�guration for two features added in

Stardog �. Read more about those here:

Virtual Transparency (#_virtual_transparency)

Schema Multi-tenancy (#_reasoning_with_multiple_schemas)

Migrating to Stardog �

There are two major changes to take account of.

First, the primary incompatible change in Stardog � is a new core API,

called Stark, which replaces Sesame as the core API around graph

concepts. Additional information about that change is detailed below.

Second, as of Stardog �, the web console is DEPRECATED. It is still

available, but it is NOT supported. We encourage you to use Stardog Studio

(https://stardog.com/studio) instead.

STARK API

The �rst thing you might notice is some di�erent naming conventions than

traditional Java libraries. Most notably, the Java Bean-style conventions of

get and set pre�xes are abandoned in favor of shorter, more concise

method names. Similarly, you’ll notice exceptions are not post �xed with

Exception , and are instead MalformedQuery or InvalidRDF . We don’t

think the Exception post�x adds anything; it’s clear from usage that it’s an

Exception , no need to add noise to the name.

Additionally, you will not �nd null returned by any method in Stark. If it’s

the case that there is no return value, you get an Optional instead of

null . This includes the optional context of a Statement ; instead of using

null to denote the default context, there’s a speci�c constant to indicate

this, namely Values#DEFAULT_GRAPH and utility methods on Values for

checking if a Value or Statement corresponds to the default graph. If

you’re using an IDE that will leverage the JSR-��� annotations, @Nullable

and @Nonnull , we’ve used these throughout the interface to document

the behavior and you should see warnings if you’re mis-using the API.

https://stardog.com/studio

/

There’s no longer a Graph class, so for cases where it’s appropriate to

return a collection of Statement , such as the result of parsing a �le, we’re

simply using Set<Statement> . If you need to select subsets of

Statement objects, such as all of the rdf:type assertions, there are

utility methods provided from Graphs and Statements , or you can simply

get a Stream from the Set and do the �lting like you would with any

other Collection .

Many of the core APIs have been cleaned up from their original

counterparts. For example, Literal was trimmed down to just the basics,

and if you need to get its value as a di�erent type, like an int , there are

static methods available from the Literal class.

Updating your code

In addition to the changes already mentioned, one thing to look out for is

Value#stringValue on the older, Sesame based API. It returned the label

of a Literal , the ID of a BNode and an IRI as a String . Generally, the

correct replacement this behavior is Literal#str , but in some usages,

using toString is su�cient. Value#toString in STARK returns the

complete value of the Value object, eg, for a Literal it includes the

lang/datatype, whereas stringValue did not.

This is a list of commonly used classes from the previous API, and their new

counterparts:

��. New Classes

Sesame Stark

ModelIO RdfWriters , RdfParsers

TupleQueryResult SelectQueryResult

Graph java.util.Set

QueryResultIO QueryResultWriters ,

QueryResultParsers

RDFFormat RDFFormats

/

Predictive Analytics Vocabulary

The IRIs used to assess the quality of machine learning models

(#_assessing_model_quality) have been renamed as follows:

��. Predictive Analytics Vocabulary

Stardog � Stardog �

spa:validation spa:evaluation

spa:validationMetric spa:evaluationMetric

spa:validationScore spa:evaluationScore

See the examples in Automatic Evaluation (#_automatic_evaluation) section

about the usage of these terms.

Migrating to Stardog �

Stardog � introduces signi�cant changes; this section provides an overview

of those changes and how they a�ect users.

Disk Indexes

Stardog � does not change the format of disk indexes but uses new

algorithms and data structures for computing an storing statistics for

improved query planning. Migration of statistics is performed automatically

the �rst time Stardog is started even if server start is executed without

the --upgrade option. This migration might take a while based on your

databases size and a progress of the update will be printed on the console.

The new statistics is not backward compatible and old versions of Stardog

cannot be started with the same home directory after statistics has been

migrated. If you want to revert back to an older version of Stardog you

should manually delete all the statistics.* directories and Stardog �

will recompute the statistics on start up. Again, this might take considerable

time for large databases. If you want to switch between Stardog � and

Stardog � quickly you should have two copies of your home directory.

Network Protocol

/

SNARL protocol was deprecated in Stardog � and is completely removed in

Stardog �. Note that, this does not a�ect the SNARL Java API which

continues to be the preferred API to work with Stardog �. If you have been

using SNARL protocol, i.e. connection strings that begin with snarl:// (or

snarls://), then you should change your connection strings to begin with

http:// (or https://). If you are using the SNARL Java API you might

need to update your library dependencies to use the HTTP client

dependency. See the Using Maven (#_using_maven) section for details.

Embedded Mode

Stardog � no longer requires a running server for use of Stardog in an

embedded manner. To use an embedded version of Stardog, you simply

start Stardog:

Then use the existing SNARL API methods for connecting to an embedded

server. See our examples (https://github.com/stardog-union/stardog-

examples/blob/develop/examples/api/main/src/com/complexible/stardog/ex

amples/api/ConnectionAPIExample.java) for a complete demonstration of

using Stardog.

UNDERSTANDING STARDOG

Background information on performance, testing, terminology, known

issues, compatibility policies, etc.

FAQ

Some frequently asked questions for which we have answers.

Why can’t I load Dbpedia (or other RDF) data?

Stardog aStardog = Stardog.builder().create();

try {

 // use stardog

}

finally {

 aStardog.shutdown();

}

https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/api/ConnectionAPIExample.java

/

Question

I get a parsing error when loading Dbpedia or some other RDF. What can

I do?

Answer

First, it’s not a bad thing to expect data providers to publish valid data.

Second, it is, apparently, a very naive thing to expect data providers to

publish valid data…

Stardog supports a loose parsing mode which will ignore certain kinds of

data invalidity and may allow you to load invalid data. See

strict.parsing in Con�guration Options (#_con�guration_options).

Why doesn’t search work?

Question

I created a database but search doesn’t work.

Answer

Search is disabled by default; you can enable it at database creation time

when using db create (https://www.stardog.com/docs/man/db-create).

You can also enable it at any subsequent time by setting the

search.enabled database property using metadata set

(https://www.stardog.com/docs/man/metadata-set) CLI.

Why don’t my queries work?!

Question

I’ve got some named graphs and blah blah my queries don’t work blah

blah.

Answer

Queries with FROM NAMED with a named graph that is not in Stardog

will not cause Stardog to download the data from an arbitrary HTTP URL

and include it in the query. Stardog will only evaluate queries over data

that has been loaded into it.

SPARQL queries without a context or named graph are executed against

the default, unnamed graph. In Stardog, the default graph is not the

union of all the named graphs and the default graph. This behavior is

https://www.stardog.com/docs/man/db-create
https://www.stardog.com/docs/man/metadata-set

/

con�gurable via the query.all.graphs con�guration parameter.

Why is Stardog Cluster acting weird or running slowly?

Question

Should I put Stardog HA and Zookeeper on the same hard drives?

Answer

Never do this! Zookeeper is disk-intensive and displays bad I/O

contention with Stardog query evaluation. Running both Zk and Stardog

on the same disks will result in bad performance and, in some cases,

intermittent failures.

Deadlocks and Slowdowns

Question

Stardog slows down or deadlocks?! I don’t understand why, I’m just trying

to send some queries and do something with the results… in a tight inner

loop of doom!

Answer

Make sure you are closing result sets (TupleQueryResult and

GraphQueryResult ; or the Jena equivalents) when you are done with

them. These hold open resources both on the client and on the server

and failing to close them when you are done will cause �les, streams,

lions, tigers, and bears to be held open. If you do that enough, then you’ll

eventually exhaust all of the resources in their respective pools, which

can cause slowness or, in some cases, deadlocks waiting for resources

to be returned.

Similarly close your connections when you are done with them. Failing to

close Connections , Iterations , QueryResults , and other closeable

objects will lead to undesirable behavior.

Update Performance

Question

I’m adding one triple at a time, in a tight loop, to Stardog; is this the ideal

strategy with respect to performance?

/

Answer

The answer is "not really"… Update performance is best if there are fewer

transactions that modify larger number of triples. If you are using the

Stardog Java API, the client will bu�er changes in large transactions and

�ush the bu�er periodically so you don’t need to worry about memory

problems. If you need transactions with small number of triples then you

may need to experiment to �nd the sweet spot with respect to your data,

database size, the size of the di�erential index, and update frequency.

Public Endpoint

Question

I want to use Stardog to serve a public SPARQL endpoint; is there some

way I can do this without publishing user account information?

Answer

We don’t necessarily recommend this, but it’s possible. Simply pass

--disable-security to stardog-admin when you start the Stardog

Server. This completely disables security in Stardog which will let users

access the SPARQL endpoint, and all other functionality, without needing

authorization.

Remote Bulk Loading

Question

I’m trying to create a database and bulk load �les from my machine to

the server and it’s not working, the �les don’t seem to load, what gives?

Answer

Stardog does not transfer �les during database creation to the server,

sending big �les over a network kind of defeats the purpose of blazing

fast bulk loading. If you want to bulk load �les from your machine to a

remote server, copy them to the server and bulk load them.

Canonicalized Literals

Question

Why doesn’t my literal look the same as I when I added it to Stardog?

Answer

/

Stardog performs literal canonicalization

(/docs/�.�.�/java/snarl/com/complexible/stardog/index/indexoptions#CA

NONICAL_LITERALS) by default. This can be turned o� by setting

index.literals.canonical to false . See Con�guration Options

(#_con�guration_options) for the details.

Cluster Isn’t Working

Question

I’ve setup Stardog Cluster, but it isn’t working and I have

NoRouteToHostException exceptions all over my Zookeeper log.

Answer

Typically— but especially on Red Hat Linux and its variants— this means

that iptables is blocking one, some, or all of the ports that the Cluster

is trying to use. You can disable iptables or, better yet, con�gure it to

unblock the ports Cluster is using.

Client Connection Isn’t Working

Question

I’m getting a ServiceConfigurationError saying that SNARLDriver

could not be instantiated.

Answer

Make sure that your classpath includes all Stardog JARs and that the user

executing your code has access to them.

Logging

Question

Why doesn’t Stardog implement our (byzantine and proprietary!)

corporate logging scheme?

Answer

Stardog will log to $STARDOG_HOME/stardog.log by default (#_logging),

but you can use a log�j � con�g �le in $STARDOG_HOME so that Stardog

will log wherever & however you want. The default con�guration �le can

be found at $STARDOG/server/dbms/log4j2.xml .

https://www.stardog.com/docs/7.0.3/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERALS

/

Loading Compressed Data

Question

How can I load data from a compressed format that Stardog doesn’t

support without decompressing the �le?

Answer

Stardog supports several compression formats by default (zip, gzip,

bzip�) so �les compressed with those formats can be passed as input

directly without decompression. Files compressed with other formats can

also be loaded to Stardog by decompressing them on-the-�y using

named pipes (http://en.wikipedia.org/wiki/Named_pipe) in Unix-like

systems. The following example shows using a named pipe where the

decompressed data is sent directly to Stardog without being writing to

disk.

Working with RDF Files

Question

I have some RDF �les that I need to process without loading into Stardog.

What can I do?

Answer

As of Stardog �.�, Stardog provides some CLI commands that work

directly over �les. These commands exist under the stardog file

command. For example, you can use the file cat

(https://stardog.com/docs/man/�le-cat) command to concatenate multiple

RDF �les into a single �le and file split

(https://stardog.com/docs/man/�le-split) command to split a single RDF

�le into multiple RDF �les. These commands are similar to their *nix

counterparts but can handle RDF formats and perform

compression/decompression on-the-�y. There is also the

file obfuscate (https://stardog.com/docs/man/�le-obfuscate)

command that can create an obfuscated version of the input RDF �les

similar to data obfuscate (https://stardog.com/docs/man/data-

obfuscate) command.

$ mkfifo some-data.rdf

$ xz -dc some-data.rdf.xz > some-data.rdf &

$ stardog-admin db create -n test some-data.rdf

http://en.wikipedia.org/wiki/Named_pipe
https://stardog.com/docs/man/file-cat
https://stardog.com/docs/man/file-split
https://stardog.com/docs/man/file-obfuscate
https://stardog.com/docs/man/data-obfuscate

/

Virtual Graph Identifier Quoting

Question

How do I quote �eld and table names in mappings and when should I do

it?

Answer

Interpretation of identi�ers follows that of the database system backing

the virtual graph. For example, Oracle, interprets nonquoted identi�ers as

uppercase. PostgreSQL interprets unquoted identi�ers as lowercase. In

general, if you need to quote the identi�er in a query, then you should

quote it in a mapping.

Quoting is done using the native quoting character of the database. This

means double quote for Oracle, PostgreSQL and other SQL standard-

compatible systems. MySQL uses a backquote and SQL Server uses

square brackets. This setting can be overridden by adding

parser.sql.quoting=ANSI to your virtual graph properties �le. This will

allow the use of double quotes to quote identi�ers. This is commonly

done to write mappings using the R�RML convention of using double

quotes and supporting mappings generated by other systems.

Virtual Graph Table not Found

Question

Why am I getting an error when I try to create a virtual graph?

Unable to parse logical table : From line 1, column 15 to line

1, column 18: Object 'SOME_TABLE' not found

Answer

The virtual graph subsystem maintains a set of metadata including a list

of tables and the types of their �elds. If a table is not found, it’s likely that

it either needs to be quoted or the schema needs to be added to the

search path by adding sql.schemas to your virtual graph properties �le.

This setting enables Stardog to see the table metadata in the named

schemas. The table/query still needs to be quali�ed with the schema

name when referring to it.

The virtual source_metadata (/docs/man/virtual-source_metadata)

command can be used to inspect metadata returned by the JDBC driver.

https://www.stardog.com/docs/man/virtual-source_metadata

/

Virtual Graphs over MarkLogic

Question

How do I create a virtual graph over MarkLogic? An error is returned

org.postgresql.util.PSQLException: ERROR: XDMP-UNDFUN:

(err:XPST0017) Undefined function current_schema()

.

Answer

Stardog requires the schema to be provided. This cannot be done

automatically with MarkLogic and should be set using the

sql.default.schema option for the virtual graph. The schema name is

de�ned when creating the view in MarkLogic.

Compatibility Policies

The Stardog �.x release ("Stardog" for short) is a major milestone in the

development of the system. Stardog is a stable platform for the growth of

projects and programs written for Stardog.

Stardog provides (and de�nes) several user-visible things:

�. SNARL API

�. Stardog HTTP Protocol

�. a command-line interface

It is intended that programs—as well as SPARQL queries—written to Stardog

APIs, protocols, and interfaces will continue to run correctly, unchanged,

over the lifetime of Stardog. That is, over all releases identi�ed by version

5.x.y . At some inde�nite point, Stardog �.x will be released; but, until that

time, and likely even after it, Stardog programs that work today should

continue to work even as future releases of Stardog occur. APIs, protocols,

and interfaces may grow, acquiring new parts and features, but not in a way

that breaks existing Stardog programs.

Expectations

/

Although we expect that nearly all Stardog programs will maintain this

compatibility over time, it is impossible to guarantee that no future change

will break any program. This document sets expectations for the

compatibility of Stardog programs in the future. The main, foreseeable

reasons for which this compatibility may be broken in the future include:

�. Security: We reserve the right to break compatibility if doing so is

required to address a security problem in Stardog.

�. Unspeci�ed behavior: Programs that depend on unspeci�ed

 behaviors may not work in the future if those behaviors are

modi�ed.

�. �rd Party Speci�cation Errors: It may become necessary to break

compatibility of Stardog programs in order to address problems in

some �rd party speci�cation.

�. Bugs: It will not always be possible to �x bugs found in Stardog— or in

its �rd party dependencies— while also preserving compatibility. With

that proviso, we will endeavor to only break compatibility when

repairing critical bugs.

It is always possible that the performance of a Stardog program may be

(adversely) a�ected by changes in the implementation of Stardog. No

guarantee can be made about the performance of a given program

between releases, except to say that our expectation is that performance

will generally trend in the appropriate direction.

Data Migration & Safety

We expect that data safety will always be given greater weight than any

other consideration. But since Stardog stores a user’s data di�erently from

the form in which data is input to Stardog, we may from time to time change

the way it is stored such that explicit data migration will be necessary.

Stardog provides for two data migration strategies:

�. Command-line migration tool(s)

�. Dump and reload

[�� (#_foo

tnote_��)]

/

We expect that explicit migrations may be required from time to time

between di�erent releases of Stardog. We will endeavor to minimize the

need for such migrations. We will only require the "dump and reload"

strategy between major releases of Stardog (that is, from �.x to �.x, etc.),

unless that strategy of migration is required to repair a security or other

data safety bug.

Known Issues

The known issues in Stardog �.�.�:

�. Our implementation of CONSTRUCT slightly deviates from the SPARQL

�.� speci�cation (http://www.w�.org/TR/sparql��-query/#construct): it

does not implicitly DISTINCT query results; rather, it implicitly applies

REDUCED semantics to CONSTRUCT query results.

�. Asking for all individuals with reasoning via the query

{?s a owl:Thing} might also retrieve some classes and properties.

WILLFIX

�. Schema queries do not bind graph variables.

�. Dropping a database deletes all of the data �les in Stardog Home

associated with that database. If you want to keep the data �les and

remove the database from the system catalog, then you need to

manually copy these �les to another location before dropping the

database.

�. If relative URIs exist in the data �les passed to create, add, or remove

commands, then they will be resolved using the constant base URI

http://api.stardog.com/

(http://api.stardog.com/) if, but only if, the format of

the �le allows base URIs. Turtle and RDF/XML formats allows base URIs

but N-Triples format doesn’t allow base URIs and relative URIs in N-

Triples data will cause errors.

�. Queries with FROM NAMED with a named graph that is not in Stardog

will not cause Stardog to download the data from an arbitrary HTTP

URL and include it in the query.

[�� (#_footnote_��)]

http://www.w3.org/TR/sparql11-query/#construct
http://api.stardog.com/

/

�. SPARQL queries without a context or named graph are executed

against the default, unnamed graph. In Stardog, the default graph is not

the union of all the named graphs and the default graph. Note: this

behavior is con�gurable via the query.all.graphs con�guration

parameter.

�. RDF literals are limited to �MB (after compression) in Stardog. Input

data with literals larger than �MB (after compression) will raise an

exception.

Glossary

In the Stardog documentation, the following terms have a speci�c technical

meaning.

Stardog

Database

Managem

ent

System,

aka

Stardog

Server

An instance of Stardog; only one Stardog Server may run

per JVM. A computer may run multiple Stardog Servers by

running one per multiple JVMs.

Stardog

Home, aka

STARDOG_

HOME

A directory in a �lesystem in which Stardog stores �les

and other information; established either in a Stardog

con�guration �le or by environment variable. Only one

Stardog Server may run simultaneously from a

STARDOG_HOME .

Stardog

Network

Home

A URL that identi�es a Stardog Server running on the

network.

Database A Stardog database is a graph of RDF data under

management of a Stardog Server. It may contain zero or

more RDF Named Graphs. A Stardog Server may manage

more than one Database; there is no hard limit, and the

practical limit is disk space.

/

Database

Short

Name, aka

Database

Name

An identi�er used to name a database, provided as input

when a database is created.

Database

Network

Name

A Database Short Name is part of the URI of a Database

addressed over some network protocol.

Index The unit of persistence for a Database. We sometimes

(sloppily) use Database and Index interchangeably in the

manual.

Memory

Database

A Database may be stored in-memory or on disk; a

Memory Database is read entirely into system memory but

can be (optionally) persisted to disk.

Disk

Database

A Disk Database is only paged into system memory as

needed and is persisted using one or more indexes.

Connectio

n String

An identi�er (a restricted subset of legal URLs, actually)

that is used to connect to a Stardog database to send

queries or perform other operations.

Named

Graph

A Named Graph is an explicitly named unit of data within a

Database. Named Graphs are queries explicitly by

specifying them in SPARQL queries. There is no practical

limit on the number of Named Graphs in a Database.

Default

Graph

The Default Graph in a Database is the context into which

RDF triples are stored when a Named Graph is not

explicitly speci�ed. A SPARQL query executed by Stardog

that does not contain any Named Graph statements is

executed against the data in the Default Graph only.

/

Security

Realm

A Security Realm de�nes the users and their permissions

for each Database in an Stardog Server. There is only one

Security Realm per Stardog Server.

APPENDIX

Just move it to the Appendix for a great good!

Man Pages

Stardog CLI

data add (/docs/man/data-add), data export (/docs/man/data-

export), data obfuscate (/docs/man/data-obfuscate), data remove

(/docs/man/data-remove), data size (/docs/man/data-size)

doc count (/docs/man/doc-count), doc delete (/docs/man/doc-

delete), doc get (/docs/man/doc-get), doc put (/docs/man/doc-put),

doc reindex (/docs/man/doc-reindex)

file cat (/docs/man/�le-cat), file obfuscate (/docs/man/�le-

obfuscate), file split (/docs/man/�le-split)

graphql execute (/docs/man/graphql-execute), graphql explain

(/docs/man/graphql-explain), graphql schema (/docs/man/graphql-

schema)

icv convert (/docs/man/icv-convert), icv explain (/docs/man/icv-

explain), icv export (/docs/man/icv-export), icv fix (/docs/man/icv-

�x), icv report (/docs/man/icv-report), icv validate (/docs/man/icv-

validate)

namespace add (/docs/man/namespace-add), namespace export

(/docs/man/namespace-export), namespace import

(/docs/man/namespace-import), namespace list

(/docs/man/namespace-list), namespace remove

(/docs/man/namespace-remove)

query execute (/docs/man/query-execute), query explain

(/docs/man/query-explain), query obfuscate (/docs/man/query-

obfuscate), query search (/docs/man/query-search)

https://www.stardog.com/docs/man/data-add
https://www.stardog.com/docs/man/data-export
https://www.stardog.com/docs/man/data-obfuscate
https://www.stardog.com/docs/man/data-remove
https://www.stardog.com/docs/man/data-size
https://www.stardog.com/docs/man/doc-count
https://www.stardog.com/docs/man/doc-delete
https://www.stardog.com/docs/man/doc-get
https://www.stardog.com/docs/man/doc-put
https://www.stardog.com/docs/man/doc-reindex
https://www.stardog.com/docs/man/file-cat
https://www.stardog.com/docs/man/file-obfuscate
https://www.stardog.com/docs/man/file-split
https://www.stardog.com/docs/man/graphql-execute
https://www.stardog.com/docs/man/graphql-explain
https://www.stardog.com/docs/man/graphql-schema
https://www.stardog.com/docs/man/icv-convert
https://www.stardog.com/docs/man/icv-explain
https://www.stardog.com/docs/man/icv-export
https://www.stardog.com/docs/man/icv-fix
https://www.stardog.com/docs/man/icv-report
https://www.stardog.com/docs/man/icv-validate
https://www.stardog.com/docs/man/namespace-add
https://www.stardog.com/docs/man/namespace-export
https://www.stardog.com/docs/man/namespace-import
https://www.stardog.com/docs/man/namespace-list
https://www.stardog.com/docs/man/namespace-remove
https://www.stardog.com/docs/man/query-execute
https://www.stardog.com/docs/man/query-explain
https://www.stardog.com/docs/man/query-obfuscate
https://www.stardog.com/docs/man/query-search

/

reasoning consistency (/docs/man/reasoning-consistency),

reasoning explain (/docs/man/reasoning-explain),

reasoning schema (/docs/man/reasoning-schema), reasoning undo

(/docs/man/reasoning-undo)

tx begin (/docs/man/tx-begin), tx commit (/docs/man/tx-commit),

tx list (/docs/man/tx-list), tx rollback (/docs/man/tx-rollback)

vcs commit (/docs/man/vcs-commit), vcs diff (/docs/man/vcs-di�),

vcs list (/docs/man/vcs-list), vcs query (/docs/man/vcs-query),

vcs revert (/docs/man/vcs-revert), vcs tag (/docs/man/vcs-tag)

Stardog Admin CLI

cache create (/docs/man/cache-create), cache drop

(/docs/man/cache-drop), cache refresh (/docs/man/cache-refresh),

cache status (/docs/man/cache-status), cache target

(/docs/man/cache-target)

cluster generate (/docs/man/cluster-generate), cluster info

(/docs/man/cluster-info), cluster metrics (/docs/man/cluster-metrics),

cluster standby-join (/docs/man/cluster-standby-join),

cluster standby-pause (/docs/man/cluster-standby-pause),

cluster standby-resume (/docs/man/cluster-standby-resume),

cluster standby-status (/docs/man/cluster-standby-status),

cluster status (/docs/man/cluster-status), cluster stop

(/docs/man/cluster-stop), cluster zkstart (/docs/man/cluster-zkstart),

cluster zkstop (/docs/man/cluster-zkstop)

db backup (/docs/man/db-backup), db create (/docs/man/db-create),

db drop (/docs/man/db-drop), db list (/docs/man/db-list),

db offline (/docs/man/db-o�ine), db online (/docs/man/db-online),

db optimize (/docs/man/db-optimize), db repair (/docs/man/db-

repair), db restore (/docs/man/db-restore), db status

(/docs/man/db-status)

diagnostics report (/docs/man/diagnostics-report)

function add (/docs/man/function-add), function list

(/docs/man/function-list), function remove (/docs/man/function-

remove)

icv add (/docs/man/icv-add), icv drop (/docs/man/icv-drop),

icv remove (/docs/man/icv-remove)

https://www.stardog.com/docs/man/reasoning-consistency
https://www.stardog.com/docs/man/reasoning-explain
https://www.stardog.com/docs/man/reasoning-schema
https://www.stardog.com/docs/man/reasoning-undo
https://www.stardog.com/docs/man/tx-begin
https://www.stardog.com/docs/man/tx-commit
https://www.stardog.com/docs/man/tx-list
https://www.stardog.com/docs/man/tx-rollback
https://www.stardog.com/docs/man/vcs-commit
https://www.stardog.com/docs/man/vcs-diff
https://www.stardog.com/docs/man/vcs-list
https://www.stardog.com/docs/man/vcs-query
https://www.stardog.com/docs/man/vcs-revert
https://www.stardog.com/docs/man/vcs-tag
https://www.stardog.com/docs/man/cache-create
https://www.stardog.com/docs/man/cache-drop
https://www.stardog.com/docs/man/cache-refresh
https://www.stardog.com/docs/man/cache-status
https://www.stardog.com/docs/man/cache-target
https://www.stardog.com/docs/man/cluster-generate
https://www.stardog.com/docs/man/cluster-info
https://www.stardog.com/docs/man/cluster-metrics
https://www.stardog.com/docs/man/cluster-standby-join
https://www.stardog.com/docs/man/cluster-standby-pause
https://www.stardog.com/docs/man/cluster-standby-resume
https://www.stardog.com/docs/man/cluster-standby-status
https://www.stardog.com/docs/man/cluster-status
https://www.stardog.com/docs/man/cluster-stop
https://www.stardog.com/docs/man/cluster-zkstart
https://www.stardog.com/docs/man/cluster-zkstop
https://www.stardog.com/docs/man/db-backup
https://www.stardog.com/docs/man/db-create
https://www.stardog.com/docs/man/db-drop
https://www.stardog.com/docs/man/db-list
https://www.stardog.com/docs/man/db-offline
https://www.stardog.com/docs/man/db-online
https://www.stardog.com/docs/man/db-optimize
https://www.stardog.com/docs/man/db-repair
https://www.stardog.com/docs/man/db-restore
https://www.stardog.com/docs/man/db-status
https://www.stardog.com/docs/man/diagnostics-report
https://www.stardog.com/docs/man/function-add
https://www.stardog.com/docs/man/function-list
https://www.stardog.com/docs/man/function-remove
https://www.stardog.com/docs/man/icv-add
https://www.stardog.com/docs/man/icv-drop
https://www.stardog.com/docs/man/icv-remove

/

license info (/docs/man/license-info), license request

(/docs/man/license-request)

log print (/docs/man/log-print)

metadata get (/docs/man/metadata-get), metadata set

(/docs/man/metadata-set)

query kill (/docs/man/query-kill), query list (/docs/man/query-list),

query status (/docs/man/query-status)

role add (/docs/man/role-add), role grant (/docs/man/role-grant),

role list (/docs/man/role-list), role permission (/docs/man/role-

permission), role remove (/docs/man/role-remove), role revoke

(/docs/man/role-revoke)

server backup (/docs/man/server-backup), server metrics

(/docs/man/server-metrics), server migrate (/docs/man/server-

migrate), server profile (/docs/man/server-pro�le), server restore

(/docs/man/server-restore), server start (/docs/man/server-start),

server status (/docs/man/server-status), server stop

(/docs/man/server-stop)

stored add (/docs/man/stored-add), stored export

(/docs/man/stored-export), stored import (/docs/man/stored-import),

stored list (/docs/man/stored-list), stored remove

(/docs/man/stored-remove)

user add (/docs/man/user-add), user addrole (/docs/man/user-

addrole), user disable (/docs/man/user-disable), user enable

(/docs/man/user-enable), user grant (/docs/man/user-grant),

user list (/docs/man/user-list), user passwd (/docs/man/user-

passwd), user permission (/docs/man/user-permission),

user remove (/docs/man/user-remove), user removerole

(/docs/man/user-removerole), user revoke (/docs/man/user-revoke)

virtual add (/docs/man/virtual-add), virtual import

(/docs/man/virtual-import), virtual list (/docs/man/virtual-list),

virtual mappings (/docs/man/virtual-mappings), virtual options

(/docs/man/virtual-options), virtual remove (/docs/man/virtual-

remove), virtual source_metadata (/docs/man/virtual-

source_metadata)

zk clear (/docs/man/zk-clear), zk info (/docs/man/zk-info),

zk start (/docs/man/zk-start), zk stop (/docs/man/zk-stop)

Installing Man Pages Locally

https://www.stardog.com/docs/man/license-info
https://www.stardog.com/docs/man/license-request
https://www.stardog.com/docs/man/log-print
https://www.stardog.com/docs/man/metadata-get
https://www.stardog.com/docs/man/metadata-set
https://www.stardog.com/docs/man/query-kill
https://www.stardog.com/docs/man/query-list
https://www.stardog.com/docs/man/query-status
https://www.stardog.com/docs/man/role-add
https://www.stardog.com/docs/man/role-grant
https://www.stardog.com/docs/man/role-list
https://www.stardog.com/docs/man/role-permission
https://www.stardog.com/docs/man/role-remove
https://www.stardog.com/docs/man/role-revoke
https://www.stardog.com/docs/man/server-backup
https://www.stardog.com/docs/man/server-metrics
https://www.stardog.com/docs/man/server-migrate
https://www.stardog.com/docs/man/server-profile
https://www.stardog.com/docs/man/server-restore
https://www.stardog.com/docs/man/server-start
https://www.stardog.com/docs/man/server-status
https://www.stardog.com/docs/man/server-stop
https://www.stardog.com/docs/man/stored-add
https://www.stardog.com/docs/man/stored-export
https://www.stardog.com/docs/man/stored-import
https://www.stardog.com/docs/man/stored-list
https://www.stardog.com/docs/man/stored-remove
https://www.stardog.com/docs/man/user-add
https://www.stardog.com/docs/man/user-addrole
https://www.stardog.com/docs/man/user-disable
https://www.stardog.com/docs/man/user-enable
https://www.stardog.com/docs/man/user-grant
https://www.stardog.com/docs/man/user-list
https://www.stardog.com/docs/man/user-passwd
https://www.stardog.com/docs/man/user-permission
https://www.stardog.com/docs/man/user-remove
https://www.stardog.com/docs/man/user-removerole
https://www.stardog.com/docs/man/user-revoke
https://www.stardog.com/docs/man/virtual-add
https://www.stardog.com/docs/man/virtual-import
https://www.stardog.com/docs/man/virtual-list
https://www.stardog.com/docs/man/virtual-mappings
https://www.stardog.com/docs/man/virtual-options
https://www.stardog.com/docs/man/virtual-remove
https://www.stardog.com/docs/man/virtual-source_metadata
https://www.stardog.com/docs/man/zk-clear
https://www.stardog.com/docs/man/zk-info
https://www.stardog.com/docs/man/zk-start
https://www.stardog.com/docs/man/zk-stop

/

To install the man pages locally in your Unix-like environment:

SPARQL Query Functions

Stardog supports all of the functions in SPARQL, as well as some others

from XPath and SWRL. Any of these functions can be used in queries or

rules. Function names don’t require namespace pre�xes in general unless

ambiguity is present. XPath functions take precedence when resolving

functions without namespace pre�xes. Some functions appear in multiple

namespaces, but all of the namespaces will work:

��. Table of Stardog Function Namespaces

Pre�x Namespace

stardog tag:stardog:api:functions:

fn http://www.w�.org/����/xpath-functions#

(http://www.w�.org/����/xpath-functions#)

math http://www.w�.org/����/xpath-functions/math#

(http://www.w�.org/����/xpath-functions/math#)

swrlb http://www.w�.org/����/��/swrlb#

(http://www.w�.org/����/��/swrlb#)

leviathan http://www.dotnetrdf.org/leviathan#

(http://www.dotnetrdf.org/leviathan#)

afn http://jena.hpl.hp.com/ARQ/function#

(http://jena.hpl.hp.com/ARQ/function#)

The function names and URIs supported by Stardog are included below.

Some of these functions exist in SPARQL natively, which just means they

can be used without an explicit namespace. Some of the functions have a

URI that can be used but they are also overloaded arithmetic operators. For

$ cp docs/man1/* /usr/local/share/man1

$ cp docs/man8/* /usr/local/share/man8

$ mandb

$ man stardog-admin-server-start

http://www.w3.org/2005/xpath-functions#
http://www.w3.org/2005/xpath-functions/math#
http://www.w3.org/2003/11/swrlb#
http://www.dotnetrdf.org/leviathan#
http://jena.hpl.hp.com/ARQ/function#

/

example, if you want to add two day time durations you can simply use the

expression ?duration1 + ?duration2 instead of

swrlb:addDayTimeDurations(?duration1 + ?duration2) .

��. Table of Custom Stardog Functions

Function Description

tag:stardog:api:a

nalytics:accuracy
Aggregate which computes percentage of times two

variables have di�erent values. Used with machine

learning. Example: accuracy(?original, ?inferred) .

In SPARQL: sum(if(?a = ?b, 1, 0)) / count(*)

tag:stardog:api:f

unctions:cosh
Hyperbolic cosine

tag:stardog:api:g

mean
Geometric mean aggregate

tag:stardog:api:i

dentifier
MD� hash as IRI of RDF terms (� or �) to be used as a

statement identi�er. Example: identifier(?s, ?p, ?o)

tag:stardog:api:i

ndex
Lookup an array element by �-based index. Example

index(split("John Doe"), 1) will return "Doe" .

tag:stardog:api:f

unctions:isValid
Check the validity of an RDF value

tag:stardog:api:f

unctions:localnam

e

Alias to afn:localname

(http://jena.hpl.hp.com/ARQ/function#localname)

tag:stardog:api:a

nalytics:mae
Aggregate which computes on average, how di�erent

are the numeric values of two variables. In SPARQL:

sum(abs(?a - ?b)) / count(*).

tag:stardog:api:a

nalytics:mse
Aggregate which computes on average, how much is the

squared di�erence between the numeric values of two

variables. In SPARQL:

sum?a - ?b) * (?a - ?b / count(*).

tag:stardog:api:a

nalytics:rmse
Aggregate which computes the square root of the mean

square error. In SPARQL:

sqrt(sum?a - ?b) * (?a - ?b / count(*)).

http://jena.hpl.hp.com/ARQ/function#localname

/

tag:stardog:api:s

et
Aggregate function which constructs an array literal from

accumulated bindings. Example: set(?element)

tag:stardog:api:f

unctions:sinh
Hyperbolic sine

tag:stardog:api:s

plit
Split a string by a regex delimiter. An array literal is

returned. Example: split("John Doe", " "). An optional

third integer argument limits the number of times the

pattern will be matched when splitting the string.

tag:stardog:api:f

unctions:tanh
Hyperbolic tangent

tag:stardog:api:t

emplate
Template function used in virtual graph mappings, e.g.

template("prefix:{variable}")

tag:stardog:api:f

unctions:toDegree

s

Alias to leviathan:radians-to-degrees

(http://www.dotnetrdf.org/leviathan#radians-to-degrees)

tag:stardog:api:f

unctions:toRadian

s

Alias to leviathan:degrees-to-radians

(http://www.dotnetrdf.org/leviathan#degrees-to-radians)

��. Table of Stardog Function Names & URIs

Function name Recognized URIs and Symbols

abs ABS (https://www.w�.org/TR/sparql��-query/#func-abs),

fn:numeric-abs (http://www.w�.org/����/xpath-

functions#numeric-abs), swrlb:abs

(http://www.w�.org/����/��/swrlb#abs)

accuracy tag:stardog:api:analytics:accuracy (#func-accuracy)

acos math:acos (http://www.w�.org/����/xpath-

functions/math#acos), leviathan:cos-�

(http://www.dotnetrdf.org/leviathan#cos-�)

addDayTimeDuration

s

+ , swrlb:addDayTimeDurations

(http://www.w�.org/����/��/swrlb#addDayTimeDuration

s)

http://www.dotnetrdf.org/leviathan#radians-to-degrees
http://www.dotnetrdf.org/leviathan#degrees-to-radians
https://www.w3.org/TR/sparql11-query/#func-abs
http://www.w3.org/2005/xpath-functions#numeric-abs
http://www.w3.org/2003/11/swrlb#abs
http://www.w3.org/2005/xpath-functions/math#acos
http://www.dotnetrdf.org/leviathan#cos-1
http://www.w3.org/2003/11/swrlb#addDayTimeDurations

/

addDayTimeDuration

ToDate

+ , swrlb:addDayTimeDurationToDate

(http://www.w�.org/����/��/swrlb#addDayTimeDuration

ToDate)

addDayTimeDuration

ToDateTime

+ , swrlb:addDayTimeDurationToDateTime

(http://www.w�.org/����/��/swrlb#addDayTimeDuration

ToDateTime)

addDayTimeDuration

ToTime

+ , swrlb:addDayTimeDurationToTime

(http://www.w�.org/����/��/swrlb#addDayTimeDuration

ToTime)

addYearMonthDurati

ons

+ , swrlb:addYearMonthDurations

(http://www.w�.org/����/��/swrlb#addYearMonthDurati

ons)

addYearMonthDurati

onToDate

+ , swrlb:addYearMonthDurationToDate

(http://www.w�.org/����/��/swrlb#addYearMonthDurati

onToDate)

addYearMonthDurati

onToDateTime

+ , swrlb:addYearMonthDurationToDateTime

(http://www.w�.org/����/��/swrlb#addYearMonthDurati

onToDateTime)

area http://www.opengis.net/def/function/geosparql/area

(http://www.opengis.net/def/function/geosparql/area)

asin math:asin (http://www.w�.org/����/xpath-

functions/math#asin), leviathan:sin-�

(http://www.dotnetrdf.org/leviathan#sin-�)

atan math:atan (http://www.w�.org/����/xpath-

functions/math#atan)

bnode BNODE (https://www.w�.org/TR/sparql��-query/#func-

bnode)

boolean xsd:boolean

(http://www.w�.org/����/XMLSchema#boolean)

bound BOUND (https://www.w�.org/TR/sparql��-query/#func-

bound)

http://www.w3.org/2003/11/swrlb#addDayTimeDurationToDate
http://www.w3.org/2003/11/swrlb#addDayTimeDurationToDateTime
http://www.w3.org/2003/11/swrlb#addDayTimeDurationToTime
http://www.w3.org/2003/11/swrlb#addYearMonthDurations
http://www.w3.org/2003/11/swrlb#addYearMonthDurationToDate
http://www.w3.org/2003/11/swrlb#addYearMonthDurationToDateTime
http://www.opengis.net/def/function/geosparql/area
http://www.w3.org/2005/xpath-functions/math#asin
http://www.dotnetrdf.org/leviathan#sin-1
http://www.w3.org/2005/xpath-functions/math#atan
https://www.w3.org/TR/sparql11-query/#func-bnode
http://www.w3.org/2001/XMLSchema#boolean
https://www.w3.org/TR/sparql11-query/#func-bound

/

cartesian leviathan:cartesian

(http://www.dotnetrdf.org/leviathan#cartesian)

ceil CEIL (https://www.w�.org/TR/sparql��-query/#func-ceil),

fn:numeric-ceil (http://www.w�.org/����/xpath-

functions#numeric-ceil), swrlb:ceiling

(http://www.w�.org/����/��/swrlb#ceiling)

coalesce COALESCE (https://www.w�.org/TR/sparql��-

query/#func-coalesce)

concat CONCAT (https://www.w�.org/TR/sparql��-query/#func-

concat), fn:concat (http://www.w�.org/����/xpath-

functions#concat), swrlb:stringConcat

(http://www.w�.org/����/��/swrlb#stringConcat)

contains CONTAINS (https://www.w�.org/TR/sparql��-

query/#func-contains), fn:contains

(http://www.w�.org/����/xpath-functions#contains),

swrlb:contains

(http://www.w�.org/����/��/swrlb#contains)

containsIgnoreCaseswrlb:containsIgnoreCase

(http://www.w�.org/����/��/swrlb#containsIgnoreCase)

cos math:cos (http://www.w�.org/����/xpath-

functions/math#cos), swrlb:cos

(http://www.w�.org/����/��/swrlb#cos), leviathan:cos

(http://www.dotnetrdf.org/leviathan#cos)

cosec leviathan:cosec

(http://www.dotnetrdf.org/leviathan#cosec)

cosec-� leviathan:cosec-�

(http://www.dotnetrdf.org/leviathan#cosec-�)

cosh tag:stardog:api:functions:cosh (#func-cosh)

cotan leviathan:cotan

(http://www.dotnetrdf.org/leviathan#cotan)

http://www.dotnetrdf.org/leviathan#cartesian
https://www.w3.org/TR/sparql11-query/#func-ceil
http://www.w3.org/2005/xpath-functions#numeric-ceil
http://www.w3.org/2003/11/swrlb#ceiling
https://www.w3.org/TR/sparql11-query/#func-coalesce
https://www.w3.org/TR/sparql11-query/#func-concat
http://www.w3.org/2005/xpath-functions#concat
http://www.w3.org/2003/11/swrlb#stringConcat
https://www.w3.org/TR/sparql11-query/#func-contains
http://www.w3.org/2005/xpath-functions#contains
http://www.w3.org/2003/11/swrlb#contains
http://www.w3.org/2003/11/swrlb#containsIgnoreCase
http://www.w3.org/2005/xpath-functions/math#cos
http://www.w3.org/2003/11/swrlb#cos
http://www.dotnetrdf.org/leviathan#cos
http://www.dotnetrdf.org/leviathan#cosec
http://www.dotnetrdf.org/leviathan#cosec-1
http://www.dotnetrdf.org/leviathan#cotan

/

cotan-� leviathan:cotan-�

(http://www.dotnetrdf.org/leviathan#cotan-�)

cube leviathan:cube (http://www.dotnetrdf.org/leviathan#cube)

datatype Datatype (https://www.w�.org/TR/sparql��-query/#func-

datatype)

date swrlb:date (http://www.w�.org/����/��/swrlb#date)

dateTime xsd:dateTime

(http://www.w�.org/����/XMLSchema#dateTime)

dateTimeStampxsd:dateTimeStamp

(http://www.w�.org/����/XMLSchema#dateTimeStamp)

day DAY (https://www.w�.org/TR/sparql��-query/#func-day),

fn:day-from-dateTime (http://www.w�.org/����/xpath-

functions#day-from-dateTime), fn:day-from-date

(http://www.w�.org/����/xpath-functions#day-from-date),

fn:days-from-duration (http://www.w�.org/����/xpath-

functions#days-from-duration)

dayTimeDurationswrlb:dayTimeDuration

(http://www.w�.org/����/��/swrlb#dayTimeDuration)

decimal xsd:decimal

(http://www.w�.org/����/XMLSchema#decimal)

distance http://www.opengis.net/def/function/geosparql/distance

(http://www.opengis.net/def/function/geosparql/distance)

divideDayTimeDurati

on

/ , swrlb:divideDayTimeDuration

(http://www.w�.org/����/��/swrlb#divideDayTimeDurati

on)

divideYearMonthDura

tion

/ , swrlb:divideYearMonthDuration

(http://www.w�.org/����/��/swrlb#divideYearMonthDura

tion)

double xsd:double

(http://www.w�.org/����/XMLSchema#double)

http://www.dotnetrdf.org/leviathan#cotan-1
http://www.dotnetrdf.org/leviathan#cube
https://www.w3.org/TR/sparql11-query/#func-datatype
http://www.w3.org/2003/11/swrlb#date
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#dateTimeStamp
https://www.w3.org/TR/sparql11-query/#func-day
http://www.w3.org/2005/xpath-functions#day-from-dateTime
http://www.w3.org/2005/xpath-functions#day-from-date
http://www.w3.org/2005/xpath-functions#days-from-duration
http://www.w3.org/2003/11/swrlb#dayTimeDuration
http://www.w3.org/2001/XMLSchema#decimal
http://www.opengis.net/def/function/geosparql/distance
http://www.w3.org/2003/11/swrlb#divideDayTimeDuration
http://www.w3.org/2003/11/swrlb#divideYearMonthDuration
http://www.w3.org/2001/XMLSchema#double

/

e leviathan:e (http://www.dotnetrdf.org/leviathan#e),

math:exp (http://www.w�.org/����/xpath-

functions/math#exp), afn:e

(http://jena.hpl.hp.com/ARQ/function#e)

encode_for_uriENCODE_FOR_URI (https://www.w�.org/TR/sparql��-

query/#func-encode_for_uri), fn:encode-for-uri

(http://www.w�.org/����/xpath-functions#encode-for-uri)

factorial leviathan:factorial

(http://www.dotnetrdf.org/leviathan#factorial)

�oat xsd:�oat (http://www.w�.org/����/XMLSchema#�oat)

�oor FLOOR (https://www.w�.org/TR/sparql��-query/#func-

�oor), fn:numeric-�oor (http://www.w�.org/����/xpath-

functions#numeric-�oor), swrlb:�oor

(http://www.w�.org/����/��/swrlb#�oor)

gmean tag:stardog:api:gmean (#func-gmean)

hours HOURS (https://www.w�.org/TR/sparql��-query/#func-

hours), fn:hours-from-dateTime

(http://www.w�.org/����/xpath-functions#hours-from-

dateTime), fn:hours-from-time

(http://www.w�.org/����/xpath-functions#hours-from-

time), fn:hours-from-duration

(http://www.w�.org/����/xpath-functions#hours-from-

duration)

identi�er tag:stardog:api:identi�er (#func-identi�er)

if IF (https://www.w�.org/TR/sparql��-query/#func-if)

index tag:stardog:api:index (#func-index)

integer xsd:integer

(http://www.w�.org/����/XMLSchema#integer)

iri IRI (https://www.w�.org/TR/sparql��-query/#func-iri), URI

(https://www.w�.org/TR/sparql��-query/#func-uri)

http://www.dotnetrdf.org/leviathan#e
http://www.w3.org/2005/xpath-functions/math#exp
http://jena.hpl.hp.com/ARQ/function#e
https://www.w3.org/TR/sparql11-query/#func-encode_for_uri
http://www.w3.org/2005/xpath-functions#encode-for-uri
http://www.dotnetrdf.org/leviathan#factorial
http://www.w3.org/2001/XMLSchema#float
https://www.w3.org/TR/sparql11-query/#func-floor
http://www.w3.org/2005/xpath-functions#numeric-floor
http://www.w3.org/2003/11/swrlb#floor
https://www.w3.org/TR/sparql11-query/#func-hours
http://www.w3.org/2005/xpath-functions#hours-from-dateTime
http://www.w3.org/2005/xpath-functions#hours-from-time
http://www.w3.org/2005/xpath-functions#hours-from-duration
https://www.w3.org/TR/sparql11-query/#func-if
http://www.w3.org/2001/XMLSchema#integer
https://www.w3.org/TR/sparql11-query/#func-iri
https://www.w3.org/TR/sparql11-query/#func-uri

/

isBlank isBlank (https://www.w�.org/TR/sparql��-query/#func-

isBlank), IsBNode (https://www.w�.org/TR/sparql��-

query/#func-isbnode)

isIRI isIRI (https://www.w�.org/TR/sparql��-query/#func-isIRI),

IsURI (https://www.w�.org/TR/sparql��-query/#func-isuri)

isLiteral isLiteral (https://www.w�.org/TR/sparql��-query/#func-

isLiteral)

isNumeric isNumeric (https://www.w�.org/TR/sparql��-query/#func-

isNumeric)

isresource IsResource (https://www.w�.org/TR/sparql��-

query/#func-isresource)

isValid tag:stardog:api:functions:isValid (#func-isValid)

lang Lang (https://www.w�.org/TR/sparql��-query/#func-lang)

langMatches langMatches (https://www.w�.org/TR/sparql��-

query/#func-langMatches)

lcase LCASE (https://www.w�.org/TR/sparql��-query/#func-

lcase), fn:lower-case (http://www.w�.org/����/xpath-

functions#lower-case), swrlb:lowerCase

(http://www.w�.org/����/��/swrlb#lowerCase)

localname tag:stardog:api:functions:localname (#func-localname),

afn:localname

(http://jena.hpl.hp.com/ARQ/function#localname)

log math:log (http://www.w�.org/����/xpath-

functions/math#log), leviathan:ln

(http://www.dotnetrdf.org/leviathan#ln)

log�� math:log�� (http://www.w�.org/����/xpath-

functions/math#log��), leviathan:log

(http://www.dotnetrdf.org/leviathan#log)

mae tag:stardog:api:analytics:mae (#func-mae)

https://www.w3.org/TR/sparql11-query/#func-isBlank
https://www.w3.org/TR/sparql11-query/#func-isbnode
https://www.w3.org/TR/sparql11-query/#func-isIRI
https://www.w3.org/TR/sparql11-query/#func-isuri
https://www.w3.org/TR/sparql11-query/#func-isLiteral
https://www.w3.org/TR/sparql11-query/#func-isNumeric
https://www.w3.org/TR/sparql11-query/#func-isresource
https://www.w3.org/TR/sparql11-query/#func-lang
https://www.w3.org/TR/sparql11-query/#func-langMatches
https://www.w3.org/TR/sparql11-query/#func-lcase
http://www.w3.org/2005/xpath-functions#lower-case
http://www.w3.org/2003/11/swrlb#lowerCase
http://jena.hpl.hp.com/ARQ/function#localname
http://www.w3.org/2005/xpath-functions/math#log
http://www.dotnetrdf.org/leviathan#ln
http://www.w3.org/2005/xpath-functions/math#log10
http://www.dotnetrdf.org/leviathan#log

/

max fn:max (http://www.w�.org/����/xpath-functions#max),

afn:max (http://jena.hpl.hp.com/ARQ/function#max)

md� MD� (https://www.w�.org/TR/sparql��-query/#func-md�),

leviathan:md�hash

(http://www.dotnetrdf.org/leviathan#md�hash)

min fn:min (http://www.w�.org/����/xpath-functions#min),

afn:min (http://jena.hpl.hp.com/ARQ/function#min)

minutes MINUTES (https://www.w�.org/TR/sparql��-query/#func-

minutes), fn:minutes-from-dateTime

(http://www.w�.org/����/xpath-functions#minutes-from-

dateTime), fn:minutes-from-time

(http://www.w�.org/����/xpath-functions#minutes-from-

time), fn:minutes-from-duration

(http://www.w�.org/����/xpath-functions#minutes-from-

duration)

mod swrlb:mod (http://www.w�.org/����/��/swrlb#mod)

month MONTH (https://www.w�.org/TR/sparql��-query/#func-

month), fn:month-from-dateTime

(http://www.w�.org/����/xpath-functions#month-from-

dateTime), fn:month-from-date

(http://www.w�.org/����/xpath-functions#month-from-

date), fn:months-from-duration

(http://www.w�.org/����/xpath-functions#months-from-

duration)

mse tag:stardog:api:analytics:mse (#func-mse)

multiplyDayTimeDura

tion

* , swrlb:multiplyDayTimeDuration

(http://www.w�.org/����/��/swrlb#multiplyDayTimeDura

tion)

multiplyYearMonthDu

ration

* , swrlb:multiplyYearMonthDuration

(http://www.w�.org/����/��/swrlb#multiplyYearMonthDu

ration)

http://www.w3.org/2005/xpath-functions#max
http://jena.hpl.hp.com/ARQ/function#max
https://www.w3.org/TR/sparql11-query/#func-md5
http://www.dotnetrdf.org/leviathan#md5hash
http://www.w3.org/2005/xpath-functions#min
http://jena.hpl.hp.com/ARQ/function#min
https://www.w3.org/TR/sparql11-query/#func-minutes
http://www.w3.org/2005/xpath-functions#minutes-from-dateTime
http://www.w3.org/2005/xpath-functions#minutes-from-time
http://www.w3.org/2005/xpath-functions#minutes-from-duration
http://www.w3.org/2003/11/swrlb#mod
https://www.w3.org/TR/sparql11-query/#func-month
http://www.w3.org/2005/xpath-functions#month-from-dateTime
http://www.w3.org/2005/xpath-functions#month-from-date
http://www.w3.org/2005/xpath-functions#months-from-duration
http://www.w3.org/2003/11/swrlb#multiplyDayTimeDuration
http://www.w3.org/2003/11/swrlb#multiplyYearMonthDuration

/

namespace tag:stardog:api:functions:namespace (#func-namespace),

afn:namespace

(http://jena.hpl.hp.com/ARQ/function#namespace)

normalize-spacefn:normalize-space (http://www.w�.org/����/xpath-

functions#normalize-space), swrlb:normalizeSpace

(http://www.w�.org/����/��/swrlb#normalizeSpace)

now NOW (https://www.w�.org/TR/sparql��-query/#func-now)

numeric-add fn:numeric-add (http://www.w�.org/����/xpath-

functions#numeric-add)

numeric-divide fn:numeric-divide (http://www.w�.org/����/xpath-

functions#numeric-divide), swrlb:divide

(http://www.w�.org/����/��/swrlb#divide)

numeric-integer-

divide

fn:numeric-integer-divide (http://www.w�.org/����/xpath-

functions#numeric-integer-divide), swrlb:integerDivide

(http://www.w�.org/����/��/swrlb#integerDivide)

numeric-multiplyfn:numeric-multiply (http://www.w�.org/����/xpath-

functions#numeric-multiply)

numeric-round-half-

to-even

fn:numeric-round-half-to-even

(http://www.w�.org/����/xpath-functions#numeric-

round-half-to-even), swrlb:roundHalfToEven

(http://www.w�.org/����/��/swrlb#roundHalfToEven)

numeric-subtractfn:numeric-subtract (http://www.w�.org/����/xpath-

functions#numeric-subtract), swrlb:subtract

(http://www.w�.org/����/��/swrlb#subtract)

numeric-unary-minusfn:numeric-unary-minus (http://www.w�.org/����/xpath-

functions#numeric-unary-minus), swrlb:unaryMinus

(http://www.w�.org/����/��/swrlb#unaryMinus)

numeric-unary-plusfn:numeric-unary-plus (http://www.w�.org/����/xpath-

functions#numeric-unary-plus), swrlb:unaryPlus

(http://www.w�.org/����/��/swrlb#unaryPlus)

http://jena.hpl.hp.com/ARQ/function#namespace
http://www.w3.org/2005/xpath-functions#normalize-space
http://www.w3.org/2003/11/swrlb#normalizeSpace
https://www.w3.org/TR/sparql11-query/#func-now
http://www.w3.org/2005/xpath-functions#numeric-add
http://www.w3.org/2005/xpath-functions#numeric-divide
http://www.w3.org/2003/11/swrlb#divide
http://www.w3.org/2005/xpath-functions#numeric-integer-divide
http://www.w3.org/2003/11/swrlb#integerDivide
http://www.w3.org/2005/xpath-functions#numeric-multiply
http://www.w3.org/2005/xpath-functions#numeric-round-half-to-even
http://www.w3.org/2003/11/swrlb#roundHalfToEven
http://www.w3.org/2005/xpath-functions#numeric-subtract
http://www.w3.org/2003/11/swrlb#subtract
http://www.w3.org/2005/xpath-functions#numeric-unary-minus
http://www.w3.org/2003/11/swrlb#unaryMinus
http://www.w3.org/2005/xpath-functions#numeric-unary-plus
http://www.w3.org/2003/11/swrlb#unaryPlus

/

pi math:pi (http://www.w�.org/����/xpath-

functions/math#pi), afn:pi

(http://jena.hpl.hp.com/ARQ/function#pi)

pow math:pow (http://www.w�.org/����/xpath-

functions/math#pow), swrlb:pow

(http://www.w�.org/����/��/swrlb#pow), leviathan:pow

(http://www.dotnetrdf.org/leviathan#pow)

pythagoras leviathan:pythagoras

(http://www.dotnetrdf.org/leviathan#pythagoras)

rand RAND (https://www.w�.org/TR/sparql��-query/#func-

rand), leviathan:rnd

(http://www.dotnetrdf.org/leviathan#rnd)

reciprocal leviathan:reciprocal

(http://www.dotnetrdf.org/leviathan#reciprocal)

regex Regex (https://www.w�.org/TR/sparql��-query/#func-

regex), fn:matches (http://www.w�.org/����/xpath-

functions#matches), swrlb:matches

(http://www.w�.org/����/��/swrlb#matches)

relate http://www.opengis.net/def/function/geosparql/relate

(http://www.opengis.net/def/function/geosparql/relate)

replace REPLACE (https://www.w�.org/TR/sparql��-query/#func-

replace), fn:replace (http://www.w�.org/����/xpath-

functions#replace), swrlb:replace

(http://www.w�.org/����/��/swrlb#replace)

rmse tag:stardog:api:analytics:rmse (#func-rmse)

root leviathan:root (http://www.dotnetrdf.org/leviathan#root)

round ROUND (https://www.w�.org/TR/sparql��-query/#func-

round), fn:numeric-round (http://www.w�.org/����/xpath-

functions#numeric-round), swrlb:round

(http://www.w�.org/����/��/swrlb#round)

http://www.w3.org/2005/xpath-functions/math#pi
http://jena.hpl.hp.com/ARQ/function#pi
http://www.w3.org/2005/xpath-functions/math#pow
http://www.w3.org/2003/11/swrlb#pow
http://www.dotnetrdf.org/leviathan#pow
http://www.dotnetrdf.org/leviathan#pythagoras
https://www.w3.org/TR/sparql11-query/#func-rand
http://www.dotnetrdf.org/leviathan#rnd
http://www.dotnetrdf.org/leviathan#reciprocal
https://www.w3.org/TR/sparql11-query/#func-regex
http://www.w3.org/2005/xpath-functions#matches
http://www.w3.org/2003/11/swrlb#matches
http://www.opengis.net/def/function/geosparql/relate
https://www.w3.org/TR/sparql11-query/#func-replace
http://www.w3.org/2005/xpath-functions#replace
http://www.w3.org/2003/11/swrlb#replace
http://www.dotnetrdf.org/leviathan#root
https://www.w3.org/TR/sparql11-query/#func-round
http://www.w3.org/2005/xpath-functions#numeric-round
http://www.w3.org/2003/11/swrlb#round

/

sameTerm sameTerm (https://www.w�.org/TR/sparql��-query/#func-

sameTerm)

sec leviathan:sec (http://www.dotnetrdf.org/leviathan#sec)

sec-� leviathan:sec-� (http://www.dotnetrdf.org/leviathan#sec-

�)

seconds SECONDS (https://www.w�.org/TR/sparql��-query/#func-

seconds), fn:seconds-from-dateTime

(http://www.w�.org/����/xpath-functions#seconds-from-

dateTime), fn:seconds-from-time

(http://www.w�.org/����/xpath-functions#seconds-from-

time), fn:seconds-from-duration

(http://www.w�.org/����/xpath-functions#seconds-from-

duration)

set tag:stardog:api:set (#func-set),

tag:stardog:api:analytics:set (#func-set)

sha� SHA� (https://www.w�.org/TR/sparql��-query/#func-

sha�)

sha��� SHA��� (https://www.w�.org/TR/sparql��-query/#func-

sha���), leviathan:sha���hash

(http://www.dotnetrdf.org/leviathan#sha���hash)

sha��� SHA��� (https://www.w�.org/TR/sparql��-query/#func-

sha���)

sha��� SHA��� (https://www.w�.org/TR/sparql��-query/#func-

sha���)

sin math:sin (http://www.w�.org/����/xpath-

functions/math#sin), swrlb:sin

(http://www.w�.org/����/��/swrlb#sin), leviathan:sin

(http://www.dotnetrdf.org/leviathan#sin)

sinh tag:stardog:api:functions:sinh (#func-sinh)

split tag:stardog:api:split (#func-split)

https://www.w3.org/TR/sparql11-query/#func-sameTerm
http://www.dotnetrdf.org/leviathan#sec
http://www.dotnetrdf.org/leviathan#sec-1
https://www.w3.org/TR/sparql11-query/#func-seconds
http://www.w3.org/2005/xpath-functions#seconds-from-dateTime
http://www.w3.org/2005/xpath-functions#seconds-from-time
http://www.w3.org/2005/xpath-functions#seconds-from-duration
https://www.w3.org/TR/sparql11-query/#func-sha1
https://www.w3.org/TR/sparql11-query/#func-sha256
http://www.dotnetrdf.org/leviathan#sha256hash
https://www.w3.org/TR/sparql11-query/#func-sha384
https://www.w3.org/TR/sparql11-query/#func-sha512
http://www.w3.org/2005/xpath-functions/math#sin
http://www.w3.org/2003/11/swrlb#sin
http://www.dotnetrdf.org/leviathan#sin

/

sq leviathan:sq (http://www.dotnetrdf.org/leviathan#sq)

sqrt math:sqrt (http://www.w�.org/����/xpath-

functions/math#sqrt), afn:sqrt

(http://jena.hpl.hp.com/ARQ/function#sqrt), leviathan:sqrt

(http://www.dotnetrdf.org/leviathan#sqrt)

str Str (https://www.w�.org/TR/sparql��-query/#func-str)

strafter STRAFTER (https://www.w�.org/TR/sparql��-

query/#func-strafter), fn:substring-after

(http://www.w�.org/����/xpath-functions#substring-

after), swrlb:substringAfter

(http://www.w�.org/����/��/swrlb#substringAfter)

strbefore STRBEFORE (https://www.w�.org/TR/sparql��-

query/#func-strbefore), fn:substring-before

(http://www.w�.org/����/xpath-functions#substring-

before), swrlb:substringBefore

(http://www.w�.org/����/��/swrlb#substringBefore)

strdt STRDT (https://www.w�.org/TR/sparql��-query/#func-

strdt)

strends STRENDS (https://www.w�.org/TR/sparql��-query/#func-

strends), fn:ends-with (http://www.w�.org/����/xpath-

functions#ends-with), swrlb:endsWith

(http://www.w�.org/����/��/swrlb#endsWith)

string xsd:string (http://www.w�.org/����/XMLSchema#string)

stringEqualIgnoreCa

se

swrlb:stringEqualIgnoreCase

(http://www.w�.org/����/��/swrlb#stringEqualIgnoreCas

e)

strlang STRLANG (https://www.w�.org/TR/sparql��-query/#func-

strlang)

strlen STRLEN (https://www.w�.org/TR/sparql��-query/#func-

strlen), fn:string-length (http://www.w�.org/����/xpath-

functions#string-length), swrlb:stringLength

(http://www.w�.org/����/��/swrlb#stringLength)

http://www.dotnetrdf.org/leviathan#sq
http://www.w3.org/2005/xpath-functions/math#sqrt
http://jena.hpl.hp.com/ARQ/function#sqrt
http://www.dotnetrdf.org/leviathan#sqrt
https://www.w3.org/TR/sparql11-query/#func-str
https://www.w3.org/TR/sparql11-query/#func-strafter
http://www.w3.org/2005/xpath-functions#substring-after
http://www.w3.org/2003/11/swrlb#substringAfter
https://www.w3.org/TR/sparql11-query/#func-strbefore
http://www.w3.org/2005/xpath-functions#substring-before
http://www.w3.org/2003/11/swrlb#substringBefore
https://www.w3.org/TR/sparql11-query/#func-strdt
https://www.w3.org/TR/sparql11-query/#func-strends
http://www.w3.org/2005/xpath-functions#ends-with
http://www.w3.org/2003/11/swrlb#endsWith
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2003/11/swrlb#stringEqualIgnoreCase
https://www.w3.org/TR/sparql11-query/#func-strlang
https://www.w3.org/TR/sparql11-query/#func-strlen
http://www.w3.org/2005/xpath-functions#string-length
http://www.w3.org/2003/11/swrlb#stringLength

/

strstarts STRSTARTS (https://www.w�.org/TR/sparql��-

query/#func-strstarts), fn:starts-with

(http://www.w�.org/����/xpath-functions#starts-with),

swrlb:startsWith

(http://www.w�.org/����/��/swrlb#startsWith)

struuid STRUUID (https://www.w�.org/TR/sparql��-query/#func-

struuid)

substr SUBSTR (https://www.w�.org/TR/sparql��-query/#func-

substr), fn:substring (http://www.w�.org/����/xpath-

functions#substring), swrlb:substring

(http://www.w�.org/����/��/swrlb#substring)

subtractDates - , swrlb:subtractDates

(http://www.w�.org/����/��/swrlb#subtractDates)

subtractDayTimeDur

ationFromDate

- , swrlb:subtractDayTimeDurationFromDate

(http://www.w�.org/����/��/swrlb#subtractDayTimeDura

tionFromDate)

subtractDayTimeDur

ationFromDateTime

- , swrlb:subtractDayTimeDurationFromDateTime

(http://www.w�.org/����/��/swrlb#subtractDayTimeDura

tionFromDateTime)

subtractDayTimeDur

ationFromTime

- , swrlb:subtractDayTimeDurationFromTime

(http://www.w�.org/����/��/swrlb#subtractDayTimeDura

tionFromTime)

subtractDayTimeDur

ations

- , swrlb:subtractDayTimeDurations

(http://www.w�.org/����/��/swrlb#subtractDayTimeDura

tions)

subtractTimes - , swrlb:subtractTimes

(http://www.w�.org/����/��/swrlb#subtractTimes)

subtractYearMonthD

urationFromDate

- , swrlb:subtractYearMonthDurationFromDate

(http://www.w�.org/����/��/swrlb#subtractYearMonthDu

rationFromDate)

https://www.w3.org/TR/sparql11-query/#func-strstarts
http://www.w3.org/2005/xpath-functions#starts-with
http://www.w3.org/2003/11/swrlb#startsWith
https://www.w3.org/TR/sparql11-query/#func-struuid
https://www.w3.org/TR/sparql11-query/#func-substr
http://www.w3.org/2005/xpath-functions#substring
http://www.w3.org/2003/11/swrlb#substring
http://www.w3.org/2003/11/swrlb#subtractDates
http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromDate
http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromDateTime
http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromTime
http://www.w3.org/2003/11/swrlb#subtractDayTimeDurations
http://www.w3.org/2003/11/swrlb#subtractTimes
http://www.w3.org/2003/11/swrlb#subtractYearMonthDurationFromDate

/

subtractYearMonthD

urationFromDateTim

e

- , swrlb:subtractYearMonthDurationFromDateTime

(http://www.w�.org/����/��/swrlb#subtractYearMonthDu

rationFromDateTime)

subtractYearMonthD

urations

- , swrlb:subtractYearMonthDurations

(http://www.w�.org/����/��/swrlb#subtractYearMonthDu

rations)

tan math:tan (http://www.w�.org/����/xpath-

functions/math#tan), swrlb:tan

(http://www.w�.org/����/��/swrlb#tan)

tanh tag:stardog:api:functions:tanh (#func-tanh)

template tag:stardog:api:template (#func-template)

ten leviathan:ten (http://www.dotnetrdf.org/leviathan#ten)

time swrlb:time (http://www.w�.org/����/��/swrlb#time)

timezone TIMEZONE (https://www.w�.org/TR/sparql��-

query/#func-timezone), fn:timezone-from-dateTime

(http://www.w�.org/����/xpath-functions#timezone-from-

dateTime), fn:timezone-from-date

(http://www.w�.org/����/xpath-functions#timezone-from-

date), fn:timezone-from-time

(http://www.w�.org/����/xpath-functions#timezone-from-

time)

toDegrees tag:stardog:api:functions:toDegrees (#func-toDegrees),

leviathan:radians-to-degrees

(http://www.dotnetrdf.org/leviathan#radians-to-degrees)

toRadians tag:stardog:api:functions:toRadians (#func-toRadians),

leviathan:degrees-to-radians

(http://www.dotnetrdf.org/leviathan#degrees-to-radians)

translate fn:translate (http://www.w�.org/����/xpath-

functions#translate), swrlb:translate

(http://www.w�.org/����/��/swrlb#translate)

tz TZ (https://www.w�.org/TR/sparql��-query/#func-tz)

http://www.w3.org/2003/11/swrlb#subtractYearMonthDurationFromDateTime
http://www.w3.org/2003/11/swrlb#subtractYearMonthDurations
http://www.w3.org/2005/xpath-functions/math#tan
http://www.w3.org/2003/11/swrlb#tan
http://www.dotnetrdf.org/leviathan#ten
http://www.w3.org/2003/11/swrlb#time
https://www.w3.org/TR/sparql11-query/#func-timezone
http://www.w3.org/2005/xpath-functions#timezone-from-dateTime
http://www.w3.org/2005/xpath-functions#timezone-from-date
http://www.w3.org/2005/xpath-functions#timezone-from-time
http://www.dotnetrdf.org/leviathan#radians-to-degrees
http://www.dotnetrdf.org/leviathan#degrees-to-radians
http://www.w3.org/2005/xpath-functions#translate
http://www.w3.org/2003/11/swrlb#translate
https://www.w3.org/TR/sparql11-query/#func-tz

/

ucase UCASE (https://www.w�.org/TR/sparql��-query/#func-

ucase), fn:upper-case (http://www.w�.org/����/xpath-

functions#upper-case), swrlb:upperCase

(http://www.w�.org/����/��/swrlb#upperCase)

uuid UUID (https://www.w�.org/TR/sparql��-query/#func-uuid)

within http://www.opengis.net/def/function/geosparql/within

(http://www.opengis.net/def/function/geosparql/within)

year YEAR (https://www.w�.org/TR/sparql��-query/#func-

year), fn:year-from-dateTime

(http://www.w�.org/����/xpath-functions#year-from-

dateTime), fn:year-from-date

(http://www.w�.org/����/xpath-functions#year-from-

date), fn:years-from-duration

(http://www.w�.org/����/xpath-functions#years-from-

duration)

yearMonthDurationswrlb:yearMonthDuration

(http://www.w�.org/����/��/swrlb#yearMonthDuration)

Previous Versions of Docs

��. Table of Historical Docs

Stardog Version

�.�.� (/docs/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

https://www.w3.org/TR/sparql11-query/#func-ucase
http://www.w3.org/2005/xpath-functions#upper-case
http://www.w3.org/2003/11/swrlb#upperCase
https://www.w3.org/TR/sparql11-query/#func-uuid
http://www.opengis.net/def/function/geosparql/within
https://www.w3.org/TR/sparql11-query/#func-year
http://www.w3.org/2005/xpath-functions#year-from-dateTime
http://www.w3.org/2005/xpath-functions#year-from-date
http://www.w3.org/2005/xpath-functions#years-from-duration
http://www.w3.org/2003/11/swrlb#yearMonthDuration
https://www.stardog.com/docs/7.0.2/#
https://www.stardog.com/docs/7.0.1/#
https://www.stardog.com/docs/7.0.0/#
https://www.stardog.com/docs/6.2.3/#
https://www.stardog.com/docs/6.2.2/#
https://www.stardog.com/docs/6.2.1/#

/

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.� (/docs/�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.�.� (/docs/�.�.�/#)

�.� (/docs/�.�#)

�.�.� (/docs/�.�.�#)

�.�.� (/docs/�.�.�#)

�.�.� (/docs/�.�.�#)

�.�.� (/docs/�.�.�#)

�.� (/docs/�.�#)

METRICS IN STARDOG �

There are lots of new metrics in Stardog �, due to the changed storage

engine and some improvements that we made along the way. This is an

https://www.stardog.com/docs/6.2.0/#
https://www.stardog.com/docs/6.1.3/#
https://www.stardog.com/docs/6.0.0/#
https://www.stardog.com/docs/5.3.6/#
https://www.stardog.com/docs/5.3.0/#
https://www.stardog.com/docs/5.2.0/#
https://www.stardog.com/docs/5.1.0/#
https://www.stardog.com/docs/5.0.0/#
https://www.stardog.com/docs/4.2/#
https://www.stardog.com/docs/4.1.3/#
https://www.stardog.com/docs/4.1.2/#
https://www.stardog.com/docs/4.1.1/#
https://www.stardog.com/docs/4.1#
https://www.stardog.com/docs/4.0.5#
https://www.stardog.com/docs/4.0.3#
https://www.stardog.com/docs/4.0.2#
https://www.stardog.com/docs/4.0.1#
https://www.stardog.com/docs/4.0#

/

attempt to outline all the metrics available, along with some information

about how to use and interpret them.

Process metrics

Process metrics are metrics that are unique to the Stardog process

currently running and its environment. They contain information about the

process itself without referencing any speci�c database.

��. Table of Process Metrics

Metric Name Type Unit Description

dbms.version String N/A 'The Release version of the

server'

dbms.type String N/A The type of license in

effect for the server. Can

be one of: Community,

Developer, Enterprise

dbms.id String N/A The id of the kernel. This is a

unique identi�er for the

speci�c Stardog process. In

non-clustered environments,

this is just a random ID which

is not persisted across

restarts. In clustered

environments, the kernel id is

constructed from

con�guration and IP

addresses to allow for unique

identity within a cluster.

dbms.home String N/A The full path to the home

directory of this running

process (i.e.

$STARDOG_HOME)

system.uptime long millisecondsThe amount of time since the

process started

/

system.os String N/A An identi�er for the

Operating System that

Stardog is running on

system.arch String N/A An identi�er of the speci�c

architecture that Stardog is

running on

system.cpu.usage doublepercentageThe percentage of available

system CPUs that are being

used for the Stardog process.

Calculated as the total CPU

cycles used by the

process(as reported by the

Operating System) divided by

the number of processors

available.

dbms.credentials.cach

e.size

long count The approximate number of

entries in the security cache.

dbms.credentials.cach

e.hits

long count The number of cache hits in

the security cache.

dbms.credentials.cach

e.misses

long count The number of cache misses

in the security cache.

dbms.credentials.cach

e.loadSuccesses

long count The number of times a cache

miss in the security cache

resulted in successfully

loading a value from the

underlying cache storage

system since this process

started.

dbms.credentials.cach

e.loadFailures

long count The number of times a load

into the security cache failed

for any reason, since the

process started

/

dbms.credentials.cach

e.evictions

long count The number of entries which

have been evicted from the

security cache since the

process started

system.db.count long count The number of databases

stored in Stardog

Block Cache Metrics

These are metrics for the � global block caches: Data, Dictionary, and TXN.

Each Block cache is global (as of �.�-Beta) and shared by all databases

simultaneously. There are three distinct caches with distinct purposes, but

each has their own set of metrics.

�. The Data Cache stores data from indices.

�. The Dictionary Cache stores entries from dictionary mappings.

�. The Txn Cache stores transaction entries. This speeds up access to

transaction metadata.

For convenience, the metrics system rolls up statistics for all three Block

Caches into a "total" metrics. Thus, we have four pre�x forms:

�. dbms.memory.blockcache.data

�. dbms.memory.blockcache.dictionary

�. dbms.memory.blockcache.txn

�. dbms.memory.blockcache.total

Since all metrics have the same de�nition for each time, we will only list the

metrics once, using the form dbms.memory.blockcache.CACHE.<metric> ,

where CACHE can be data , dictionary , txn , or total .

Each Block cache has three internal components:

�. The "data" component is where actual bytes from �les are stored

�. The "index" component is where �le indices are stored

/

�. The "�lter" component is where bloom �lters are stored

Note that, if storage.cacheIndexblocks /

storage.cacheDictionaryIndexBlocks / storage.cacheTxnIndexBlocks

is false, then "index" and "�lter" sections will not be populated for that block

cache, and will just have all zeros.

��. Table of Block Cache Metrics

Metric Name Type Unit Description

dbms.memory.blockcache.CAC

HE.ratio

double percentageThe percentage of

cache requests that

were served by the

cache directly,since

the process started.

dbms.memory.blockcache.CAC

HE.hits

long count The number of cache

requests that were

served by the cache

directly, since the

process started.

dbms.memory.blockcache.CAC

HE.misses

long count The number of cache

requests that could

not be served by the

cache, since the

process started.

dbms.memory.blockcache.CAC

HE.add.count

long count The number of

entries that were

added to the cache,

since the process

started.

dbms.memory.blockcache.CAC

HE.add.failure.count

long count The number of times

adding to the cache

failed, for any

reason, since the

process started

/

dbms.memory.blockcache.CAC

HE.index.ratio

double percentageThe percentage of

index requests to the

cache that were

served by the cache

directly, since the

process started

dbms.memory.blockcache.CAC

HE.index.hits

long count The number of index

requests to the

cache that were

successfully served

by the cache directly,

since the process

started

dbms.memory.blockcache.CAC

HE.index.misses

long count The number of index

requests to the

cache that did not

�nd any data, since

the process started

dbms.memory.blockcache.CAC

HE.�lter.ratio

double percentageThe percentage of

�lter requests to the

cache that were

served by the cache

directly, since the

process started

dbms.memory.blockcache.CAC

HE.�lter.hits

long count The number of �lter

requests to the

cache that were

successfully served

by the cache directly,

since the process

started

dbms.memory.blockcache.CAC

HE.�lter.misses

long count The number of �lter

requests to the

cache that did not

�nd any data, since

the process started

/

dbms.memory.blockcache.CAC

HE.data.ratio

double percentageThe percentage of

data requests to the

cache that were

served by the cache

directly, since the

process started

dbms.memory.blockcache.CAC

HE.data.hits

long count The number of data

requests to the

cache that were

successfully served

by the cache directly,

since the process

started

dbms.memory.blockcache.CAC

HE.data.misses

long count The number of data

requests to the

cache that did not

�nd any data, since

the process started

dbms.memory.blockcache.CAC

HE.read

long bytes Amount of data read

from the cache since

the process started

dbms.memory.blockcache.CAC

HE.written

long bytes The amount of data

written to the cache

since the process

started

dbms.memory.blockcache.CAC

HE.cachesIndexBlocks

BooleanN/A If true, the cache will

store index and �lter

blocks

/

dbms.memory.blockcache.CAC

HE.strictCapacity

BooleanN/A If true, the cache will

throw an error if

there is no more

room in the cache.

When false, the

cache will be allowed

to "soft" grow past

the capacity limit

temporarily in the

event of high

contention.

dbms.memory.blockcache.CAC

HE.usage

long bytes The amount of

memory currently

being used for this

block cache

dbms.memory.blockcache.CAC

HE.pinnedUsage

long bytes the amount of

memory in the block

cache which is

currently in use (i.e.

by readers)

dbms.memory.blockcache.CAC

HE.capacity

long bytes the maximum

amount of memory

that can be used for

this block cache

Memory Management Metrics

The Memory Management subsystem is responsible for e�ciently

managing Stardog’s internal memory usage during (especially) query

answering. It is conceptually broken down as a set of reusable memory

"blocks". These metrics existed prior to version �.

��. Table of Memory Management Metrics

Metric Name Type Unit Description

/

dbms.memory.heap.qu

ery.blocks.used

long bytes The amount of Java heap which

is currently being used by query

blocks in the memory

management system.

dbms.memory.heap.qu

ery.blocks.max

long bytes The maximum amount of Java

heap which is devoted to use by

query blocks.

dbms.memory.native.q

uery.blocks.used

long bytes The amount of native (o�-heap)

memory which is currently being

used by query blocks in the

memory management system.

dbms.memory.native.q

uery.blocks.max

long bytes The maximum amount of native

(o�-heap) memory which is

devoted to use by query blocks.

Java Memory Metrics

These are metrics about (or related to) the JVM’s memory usage. They are

usually accessible through other JVM tools (like JMX), but are provided as

explicit metrics for end-user convenience.

��. Table of Java Memory Metrics

Metric Name Type Unit Description

dbms.memory.heap.

used

long bytes The amount of memory currently

being used by the Java heap

dbms.memory.heap.

max

long bytes The maximum amount of memory

allowed for the Java heap. Equivalent

to -Xmx settings

/

dbms.memory.mapp

ed.used

long bytes The amount of memory currently in

use for memory mapped bu�ers in the

Java subsystem. Note that this does

not include any memory-mapped

usage from native sources (such as

rocksdb)

dbms.memory.direct.

bu�er.used

long bytes The amount of o�-heap memory

currently being used by Java bu�ers

which are managed by the JVM. Note

that this does not include memory

bu�ers which are created inside of

native code.

dbms.memory.native.

max

long bytes The maximum amount of native

memory that the process is allowed to

use outside of the JVM. This includes

any bu�ers that are natively created

by populated inside the JVM, as well

as any memory which is natively

allocated (like rocksdb)

Process Memory Metrics

These are metrics about the process itself, ignoring the JVM. These are

almost always accessible through other means (such as ps on Linux

systems), but are provided as metrics within Stardog both for end-user

convenience and for automatic management (such as warning when

memory usage exceeds a threshold).

��. Table of Process Memory Metrics

Metric Name Type Unit Description

/

dbms.memory.syste

m.rss

long bytes The current OS-reported

RSS(Resident Set Size) for this

process. For more information on

RSS, see this article

(https://utcc.utoronto.ca/~cks/spac

e/blog/unix/UnderstandingRSS)

dbms.memory.syste

m.rss.peak

long bytes The OS-reported maximum RSS

achevied by this process since it

started.

dbms.memory.syste

m.virtual

long bytes The current OS-reported Virtual

memory size for this process. Note

that a large virtual size does not

automatically equate to a large

actual memory usage. For more

information see This stackover�ow

description

(https://stackover�ow.com/a/����

����).

dbms.memory.syste

m.regioncount

long Count The current OS-reported number

of regions in use by this process.

This number only applies to

Operating systems which have a

region-based memory system, like

OS X (but not Linux or Windows).

For operating systems which does

not use regional memory, this

number will be set to �

dbms.memory.syste

m.pinnedSize

long bytes the current amount of memory

which is "pinned" by the operating

system, and cannot be swapped

out by the process. Note that only

some operating systems support

this; Operating systems which do

not support the metric will report

-� for this value always

https://utcc.utoronto.ca/~cks/space/blog/unix/UnderstandingRSS
https://stackoverflow.com/a/21049737

/

dbms.memory.syste

m.pageSize

long bytes the size of a single memory page

in the OS

dbms.memory.syste

m.usageRatio

long percentageThe ratio of currently used

memory to the total amount

available to the process.

Database Metrics

These Metrics are written out once per database and are written in the form

of "databases.<database name>.<metric>". In JMX, these metrics are

collected in a separate folder. For reference purposes, metrics in this table

will use "YourDatabase" as the database name.

��. Table of Database Metrics

Metric Name Type Unit Description

databases.YourDatabase.state String N/A A String describing the

current state of the

database. Can be one

of Online ,

GoingOffline ,

Offline ,

ComingOnline ,

Disabled

databases.YourDatabase.size long count An estimate of the

number of quads

contained in the

database. This number

may be inaccurate in

masti�, due to

transactional

considerations, and

should be treated only

as an estimate

/

databases.YourDatabase.openCo

nnections

long count The current number of

open connections to

this database

databases.YourDatabase.txns.op

enTransactions

long count The current number of

open transactions on

this database

databases.YourDatabase.txns.sp

eed.count

long count The number of

transactions that were

recorded

databases.YourDatabase.txns.sp

eed.duration_units

String N/A The units that duration

is measured in(usually

seconds)

databases.YourDatabase.txns.sp

eed.max

doubletime The highest latency

transaction measured

since the database

was created or the

process started

databases.YourDatabase.txns.sp

eed.mean

doubletime The overall average

latency of a transaction

since the database

was created or the

process started

databases.YourDatabase.txns.sp

eed.stddev

doubletime The Standard deviation

latency of a transaction

since the database

was created or the

process started

databases.YourDatabase.txns.sp

eed.min

doubletime The slowest

transaction speed

measured since the

database was created

or the process started

/

databases.YourDatabase.txns.sp

eed.p��

doubletime The ��th percentile

transaction speed

(��% of all transactions

have lower latency

than this)

databases.YourDatabase.txns.sp

eed.p��

doubletime The ��th percentile

transaction speed

(��% of all transactions

have lower latency

than this)

databases.YourDatabase.txns.sp

eed.p��

doubletime The ��th percentile

transaction speed

(��% of all transactions

have lower latency

than this)

databases.YourDatabase.txns.sp

eed.p��

doubletime The ��th percentile

transaction speed

(��% of all transactions

have lower latency

than this)

databases.YourDatabase.txns.sp

eed.p��

doubletime The ��th percentile

transaction speed

(��% of all transactions

have lower latency

than this)

databases.YourDatabase.txns.sp

eed.p���

doubletime The ��.�th percentile

transaction speed

(��.�% of all

transactions have

lower latency than this

)

/

databases.YourDatabase.txns.sp

eed.mean_rate

doubleRate The overall average

throughput of

transactions since the

database was created

or the process started

databases.YourDatabase.txns.sp

eed.m��_rate

doubleRate The ��-minute

exponentially-weighted

moving average

throughput of

transactions per unit

time

databases.YourDatabase.txns.sp

eed.m�_rate

doubleRate The �-minute

exponentially-weighted

moving average

throughput of

transactions per unit

time

databases.YourDatabase.txns.sp

eed.m�_rate

doubleRate The �-minute

exponentially-weighted

moving average

throughput of

transactions per unit

time

databases.YourDatabase.txns.sp

eed.rate_units

String N/A The con�gured units to

use when measuring

transaction throughput

(usually in calls/unit

time, where calls =

'transactions')

databases.YourDatabase.txns.siz

e.count

long count The number of

transactions that were

measured

databases.YourDatabase.txns.siz

e.max

long count The largest transaction

size measured

/

databases.YourDatabase.txns.siz

e.mean

doublecount The average

transaction size, since

the database was

created or the process

started

databases.YourDatabase.txns.siz

e.stddev

doublecount The standard deviation

in transaction size,

since the database

was created or the

process started

databases.YourDatabase.txns.siz

e.min

doublecount The smallest

transaction size, since

the database was

created or the process

started

databases.YourDatabase.txns.siz

e.p��

doublecount The ��th percentile

transaction size (��%

of all transactions are

smaller than this

number)

databases.YourDatabase.txns.siz

e.p��

doublecount The ��th percentile

transaction size (��%

of all transactions are

smaller than this

number)

databases.YourDatabase.txns.siz

e.p��

doublecount The ��th percentile

transaction size (��%

of all transactions are

smaller than this

number)

databases.YourDatabase.txns.siz

e.p��

doublecount The ��th percentile

transaction size (��%

of all transactions are

smaller than this

number)

/

databases.YourDatabase.txns.siz

e.p��

doublecount The ��th percentile

transaction size (��%

of all transactions are

smaller than this

number)

databases.YourDatabase.txns.siz

e.p���

doublecount The ��.�th percentile

transaction size (��.�%

of all transactions are

smaller than this

number)

databases.YourDatabase.queries.

speed.count

long count The number of queries

that were measured

since the database

was created or the

process started

databases.YourDatabase.queries.

speed.duration_units

String N/A The units that query

latency is measured

in(usually seconds)

databases.YourDatabase.queries.

speed.max

doubletime The highest latency

query measured since

the database was

created or the process

started

databases.YourDatabase.queries.

speed.min

doubletime The lowest latency

query measured since

the database was

created or the process

started

databases.YourDatabase.queries.

speed.mean

doubletime The overall average

latency of a query

since the database

was created or the

process started

/

databases.YourDatabase.queries.

speed.stddev

doubletime The standard deviation

latency of a query

since the database

was created or the

process started

databases.YourDatabase.queries.

speed.p��

doubletime The ��th percentile

query speed (��% of

all queries have lower

latency than this)

databases.YourDatabase.queries.

speed.p��

doubletime The ��th percentile

query speed (��% of

all queries have lower

latency than this)

databases.YourDatabase.queries.

speed.p��

doubletime The ��th percentile

query speed (��% of

all queries have lower

latency than this)

databases.YourDatabase.queries.

speed.p��

doubletime The ��th percentile

query speed (��% of

all queries have lower

latency than this)

databases.YourDatabase.queries.

speed.p��

doubletime The ��th percentile

query speed (��% of

all queries have lower

latency than this)

databases.YourDatabase.queries.

speed.p���

doubletime The ��.�th percentile

query speed (��.�% of

all queries have lower

latency than this)

databases.YourDatabase.queries.

speed.mean_rate

doubleRate The overall average

throughput of queries

since the database

was created or the

process started

/

databases.YourDatabase.queries.

speed.m��_rate

doubleRate The ��-minute

exponentially-weighted

moving average

throughput of queries

per unit time

databases.YourDatabase.queries.

speed.m�_rate

doubleRate The �-minute

exponentially-weighted

moving average

throughput of queries

per unit time

databases.YourDatabase.queries.

speed.m�_rate

doubleRate The �-minute

exponentially-weighted

moving average

throughput of queries

per unit time

databases.YourDatabase.queries.

speed.rate_units

String N/A The con�gured units to

use when measuring

query throughput

(usually in calls/unit

time, where calls =

'queries')

databases.YourDatabase.queries.

running

long count The number of

currently running

queries

databases.YourDatabase.planCa

che.ratio

doublecount The hit ratio of the plan

cache, as a percentage

databases.YourDatabase.planCa

che.size

doublecount The size of the plan

cache, in entries

databases.YourDatabase.backgr

oundErrors

long count The number of errors

that occur during

compaction or �ushing,

asynchronously to user

calls

/

databases.YourDatabase.�les.tot

al

long count The total number of

�les held in the

database, over all

indices

databases.YourDatabase.numKey

s

long count The estimated number

of quads in the

database. Note that

this number is not

transactional, so

deleted quads may still

be counted. Also, it’s

an estimate, so it may

not be very accurate to

begin with

Per Index Metrics

These Metrics are written out once per index within a database (i.e. SPOC,

C, CPO, etc.). The exact indices which exist will depend on the index

strategy chosen at database creation time (as well as other options, like

whether or not equality reasoning is enabled, and so on). These metrics are

new in Stardog �, and are of the form "databases.<database name>.<index

name>.<metric name>". For the purposes of this document, we will use

"YourDatabase" as the database name, and "INAME" as the index name.

There are � di�erent kinds of indices in Stardog �:

��. Table of Index types

Index Name Description

ternary the main index storing encoded data

dictionary.dict the dictionary encoding table for the database

dictionary.value the dictionary decoding table for the database

stats the statistics index

equality The equality index

/

binary Binary count indices. These are only present when a

database is created using Abort-on-con�ict

transaction semantics (disabled by default)

unary Unary count indices. These are only present when a

database is created using Abort-on-con�ict

transaction semantics (disabled by default)

context Context count indices. These are only present when a

database is created using Abort-on-con�ict

transaction semantics (disabled by default)

��. Table of Index Metrics

Metric Name Type Unit Description

databases.YourDatabase.INAME.�les.to

tal

long count The total number of

�les currently held by

this index on disk

databases.YourDatabase.INAME.�ushe

s.pending

long count The number of

�ushes currently

pending on this

index (no more than

the max. number of

con�gured

memtables)

databases.YourDatabase.INAME.�ushe

s.running

long count The number of

�ushes currently

running for this index

(no more than the

max. number of

con�gured

memtables)

/

databases.YourDatabase.INAME.liveDa

taSize

long count The estimated size of

the "live" data for this

index. "Live" data is

data which will

actively be

processed by the

read and write

systems or by

compaction

(disregarding out of

date �les)

databases.YourDatabase.INAME.numK

eys

long count The estimated

number of keys in

this index. For

Ternary indices, this

is a (rough) estimate

of the number of

quads in the

database, for the

dictionary, it’s an

estimate of how

many statements are

in the dictionary.

Note that this not a

transactional

estimate: deleted

entries are ignored,

so this value will

likely overcount in

that scenario

databases.YourDatabase.INAME.numLe

vels

Int count The con�gured

number of levels for

this index. This is set

by con�guration, and

won’t change during

the lifecycle of the

process

/

databases.YourDatabase.INAME.backg

roundErrors

long count The number of errors

that were detected

during background

processing of this

index, since the

process began

databases.YourDatabase.INAME.tableR

eaderMemory.bytes

long count The amount of

memory currently

pinned in the OS to

support active

readers.

databases.YourDatabase.INAME.memo

ry.total

long count The estimated total

memory used by this

index, for all

purposes, including

memtable, reader

memory, and block

cache contributions

databases.YourDatabase.INAME.memt

able.immutable.count

long count The number of

memtables which are

currently in the

"immutable phase"

(i.e. waiting to �ush

to disk). Can never

be more than the

con�gured maximum

number of

memtables

databases.YourDatabase.INAME.memt

able.total.size.bytes

long bytes The current size of

all memtables(active,

inactive, and

immutable), in bytes

/

databases.YourDatabase.INAME.memt

able.unpinned.size.bytes

long bytes The current size of

all unpinned

memtables for this

index. Unpinned

memtables are

memtables which are

not currently pinned

in memory for

readers

databases.YourDatabase.INAME.memt

able.pinned.size.bytes

long bytes the current size of all

memtables which are

pinned for reachers

for this index.

databases.YourDatabase.INAME.memt

able.immutable.size.bytes

long bytes The current size of

all immutable

memtables

(memtables waiting

to �ush)

databases.YourDatabase.INAME.memt

able.immutable.entries

long count The current number

of entries in all

immutable

memtables

databases.YourDatabase.INAME.memt

able.active.entries

long count The current number

of entries in the

active memtable

(The active

memtable is the

memtable currently

accepting writes)

databases.YourDatabase.INAME.memt

able.active.size.bytes

long bytes The current size of

the active memtable

/

databases.YourDatabase.INAME.memt

able.memtableStalls

long count The total number of

memtable stalls

which have occurred

since the process

started or the

database was

created. Memtable

stalls are where a

�ush is forced to wait

for the number of L�

�les to be reduced

databases.YourDatabase.INAME.memt

able.memtableSlowdowns

long count The total number of

memtable

slowdowns which

have occurred since

the process started

or the database was

created. Memtable

slowdowns are when

a �ush is delayed in

order to allow the L�

�le count to be

reduced

databases.YourDatabase.INAME.stalls long count The total number of

stalls which have

occurred on this

index since the

process started or

the database was

created. Stalls are

when data cannot be

accepted into a

given level because

it is full, and all writes

must stop until that

level has reduced its

�le count

/

databases.YourDatabase.INAME.slowd

owns

long count The total number of

slowdowns which

have occurred on

this index since the

process started or

the database was

created. Slowdowns

are when the data

must be delayed in

order to allow

compaction to

reduce the �le count

to a give level

databases.YourDatabase.INAME.stalls.

pendingCompaction

long count The current number

of stalls which

happened while a

compaction was

pending, since the

process started or

the database was

created

databases.YourDatabase.INAME.slowd

owns.pendingCompaction

long count The current number

of slowdowns which

occured while a

compaction was

pending, since the

process started or

the database was

created

/

databases.YourDatabase.INAME.slowd

owns.l�

long count The total number of

slowdowns which

occurred because

the number of �les in

the L� level

exceeded the soft

limit, and writes must

be delayed because

of it.

databases.YourDatabase.INAME.stalls.l

�

long count The total number of

stalls which occurred

because the number

of �les in the L� level

exceeded the hard

limit, and all writes

must pause because

of it

databases.YourDatabase.INAME.slowd

owns.l�.withCompaction

long count The total number of

slowdowns which

occured in the L�

level while a

compaction was

currently running

databases.YourDatabase.INAME.stalls.l

�.withCompaction

long count The total number of

stalls which occurred

in the L� level while

a compaction was

currently running

databases.YourDatabase.INAME.numFil

esCompacting

long count The current number

of �les compacting

for this index

databases.YourDatabase.INAME.comp

actions.pending

long count The current number

of compactions

which are waiting to

run for this index

/

databases.YourDatabase.INAME.comp

actions.completed

long count The number of

compactions which

have completed for

this index since the

process began or the

database was

created

databases.YourDatabase.INAME.comp

actions.read.bytes

long bytes The number of bytes

read during

compaction, since

the process started

or the database was

created

databases.YourDatabase.INAME.comp

actions.written.bytes

long bytes The number of bytes

written during

compaction, since

the process started

or the database was

created

databases.YourDatabase.INAME.comp

action.read.throughput.bytesPerSec

doublebytes/secThe overall read

throughput of

compaction (o� disk)

for this index, since

the process started

or the database was

created

databases.YourDatabase.INAME.comp

action.write.throughput.bytesPerSec

doublebytes/secThe overall write

throughput of

compaction (to disk)

for this index, since

the process started

or the database was

created

/

databases.YourDatabase.INAME.comp

action.time.sec

doublesecondsThe total time spent

compacting �les for

the index, since the

process started or

the database was

created

databases.YourDatabase.INAME.comp

action.time.avg.sec

doublesecondsThe overall average

time spent

performing a

compaction for this

index, since the

process started or

the database was

created

databases.YourDatabase.INAME.comp

action.keysProcessed

long count The number of keys

which were

processed during

compaction

databases.YourDatabase.INAME.comp

action.keysDropped

long count The number of keys

which were removed

as part of the

compaction process

databases.YourDatabase.INAME.comp

action.memory.total

long count The total amount of

memory currently

being used to

perform compactions

for this index

databases.YourDatabase.INAME.comp

actions.running

long count The total number of

compactions

currently running for

this index

/

databases.YourDatabase.INAME.writeA

mpli�cation

doubleratio The ratio of bytes

written to storage

versus bytes written

to the database. This

is a guide to how

many copies of the

same data is

presently on disk; for

example, a write

ampli�cation of �

means that you are

writing roughly three

times as much data

to disk as you are

writing entries to the

index

HTTP Metrics

These metrics are used to monitor the HTTP subsystem. They are general

to the process itself (since there is only one HTTP layer per process).

��. Table of HTTP Metrics

Metric Name Type Unit Description

admin.threads.active Integer count The current number

of active threads in

the admin pool

(equivalent to the

number of admin-

level operations

occurring)

/

admin.threads.queued Integer count The current number

of admin-level

operations which are

queued up waiting

for a thread to

operate on them

admin.threads.size Integer count The maximum

number of threads

that admin-level

operations can make

use of.

user.threads.active Integer count The current number

of active threads in

the user pool

(equivalent to the

number of user-level

operations currently

occuring)

user.threads.queued Integer count The current number

of user-level

operations which are

enqueued waiting for

a thread. A high

number here may

indicate an

overloaded server

user.threads.size Integer count The maximum

number of threads

that user-level

operations can make

use of.

/

com.stardog.http.server-

<port>.avgRequesttime.count

long count The number of HTTP

requests that have

been made since the

process started,

where <port> is the

HTTP port of the

process

com.stardog.http.server-

<port>.avgRequesttime.max

double secondsThe longest HTTP

request that has

been made since the

process started

com.stardog.http.server-

<port>.avgRequesttime.mean

double secondsThe average time

taken to process an

HTTP request, since

the process started

com.stardog.http.server-

<port>.avgRequesttime.stddev

double secondsThe Standard

deviation in time

taken to process an

HTTP request, since

the process started

com.stardog.http.server-

<port>.avgRequesttime.min

double secondsThe minimum time

taken to process an

HTTP request, since

the process started

com.stardog.http.server-

<port>.avgRequesttime.p��

double secondsThe ��th percentile

time taken to

process an HTTP

request, since the

process started (��%

of all HTTP requests

are shorter than this

number)

/

com.stardog.http.server-

<port>.avgRequesttime.p��

double secondsThe ��th percentile

time taken to

process an HTTP

request, since the

process started (��%

of all HTTP requests

are shorter than this

number)

com.stardog.http.server-

<port>.avgRequesttime.p��

double secondsThe ��th percentile

time taken to

process an HTTP

request, since the

process started (��%

of all HTTP requests

are shorter than this

number)

com.stardog.http.server-

<port>.avgRequesttime.p��

double secondsThe ��th percentile

time taken to

process an HTTP

request, since the

process started (��%

of all HTTP requests

are shorter than this

number)

com.stardog.http.server-

<port>.avgRequesttime.p��

double secondsThe ��th percentile

time taken to

process an HTTP

request, since the

process started (��%

of all HTTP requests

are shorter than this

number)

/

com.stardog.http.server-

<port>.avgRequesttime.p���

double secondsThe ��.�th

percentile time taken

to process an HTTP

request, since the

process started

(��.�% of all HTTP

requests are shorter

than this number)

com.stardog.http.server-

<port>.currentRequests

long count The current number

of open HTTP

requests

�. If the same name is used for di�erent functions in di�erent namespaces then

the precedence is given to the standard functions. It is best practice to use the

explicit namespace for such functions to avoid ambiguity.

�. In other words, if there is a con�ict between this documentation and the output

of the CLI tools' help command, the CLI output is correct.

�. We’re big fans of /opt/stardog/{$version} and setting STARDOG_HOME to

/var/stardog but YMMV.

�. This is equally true, when using Stardog HA Cluster, of Zookeeper’s access to

free disk space. Bad things happen to the Stardog Cluster if Zookeeper cannot

write to disk.

�. For more details about con�guring these values, see https://github.com/stardog

-union/stardog-examples/blob/develop/con�g/stardog.properties.

�. However, there may be some delay since Stardog only periodically checks the

query.timeout value against internal query evaluation timers.

�. A good general purpose discussion of these issues in context of J�EE is this be

ginner’s guide.

�. As discussed in SPARQL Update, since Update queries are implicitly atomic

transactional operations, which means you shouldn’t issue an Update query

within an open transaction.

�. The probability of recovering from a catastrophic transaction failure is inversely

proportional to the number of subsequent write attempts; hence, Stardog

o�ines the database to prevent subsequent write attempts and to increase the

likelihood of recovery.

��. Stardog also uses �le handles and sockets, but we don’t discuss those here.

��. These are conservative values and are dataset speci�c. Your data may require

less memory… or more!

��. For more details about con�guring these values, see https://github.com/stardo

g-union/stardog-examples/blob/develop/con�g/stardog.properties.

��. Blob Indexing and Text Enrichment with Semantics

��. "Client" here means the client of Stardog APIs.

��. "Because ZooKeeper requires a majority, it is best to use an odd number of

machines. For example, with four machines ZooKeeper can only handle the

failure of a single machine; if two machines fail, the remaining two machines do

https://github.com/stardog-union/stardog-examples/blob/develop/config/stardog.properties
http://vladmihalcea.com/2014/12/23/a-beginners-guide-to-transaction-isolation-levels-in-enterprise-java/
https://github.com/stardog-union/stardog-examples/blob/develop/config/stardog.properties

/

not constitute a majority. However, with �ve machines ZooKeeper can handle

the failure of two machines." See Zk Admin for more.

��. Based on customer feedback we may relax these consistency guarantees in

some future release. Please get in touch if you think an eventually consistent

approach is more appropriate for your use of Stardog.

��. This point is especially true of Cluster but may be relevant for some

workloads on a single Stardog database, that is, non-Cluster con�guration, too.

��. You only pay for the reasoning that you use; no more and no less. Eager

materialization is mostly a great strategy for hard disk manufacturers.

��. Sometimes called a "TBox".

��. Find another database, any other database anywhere, that can do that! We’ll

wait…

��. Triggered using the --format tree option of the reasoning explain CLI

command.

��. Quick refresher: the IF clause de�nes the conditions to match in the data; if

they match, then the contents of the THEN clause "�re", that is, they are

inferred and, thus, available for other queries, rules, or axioms, etc.

��. Of course if you’ve tweaked reasoning.schema.graphs , then you should

put the rules into the named graph(s) that are speci�ed in that con�guration

parameter.

��. Built-in URIs such as rdfs:subClassOf or owl:TransitiveProperty are

not allowed in rules

��. This is e�ectively the only setting for Stardog prior to �.�.

��. These are harmless and won’t otherwise a�ect query evaluation; they can

also be added to the data, instead of to queries, if that �ts your use case better.

��. The standard inference semantics of OWL � do not adopt the unique name

assumption because, in information integration scenarios, things often have

more than one name but that doesn’t mean they are di�erent things. For

example, when several databases or other data sources all contain some

partial information about, say, an employee, but they each name or identify the

employee in di�erent ways. OWL � won’t assume these are di�erent

employees just because there are several names.

��. Strictly speaking, this is a bit misleading. Stardog ICV uses both open and

closed world semantics: since inferences can violate or satisfy constraints, and

Stardog uses open world semantics to calculate inferences, then the ICV

process is compatible with open world reasoning, to which it then applies a

form of closed world validation, as described in this chapter.

��. This is a good example of open world and closed world reasoning interacting

for the win.

��. In other words, embedded Stardog access is inherently insecure and should

be used accordingly.

��. The Stardog client uses an X509TrustManager . The details of how a trust

store is selected to initialize the trust manager are http://docs.oracle.com/javas

e/�/docs/technotes/guides/security/jsse/JSSERefGuide.html#X���TrustManag

er.

��. See the javax.net.ssl.trustStorePassword system property docs: http://

docs.oracle.com/javase/�/docs/technotes/guides/security/jsse/JSSERefGuide.h

tml#X���TrustManager.

��. The matching algorithm used is described— http://hc.apache.org/httpcompone

nts-client-ga/tutorial/html/connmgmt.html-- in the Apache docs about

BrowserCompatHostnameVerifier .

��. You won’t be careful enough.

https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html--

/

⬆ (#) For comments, questions, or to report problems with this page,

visit the Stardog Support Forum (https://community.stardog.com/).

©����–���� Stardog Union Some rights reserved

(http://creativecommons.org/licenses/by-sa/�.�/).

 (http://stardog.com/)

��. The relevant specs include the Stardog-speci�c speci�cations documented on

this site, but also W�C (and other) speci�cations of various languages,

including SPARQL, RDF, RDFS, OWL �, HTTP, Google Protocol Bu�ers, as well

as others.

��. Strictly speaking, this is a Sesame parser deviation from the SPARQL �.� spec

with which we happen to agree.

Version �.�.�

https://community.stardog.com/
http://creativecommons.org/licenses/by-sa/3.0/
http://stardog.com/

