
/

Stardog 5
THE MANUAL

Stardog is the world’s leading

KNOWLEDGE GRAPH PLATFORM FOR THE ENTERPRISE
Stardog makes it fast and easy to turn enterprise data into knowledge.

What’s New in Stardog 5

Check out the Quick Start Guide (#_quick_start_guide) to get Stardog installed and running in five easy steps.

INTRODUCTION

Stardog 5.3.6 (31 Oct 2018) supports the RDF graph data model (http://www.w3.org/RDF/); SPARQL
(http://www.w3.org/TR/sparql11-overview/) query language; property graph model
(https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model) and Gremlin graph traversal language
(http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#_on_gremlin_language_variants); OWL 2
(http://www.w3.org/TR/owl2-overview/) and user-defined rules for inference and data analytics; virtual graphs;
geospatial query answering; and programmatic interaction via several languages and network interfaces.

Stardog is made by hand with skill, taste, and a point of view in DC, Boston, Heidelberg, Madison, Moscow, Hanalei,
South Dakota, Porto, Manchester, PA, and Columbia, MO. 🌟🐶

To learn more about where we’ve been and where we’re headed, consult the RELEASE NOTES (/docs/release-notes/)
and milestones (#_milestones).

Downloading & Support

Download (http://stardog.com/#download) Stardog to get started. The Stardog support forum
(https://community.stardog.com/) is the place to report bugs, ask questions, etc.

Contributing

There are several open source components of Stardog; feel free to submit pull requests: stardog-docs
(https://github.com/complexible/stardog-docs), stardog.js (https://github.com/complexible/stardog.js), stardog-groovy
(https://github.com/complexible/stardog-groovy), stardog-spring (https://github.com/complexible/stardog-spring),
stardog.rb (https://github.com/antoniogarrote/stardog-rb), and stardog-clj (https://github.com/complexible/stardog-

✓ GraphQL Queries (#_graphql_queries)

✓ Path Queries (#_path_queries)

✓ Stored Functions (#_managing_stored_functions)

✓ Inline Rules (#_stardog_rules_syntax)

✓ Native Memory Management
(#_memory_management)

✓ All-new Virtual Graph Engine (#_structured_data)

✓ SPARQL Query Hints (#_using_query_hints)

(/)

 (/) PLATFORM (/PLATFORM/) CUSTOMERS (/CUSTOMERS/) RESOURCES (/DOCS/) ABOUT

http://www.w3.org/RDF/
http://www.w3.org/TR/sparql11-overview/
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#_on_gremlin_language_variants
http://www.w3.org/TR/owl2-overview/
https://www.stardog.com/docs/release-notes/
http://stardog.com/#download
https://community.stardog.com/
https://github.com/complexible/stardog-docs
https://github.com/complexible/stardog.js
https://github.com/complexible/stardog-groovy
https://github.com/complexible/stardog-spring
https://github.com/antoniogarrote/stardog-rb
https://github.com/complexible/stardog-clj
https://www.stardog.com/
https://www.stardog.com/
https://www.stardog.com/platform/
https://www.stardog.com/customers/
https://www.stardog.com/docs/
https://www.stardog.com/docs/5.3.6


/

clj). Many thanks to Stardog customers, users, contributors, testers, etc. You know who you are, and so do we. Thank
you!  You can also help by editing these docs on Github (https://github.com/Complexible/stardog-
docs/tree/master/src/doc) if you spot a problem.

ENTERPRISE SUPPORT

Customers with Enterprise Premium Support have access to some extra capabilities and services. Enterprise Premium
Support is available as of Stardog 3 release. Email (mailto:sales@stardog.com) for details.

Real-time Support

Get access to the core Stardog development team in real-time via voice or chat. Let us help you get the most from
Stardog, 24/7. Our core team has more semantic graph application and tool development experience than any other
team on the planet. Other vendors shunt you o� to inexperienced level one techs. We’ve never done that and never will.

Private Maven Repositories

See Using Maven (#_using_maven) for details; this includes a per-customer, private Maven repository, CDN-powered, for
24/7 builds, updates, and feature releases.

We’re also tying Maven and Docker together, providing private Docker repositories for customers, which allows us to
build out clusters, custom configurations, best practices, and devops tips-and-tricks into custom Docker images… so
that you don’t have to.

Private Docker Repositories

Docker-based deliverables not only shortens your development and devops cycles but keeps you up-to-date with the
latest-greatest versions of Stardog, including security fixes, performance hot fixes, and deployment best practices and
configurations.

Priority Bug Fixes

With Maven and Docker in place, we’ve got a so�ware delivery mechanism ready to push priority bug fixes into your
enterprise as soon as they’re ready. We’ve averaged one Stardog release every two weeks since 2012. Enterprise
Premium Support customers can now take advantage of our development pace in a controlled fashion.

Priority Feature Releases

We hate holding new features in a feature branch, especially for mundane business reasons; we want to release new
stu� as soon as possible to our customers. With Enterprise Premium Support, we can maintain a disruptive pace of
innovation without disrupting you.

QUICK START GUIDE

Requirements

It just doesn’t get any easier than this: Stardog runs on Java 8. Stardog runs best on, but does not require, a 64-bit JVM
that supports sun.misc.Unsafe .

Insecurity

[1 (#_footnote_1)]

https://github.com/complexible/stardog-clj
https://github.com/Complexible/stardog-docs/tree/master/src/doc
mailto:sales@stardog.com


/

We optimize Stardog out-of-the-box for ease and simplicity. You should take additional steps to secure it before
production deployment. It’s easy and it’s smart, so just do it. In case that’s not blunt enough:

NOTE
Stardog ships with an insecure but usable default setting: the super user is admin  and the admin
password is "admin". This is fine until it isn’t, at which point you should read the Security section.

Upgrading to Stardog 5

If you are upgrading to Stardog 5 from any previous version, please see Migrating to Stardog 5
(#_migrating_to_stardog_5) for details about auto-migrating on-disk indexes.

Package Managers

As of version 5.0.6 Stardog is available in rpm and deb packages and apt and yum respositories have been setup to
make installation easier.

Debian Based Systems

To install Stardog using apt-get run the following commands:

This will first add the Stardog gpg key to the systems and then fetch and install the latest Stardog deb package.

RPM Based Systems

To install Stardog using yum run the following commands:

Amazon EC2

Certain Amazon EC2 instances do not let you redirect output into /etc/yum.repos.d as specified above. On such
instances you can install Stardog like so:

Package Layout

The packages require that OpenJDK 8 and all of its dependecies are installed on the system. The package managers will
install them if they are not already there. Stardog is then configured to start on boot via systemd and thus it can be
controlled by the systemctl tool as shown below:

To customize the environment in which stardog is run the file /etc/stardog.env.sh can be altered with key value pairs, for
example:

curl http://packages.stardog.com/stardog.gpg.pub | apt-key add 

echo "deb http://packages.stardog.com/deb/ stable main" >> /etc/apt/sources.list 

apt-get update 

apt-get install -y stardog[=<version>]

curl http://packages.stardog.com/rpms/stardog.repo > /etc/yum.repos.d/stardog.repo 

yum install -y stardog[-<version>]

sudo yum-config-manager --add-repo http://packages.stardog.com/rpms/stardog.repo 

sudo yum-config-manager --enable stardog 

yum install -y stardog[-<version>]

systemctl start stardog 

systemctl restart stardog 

systemctl stop stardog

export STARDOG_HOME=/var/opt/stardog 

export STARDOG_SERVER_JAVA_ARGS="-Xmx8g -Xms8g -XX:MaxDirectMemorySize=2g"



/

Linux and OSX

First, tell Stardog where its home directory (where databases and other files will be stored) is:

Note: If using a package manager this line is added to the /etc/stardog.env.sh file.

If you’re using some weird Unix shell that doesn’t create environment variables in this way, adjust accordingly. If
STARDOG_HOME  isn’t defined, Stardog will use the Java user.dir  property value.

NOTE
You should consider the upgrade process when setting STARDOG_HOME  for production or other
serious usage. In particular, you probably don’t want to set the directory where you install Stardog as
STARDOG_HOME  as that makes upgrading less easy. Set STARDOG_HOME  to some other location.

Second, copy the stardog-license-key.bin  into the right place:

Of course stardog-license-key.bin  has to be readable by the Stardog process.

Stardog won’t run without a valid stardog-license-key.bin  in STARDOG_HOME .

Third, optionally, place the bin  folder of the Stardog install on your PATH so the stardog  and stardog-admin
scripts can be used regardless of current working directory

Fourth, start the Stardog server. By default the server will HTTP on port 5820.

Fi�h, create a database with an input file:

Sixth, query the database:

You can use Stardog Studio to search or query the new database you created by connecting to the http://localhost:5820
(http://localhost:5820) endpoint.

Windows

Windows… really? Okay, but don’t blame us if this hurts… The following steps are carried out using the Windows
command prompt which you can find under Start › Programs › Accessories › Command Prompts or Start › Run › cmd .

First, tell Stardog where its home directory (where databases and other files will be stored) is:

Second, copy the stardog-license-key.bin  into the right place:

$ export STARDOG_HOME=/data/stardog

$ cp stardog-license-key.bin $STARDOG_HOME

$ export PATH="$PATH:/opt/my-stardog-install/bin"

$ stardog-admin server start

$ stardog-admin db create -n myDB /path/to/some/data.ttl

$ stardog query myDB "SELECT DISTINCT ?s WHERE { ?s ?p ?o } LIMIT 10"

> SET STARDOG_HOME=C:\data\stardog

> COPY /B stardog-license-key.bin %STARDOG_HOME%

http://localhost:5820/


/

The /B  is required to perform a binary copy or the license file may get corrupted. Of course stardog-license-
key.bin  has to be readable by the Stardog process. Finally, Stardog won’t run without a valid stardog-license-
key.bin  in STARDOG_HOME .

Third, optionally, place the bin  folder of the Stardog install on your PATH so the stardog.bat  and stardog-
admin.bat  scripts can be used regardless of current working directory

Fourth, start the Stardog server. By default the server will expose HTTP on port 5820.

This will start the server in the current command prompt, you should leave this window open and open a new
command prompt window to continue.

Fi�h, create a database with some input file:

Sixth, query the database:

You can use Stardog Studio to search or query the new database you created by connecting to the http://localhost:5820
(http://localhost:5820) endpoint.

USING STARDOG

Stardog supports SPARQL (http://www.cambridgesemantics.com/semantic-university/sparql-by-example), the W3C
standard for querying RDF graphs, as well as a range of other capabilities, including updating, versioning exporting,
searching, obfuscating, and browsing graph data.

Querying

Stardog supports SPARQL 1.1 and also the (https://www.w3.org/TR/sparql11-entailment/
(https://www.w3.org/TR/sparql11-entailment/)) [OWL 2 Direct Semantics entailment regime].

To execute a SPARQL query against a Stardog database, use the query  subcommand with a query string, a query file,
or the name of a stored query:

Any SPARQL query type ( SELECT , CONSTRUCT , DESCRIBE , PATHS , ASK  or any update query type) can be executed
using this command.

By default, all Stardog CLI commands assume the server is running on the same machine as the client using port 5820.
But you can interact with a server running on another machine using a full connection string
(#_how_to_make_a_connection_string):

Detailed information on using the query command in Stardog can be found on its man page  (/docs/5.3.6/man/query-
execute). See Managing Stored Queries (#_managing_stored_queries) section for configuration, usage, and details of
stored queries.

> SET PATH=%PATH%;C:\stardog-5.2.2\bin

> stardog-admin.bat server start

> stardog-admin.bat db create -n myDB C:\path\to\some\data.ttl

> stardog.bat query myDB "SELECT DISTINCT ?s WHERE { ?s ?p ?o } LIMIT 10"

$ stardog query myDb "select * where { ?s ?p ?o }"

$ stardog query http://myHost:9090/myDb "select * where { ?s ?p ?o }"

http://localhost:5820/
http://www.cambridgesemantics.com/semantic-university/sparql-by-example
https://www.w3.org/TR/sparql11-entailment/
https://www.stardog.com/docs/5.3.6/man/query-execute


/

Path Queries

Stardog extends SPARQL for path queries which can be used to find paths between two nodes in a graph. Path queries
are similar to SPARQL property paths (https://www.w3.org/TR/sparql11-query/#propertypaths) that recursively traverse
a graph and find two nodes connected via a complex path of edges. But SPARQL property paths only return the start and
end nodes of a path. Stardog path queries return all the intermediate nodes on the path and allow arbitrary SPARQL
patterns to be used in the query.

Here’s a simple path query to find how Alice  and Charlie  are connected to each other:

Each row of the result table shows one edge. Adjacent edges are printed on subsequent rows of the table. Multiple
paths in the results are separated by an empty row.

Path queries by default return only the shortest paths. See the Path Queries (#_path_queries_2) chapter for details
about finding di�erent kinds of paths, e.g. all paths (not just shortest ones), paths between all nodes, and cyclic paths.

DESCRIBE

SPARQL provides a DESCRIBE  query type that returns a subgraph containing information about a resource:

SPARQL’s DESCRIBE  keyword is deliberately underspecified. In Stardog, by default, a DESCRIBE  query retrieves all the
triples for which <theResource>  is the subject. There are, of course, about seventeen thousand other ways to
implement DESCRIBE . Starting with Stardog 5.3, we are providing two additional describe strategies out of the box.
The desired describe strategy can be selected by using a special query hint (#_using_query_hints). For example, the
following query will return all the triples where theResource  is either the subject or the object:

The other built-in describe strategy returns the CBD - Concise Bounded Description
(https://www.w3.org/Submission/CBD/) of the given resource:

The default describe strategy can be changed by setting the query.describe.strategy  database configuration
option (#_configuration_options). Finally, it is also possible to implement a custom describe strategy by implementing a
simple Java interface. An example can be found in the stardog examples repo (https://github.com/stardog-
union/stardog-examples/tree/develop/examples/describe).

Query Functions

Stardog supports all of the functions from the SPARQL spec (https://www.w3.org/TR/sparql11-query/#SparqlOps), as
well as some others from XPath and SWRL. See SPARQL Query Functions (#_sparql_query_functions) for a complete list
of built-in functions supported.

$ stardog query exampleDB "PATHS START ?x = :Alice END ?y = :Charlie VIA ?p" 

 

+----------+------------+----------+ 

|    x     |     p      |    y     | 

+----------+------------+----------+ 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :worksWith | :Charlie | 

|          |            |          | 

| :Alice   | :worksWith | :Carol   | 

| :Carol   | :knows     | :Charlie | 

+----------+------------+----------+ 

 

Query returned 2 paths in 00:00:00.056

DESCRIBE <theResource>

#pragma describe.strategy bidirectional 

 

DESCRIBE <theResource>

#pragma describe.strategy cbd

 

DESCRIBE <theResource>

https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.w3.org/Submission/CBD/
https://github.com/stardog-union/stardog-examples/tree/develop/examples/describe
https://www.w3.org/TR/sparql11-query/#SparqlOps


/

Any of the supported functions can be used in queries or rules. Note that, some functions appear in multiple
namespaces, but using any of the namespaces will work. Namespaces can be omitted when calling functions too.

 XPath comparison (https://www.w3.org/TR/xpath-functions-30/#comp.datetime) and arithmetic
(https://www.w3.org/TR/xpath-functions-30/#dateTime-arithmetic) operators on duration, date and time values are
supported by overloading the corresponding SPARQL operators such as = , > , + , - , etc.

In addition to the built-in functions, new functions can be defined by assigning a new name to a SPARQL expression.
These function definitions can either be defined inline in a query or stored in the system
(#_managing_stored_functions) and used in any query or rule. Finally, custom function implementations can be
implemented in a JVM-compatible language and registered in the system. See the query functions
(#_query_functions_2) section for more details.

Federated Queries

In Stardog 3.0 we added support for the SERVICE (http://www.w3.org/TR/sparql11-federated-query/) keyword
 which allows users to query distributed RDF via SPARQL-compliant data sources. You can use this to federate

queries between several Stardog databases or Stardog and other public endpoints.

As of 5.2 Stardog supports service variables (https://www.w3.org/TR/sparql11-federated-query/#variableService). This
allows dynamic selection of endpoints for federated queries, for example:

Stardog ships with a default Service  implementation which uses SPARQL Protocol to send the service fragment to the
remote endpoint and retrieve the results. Any endpoint that conforms to the SPARQL protocol can be used.

The Stardog SPARQL endpoint is http://<server>:<port>/{db}/query (http://<server>:
<port>/{db}/query) .

HTTP Authentication

Stardog requires authentication. If the endpoint you’re referencing with the SERVICE  keyword requires HTTP
authentication, credentials are stored in a password file (#_using_a_password_file) called services.sdpass  located
in STARDOG_HOME  directory. The default Service  implementation assumes HTTP BASIC authentication; for services
that use DIGEST auth, or a di�erent authentication mechanism altogether, you’ll need to implement a custom
Service  implementation.

Querying RDBMS via Virtual Graphs

Sometimes enterprise information belongs to or in a Stardog graph but for various reasons the upstream or canonical
data source should not be disturbed, consolidated, or decommissioned.

In those (and other) cases it makes sense to use Stardog’s R2RML  mapping feature to create virtual
graphs, that is, mappings between a Stardog graph and external data sources such that Stardog will query the external
data sources— by rewriting SPARQL to SQL automatically— as if they were actually materialized in Stardog.

See the Enterprise Data Unification (#_enterprise_data_unification) chapter for configuration and usage.

Querying Geospatial Data

This works more or less like any SPARQL query, as long as the right geospatial vocabulary is used in the data.

See the Geospatial Query (#_geospatial_query) chapter for configuration and usage.

Traversing

[2 (#_f
ootnote_2)]

[3 (#_foot
note_3)]

{ 

  ?service a :MyService . 

 

  SERVICE ?service { ... } 

}

[4 (#_footnote_4)]

https://www.w3.org/TR/xpath-functions-30/#comp.datetime
https://www.w3.org/TR/xpath-functions-30/#dateTime-arithmetic
http://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-federated-query/#variableService


/

Stardog supports graph traversals via Gremlin Console and TinkerPop 3 APIs. You can write Gremlin traversals against
TP3 APIs in many di�erent languages. But the easiest way to use Gremlin with Stardog is via the Gremin Console
(#_stardog_gremlin_console).

Updating

There are many ways to update the data in a Stardog database; two of the most commonly used methods are the CLI
and SPARQL Update queries, each of which are discussed below.

SPARQL Update

SPARQL 1.1 Update can be used to insert RDF into or delete RDF from a Stardog database using SPARQL query forms
INSERT  and DELETE , respectively.

An example of deleting RDF:

Or they can be combined with WHERE  clauses:

NOTE
Per the SPARQL Update spec, Stardog treats Update queries as implicitly transactional and atomic.
Since Stardog does not support nested transactions, it will not (currently) support an Update query in
an open transaction.

Adding Data with the CLI

As of Stardog 5.3.6, the most e�icient way to load data into Stardog is at database creation time. See the Creating a
Database (#_creating_a_database) section for bulk loading data at database creation time. To add data to an existing
Stardog database, use the add  (/docs/5.3.6/man/data-add) command:

The optional arguments are -f  (or --format ) to specify the RDF serialization type of the files to be loaded; if you
specify the wrong type, add  will fail. If you don’t specify a type, Stardog will try to determine the type on its own based
on the file extension. For example, the files that have names ending with '.ttl' will be parsed with Turtle syntax. If you
specify a type, then all the files being loaded must of that same type.

If you want to add data to a named graph, specify it via the --named-graph  or -g  options.

Removing Data with the CLI

PREFIX dc: <http://purl.org/dc/elements/1.1/> 

PREFIX ns: <http://example.org/ns#> 

INSERT DATA 

{ 

  GRAPH <http://example/bookStore> { <http://example/book1>  ns:price  42 } 

}

PREFIX dc: <http://purl.org/dc/elements/1.1/> 

 

DELETE DATA 

{ 

  <http://example/book2> dc:title "David Copperfield" ; 

                         dc:creator "Edmund Wells" . 

}

PREFIX foaf:  <http://xmlns.com/foaf/0.1/> 

 

WITH <http://example/addresses> 

DELETE { ?person foaf:givenName 'Bill' } 

INSERT { ?person foaf:givenName 'William' } 

WHERE 

  { ?person foaf:givenName 'Bill' }

[5]

$ stardog data add myDatabase 1.rdf 2.rdf 3.rdf

https://www.stardog.com/docs/5.3.6/man/data-add


/

To remove data, use remove  (/man/data-remove.html) with the following input(s):

1. one Named Graph, or

2. one or more files containing RDF (in some recognized serialization format, i.e., RDF/XML, Turtle, Trig), or

3. one Named Graph and one or more RDF files.

For example,

will remove the named graph http://foo  and all its triples from myDatabase .

will remove the triples in 1.rdf  from (the default graph of) myDatabase .

will remove the triples in the Turtle files 2.rdf  and 3.rdf  from the named graph http://foo  of myDatabase .

How Stardog Handles RDF Parsing

RDF parsing in Stardog is strict: it requires typed RDF literals to match their explicit datatypes, URIs to be well-formed,
etc. In some cases, strict parsing isn’t ideal—it may be disabled using the strict.parsing  configuration option
(#_configuration_options).

However, even with strict parsing disabled, Stardog’s RDF parser may encounter parse errors from which it cannot
recover. And loading data in lax mode may lead to unexpected SPARQL query results. For example, malformed literals
( "2.5"^^xsd:int ) used in filter evaluation may lead to undesired results.

Versioning

Stardog supports graph change management capability that lets users track changes between revisions of a Stardog
database, add comments and other metadata to the revisions, extract di�s between those revisions, tag revisions with
labels, and query over the revision history of the database using SPARQL.

For a more detailed tutorial on using Stardog versioning, see the stardog-examples repo
(https://github.com/Complexible/stardog-examples/blob/master/examples/cli/versioning/README.md).

Versioning support for a database is disabled by default but can be enabled at any time by setting the configuration
option versioning.enabled  to true. For example, you can create a database with versioning support as follows:

This option can also be set a�er database creation using the stardog-admin metadata set  command.

The following examples give a very brief overview of this capability; see the Man Pages (#_man_pages) for all the
details.

Committing Changes

Commit a new version by adding and removing triples specified in files. Di�erent from the data add/remove
commands, commit  allows one to add and remove triples in one commit and to associate a commit message.

To commit changes:

$ stardog data remove -g http://foo myDatabase

$ stardog data remove myDatabase 1.rdf

$ stardog data remove -g http://foo -f TURTLE myDatabase 2.rdf 3.rdf

$ stardog-admin db create -o versioning.enabled=true -n myDb

$ stardog vcs commit --add add_file1.ttl add_file2.ttl --remove remove_file.ttl -m "This is an example 

commit" myDb

https://www.stardog.com/man/data-remove.html
https://github.com/Complexible/stardog-examples/blob/master/examples/cli/versioning/README.md


/

It is also possible to run an update query with a commit message:

NOTE Removals are performed before additions and queries are executed last.

If the database is updated through the regular data add , data remove , or query  commands when versioning is
enabled, a corresponding version will be created but the commit message will be empty.

Viewing Revisions

To see all revisions (commits) in a database:

The output can be tweaked using --after , --before , and --committer .

Reverting Revisions

You can revert specific revisions, ranges, etc.

Viewing Di�s

You can also see the di�erences between revisions; by default, between the head version and its previous versions or
the changes in a specific commit, respectively:

NOTE Di�s are represented as SPARQL Update queries so that they may be used as a kind of graph patch.

Using Tags

You can also create, drop, list tags, i.e., named revisions:

Querying the Revision History

The revision history of the database is represented as RDF using an extended version of the W3C PROV vocabulary and
can be queried using SPARQL.  The following query retrieves all the versions:

You can execute versioning queries using the vcs query  command:

$ stardog vcs commit --query update.sparql -m "This is another commit" myDb

$ stardog vcs list myDb 

$ stardog vcs list --committer userName myDb

$ stardog vcs revert myDb 

$ stardog vcs revert myDb de44369d-cc7b-4244-a3fb-3f6e271420b0

$ stardog vcs diff myDb 

$ stardog vcs diff myDb de44369d-cc7b-4244-a3fb-3f6e271420b0

$ stardog vcs tag --list myDb

[6 (#_footnote_6)]

SELECT ?author ?msg ?date { 

  ?v a vcs:Version ; 

     rdfs:comment ?msg ; 

     prov:wasAttributedTo / rdfs:label ?author ; 

     prov:generatedAtTime ?date 

}

$ stardog vcs query myDb versioning-query.sparql



/

Queries executed by vcs query  only query the versioning history and automatically recognizes the vcs  and prov
namespaces. If you would like to query the current state of the database along with the version history then you can run
a regular query using a special versioning SERVICE . The following query finds the instances of foaf:Person  class
that has been modified in the last 24 hours:

You can run this query using the regular query command:

Note that, in this query the namespaces vcs  and prov  have been declared explicitly in the query. If you register these
namespaces (#_namespacing) to your database then you can omit these declarations.

For more details about the Stardog versioning representation, see the stardog-examples repo
(https://github.com/Complexible/stardog-examples/blob/master/examples/cli/versioning/README.md).

Exporting

To export data from a Stardog database back to RDF, export  (/man/data-export.html) is used by specifying

1. the name of the database to export

2. optionally, the URIs of the named graphs to export if you wish to export specific named graphs only. Keywords
DEFAULT  and ALL  can be used as values of the --named-graph  parameter to export the default graph and all

graphs, respectively

3. the export format: N-TRIPLES, RDF/XML, TURTLE, TRIG . The default is N-TRIPLES . TRIG  must be used when
exporting the entire database if the database contains triples inside named graphs

4. a file to export to

For example,

Searching

Stardog includes an RDF-aware semantic search capability: it will index RDF literals and supports information retrieval-
style queries over indexed data. See [Managing Search] (#Managing Search) for more details.

Searching with the Command Line

First, check out the search  man page (/man/query-search.html):

PREFIX prov: <http://www.w3.org/ns/prov#> 

PREFIX vcs: <tag:stardog:api:versioning:> 

 

SELECT DISTINCT ?x ?date { 

  ?x a foaf:Person 

 

  SERVICE vcs:service { 

    ?v a vcs:Version; 

       prov:generatedAtTime ?date; 

       vcs:updates/(vcs:additions|vcs:removals) ?update 

    GRAPH ?update { 

      ?x ?p ?o 

    } 

    FILTER (NOW() - ?date < 'PT24H'^^xsd:dayTimeDuration) 

  } 

} 

ORDER BY DESC(?date)

$ stardog query myDb versioning-mixed-query.sparql

$ stardog data export --format TURTLE myDatabase myDatabase_output.ttl 

 

$ stardog data export --named-graph http://example.org/context myDatabase myDatabase_output.nt

$ stardog help query search

https://github.com/Complexible/stardog-examples/blob/master/examples/cli/versioning/README.md
https://www.stardog.com/man/data-export.html
https://www.stardog.com/man/query-search.html


/

Okay, now let’s do a search over the O’Reilly book catalog in RDF for everything mentioning "html":

The results?

See Search (#_search) for more details.

Obfuscating

When sharing sensitive RDF data with others, you might want to (selectively) obfuscate it so that sensitive bits are not
present, but non-sensitive bits remain. For example, this feature can be used to submit Stardog bug reports using
sensitive data.

Data obfuscation works much the same way as the export  command and supports the same set of arguments:

By default, all URIs, bnodes, and string literals in the database will be obfuscated using the SHA256 message digest
algorithm. Non-string typed literals (numbers, dates, etc.) are le� unchanged as well as URIs from built-in namespaces
( RDF , RDFS , and OWL ). It’s possible to customize obfuscation by providing a configuration file.

The configuration specifies which URIs and strings will be obfuscated by defining inclusion and exclusion filters. See the
example configuration file in the stardog-examples Github repo. (https://github.com/Complexible/stardog-
examples/blob/master/config/obfuscation.ttl)

Once the data is obfuscated, queries written against the original data will no longer work. Stardog provides query
obfuscation capability, too, so that queries can be executed against the obfuscated data. If a custom configuration file is
used to obfuscate the data, then the same configuration should be used for obfuscating the queries as well:

Browsing

The Stardog Web Console is a responsive web app for the Stardog Server and for every Stardog database that makes
administration and interaction with data quick and easy; you can access it at http://foo:5820 (http://foo:5820)
where foo  is the name of the machine where Stardog is running.

A Screenshot Tour… 

Seriously, this is a lot more fun if you just download (http://stardog.com/) the damn thing and hit it with a browser!

Web Console

$ stardog query search -q "html" -l 10 catalog

+-------+-------+---------------------------------------------------+ 

| Index | Score |                        Hit                        | 

+-------+-------+---------------------------------------------------+ 

| 1     | 6.422 | urn:x-domain:oreilly.com:product:9780596002251.IP | 

| 2     | 6.422 | urn:x-domain:oreilly.com:product:9780596002961.IP | 

| 3     | 6.422 | urn:x-domain:oreilly.com:product:9780596003166.IP | 

| 4     | 6.422 | urn:x-domain:oreilly.com:product:9780596101978.IP | 

| 5     | 6.422 | urn:x-domain:oreilly.com:product:9780596154066.IP | 

| 6     | 6.422 | urn:x-domain:oreilly.com:product:9780596157616.IP | 

| 7     | 6.422 | urn:x-domain:oreilly.com:product:9780596527273.IP | 

| 8     | 6.422 | urn:x-domain:oreilly.com:product:9780596527402.IP | 

| 9     | 6.422 | urn:x-domain:oreilly.com:product:9780596805876.IP | 

| 10    | 6.422 | urn:x-domain:oreilly.com:product:9781565924949.IP | 

+-------+-------+---------------------------------------------------+

$ stardog data obfuscate myDatabase obfDatabase.ttl

$ stardog data obfuscate --config obfConfig.ttl myDatabase  obfDatabase.ttl

$ stardog query obfuscate --config obfConfig.ttl myDatabase myQuery.sparql > obfQuery.ttl

https://github.com/Complexible/stardog-examples/blob/master/config/obfuscation.ttl
http://foo:5820/
http://stardog.com/


/

Browsing the Graph



/

Managing a Database



/

Searching the Graph



/

Namespacing

Stardog allows users to store and manage custom namespace prefix bindings for each database. These stored
namespaces allow users to omit prefix declarations in Turtle files and SPARQL queries. Namespace Prefix Bindings
(#_namespace_prefix_bindings) section describes how to manage these namespace prefixes in detail.

Stored namespaces allow one to use Stardog without declaring a single namespace prefix. Stardog will use its default
namespace ( http://api.stardog.com/ (http://api.stardog.com/) ) behind the scenes so that everything will
still be valid RDF, but users won’t need to deal with namespaces manually. Stardog will act as if there are no
namespaces, which in some cases is exactly what you want!

For example, let’s assume we have some data that does not contain any namespace declarations:

We can create a database using this file directly:

We can also add this file to the database a�er it is created. A�er the data is loaded, we can then execute SPARQL queries
without prefix declarations:

:Alice a :Person ; 

       :knows :Bob .

$ stardog-admin db create -n mydb data.ttl

http://api.stardog.com/


/

NOTE
Once we export the data from this database, the default (i.e., in-built) prefix declarations will be
printed, but otherwise we will get the same serialization as in the original data file:

Naming

Stardog includes aliases for several commonly used sets of named graphs. These non-standard extensions are provided
for convenience and can be used wherever named graph IRIs are expected. This includes SPARQL queries & updates,
property graph operations and configuration values. Following is a list of special named graph IRIs.

Named Graph IRI Refers to

tag:stardog:api:context:default the default (no) context graph

tag:stardog:api:context:all all contexts, including the default (no) context graph

tag:stardog:api:context:named all named graphs, excluding the default graph

Deploying

As of Stardog 5, we support both AWS and Pivotal Cloud Foundry as first-class environments.

Stardog Graviton

Configuring and managing highly available cluster applications can be a complex black art. Graviton is a tool that
leverages the power of Amazon Web Services (http://aws.amazon.com) to make launching the Stardog cluster easy.

The source code (http://github.com/stardog-union/stardog-graviton) is available as Apache 2.0 licensed code.

Download

Linux

OSX

Requirements

A Stardog release zip file (5.0 or later).

A Stardog license.

An AWS (http://aws.amazon.com/) account.

terraform (http://terraform.io/) 0.8.8.

packer (https://www.packer.io/) 0.12.3.

$ stardog query mydb "SELECT * { ?person a :Person }" 

+--------+ 

| person | 

+--------+ 

| :Alice | 

+--------+ 

 

Query returned 1 results in 00:00:00.111

$ stardog data export mydb 

@prefix : <http://api.stardog.com/> . 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix stardog: <tag:stardog:api:> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

 

:Alice a :Person ; 

       :knows :Bob .

http://aws.amazon.com/
http://github.com/stardog-union/stardog-graviton
http://aws.amazon.com/
http://terraform.io/
https://www.packer.io/


/

Setup Your Environment

In order to use stardog-graviton  in its current form the following environment variables must be set.

The account associated with the access tokens must have the ability to create IAM credentials and full EC2 access.

Both terraform  and packer  must be in your system path.

The easiest way to launch a cluster is to run stardog-graviton  in interactive mode. This will cause the program to ask
a series of questions in order to get the needed values to launch a cluster. Here is a sample session:

To avoid being asked questions a file named ~/.graviton/default.json  can be created. An example can be found in
the defaults.json.example (https://github.com/stardog-union/stardog-graviton/blob/master/defaults.json.example) file.

All of the components needed to run a Stardog cluster are considered part of a deployment. Every deployment must be
given a name that is unique to each cloud account. In the above example the deployment name is mystardog2 .

Status

Once the image has been successfully launched its health can be monitored with the status  command:

Cleanup

AWS_ACCESS_KEY_ID=<a valid aws access key> 

AWS_SECRET_ACCESS_KEY=<a valid aws secret key>

$ stardog-graviton --log-level=DEBUG launch mystardog423 

What version of stardog are you launching?: 4.2.3 

What is the path to the Stardog release?: 

A value must be provided. 

What is the path to the Stardog release?: /Users/bresnaha/stardog-4.2.3.zip 

There is no base image for version 4.2.3. 

- Running packer to build the image... 

done 

AMI Successfully built: ami-c06246a0 

Creating the new deployment mystardog423 

Would you like to create an SSH key pair? (yes/no): no 

EC2 keyname (default): <aws key name> 

Private key path: /path/to/private/key 

What is the path to your Stardog license?: /path/to/stardog/license 

\ Calling out to terraform to create the volumes... 

- Calling out to terraform to stop builder instances... 

Successfully created the volumes. 

\ Creating the instance VMs...... 

Successfully created the instance. 

Waiting for stardog to come up... 

The instance is healthy 

Changing the default password... 

Password changed successfully for user admin. 

\ Opening the firewall...... 

Successfully opened up the instance. 

The instance is healthy 

The instance is healthy 

Stardog is available here: http://mystardog423sdelb-1763823291.us-west-1.elb.amazonaws.com:5821 

ssh is available here: mystardog423belb-124202215.us-west-1.elb.amazonaws.com 

Using 3 stardog nodes 

 10.0.101.189:5821 

 10.0.100.107:5821 

 10.0.100.140:5821 

Success.

$ stardog-graviton --log-level=DEBUG status mystardog423 

The instance is healthy 

Stardog is available here: http://mystardog423sdelb-1763823291.us-west-1.elb.amazonaws.com:5821 

ssh is available here: mystardog423belb-124202215.us-west-1.elb.amazonaws.com 

Using 3 stardog nodes 

 10.0.101.189:5821 

 10.0.100.107:5821 

 10.0.100.140:5821 

Success.

https://github.com/stardog-union/stardog-graviton/blob/master/defaults.json.example


/

AWS EC2 charges by the hour for the VMs that Graviton runs thus when the cluster is no longer in use it is important to
clean it up with the destroy  command.

More information

For more information about Graviton check out the README (https://github.com/stardog-union/stardog-
graviton/blob/master/README.md) and the blog post (https://blog.stardog.com/stardog-graviton-aws-made-easy/).

Pivotal Cloud Foundry

As of Stardog 5, we’ve added support for Pivotal Cloud Foundry. More docs (http://docs.pivotal.io/partners/stardog-
service-broker/) are available at PCF.

Our open source service broker (https://github.com/stardog-union/service-broker) adheres to the Open Service Broker
API (https://www.openservicebrokerapi.org/) and thus can be used with Cloud Foundry (https://cloudfoundry.org/),
Open Shi� (https://www.openshi�.org/), and Kubernetes (http://kubernetes.io/).

Visualizing

As of Stardog 5 we support Tableau (http://www.tableau.com/) so that you can use its visualization powers to
understand and visualize the knowledge graph.

You can get the Stardog Data Connector for Tableau by opening the Tableau Web Connector endpoint for Stardog
(http://tableau.stardog.com/) in Tableau.

Developing

Writing anything other than the most basic SPARQL queries is challenging; writing that same query in plain text is
punishment. We don’t want to punish our beloved users, so we published an IDE extension to make your (and, let’s face
it, our) lives easier.

To get beautifully highlighted SPARQL, along with Turtle, Stardog Mapping Syntax, and Stardog Rules Syntax, you’ll first
need Visual Studio Code. Visual Studio Code (https://code.visualstudio.com/) is an extremely lightweight and extensible
code editor, and happens to be the editor of choice among our front-end engineers. It’s free, platform-independent, and
open source.

Getting Started

stardog-graviton --log-level=DEBUG destroy mystardog423 

This will destroy all volumes and instances associated with this deployment. 

Do you really want to destroy? (yes/no): yes 

/ Deleting the instance VMs... 

Successfully destroyed the instance. 

\ Calling out to terraform to delete the images... 

Successfully destroyed the volumes. 

Success.

https://github.com/stardog-union/stardog-graviton/blob/master/README.md
https://blog.stardog.com/stardog-graviton-aws-made-easy/
http://docs.pivotal.io/partners/stardog-service-broker/
https://github.com/stardog-union/service-broker
https://www.openservicebrokerapi.org/
https://cloudfoundry.org/
https://www.openshift.org/
http://kubernetes.io/
http://www.tableau.com/
http://tableau.stardog.com/
https://code.visualstudio.com/


/

To get started, download (https://code.visualstudio.com/Download) the editor and install it on your OS of choice. A�er
firing up Visual Studio Code, open the command palette with Cmd + Shift + P  ( Ctrl + Shift + P  on Windows) and

type "install"; then click Extensions: Install Extensions .

This will take you to the Marketplace tab, where you can search for your favorite enterprise knowledge graph by name:
stardog .

Our SPARQL highlighting extension is called Stardog RDF Grammars . Click the Install  button in the search

result, and the extension will be downloaded and installed automatically.

Alternatively, you can simply click the Marketplace icon and search in the same way.

You’ll have to reload the window to initialize the extension, which you can do by quitting and restarting Visual Studio

Code, or simply by opening the command palette again, typing "reload", and clicking Reload Window .

[ ]

[ ]

[ ]

https://code.visualstudio.com/Download


/

Once you’ve reloaded the window, the extension should be initialized and ready to highlight all the SPARQL and Turtle
you can throw at it!

Features

The extension will automatically detect and provide highlighting for the following file types:

Language File extensions

SPARQL .sparql , .rq

Turtle .turtle , .ttl

Stardog Mapping Syntax .sms

Stardog Rules Syntax .srs

Man Pages

Stardog CLI

data add  (/docs/man/data-add), data export  (/docs/man/data-export), data obfuscate  (/docs/man/data-
obfuscate), data remove  (/docs/man/data-remove), data size  (/docs/man/data-size)

doc count  (/docs/man/doc-count), doc delete  (/docs/man/doc-delete), doc get  (/docs/man/doc-get), doc
put  (/docs/man/doc-put), doc reindex  (/docs/man/doc-reindex)

file cat  (/docs/man/file-cat), file obfuscate  (/docs/man/file-obfuscate), file split  (/docs/man/file-split)

graphql execute  (/docs/man/graphql-execute), graphql explain  (/docs/man/graphql-explain), graphql
schema  (/docs/man/graphql-schema)

icv convert  (/docs/man/icv-convert), icv explain  (/docs/man/icv-explain), icv export  (/docs/man/icv-
export), icv fix  (/docs/man/icv-fix), icv validate  (/docs/man/icv-validate)

namespace add  (/docs/man/namespace-add), namespace export  (/docs/man/namespace-export), namespace
import  (/docs/man/namespace-import), namespace list  (/docs/man/namespace-list), namespace remove
(/docs/man/namespace-remove)

query execute  (/docs/man/query-execute), query explain  (/docs/man/query-explain), query obfuscate
(/docs/man/query-obfuscate), query search  (/docs/man/query-search)

reasoning consistency  (/docs/man/reasoning-consistency), reasoning explain  (/docs/man/reasoning-
explain), reasoning schema  (/docs/man/reasoning-schema), reasoning undo  (/docs/man/reasoning-undo)

tx begin  (/docs/man/tx-begin), tx commit  (/docs/man/tx-commit), tx list  (/docs/man/tx-list), tx rollback
(/docs/man/tx-rollback)

vcs commit  (/docs/man/vcs-commit), vcs diff  (/docs/man/vcs-di�), vcs list  (/docs/man/vcs-list), vcs
query  (/docs/man/vcs-query), vcs revert  (/docs/man/vcs-revert), vcs tag  (/docs/man/vcs-tag)

Stardog Admin CLI

cluster generate  (/docs/man/cluster-generate), cluster info  (/docs/man/cluster-info), cluster status
(/docs/man/cluster-status), cluster stop  (/docs/man/cluster-stop), cluster zkstart  (/docs/man/cluster-
zkstart), cluster zkstop  (/docs/man/cluster-zkstop)

https://www.stardog.com/docs/man/data-add
https://www.stardog.com/docs/man/data-export
https://www.stardog.com/docs/man/data-obfuscate
https://www.stardog.com/docs/man/data-remove
https://www.stardog.com/docs/man/data-size
https://www.stardog.com/docs/man/doc-count
https://www.stardog.com/docs/man/doc-delete
https://www.stardog.com/docs/man/doc-get
https://www.stardog.com/docs/man/doc-put
https://www.stardog.com/docs/man/doc-reindex
https://www.stardog.com/docs/man/file-cat
https://www.stardog.com/docs/man/file-obfuscate
https://www.stardog.com/docs/man/file-split
https://www.stardog.com/docs/man/graphql-execute
https://www.stardog.com/docs/man/graphql-explain
https://www.stardog.com/docs/man/graphql-schema
https://www.stardog.com/docs/man/icv-convert
https://www.stardog.com/docs/man/icv-explain
https://www.stardog.com/docs/man/icv-export
https://www.stardog.com/docs/man/icv-fix
https://www.stardog.com/docs/man/icv-validate
https://www.stardog.com/docs/man/namespace-add
https://www.stardog.com/docs/man/namespace-export
https://www.stardog.com/docs/man/namespace-import
https://www.stardog.com/docs/man/namespace-list
https://www.stardog.com/docs/man/namespace-remove
https://www.stardog.com/docs/man/query-execute
https://www.stardog.com/docs/man/query-explain
https://www.stardog.com/docs/man/query-obfuscate
https://www.stardog.com/docs/man/query-search
https://www.stardog.com/docs/man/reasoning-consistency
https://www.stardog.com/docs/man/reasoning-explain
https://www.stardog.com/docs/man/reasoning-schema
https://www.stardog.com/docs/man/reasoning-undo
https://www.stardog.com/docs/man/tx-begin
https://www.stardog.com/docs/man/tx-commit
https://www.stardog.com/docs/man/tx-list
https://www.stardog.com/docs/man/tx-rollback
https://www.stardog.com/docs/man/vcs-commit
https://www.stardog.com/docs/man/vcs-diff
https://www.stardog.com/docs/man/vcs-list
https://www.stardog.com/docs/man/vcs-query
https://www.stardog.com/docs/man/vcs-revert
https://www.stardog.com/docs/man/vcs-tag
https://www.stardog.com/docs/man/cluster-generate
https://www.stardog.com/docs/man/cluster-info
https://www.stardog.com/docs/man/cluster-status
https://www.stardog.com/docs/man/cluster-stop
https://www.stardog.com/docs/man/cluster-zkstart
https://www.stardog.com/docs/man/cluster-zkstop


/

db backup  (/docs/man/db-backup), db copy  (/docs/man/db-copy), db create  (/docs/man/db-create), db
drop  (/docs/man/db-drop), db list  (/docs/man/db-list), db offline  (/docs/man/db-o�line), db online
(/docs/man/db-online), db optimize  (/docs/man/db-optimize), db repair  (/docs/man/db-repair), db restore
(/docs/man/db-restore), db status  (/docs/man/db-status)

function add  (/docs/man/function-add), function list  (/docs/man/function-list), function remove
(/docs/man/function-remove)

icv add  (/docs/man/icv-add), icv drop  (/docs/man/icv-drop), icv remove  (/docs/man/icv-remove)

license info  (/docs/man/license-info), license register  (/docs/man/license-register)

log print  (/docs/man/log-print)

metadata get  (/docs/man/metadata-get), metadata set  (/docs/man/metadata-set)

query kill  (/docs/man/query-kill), query list  (/docs/man/query-list), query status  (/docs/man/query-
status)

role add  (/docs/man/role-add), role grant  (/docs/man/role-grant), role list  (/docs/man/role-list), role
permission  (/docs/man/role-permission), role remove  (/docs/man/role-remove), role revoke
(/docs/man/role-revoke)

server metrics  (/docs/man/server-metrics), server profile  (/docs/man/server-profile), server start
(/docs/man/server-start), server status  (/docs/man/server-status), server stop  (/docs/man/server-stop)

stored add  (/docs/man/stored-add), stored list  (/docs/man/stored-list), stored remove  (/docs/man/stored-
remove)

user add  (/docs/man/user-add), user addrole  (/docs/man/user-addrole), user disable  (/docs/man/user-
disable), user enable  (/docs/man/user-enable), user grant  (/docs/man/user-grant), user list
(/docs/man/user-list), user passwd  (/docs/man/user-passwd), user permission  (/docs/man/user-permission),
user remove  (/docs/man/user-remove), user removerole  (/docs/man/user-removerole), user revoke

(/docs/man/user-revoke)

virtual add  (/docs/man/virtual-add), virtual import  (/docs/man/virtual-import), virtual list
(/docs/man/virtual-list), virtual mappings  (/docs/man/virtual-mappings), virtual options
(/docs/man/virtual-options), virtual remove  (/docs/man/virtual-remove)

zk clear  (/docs/man/zk-clear), zk info  (/docs/man/zk-info), zk start  (/docs/man/zk-start), zk stop
(/docs/man/zk-stop)

Installing Man Pages Locally

To install the man pages locally in your Unix-like environment:

ADMINISTERING STARDOG

In this chapter we describe the administration of Stardog Server and Stardog databases, including command-line
programs, configuration options, etc.

Security is an important part of Stardog administration; it’s discussed separately (Security (#_security)).

Command Line Interface

Stardog’s command-line interface (CLI) comes in two parts:

1. stardog-admin : administrative client

2. stardog : a user’s client

$ cp docs/man1/* /usr/local/share/man1 

$ cp docs/man8/* /usr/local/share/man8 

$ mandb 

$ man stardog-admin-server-start

https://www.stardog.com/docs/man/db-backup
https://www.stardog.com/docs/man/db-copy
https://www.stardog.com/docs/man/db-create
https://www.stardog.com/docs/man/db-drop
https://www.stardog.com/docs/man/db-list
https://www.stardog.com/docs/man/db-offline
https://www.stardog.com/docs/man/db-online
https://www.stardog.com/docs/man/db-optimize
https://www.stardog.com/docs/man/db-repair
https://www.stardog.com/docs/man/db-restore
https://www.stardog.com/docs/man/db-status
https://www.stardog.com/docs/man/function-add
https://www.stardog.com/docs/man/function-list
https://www.stardog.com/docs/man/function-remove
https://www.stardog.com/docs/man/icv-add
https://www.stardog.com/docs/man/icv-drop
https://www.stardog.com/docs/man/icv-remove
https://www.stardog.com/docs/man/license-info
https://www.stardog.com/docs/man/license-register
https://www.stardog.com/docs/man/log-print
https://www.stardog.com/docs/man/metadata-get
https://www.stardog.com/docs/man/metadata-set
https://www.stardog.com/docs/man/query-kill
https://www.stardog.com/docs/man/query-list
https://www.stardog.com/docs/man/query-status
https://www.stardog.com/docs/man/role-add
https://www.stardog.com/docs/man/role-grant
https://www.stardog.com/docs/man/role-list
https://www.stardog.com/docs/man/role-permission
https://www.stardog.com/docs/man/role-remove
https://www.stardog.com/docs/man/role-revoke
https://www.stardog.com/docs/man/server-metrics
https://www.stardog.com/docs/man/server-profile
https://www.stardog.com/docs/man/server-start
https://www.stardog.com/docs/man/server-status
https://www.stardog.com/docs/man/server-stop
https://www.stardog.com/docs/man/stored-add
https://www.stardog.com/docs/man/stored-list
https://www.stardog.com/docs/man/stored-remove
https://www.stardog.com/docs/man/user-add
https://www.stardog.com/docs/man/user-addrole
https://www.stardog.com/docs/man/user-disable
https://www.stardog.com/docs/man/user-enable
https://www.stardog.com/docs/man/user-grant
https://www.stardog.com/docs/man/user-list
https://www.stardog.com/docs/man/user-passwd
https://www.stardog.com/docs/man/user-permission
https://www.stardog.com/docs/man/user-remove
https://www.stardog.com/docs/man/user-removerole
https://www.stardog.com/docs/man/user-revoke
https://www.stardog.com/docs/man/virtual-add
https://www.stardog.com/docs/man/virtual-import
https://www.stardog.com/docs/man/virtual-list
https://www.stardog.com/docs/man/virtual-mappings
https://www.stardog.com/docs/man/virtual-options
https://www.stardog.com/docs/man/virtual-remove
https://www.stardog.com/docs/man/zk-clear
https://www.stardog.com/docs/man/zk-info
https://www.stardog.com/docs/man/zk-start
https://www.stardog.com/docs/man/zk-stop


/

The admin and user’s tools operate on local or remote databases using HTTP protocol. These CLI tools are Unix-only,
are self-documenting, and the help output of these tools is their canonical documentation.

Help

To use the Stardog CLI tools, you can start by asking them to display help:

Or:

These work too:

Security Considerations

We divide administrative functionality into two CLI programs for reasons of security: stardog-admin  will need, in
production environments, to have considerably tighter access restrictions than stardog .

CAUTION

For usability, Stardog provides a default user "admin" and password "admin" in stardog-admin
commands if no user or password are given. This is insecure; before any serious use of Stardog is
contemplated, read the Security section at least twice, and then— minimally— change the
administrative password to something we haven’t published on the interwebs!

Command Groups

The CLI tools use "command groups" to make CLI subcommands easier to find. To print help for a particular command
group, just ask for help:

The command groups and their subcommands:

data: add, remove, export;

query: search, execute, explain, status;

reasoning: explain, consistency;

namespace: add, list, remove;

server: start, stop;

metadata: get, set;

user: add, drop, edit, grant, list, permission, revoke, passwd;

role: add, drop, grant, list, permission, revoke;

db: backup, copy, create, drop, migrate, optimize, list, online, o�line, repair, restore, status;

virtual: add, import, list, mappings, options, remove.

NOTE See the man pages for the canonical list of commands.

The main help command for either CLI tool will print a listing of the command groups:

[7 (#_footnote_7)]

stardog help

$ stardog-admin help

$ stardog 

$ stardog-admin

$ stardog help [command_group_name]



/

To get more information about a particular command, simply issue the help command for it including its command
group:

Finally, everything here about command groups, commands, and online help works for stardog-admin , too:

Autocomplete

Stardog also supports CLI autocomplete via bash  autocompletion. To install autocomplete for bash shell, you’ll first
want to make sure bash completion is installed:

Homebrew

To install:

To enable, edit .bash\_profile :

MacPorts

First, you really should be using Homebrew… ya heard?

If not, then:

Then, edit .bash\_profile :

Ubuntu

And for our Linux friends:

Fedora

usage: stardog <command> [ <args> ] 

 

The most commonly used stardog commands are: 

    data        Commands which can modify or dump the contents of a database 

    help        Display help information 

    icv         Commands for working with Stardog Integrity Constraint support 

    namespace   Commands which work with the namespaces defined for a database 

    query       Commands which query a Stardog database 

    reasoning   Commands which use the reasoning capabilities of a Stardog database 

    version     Prints information about this version of Stardog 

 

See 'stardog help' for more information on a specific command.

$ stardog help query execute

$ stardog reasoning consistency -u myUsername -p myPassword -r myDB 

 

$ stardog-admin db migrate -u myUsername -p myPassword myDb

$ brew install bash-completion

if [ -f `brew --prefix`/etc/bash_completion ]; then 

  . `brew --prefix`/etc/bash_completion 

fi

$ sudo port install bash-completion

if [ -f /opt/local/etc/bash_completion ]; then 

   . /opt/local/etc/bash_completion 

fi

$ sudo apt-get install bash-completion



/

All Platforms

Now put the Stardog autocomplete script— stardog-completion.sh —into your bash\_completion.d  directory,
typically one of /etc/bash_completion.d, /usr/local/etc/bash_completion.d or ~/bash_completion.d.

Alternately you can put it anywhere you want, but tell .bash_profile  about it:

How to Make a Connection String

You need to know how to make a connection string to talk to a Stardog database. A connection string may consist solely
of the database name in cases where

1. Stardog is listening on the standard port 5820; and

2. the command is invoked on the same machine where the server is running.

In other cases, a "fully qualified" connection string, as described below, is required.

Further, the connection string is now assumed to be the first argument of any command that requires a connection
string. Some CLI subcommands require a Stardog connection string as an argument to identify the server and database
upon which operations are to be performed.

Connection strings are URLs and may either be local to the machine where the CLI is run or they may be on some other
remote machine.

Stardog connection strings use the http://  protocol scheme.

Example Connection Strings

To make a connection string, you need to know the machine name and the port Stardog Server is running on and the
name of the database:

Here are some example connection strings:

Using the default port for Stardog’s use of HTTP protocol simplifies connection strings. connectionOptions  are a
series of ;  delimited key-value pairs which themselves are =  delimited. Key names must be lowercase and their
values are case-sensitive.

Server Admin

Stardog Server supports all the administrative functions over the HTTP protocol.

Upgrading Stardog Server

The process of installation is pretty simple; see the Quick Start Guide (#_quick_start_guide) for details.

But how do we easily upgrade between versions? The key is judicious use of STARDOG_HOME . Best practice is to keep
installation directories for di�erent versions separate and use a STARDOG_HOME  in another location for storing
databases.  Once you set your STARDOG_HOME  environment variable to point to this directory, you

$ sudo yum install bash-completion

source ~/.stardog-completion.sh

{scheme}{machineName}:{port}/{databaseName};{connectionOptions}

http://server/billion-triples-punk 

http://localhost:5000/myDatabase 

http://169.175.100.5:1111/myOtherDatabase;reasoning=true

[8 (#_footnote_8)]



/

can simply stop the old version and start the new version without copying or moving any files. You can also specify the
home directory using the --home  argument when starting the server.

Server Security

See the Security (#_security) section for information about Stardog’s security system, secure deployment patterns, and
more.

Configuring Stardog Server

NOTE
The properties described in this section control the behavior of the Stardog Server; to set properties
or other metadata on individual Stardog databases, see Database Admin.

Stardog Server’s behavior can be configured via the JVM arg stardog.home , which sets Stardog Home, overriding the
value of STARDOG_HOME  set as an environment variable. Stardog Server’s behavior can also be configured via a
stardog.properties —which is a Java Properties file—file in STARDOG_HOME . To change the behavior of a running

Stardog Server, it is necessary to restart it.

Configuring Temporary ("Scratch") Space

Stardog uses the value of the JVM argument java.io.tmpdir  to write temporary files for many di�erent operations. If
you want to configure temp space to use a particular disk volume or partition, use the java.io.tmpdir  JVM argument
on Stardog startup.

Bad (or, at least, weird) things are guaranteed to happen if this part of the filesystem runs out of (or even low on) free
disk space. Stardog will delete temporary files when they’re no longer needed. But Stardog admins should configure
their monitoring systems to make sure that free disk space is always available, both on java.io.tmpdir  and on the
disk volume that hosts STARDOG_HOME .

Stardog Configuration

The following twiddly knobs for Stardog Server are available in stardog.properties :

1. query.all.graphs : Controls what data Stardog Server evaluates queries against; if true , it will query over the
default graph and the union of all named graphs; if false  (the default), it will query only over the default graph.

2. query.pp.contexts : Controls how property paths interact with named graphs in the data. When set to true  and
the property path pattern is in the default scope (i.e. not inside a graph  keyword), Stardog will check that paths do
not span multiple named graphs (per 18.1.7 (https://www.w3.org/TR/sparql11-query/#sparqlPropertyPaths)). For
this to a�ect query results either there should be multiple FROM  clauses or query.all.graphs  must be also set
to true.

3. query.timeout : Sets the upper bound for query execution time that’s inherited by all databases unless explicitly
overriden. See Managing Query Performance (#_managing_query_performance) section below for details.

4. logging.[access,audit].[enabled,type,file] : Controls whether and how Stardog logs server events;
described in detail below.

5. logging.slow_query.enabled , logging.slow_query.time , logging.slow_query.type : The three slow
query logging options are used in the following way. To enable logging of slow queries, set enabled  to true . To
define what counts as a "slow" query, set time  to a time duration value (positive integer plus "h", "m", "s", or "ms"
for hours, minutes, seconds, or milliseconds respectively). To set the type of logging, set type  to text  (the
default) or binary . A logging.slow_query.time  that exceeds the value of query.timeout  will result in empty
log entries.**

6. http.max.request.parameters : Default is 1024; any value smaller than Integer.MAX_VALUE  may be provided.
Useful if you have lots of named graphs and are at risk of blowing out the value of
http.max.request.parameters .

7. database.connection.timeout : The amount of time a connection to the database can be open, but inactive,
before being automatically closed to reclaim the resources. The timeout values specified in the property file should
be a positive integer followed by either letter h  (for hours), letter m  (for minutes), letter s  (for seconds), or letters
ms  (for milliseconds). Example intervals: 1h  for 1 hour, 5m  for 5 minutes, 90s  for 90 seconds, 500ms  for 500

milliseconds. Default value is 1h . NOTE: setting a short timeout can have adverse results, especially if updates
are being performed without commit changes to the server, closing the connection prematurely while using it.

[9 (#_footnote_9)]

[10 (#_footnote_10)]

https://www.w3.org/TR/sparql11-query/#sparqlPropertyPaths


/

8. password.length.min : Sets the password policy for the minimum length of user passwords, the value can’t be
lower than password.length.min  or greater than password.length.max . Default: 4 .

9. password.length.max : Sets the password policy for the maximum length of user passwords. Default: 1024 .

10. password.regex : Sets the password policy of accepted chars in user passwords, via a Java regular expression.
Default: [\w@#$%!&]+

11. security.named.graphs : Sets named graph security on globally. Default: false .

12. spatial.use.jts : Enabled support for JTS in the geospatial module. Default: false

Starting & Stopping the Server

NOTE
Unlike the other stardog-admin  subcommands, starting the server may only be run locally, i.e., on
the same machine the Stardog Server is will run on.

The simplest way to start the server—running on the default port, detaching to run as a daemon, and writing
stardog.log  to the current working directory— is

To specify parameters:

The port can be specified using the property --port .

To shut the server down:

If you started Stardog on a port other than the default, or want to shut down a remote server, you can simply use the --
server  option to specify the location of the server to shutdown.

By default Stardog will bind it’s server to 0.0.0.0 . You can specify a di�erent network interface for Stardog to bind to
using the --bind  property of server start .

Server Monitoring

Stardog provides server monitoring via the Metrics library (http://metrics.dropwizard.io/). In addition to providing some
basic JVM information, Stardog also exports information about the Stardog DBMS configuration as well as stats for all
databases within the system, such as the total number of open connections, size, and average query time.

Accessing Monitoring Information

Monitoring information is available via the Java API, the HTTP API, the CLI or (if configured) the JMX interface.
Performing a GET  on /admin/status  which will return a JSON object containing the information available the server
and all the databases. The endpoint DB/status  will return the monitoring information about the database status. The
stardog-admin server status  command will print a subset of this information on the console.

Configuring JMX Monitoring

By default, JMX monitoring is not enabled. You can enable it by setting metrics.reporter=jmx  in the
stardog.properties  file. Then, you can simply use a tool like VisualVM or JConsole to attach to the process running

the JVM, or connect directly to the JMX server.

If you want to connect to the JMX server remotely you need to set metrics.jmx.remote.access=true  in
stardog.properties . Stardog will bind an RMI server for remote access on port 5833 . If you want to change this port

Stardog binds the remote server to, you can set the property metrics.jmx.port  in stardog.properties .

Finally, if you wish to disable monitoring completely, set metrics.enabled  to false  in stardog.properties .

$ stardog-admin server start

$ stardog-admin server start --require-ssl --port=8080

$ stardog-admin server stop

http://metrics.dropwizard.io/


/

Locking Stardog Home

Stardog Server will lock STARDOG_HOME  when it starts to prevent synchronization errors and other nasties if you start
more than one Stardog Server with the same STARDOG_HOME . If you need to run more than one Stardog Server
instance, choose a di�erent STARDOG_HOME  or pass a di�erent value to --home .

Access & Audit Logging

See the exemplar stardog.properties  (https://github.com/Complexible/stardog-
examples/blob/master/config/stardog.properties) file for a complete discussion of how access and audit logging work
in Stardog Server. Audit logging is a superset of the events in access logging. Access logging covers the most o�en
required logging events; you should consider enabling audit logging if you really need to log every server event.
Logging generally doesn’t have much impact on performance; but the safest way to insure that impact is negligible is to
log to a separate disk (or to a centralized logging server, etc.).

The important configuration choices are whether logs should be binary or plain text (both based on ProtocolBu�er
message formats); the type of logging (audit or access); the logging location (which may be "o� disk" or even "o�
machine") Logging to a centralized logging facility requires a Java plugin that implements the Stardog Server logging
interface; see Java Programming (#_java_programming) for more information; and the log rotation policy (file size or
time).

Slow query logging is also available. See the Managing Running Queries (#_managing_running_queries) section below.

Database Admin

Stardog is a multi-tenancy system and will happily give access to many, physically distinct databases.

Configuring a Database

To administer a Stardog database, some config options must be set at creation time; others may be changed
subsequently and some may never be changed. All config options have sensible defaults (except for the database
name), so you don’t have to twiddle any of the knobs till you really need to.

To configure a database, use the metadata-get  and metadata-set  CLI commands. See Man Pages (#_man_pages)
for the details.

Configuration Options

1. Table of Configuration Options

Option Mutable Default API

database.archetypes Yes DatabaseOptions.ARCHETYPES
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#ARCHETYPES)

The name of one or more database archetypes.

database.connection.timeout Yes 1h DatabaseOptions.CONNECTION_TIMEOUT
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#CONNECTION_TIMEO

Same as database.connection.timeout  described in Stardog Configuration (#_stardog_configuration) but applies only to one database.

database.name No DatabaseOptions.NAME (/docs/java/snarl/com/complexible/stardog/db/databaseoptio

A database name, the legal value of which is given by the regular expression [A-Za-z]{1}[A-Za-z0-9_-].

database.namespaces Yes rdf, rdfs,

xsd, owl,

stardog

DatabaseOptions.NAMESPACES
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#NAMESPACES)

Sets the default namespaces for new databases.

database.online No true DatabaseOptions.ONLINE (/docs/java/snarl/com/complexible/stardog/db/databaseopt

https://github.com/Complexible/stardog-examples/blob/master/config/stardog.properties
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#ARCHETYPES
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#CONNECTION_TIMEOUT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#NAME
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#NAMESPACES
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#ONLINE


/

Option Mutable Default API

The status of the database: online or o�line. It may be set so that the database is created initially in online or o�line status; subsequently, it can’t be set directly but o
relevant admin commands.

docs.default.rdf.extractors Yes tika BitesOptions.DOCS_DEFAULT_RDF_EXTRACTORS
(/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_DEFAULT_RDF_E

Comma-separated list of names of RDF extractors to use when processing documents when no RDF extractor names are given.

docs.default.text.extractors Yes tika BitesOptions.DOCS_DEFAULT_TEXT_EXTRACTORS
(/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_DEFAULT_TEXT_

Comma-separated list of names of text extractors to use when processing documents when no text extractor names are given.

docs.filesystem.uri Yes file:///

(file:///)

BitesOptions.DOCS_FILESYSTEM_URI
(/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_FILESYSTEM_UR

A URI indicating which FileSystem  provider to use for document storage. In addition to local storage ( file:/// (file:///) ), documents can be stored on Amazo
document storage can be disabled altogether ( none ).

docs.opennlp.models.path Yes BitesOptions.DOCS_OPENNLP_MODELS_PATH
(/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_OPENNLP_MOD

The directory where OpenNLP models are located. See Entity Extraction and Linking (#_entity_extraction_and_linking) for details.

docs.path Yes docs/ BitesOptions.DOCS_PATH (/docs/java/snarl/com/complexible/stardog/docs/bitesoptio

The path under which documents will be stored. A relative path is relative to the database directory. S3 storage should specify an absolute path with the bucket name
the path.

docs.s3.protocol Yes https BitesOptions.DOCS_S3_PROTOCOL
(/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_S3_PROTOCOL)

Protocol used when storing on S3 (and compatible) stores. Can be set to http to disable TLS/SSL.

icv.active.graphs No default ICVOptions.ICV_ACTIVE_GRAPHS
(/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_ACTIVE_GRAPHS)

Specifies which part of the database, in terms of named graphs, is checked with IC validation. Set to tag:stardog:api:context:all  to validate all the named grap
otherwise, the legal value of icv.active.graphs  is a comma-separated list of named graph identifiers.

icv.consistency.automatic Yes false ICVOptions.ICV_CONSISTENCY_AUTOMATIC
(/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_CONSISTENCY_AUTOM

Enables automatic ICV consistency check as part of transactions.

icv.enabled Yes false ICVOptions.ICV_ENABLED (/docs/java/snarl/com/complexible/stardog/icv/icvoptions#I

Determines whether ICV is active for the database; if true, all database mutations are subject to IC validation (i.e., "guard mode").

icv.reasoning.enabled Yes false ICVOptions.ICV_REASONING_ENABLED
(/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_REASONING_ENABLED

Determines if reasoning is used during IC validation.

index.differential.enable.limit Yes 500,000 IndexOptions.DIFF_INDEX_MIN_LIMIT
(/docs/java/snarl/com/complexible/stardog/index/indexoptions#DIFF_INDEX_MIN_LIM

Sets the minimum size of the Stardog database before di�erential indexes are used. The legal value is an integer.

index.differential.merge.limit Yes 20,000 IndexOptions.DIFF_INDEX_MAX_LIMIT
(/docs/java/snarl/com/complexible/stardog/index/indexoptions#DIFF_INDEX_MAX_LIM

Sets the size in number of RDF triples before the di�erential indexes are merged to the main indexes. The legal value is an integer.

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_DEFAULT_RDF_EXTRACTORS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_DEFAULT_TEXT_EXTRACTORS
file:///
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_FILESYSTEM_URI
file:///
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_OPENNLP_MODELS_PATH
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_PATH
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/bitesoptions#DOCS_S3_PROTOCOL
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_ACTIVE_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_CONSISTENCY_AUTOMATIC
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_ENABLED
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/icv/icvoptions#ICV_REASONING_ENABLED
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#DIFF_INDEX_MIN_LIMIT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#DIFF_INDEX_MAX_LIMIT


/

Option Mutable Default API

index.literals.canonical No true IndexOptions.CANONICAL_LITERALS
(/docs/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERAL

Enables RDF literal canonicalization.

index.named.graphs No true IndexOptions.INDEX_NAMED_GRAPHS
(/docs/java/snarl/com/complexible/stardog/index/indexoptions#INDEX_NAMED_GRAP

Enables optimized index support for named graphs; speeds SPARQL query evaluation with named graphs at the cost of some overhead for database loading and inde

index.statistics.update.automatic Yes true IndexOptions.AUTO_STATS_UPDATE
(/docs/java/snarl/com/complexible/stardog/index/indexoptions#AUTO_STATS_UPDATE

Determines whether statistics are maintained automatically.

index.statistics.update.min.size Yes 10000 IndexOptions.STATS_UPDATE_DB_MIN_SIZE
(/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_DB_M

Minimum number of triples that should be in the database for statistics to be updated automatically.

index.statistics.update.ratio Yes 0.1 IndexOptions.STATS_UPDATE_RATIO
(/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_RATIO

Ratio of updated triples to the number of triples in the database that triggers the automatic statistics computation in a background thread. This option has no e�ect i
index.statistics.update.automatic  is o� or the index size is less than index.statistics.update.min.size .

index.statistics.update.blocking.ratio Yes 0.0 IndexOptions.STATS_UPDATE_BLOCKING_RAITO
(/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_BLOC

Similar to index.statistics.update.ratio but once the updates go over this limit statistics computation will be performed synchronously within the transaction 
background thread. Setting this option to a non-positive number ({@code ⇐ 0}) will disable blocking updates.

preserve.bnode.ids No true DatabaseOptions.PRESERVE_BNODE_IDS
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#PRESERVE_BNODE_I

Determines how the Stardog parser handles bnode identifiers that may be present in RDF input. If this property is enabled (i.e., TRUE ), parsing and data loading perfo
improved; but the other e�ect is that if distinct input files use (randomly or intentionally) the same bnode identifier, that bnode will point to one and the same node i
have input files that use explicit bnode identifiers, and more than one of those files may use the same bnode identifiers, and you don’t want those bnodes to be smus
node in the database, then this configuration option should be disabled (set to FALSE ).

query.all.graphs Yes false DatabaseOptions.QUERY_ALL_GRAPHS
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_ALL_GRAPHS

Determines what data the database evaluates queries against; if true , it will query over the default graph and the union of all named graphs; if false  (the default), 
the default graph. This database option overrides any global server settings.

query.describe.strategy Yes default DatabaseOptions.QUERY_DESCRIBE_STRATEGY
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_DESCRIBE_S

Option to set the default DESCRIBE query strategy for the database

query.pp.contexts Yes false DatabaseOptions.PROPERTY_PATH_CONTEXTS
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#PROPERTY_PATH_CO

Determines how property paths interact with named graphs in the data. When set to true  and the property path pattern is in the default scope (i.e. not inside a grap
will check that paths do not span multiple named graphs (per 18.1.7 (https://www.w3.org/TR/sparql11-query/#sparqlPropertyPaths)). For this to a�ect query results 
multiple FROM  clauses or query.all.graphs  must be also set to true. This database option overrides any global server settings.

query.plan.reuse Yes Always DatabaseOptions.QUERY_PLAN_REUSE
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_PLAN_REUSE

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERALS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#INDEX_NAMED_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#AUTO_STATS_UPDATE
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_DB_MIN_SIZE
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_RATIO
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/index/indexoptions#STATS_UPDATE_BLOCKING_RAITO
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#PRESERVE_BNODE_IDS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_ALL_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_DESCRIBE_STRATEGY
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#PROPERTY_PATH_CONTEXTS
https://www.w3.org/TR/sparql11-query/#sparqlPropertyPaths
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_PLAN_REUSE


/

Option Mutable Default API

Option for configuring how Stardog will reuse query plans. Stardog answers queries by first generating an execution plan. Generating an optimal query plan is hard a
these plans are cached and reused for structurally equivalent queries; i.e. queries such that one can be transformed into another by replacing constants. This option 
conditions under which a cached plan will be reused. See QueryPlanReuse (/docs/java/snarl/com/complexible/stardog/queryplanreuse) for the available values.

query.timeout Yes DatabaseOptions.QUERY_TIMEOUT
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_TIMEOUT)

Determines max execution time for query evaluation.

reasoning.consistency.automatic Yes false ReasoningOptions.CONSISTENCY_AUTOMATIC
(/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#CONSISTENC

Enables automatic consistency checking with respect to a transaction.

reasoning.punning.enabled Yes false ReasoningOptions.PUNNING_ENABLED
(/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#PUNNING_E

Enables punning.

reasoning.schema.graphs Yes * ReasoningOptions.SCHEMA_GRAPHS
(/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMA_GR

Determines which, if any, named graph or graphs contains the "TBox", i.e., the schema part of the data. The legal value is a comma-separated list of named graph ide
(optionally) the special names, tag:stardog:api:context:default  and tag:stardog:api:context:all , which represent the default graph and the union of al
the default graph, respectively. In the context of database configurations only, Stardog will recognize default  and *  as short forms of those URIs, respectively.

reasoning.type Yes SL

Specifies the reasoning type associated with the database; legal values are SL , RL , QL , EL , DL , RDFS , and NONE .

reasoning.approximate Yes false ReasoningOptions.APPROXIMATE
(/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMA_GR

Enables approximate reasoning. With this flag enabled Stardog will approximate an axiom that is outside the profile Stardog supports and normally ignored. For exam
class axiom might be split into two subclass axioms and only one subclass axiom is used.

reasoning.sameas Yes OFF ReasoningOptions.EQUALITY_REASONING
(/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#EQUALITY_R

Option to enable owl:sameAs  reasoning. When this option is set to ON  reflexive, symmetric, and transitive closure of the owl:sameAs  triples in the database is com
to FULL , owl:sameAs  inferences are computed based on the schema axioms such as functional properties.

search.enabled Yes false SearchOptions.SEARCHABLE
(/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCHABLE)

Enables semantic search for the database.

search.wildcard.search.enabled Yes false SearchOptions.LEADING_WILDCARD_SEARCH_ENABLED
(/docs/java/snarl/com/complexible/stardog/search/searchoptions#LEADING_WILDCAR

Enable support in Lucene for searches with leading wildcards.

search.default.limit Yes -1 SearchOptions.SEARCH_DEFAULT_LIMIT
(/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCH_DEFAULT_

Specify the default limit on the number of results returned from a full-text search (-1 returns all results)

search.reindex.tx Yes true SearchOptions.SEARCH_REINDEX_IN_TX
(/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCH_REINDEX_

If false , literals added during a transaction are not automatically indexed; users need to optimize  the database in order to make them available for search.

spatial.enabled Yes false GeospatialOptions.SPATIAL_ENABLED
(/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_ENABL

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/queryplanreuse
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#QUERY_TIMEOUT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#CONSISTENCY_AUTOMATIC
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#PUNNING_ENABLED
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMA_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#SCHEMA_GRAPHS
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/reasoning/reasoningoptions#EQUALITY_REASONING
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCHABLE
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#LEADING_WILDCARD_SEARCH_ENABLED
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCH_DEFAULT_LIMIT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/search/searchoptions#SEARCH_REINDEX_IN_TX
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_ENABLED


/

Option Mutable Default API

Enables geospatial search for the database.

spatial.result.limit Yes 10000 GeospatialOptions.SPATIAL_RESULT_LIMIT
(/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_RESUL

Specify the default limit on the number of results returned from a geospatial query (-1 returns all results)

spatial.precision No 11 GeospatialOptions.SPATIAL_PRECISION
(/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_PRECI

Specifies the precision used for the indexing of geospatial data. The smaller the value, the less precision.

strict.parsing No true DatabaseOptions.STRICT_PARSING
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#STRICT_PARSING)

Controls whether Stardog parses RDF strictly ( true , the default) or loosely ( false )

transaction.isolation Yes SNAPSHOT DatabaseOptions.TRANSACTION_ISOLATION
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_ISOLA

Configures isolation level for transactions; legal values are SNAPSHOT and SERIALIZABLE.

transaction.logging Yes false DatabaseOptions.TRANSACTION_LOGGING
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGG

Enables logged transactions. Logged transactions are activated by default in Cluster mode.

transaction.logging.rotation.size Yes 524288000 DatabaseOptions.TRANSACTION_LOGGING_ROTATION_SIZE
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGG

When transaction.logging  is true , it determines the size (in bytes) at which the transaction log will be rotated. Default is 500 MB.

transaction.logging.rotation.remove Yes true DatabaseOptions.TRANSACTION_LOGGING_ROTATION_REMOVE
(/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGG

When transaction.logging  is true , it determines that old log files will be deleted a�er rotation. Default is true.

A Note About Database Status

A database must be set to offline  status before most configuration parameters may be changed. Hence, the normal
routine is to set the database o�line, change the parameters, and then set the database to online. All of these
operations may be done programmatically from CLI tools, such that they can be scripted in advance to minimize
downtime. In a future version, we will allow some properties to be set while the database remains online.

Managing Database Status

Databases are either online or o�line; this allows database maintenance to be decoupled from server maintenance.

Online and O�line

Databases are put online or o�line synchronously: these operations block until other database activity is completed or
terminated. See stardog-admin help db  for details.

Examples

To set a database from o�line to online:

To set the database online:

$ stardog-admin db offline myDatabase

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_RESULT_LIMIT
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/spatial/geospatialoptions#SPATIAL_PRECISION
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#STRICT_PARSING
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_ISOLATION
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGGING
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGGING
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/db/databaseoptions#TRANSACTION_LOGGING


/

If Stardog Server is shutdown while a database is o�line, the database will be o�line when the server restarts.

Creating a Database

Stardog databases may be created locally or remotely; but performance is better if data files don’t have to be
transferred over a network during creation and initial loading. See the section below about loading compressed data.
All data files, indexes, and server metadata for the new database will be stored in Stardog Home. Stardog won’t create a
database with the same name as an existing database. Stardog database names must conform to the regular
expression, [A-Za-z]{1}[A-Za-z0-9_-] .

NOTE
There are four reserved words that may not be used for the names of Stardog databases: system ,
admin , and docs .

Minimally, the only thing you must know to create a Stardog database is a database name; alternately, you may
customize some other database parameters and options depending on anticipated workloads, data modeling, and
other factors.

See stardog-admin help db create  for all the details including examples.

Database Archetypes

Stardog database archetypes are a new feature in 2.0. A database archetype is a named, vendor-defined or user-defined
bundle of data and functionality to be applied at database-creation time. Archetypes are primarily for supporting data
standards or tool chain configurations in a simple way.

For example, the SKOS standard from W3C defines an OWL vocabulary for building taxonomies, thesauruses, etc. SKOS
is made up by a vocabulary, some constraints, some kinds of reasoning, and (typically) some SPARQL queries. If you are
developing an app that uses SKOS, without Stardog’s SKOS archetype, you are responsible for assembling all that SKOS
stu� yourself. Which is tedious, error-prone, and unrewarding— even when it’s done right the first time.

Rather than putting that burden on Stardog users, we’ve created database archetypes as a mechanism to collect these
"bundles of stu�" which, as a developer, you can then simply attach to a particular database.

The last point to make is that archetypes are composable: you can mix-and-match them at database creation time as
needed.

Stardog supports two database archetypes out-of-the-box: PROV (http://www.w3.org/TR/prov-overview/) and SKOS
(http://www.w3.org/2004/02/skos/).

SKOS Archetype

The SKOS archetype is for databases that will contain SKOS data, and includes the SKOS schema, SKOS constraints
using Stardog’s Integrity Constraint Validation, and some namespace-prefix bindings.

PROV Archetype

The PROV archetype is for databases that will contain PROV data, and includes the SKOS schema, SKOS constraints
using Stardog’s Integrity Constraint Validation, and some namespace-prefix bindings.

Archetypes are composable, so you can use more of them and they are intended to be used alongside your domain
data, which may include as many other schemas, ontologies, etc. as are required.

User-defined Archetypes

Please see the Stardog Examples repository (https://github.com/Complexible/stardog-
examples/blob/master/examples/foaf/readme.md) on Github for an example that shows how to create your own
Stardog archetype.

Database Creation Templates

$ stardog-admin db online myDatabase

http://www.w3.org/TR/prov-overview/
http://www.w3.org/2004/02/skos/
https://github.com/Complexible/stardog-examples/blob/master/examples/foaf/readme.md


/

As a boon to the overworked admin or devops peeps, Stardog Server supports database creation templates: you can
pass a Java Properties file with config values set and with the values (typically just the database name) that are unique
to a specific database passed in CLI parameters.

Examples

To create a new database with the default options by simply providing a name and a set of initial datasets to load:

Datasets can be loaded later as well. To create (in this case, an empty) database from a template file:

At a minimum, the configuration file must have a value for database.name  option.

If you only want to change only a few configuration options you can directly give the values for these options in the CLI
args as follows:

“--” is used in this case when “-o” is the last option to delimit the value for “-o” from the files to be bulk loaded.

Please refer to the CLI help for more details of the db create  command.

Database Create Options

2. Table of Options for Stardog’s create  command

Name Description Arg values Default

--name , -n Required, the name of the
database to create

--copy-server-side, Flag to specify whether
bulk loaded files should
be first copied to the
server

false

--type , -t Specifies the kind of
database indexes:
memory or disk

M , D disk

--index-triples-only ,
-i

Specifies that the
database’s indexes should
be optimized for RDF
triples only

false

Repairing a Database

If an I/O error or an index exception occurs while querying a DB, the DB may be corrupted and repaired with the repair
command. If the errors occur during executing admin commands, then the system DB may have been corrupted.
System database corruptions can also cause other problems including authorization errors.

This command needs exclusive access to your Stardog home directory and therefore requires the Stardog Server not to
be running. This also means that the command can only be run on the machine where the Stardog home directory is
located, and you will not be able to start the Stardog Server while this command is running.

NOTE The repair process can take considerable time for large databases.

$ stardog-admin db create -n myDb input.ttl another_file.rdf moredata.rdf.gz

$ stardog-admin db create -c database.properties

$ stardog-admin db create -n db -o icv.enabled=true icv.reasoning.enabled=true -- input.ttl



/

If the built-in Stardog system database is corrupted, then you can use the database name system  as the repair
argument. To repair the database myDB:

To repair the system database:

Backing Up and Restoring

Stardog includes both physical and logical backup utilities; logical backups are accomplished using the export  CLI
command. Physical backups and restores are accomplished using stardog-admin db backup  and stardog-admin
db restore  commands, respectively.

These tools perform physical backups, including database metadata, rather than logical backups via some RDF
serialization. They are native Stardog backups and can only be restored with Stardog tools. Backup may be
accomplished while a database is online; backup is performed in a read transaction: reads and writes may continue, but
writes performed during the backup are not reflected in the backup.

See the man pages for backup  (/man/db-backup.html) and restore  (/man/db-restore.html) for details.

Backup

stardog-admin db backup  assumes a default location for its output, namely, $STARDOG_HOME/.backup ; that default
may be overriden by passing a -t  or --to  argument. Backup sets are stored in the backup directory by database
name and then in date-versioned subdirectories for each backup volume. You can use a variety of OS-specific options to
do remote backups over some network or data protocol; those options are le� as an exercise for the admin.

To backup a Stardog database called foobar :

To perform a remote backup, for example, pass in a specific directory that may be mounted in the current OS
namespace via some network protocol, thus:

Backups can also be performed directly to S3. To do so use an S3 URL in the following format:

The endpoint hostname  and endpoint port  values are only used for on-premises S3 clones. To use Amazon S3
those values can be le� blank and the URL will have three /  before the bucket, eg s3:///mybucket/backup/prefix?
region=us-east-1&AWS_ACCESS_KEY_ID=accessKey&AWS_SECRET_ACCESS_KEY=secret

A default S3 backup location can also be specified in the stardog.properties  file with the key backup.location .

Restore

To restore a Stardog database from a Stardog backup volume, simply pass a fully-qualified path to the volume in
question. The location of the backup should be the full path to the backup, not the location of the backup directory as
specified in your Stardog configuration. There is no need to specify the name of the database to restore.

To restore a database from its backup:

$ stardog-admin db repair myDB

$ stardog-admin db repair system

$ stardog-admin db backup foobar

$ stardog-admin db backup --to /my/network/share/stardog-backups foobar

s3://[<endpoint hostname>:<endpoint port>]/<bucket name>/<path prefix>?region=<AWS 

Region>&AWS_ACCESS_KEY_ID=<access key>&AWS_SECRET_ACCESS_KEY=<verySecretKey1>

$ stardog-admin db restore $STARDOG_HOME/.backups/myDb/2012-06-21

https://www.stardog.com/man/db-backup.html
https://www.stardog.com/man/db-restore.html


/

Backups can also be restored directly from S3 by using an S3 URL in the following format:

Note: Unlike the backup URL the database name must be specified as the last entry of the path  field in the URL.

Restore On Startup

Stardog can be configured to automatically restore databases from a backup location on startup. For example, when a
Stardog cluster node first starts it could pull all of the database data down from an S3 backup before joining the cluster.

There are two options that control this behavior.

3. Table of Auto-restore options

Option Description

backup.autorestore.dbnames A regular expression that matches the names of the
databases to automatically restore on startup, eg: .* for
every database.

backup.autorestore.onfailure A boolean value that determines if all databases which
failed to load should be automatically restored from a
backup location.

One-time Database Migrations for Backup

The backup system cannot directly backup databases created in versions before 2.1. These databases must be explicitly
migrated to use the new backup system; this is a one-time operation per database and is accomplished by running

to migrate a database called foobar . Again, this is a one-time operation only and all databases created with 2.1 (or
later) do not require it.

Namespace Prefix Bindings

Stardog allows database administrators to persist and manage custom namespace prefix bindings:

1. At database creation time, if data is loaded to the database that has namespace prefixes, then those are persisted
for the life of the database. This includes setting the default namespace to the default that appears in the file. Any
subsequent queries to the database may simply omit the PREFIX  declarations:

2. To add new bindings, use the namespace  subcommand in the CLI:

3. To change the default binding, use a quote prefix when adding a new one:

4. To change an existing binding, delete the existing one and then add a new one:

5. Finally, to see all the existing namespace prefix bindings:

s3://[<endpoint hostname>:<endpoint port>]/<bucket name>/<path prefix>/<database name>?region=<A 

WS Region>&AWS_ACCESS_KEY_ID=<access key>&AWS_SECRET_ACCESS_KEY=<verySecretKey1>

$ stardog-admin db migrate foobar

$ stardog query myDB "select * {?s rdf:type owl:Class}"

$ stardog namespace add myDb --prefix ex --uri 'http://example.org/test#'

$ stardog namespace add myDb --prefix "" --uri http://new.default

$ stardog namespace remove myDb --prefix ex

$ stardog namespace list myDB



/

If no files are used during database creation, or if the files do not define any prefixes (e.g. NTriples), then the "Big Four"
default prefixes are stored: RDF, RDFS, XSD , and OWL .

When executing queries in the CLI, the default table format for SPARQL SELECT  results will use the bindings as qnames.
SPARQL CONSTRUCT  query output (including export) will also use the stored prefixes. To reiterate, namespace prefix
bindings are per database, not global.

Index Strategies

By default Stardog builds extra indexes for named graphs. These indexes are used when SPARQL queries specify
datasets using FROM  and FROM NAMED .

Stardog may also be configured to create and to use fewer indexes, if the database is only going to be used to store RDF
triples— that is to say, if the database will not be used to store named graph information. In this mode, Stardog will keep
fewer indexes, which will result in faster database creation and faster updates without compromising query answering
performance. In such databases, quads (that is: triples with named graphs or contexts specified) may still be added to
these database at any time, but query performance may degrade in such cases.

To create a database which indexes only RDF triples, set the option index.named.graphs  to false  at database
creation time. The CLI provides a shorthand option, -i  or --index-triples-only , which is equivalent.

NOTE
This option can only be set at database creation time and cannot be changed later without rebuilding
the database; use this option with care.

Di�erential Indexes

While Stardog is generally biased in favor of read performance, write performance is also important in many
applications. To increase write performance, Stardog may be used, optionally, with a di�erential index.

Stardog’s di�erential index is used to persist additions and removals separately from the main indexes, such that
updates to the database can be performed faster. Query answering takes into consideration all the data stored in the
main indexes and the di�erential index; hence, query answers are computed as if all the data is stored in the main
indexes.

There is a slight overhead for query answering with di�erential indexes if the di�erential index size gets too large. For
this reason, the di�erential index is merged into the main indexes when its size reaches
index.differential.merge.limit . There is also no benefit of di�erential indexes if the main index itself is small. For

this reason, the di�erential index is not used until the main index size reaches index.differential.enable.limit .

Usually the default values of the di�erential index parameters will work fine and don’t need to be changed. The
corollary is that you shouldn’t change this value in a production system till you’ve tested the e�ects of a change in a
non-production system.

NOTE

Increasing index.differential.merge.limit  will improve the throughput for updates, but there
will be longer pauses when the di�erential index is being merged. Reducing the value of
index.differential.merge.limit  will make sure there are no long pauses but overall throughput

will su�er. The optimal value depends on the average size of a transaction for the application and the
frequency of updates.

Loading Compressed Data

Stardog supports loading data from compressed files directly: there’s no need to uncompress files before loading.
Loading compressed data is the recommended way to load large input files. Stardog supports GZIP, BZIP2 and ZIP
compressions natively.

GZIP and BZIP2

A file passed to create  will be treated as compressed if the file name ends with .gz  or .bz2 . The RDF format of the
file is determined by the penultimate extension. For example, if a file named test.ttl.gz  is used as input, Stardog
will perform GZIP decompression during loading and parse the file with Turtle parser. All the formats supported by
Stardog (RDF/XML, Turtle, Trig, etc.) can be used with compression.



/

ZIP

The ZIP support works di�erently since zipped files can contain many files. When an input file name ends with .zip ,
Stardog performs ZIP decompression and tries to load all the files inside the ZIP file. The RDF format of the files inside
the zip is determined by their file names as usual. If there is an unrecognized file extension (e.g. '.txt'), then that file will
be skipped.

Dropping a Database

This command removes a database and all associated files and metadata. This means all files on disk related to the
database will be deleted, so only use drop  when you’re certain! Databases must be o�line in order to be dropped.

It takes as its only argument a valid database name. For example,

Using Integrity Constraint Validation

Stardog supports integrity constraint validation as a data quality mechanism via closed world reasoning. Constraints
can be specified in OWL, SWRL, and SPARQL. Please see the Validating Constraints (#_validating_constraints) section for
more about using ICV in Stardog.

The CLI icv  subcommand can be used to add, delete, or drop all constraints from an existing database. It may also be
used to validate an existing database with constraints that are passed into the icv  subcommand; that is, using
di�erent constraints than the ones already associated with the database.

For details of ICV usage, see stardog help icv  and stardog-admin help icv . For ICV in transacted mutations of
Stardog databases, see the database creation section above.

Migrating a Database

The migrate  subcommand migrates an older Stardog database to the latest version of Stardog. Its only argument is
the name of the database to migrate. migrate  won’t necessarily work between arbitrary Stardog version, so before
upgrading check the release notes for a new version carefully to see whether migration is required or possible.

will update myDatabase  to the latest database format.

Getting Database Information

You can get some information about a database by running the following command:

This will return all the metadata stored about the database, including the values of configuration options used for this
database instance. If you want to get the value for a specific option then you can run the following command:

Managing Stored Functions

Stored functions, available since Stardog 5.1, provide the ability to reuse expressions. This avoids duplication and
ensures consistency across instances of the same logic. Stored functions are treated similarly to built-in and user-
defined functions in that they can be used in FILTER  constraints and BIND  assignments in SPARQL queries, path
queries and rules.

Creating and Using Functions

Functions are useful to encapsulate computational or business logic for reuse. We can create a new function to compute
the permutation using the function add  command to stardog-admin  on the command line:

$ stardog-admin db drop my_db

$ stardog-admin db migrate myDatabase

$ stardog-admin metadata get my_db_name

$ stardog-admin metadata get -o index.named.graphs my_db_name



/

We can use this function in a SPARQL query and see that the function is expanded in the query plan:

Stored Function Syntax

Function definitions provided to the add  command must adhere to the following grammar:

We can use IRIs or prefixed names as function names and include several functions in one add  call:

Additional Function Management

The admin commands cover adding, listing and removing functions. Examples of these commands are shown below:

HTTP APIs are also provided to add, list and remove stored functions:

GET /admin/functions/stored[/?name={functionName}]

DELETE /admin/functions/stored[/?name={functionName}]

POST /admin/functions/stored

The contents of the POST  request should be a document containing one or more function definitions using the syntax
describes above. The GET  request by default returns the definitions for all the functions. If the name  parameter is
specified a definition for the function with that name is returned. Similarly, the DELETE  request deletes all the
functions by default or deletes a single function if the name  parameter is specified.

stardog-admin function add "function permutation(?n, ?r) { factorial(?n) / factorial(?n - ?r) }"

Explaining Query: 

 

select * where { ?x :p :q. filter(permutation(?x, 3) > 1) } 

 

The Query Plan: 

 

Projection(?x) [#1] 

`─ Filter((factorial(?x) / factorial((?x - "3"^^xsd:integer))) > "1"^^xsd:integer) [#1] 
   `─ Scan[POS](?x, :p, :q) [#1]

FUNCTIONS ::= Prolog FUNCTION+ 

 

FUNCTION ::= 'function' FUNC_NAME '(' ARGS ')' '{' Expression '}' 

 

FUNC_NAME ::= IRI | PNAME | LOCAL_NAME 

 

ARGS ::= [Var [',' Var]* ]? 

 

Prolog ::= // BASE and PREFIX declarations as defined by SPARQL 1.1 

Expression ::= // as defined by SPARQL 1.1 

Var ::= // as defined by SPARQL 1.1

$ stardog-admin function add "prefix ex: <http://example/> \ 

     function ex:permutation(?n, ?r) { factorial(?n) / factorial(?n - ?r) } \ 

     function <http://example/combination>(?n, ?r) { permutation(?n, ?r) / factorial(?r) }"

 

Stored 2 functions successfully

$ stardog-admin function list 

FUNCTION combination(?n,?r) {

   ((factorial(?n) / factorial((?n - ?r))) / factorial(?r)) 

} 

 

FUNCTION permutation(?n,?r) {

   (factorial(?n) / factorial((?n - ?r))) 

}

$ stardog-admin function remove permutation 

Removed stored function successfully



/

Stored functions are persisted in the system database. The system database should be backed up properly to avoid loss
of functions.

Dependencies Across Stored Functions

Stored functions are compiled at creation time in a way that guarantees they will work indefinitely, even if other
functions are removed or changed in ways that would a�ect them. For this reason, dependent functions need to be
reloaded when their dependencies are changed.

Managing Stored Queries

Stardog 4.2 added the capability to name and store SPARQL queries for future evaluation by referring to the query’s
name.

Queries of any type can be stored in Stardog and executed directly by using the name of the stored query. Stored
queries can be shared with other users, which gives those users the ability to run those queries provided that they have
appropriate permissions for a database.

Stored queries can be managed via CLI, Java API, and HTTP API. The CLI command group is stardog-admin stored .
The HTTP API will be detailed below.

Storing Queries

Queries can be stored using the stored add  admin command and specifying a unique name for the stored query:

If a file is used to specify the query string without an explicit -n/--name  option then the name of the query file is used
for the stored query:

Queries can also be stored via HTTP:

Input JSON example:

By default, stored queries can be executed over any database. But they can be scoped by providing a specific database
name with the -d/--database  option. Also, by default, only the user who stored the query can access that stored
query. Using the --shared  flag will allow other users to execute the stored query.

The following example stores a shared query with a custom name that can be executed over only the database myDb :

The JSON attributes which correspond to --shared  and -d  are shared  and database .

Stored query names must be unique for a Stardog instance. Existing stored queries can be replaced using the --
overwrite  option in the command.

Running Stored Queries

$ stardog-admin stored add -n types "select distinct ?type {?s a ?type}"

$ stardog-admin stored add listProperties.sparql

POST /admin/queries/stored → application/json

{ 

  "name": "types", 

  "creator": "admin", 

  "database": "*", 

  "query": "select distinct ?type {?s a ?type}" 

}

$ stardog-admin stored add --shared -d myDb -n listProperties "select distinct ?p {?s ?p ?o}"



/

Stored queries can be executed using the regular query execution CLI command by passing the name of the stored
query:

Other commands like query explain  also accept stored query names. They can also be passed instead of query string
into HTTP API calls.

Listing Stored Queries

To see all the stored queries, use the stored list  subcommand:

The results are formatted tabularly:

Users can only see the queries they’ve stored and the queries stored by other users that have been --shared . The --
verbose  option will show more details about the stored queries.

Stored queries can be obtained via HTTP:

The results will be returned in JSON, for example:

Removing Stored Queries

Stored queries can be removed using the stored remove  command:

If you would like to clear all the stored queries then use the -a/--all  option:

$ stardog query myDb listProperties

$ stardog-admin stored list

+--------+-----------------------------------------+ 

|  Name  |            Query String                 | 

+--------+-----------------------------------------+ 

| graphs | SELECT ?graph (count(*) as ?size)       | 

|        | FROM NAMED stardog:context:all          | 

|        | WHERE { GRAPH ?graph {?s ?p ?o}}        | 

|        | GROUP BY ?graph                         | 

|        | ORDER BY desc(?size)                    | 

| people | CONSTRUCT WHERE {                       | 

|        |    ?person a foaf:Person ;              | 

|        |            ?p ?o                        | 

|        | }                                       | 

| types  | SELECT DISTINCT ?type ?label            | 

|        | WHERE {                                 | 

|        |    ?s a ?type .                         | 

|        |    OPTIONAL { ?type rdfs:label ?label } | 

|        | }                                       | 

+--------+-----------------------------------------+ 

 

3 stored queries

GET /admin/queries/stored

{ 

  "queries": [ 

    { 

      "name": "types", 

      "creator": "admin", 

      "database": "*", 

      "query": "select distinct ?type {?s a ?type}", 

      "shared": false 

    } 

  ] 

}

$ stardog-admin stored remove storedQueryName



/

Stored queries can also be removed via HTTP:

Managing Running Queries

Stardog includes the capability to manage running queries according to configurable policies set at run-time; this
capability includes support for listing running queries; deleting running queries; reading the status of a running query;
killing running queries that exceed a time threshold automatically; and logging slow queries for analysis.

Stardog is pre-configured with sensible server-wide defaults for query management parameters; these defaults may be
overridden or disabled per database, or even per query.

Configuring Query Management

For many uses cases the default configuration will be su�icient. But you may need to tweak the timeout parameter to
be longer or shorter, depending on the hardware, data load, queries, throughput, etc. The default configuration has a
server-wide query timeout value of query.timeout , which is inherited by all the databases in the server. You can
customize the server-wide timeout value and then set per-database custom values, too. Any database without a custom
value inherits the server-wide value. To disable query timeout, set query.timeout  to 0 . If individual queries need to
set their own timeout, this can be done (by passing a timeout  parameter over HTTP or using the --timeout  flag on
the CLI), but only if the query.timeout.override.enabled  property is set to true for the database (true is the
default).

Listing Queries

To see all running queries, use the query list  subcommand:

The results are formatted tabularly:

You can see which user owns the query (superuser’s can see all running queries), as well as the elapsed time and the
database against which the query is running. The ID column is the key to deleting queries.

Deleting Queries

To delete a running query, simply pass its ID to the query kill  subcommand:

The output confirms the query kill completing successfully:

Automatically Killing Queries

$ stardog-admin stored remove -a

DELETE /admin/queries/stored/{name}

$ stardog-admin query list

+----+----------+-------+--------------+ 

| ID | Database | User  | Elapsed time | 

+----+----------+-------+--------------+ 

| 2  | test     | admin | 00:00:20.165 | 

| 3  | test     | admin | 00:00:16.223 | 

| 4  | test     | admin | 00:00:08.769 | 

+----+----------+-------+--------------+ 

 

3 queries running

$ stardog-admin query kill 3

Query 3 killed successfully



/

For production use, especially when a Stardog database is exposed to arbitrary query input, some of which may not
execute in an acceptable time, the automatic query killing feature is useful. It will protect a Stardog Server from queries
that consume too many resources.

Once the execution time of a query exceeds the value of query.timeout , the query will be killed automatically.
 The client that submitted the query will receive an error message. The value of query.timeout  may be

overriden by setting a di�erent value (smaller or longer) in database options. To disable, set to query.timeout  to 0 .

The value of query.timeout  is a positive integer concatenated with a letter, interpreted as a time duration: 'h' (for
hours), 'm' (for minutes), 's' (for seconds), or 'ms' (for milliseconds). For example, '1h' for 1 hour, '5m' for 5 minutes,
'90s' for 90 seconds, and '500ms' for 500 milliseconds.

The default value of query.timeout  is five minutes.

Query Status

To see more detail about query in-flight, use the query status  subcommand:

The resulting output includes query metadata, including the query itself:

Slow Query Logging

Stardog does not log slow queries in the default configuration because there isn’t a single value for what counts as a
"slow query", which is entirely relative to queries, access patterns, dataset sizes, etc. While slow query logging has
minimal overhead, what counts as a slow query in some context may be acceptable in another. See Configuring Stardog
Server (#_configuring_stardog_server) above for the details.

Protocols and Java API

For HTTP protocol support, see Stardog’s Apiary (http://docs.stardog.apiary.io/) docs.

For Java, see the Javadocs (http://stardog.com/docs/java/snarl/).

Security and Query Management

The security model for query management is simple: any user can kill any running query submitted by that user, and a
superuser can kill any running query. The same general restriction is applied to query status; you cannot see status for a
query that you do not own, and a superuser can see the status of every query.

Managing Query Performance

Stardog answers queries in two major phases: determining the query plan and executing that plan to obtain answers
from the data. The former is called query planning (or query optimization) and includes all steps required to select the
most e�icient way to execute the query. How Stardog evaluates a query can only be understood by analyzing the query
plan. Query plan analysis is also the main tool for investigating performance issues as well as addressing them, in
particular, by re-formulating the query to make it more amenable to optimization.

[11 (#_f
ootnote_11)]

$ stardog-admin query status 1

Username: admin 

Database: test 

Started : 2013-02-06 09:10:45 AM 

Elapsed : 00:01:19.187 

Query   : 

select ?x ?p ?o1 ?y ?o2 

   where { 

     ?x ?p ?o1. 

     ?y ?p ?o2. 

     filter (?o1 > ?o2). 

    } 

order by ?o1 

limit 5

http://docs.stardog.apiary.io/
http://stardog.com/docs/java/snarl/


/

TIP

7 Steps to Fast SPARQL Queries (https://www.stardog.com/blog/7-steps-to-fast-sparql-queries/)

Avoidably Slow Queries (https://www.stardog.com/blog/7-steps-to-fast-sparql-queries/2/)

How to Read Stardog Query Plans (https://www.stardog.com/blog/how-to-read-stardog-query-
plans/)

Query Plan Syntax

We will use the following running example to explain query plans in Stardog.

This query returns the names of all people who have authored both a journal article and a paper in a conference
proceedings. The query plan used by Stardog (in this example, 4.2.2) to evaluate this query is:

The plan is arranged in an hierarchical, tree-like structure. The nodes, called operators, represent units of data
processing during evaluation. They correspond to evaluations of graphs patterns or solution modifiers as defined in
SPARQL 1.1 specification (https://www.w3.org/TR/sparql11-query/#sparqlDefinition). All operators can be regarded as
functions which may take some data as input and produce some data as output. All input and output data is
represented as streams of solutions (https://www.w3.org/TR/sparql11-query/#sparqlSolutions), that is, sets of bindings
of the form x → value  where x  is a variable used in the query and value  is some RDF term (IRI, blank node, or
literal). Examples of operators include scans, joins, filters, unions, etc.

Numbers in square brackets a�er each node refer to the estimated cardinality of the node, i.e. how many solutions
Stardog expects this operator to produce when the query is evaluated. Statistics-based cardinality estimation in Stardog
merits a separate blog post, but here are the key points for the purpose of reading query plans:

1. all estimations are approximate and their accuracy can vary greatly (generally: more precise for bottom nodes, less
precise for upper nodes)

2. estimations are only used for selecting the best plan but have no bearing on the actual results of the query

3. in most cases a sub-optimal plan can be explained by inaccurate estimations

Stardog Evaluation Model

Stardog generally evaluates query plans according to the bottom-up SPARQL semantics
(https://www.w3.org/TR/sparql11-query/#sparqlAlgebraEval). Leaf nodes are evaluated first and without input, and
their results are then sent to their parent nodes up the plan. Typical examples of leaf nodes include scans, i.e.
evaluations of triple patterns, evaluations of full-text search predicates, and VALUES  (https://www.w3.org/TR/sparql11-
query/#inline-data) operators. They contain all information required to produce output, for example, a triple pattern
can be directly evaluated against Stardog indexes. Parent nodes, such as joins, unions, or filters, take solutions as inputs
and send their results further towards the root of the tree. The root node in the plan, which is typically one of the
solution modifiers (https://www.w3.org/TR/sparql11-query/#solutionModifiers), produces the final results of the query
which are then encoded and sent to the client.

 SELECT DISTINCT ?person ?name 

 WHERE { 

   ?article rdf:type bench:Article . 

   ?article dc:creator ?person . 

   ?inproc rdf:type bench:Inproceedings . 

   ?inproc dc:creator ?person . 

   ?person foaf:name ?name 

 }

 Distinct [#812K] 

 `─ Projection(?person, ?name) [#812K] 
    `─ MergeJoin(?person) [#812K] 
       +─ MergeJoin(?person) [#391K] 
       │  +─ Sort(?person) [#391K] 
       │  │  `─ MergeJoin(?article) [#391K] 
       │  │     +─ Scan[POSC](?article, rdf:type, bench:Article) [#208K] 
       │  │     `─ Scan[PSOC](?article, dc:creator, ?person) [#898K] 
       │  `─ Scan[PSOC](?person, foaf:name, ?name) [#433K] 
       `─ Sort(?person) [#503K] 
          `─ MergeJoin(?inproc) [#503K] 
             +─ Scan[POSC](?inproc, rdf:type, bench:Inproceedings) [#255K] 
             `─ Scan[PSOC](?inproc, dc:creator, ?person) [#898K]

https://www.stardog.com/blog/7-steps-to-fast-sparql-queries/
https://www.stardog.com/blog/7-steps-to-fast-sparql-queries/2/
https://www.stardog.com/blog/how-to-read-stardog-query-plans/
https://www.w3.org/TR/sparql11-query/#sparqlDefinition
https://www.w3.org/TR/sparql11-query/#sparqlSolutions
https://www.w3.org/TR/sparql11-query/#sparqlAlgebraEval
https://www.w3.org/TR/sparql11-query/#inline-data
https://www.w3.org/TR/sparql11-query/#solutionModifiers


/

Pipelining And Pipeline Breakers

Stardog implements the Volcano model (http://dbms-arch.wikia.com/wiki/Volcano_Model), in which evaluation is as
lazy as possible. Each operator does just enough work to produce the next solution. This is important for performance,
especially for queries with a LIMIT  clause (of which ASK  queries are a special case) and also enables Stardog’s query
engine to send the first result(s) as soon as they are available (as opposed to waiting till all results have been
computed).

Not all operators can produce output solutions as soon as they get first input solutions from their children nodes. Some
need to accumulate intermediate results before sending output. Such operators are called pipeline breakers, and they
are o�en the culprits for performance problems, typically resulting from memory pressure. It is important to be able to
spot them in the plan since they can suggest either a way to re-formulate the query to help the planner or a way to
make the query more precise by specifying extra constants where they matter.

Here are some important pipeline breakers in the example plan:

HashJoin  (https://en.wikipedia.org/wiki/Hash_join) algorithms build a hash table for solutions produced by the
right operand. Typically all such solutions need to be hashed, either in memory or spilled to disk, before the first
output solution is produced by the HashJoin  operator.

Sort : the sort operator builds an intermediate sorted collection of solutions produced by its child node. The main
use case for sorting solutions is to prepare data for an operator which can benefit from sorted inputs, such as
MergeJoin , Distinct , or GroupBy . All solutions have to be fetched from the child node before the smallest

(w.r.t. the sort key) solution can be emitted.

GroupBy : group-by operators are used for aggregation, e.g. counting or summing results. When evaluating a query
like select ?x (count(?y) as ?count) where { …  } group by ?x  Stardog has to scroll through all solutions to
compute the count for every ?x  key before returning the first result.

Other operators can produce output as soon as they get input:

MergeJoin : merge join algorithms do a single zig-zag pass over sorted streams of solutions produced by children
nodes and output a solution as soon as the join condition is satisfied.

DirectHashJoin : contrary to the classical hash join algorithm, this operator does not build a hash table. It utilizes
Stardog indexes for look-ups which doesn’t require extra data structures. This is only possible when the right
operand is sorted by the join key, but the le� isn’t, otherwise Stardog would use a merge join.

Filter : a solution modifier which evaluates the filter condition on each input solution.

Union : combines streams of children solutions without any extra work, e.g. joining, so there’s no need for
intermediate results.

Now, returning to the above query, one can see Sort  pipeline breakers in the plan:

This means that all solutions representing the join of ?article rdf:type bench:Article  and ?article
dc:creator ?person  will be put in a sequence ordered by the values of ?person . Stardog expects to sort 391K
solutions before they can be further merge-joined with the results of the ?person foaf:name ?name  pattern.
Alternately the engine may build a hash table instead of sorting solutions; such decisions are made by the optimizer
based on a number of factors.

Skipping Intermediate Results

One tricky part of understanding Stardog query plans is that evaluation of each operator in the plan is context-sensitive,
i.e. it depends on what other nodes are in the same plan, maybe in a di�erent sub-tree. In particular, the cardinality
estimations, even if assumed accurate, only specify how many solutions the operator is expected to produce when
evaluated as the root node of a plan.

However, as it is joined with other parts of the plan, the results can be di�erent. This is because Stardog employs
optimizations to reduce the number of solutions produced by a node by pruning those which are incompatible with
other solutions with which they will later be joined.

Sort(?person) [#391K] 

`─ MergeJoin(?article) [#391K] 
   +─ Scan[POSC](?article, rdf:type, bench:Article) [#208K] 
   `─ Scan[PSOC](?article, dc:creator, ?person) [#898K]

http://dbms-arch.wikia.com/wiki/Volcano_Model
https://en.wikipedia.org/wiki/Hash_join


/

Consider the following basic graph pattern and the corresponding plan:

The pattern matches all documents created by a person named Paul Erdoes. Here the second pattern is selective (only
one entity is expected to have the name "Paul Erdoes"). This information is propagated to the other two scans in the
plan via merge joins, which allows them to skip scanning large parts of data indexes.

In other words, the node Scan[POSC](?erdoes, rdf:type, foaf:Person) [#433K]  will not produce all 433K
solutions corresponding to all people in the database and, similarly, Scan[POSC](?document, dc:creator, ?
erdoes) [#898K]  will not go through all 898K  document creators.

Diagnosing Performance Problems

Performance problems may arise because of two reasons:

1. complexity of the query itself, especially the amount of returned data

2. failure to select a good plan for the query.

It is important to distinguish the two. In the former case the best way forward is to make the patterns in WHERE  more
selective. In the latter case, i.e. when the query returns some modest number of results but takes an unacceptably long
time to do so, one needs to look at the plan, identify the bottlenecks (most o�en, pipeline breakers), and reformulate
the query or report it to us for further analysis.

Here’s an example of a un-selective query:

The query returns all distinct pairs of authors who published (possibly di�erent) articles in the same journal. It returns
more than 18M results from a database of 5M triples. Here’s the plan:

?erdoes rdf:type foaf:Person . 

?erdoes foaf:name "Paul Erdoes"^^xsd:string . 

?document dc:creator ?erdoes . 

 

MergeJoin(?erdoes) [#10] 

+─ MergeJoin(?erdoes) [#1] 
│  +─ Scan[POSC](?erdoes, rdf:type, foaf:Person) [#433K] 
│  `─ Scan[POSC](?erdoes, foaf:name, "Paul Erdoes") [#1] 
`─ Scan[POSC](?document, dc:creator, ?erdoes) [#898K]

SELECT DISTINCT ?name1 ?name2

WHERE { 

  ?article1 rdf:type bench:Article . 

  ?article2 rdf:type bench:Article . 

  ?article1 dc:creator ?author1 . 

  ?author1 foaf:name ?name1 .

  ?article2 dc:creator ?author2 . 

  ?author2 foaf:name ?name2 .

  ?article1 swrc:journal ?journal . 

  ?article2 swrc:journal ?journal 

  FILTER (?name1<?name2) 

  }

Distinct [#17.7M] 

`─ Projection(?name1, ?name2) [#17.7M] 
   `─ Filter(?name1 < ?name2) [#17.7M] 
      `─ HashJoin(?journal) [#35.4M] 
         +─ MergeJoin(?author2) [#391K] 
         │  +─ Sort(?author2) [#391K] 
         │  │  `─ NaryJoin(?article2) [#391K] 
         │  │     +─ Scan[POSC](?article2, rdf:type, bench:Article) [#208K] 
         │  │     +─ Scan[PSOC](?article2, swrc:journal, ?journal) [#208K] 
         │  │     `─ Scan[PSOC](?article2, dc:creator, ?author2) [#898K] 
         │  `─ Scan[PSOC](?author2, foaf:name, ?name2) [#433K] 
         `─ MergeJoin(?author1) [#391K] 
            +─ Sort(?author1) [#391K] 
            │  `─ NaryJoin(?article1) [#391K] 
            │     +─ Scan[POSC](?article1, rdf:type, bench:Article) [#208K] 
            │     +─ Scan[PSOC](?article1, swrc:journal, ?journal) [#208K] 
            │     `─ Scan[PSOC](?article1, dc:creator, ?author1) [#898K] 
            `─ Scan[PSOC](?author1, foaf:name, ?name1) [#433K]



/

This query requires an expensive join on ?journal  which is evident from the plan (it’s a hash join in this case). It
produces more than 18M results (Stardog expects 17.7M which is pretty accurate here) that need to be filtered and
examined for duplicates. Given all this information from the plan, the only reasonable way to address the problem
would be to restrict the criteria, e.g. to particular journals, people, time periods, etc.

If a query is well-formulated and selective, but performance is unsatisfactory, one may look closer at the pipeline
breakers, e.g. this part of the query plan:

A reasonable thing to do would be to evaluate the join of ?article rdf:type bench:Article  and ?article
dc:creator ?person  separately, i.e. as a separate queries, to see if the estimation of 391K  is reasonably accurate and
to get an idea about memory pressure. This is a valuable piece of information for a performance problem report,
especially when the data cannot be shared with us. Similar analysis can be done for hash joins.

In addition to pipeline breakers, there could be other clear indicators of performance problems. One of them is the
presence of LoopJoin  nodes in the plan. Stardog implements the nested loop join
(https://en.wikipedia.org/wiki/Nested_loop_join) algorithm which evaluates the join by going through the Cartesian
product of its inputs. This is the slowest join algorithm and it is used only as a last resort. It sometimes, but not always,
indicates a problem with the query.

Here’s an example:

The query is similar to an earlier query plan we saw but runs much slower. The plan shows why:

The loop join near the top of the plan computes the Cartesian product of the arguments which produces almost 200B
solutions. This is because there is no shared variable between the parts of the query which correspond to authors of
articles and conference proceedings papers, respectively. The filter condition ?name = ?name2  cannot be transformed
into an equi-join because the semantics of term equality (https://www.w3.org/TR/sparql11-query/#OperatorMapping)
used in filters is di�erent from the solution compatibility (https://www.w3.org/TR/sparql11-query/#BasicGraphPattern)
semantics used for checking join conditions.

The di�erence manifests itself in the presence of numerical literals, e.g. "1"^^xsd:integer  = "1.0"^^xsd:float ,
where they are di�erent RDF terms. However, as long as all names in the data are strings, one can re-formulate this
query by renaming ?name2  to ?name  which would enable Stardog to use a more e�icient join algorithm.

MergeJoin(?person) [#391K] 

+─ Sort(?person) [#391K] 
|  `─ MergeJoin(?article) [#391K] 
|     +─ Scan[POSC](?article, rdf:type, bench:Article) [#208K] 
|     `─ Scan[PSOC](?article, dc:creator, ?person) [#898K] 
`─ Scan[PSOC](?person, foaf:name, ?name) [#433K]

 SELECT DISTINCT ?person ?name 

 WHERE { 

   ?article rdf:type bench:Article . 

   ?article dc:creator ?person . 

   ?inproc rdf:type bench:Inproceedings . 

   ?inproc dc:creator ?person2 . 

   ?person foaf:name ?name . 

   ?person2 foaf:name ?name2 

   FILTER (?name=?name2) 

 }

Distinct [#98456.0M] 

`─ Projection(?person, ?name) [#98456.0M] 
   `─ Filter(?name = ?name2) [#98456.0M] 
      `─ LoopJoin(_) [#196912.1M] 
         +─ MergeJoin(?person) [#391K] 
         │  +─ Sort(?person) [#391K] 
         │  │  `─ MergeJoin(?article) [#391K] 
         │  │     +─ Scan[POSC](?article, rdf:type, bench:Article) [#208K] 
         │  │     `─ Scan[PSOC](?article, dc:creator, ?person) [#898K] 
         │  `─ Scan[PSOC](?person, foaf:name, ?name) [#433K] 
         `─ MergeJoin(?person2) [#503K] 
            +─ Sort(?person2) [#503K] 
            │  `─ MergeJoin(?inproc) [#503K] 
            │     +─ Scan[POSC](?inproc, rdf:type, bench:Inproceedings) [#255K] 
            │     `─ Scan[PSOC](?inproc, dc:creator, ?person2) [#898K] 
            `─ Scan[PSOC](?person2, foaf:name, ?name2) [#433K]

https://en.wikipedia.org/wiki/Nested_loop_join
https://www.w3.org/TR/sparql11-query/#OperatorMapping
https://www.w3.org/TR/sparql11-query/#BasicGraphPattern


/

Query Plan Operators

The following operators are used in Stardog query plans:

Scan[Index] : evaluates a triple/quad pattern against Stardog indexes. Indicates the index used, e.g. CSPO  or
POSC , where S,P,O,C  stand for the kind of lexicographic ordering of quads that the index provides. SPOC  means

that the index is sorted first by *S*ubject, then *P*redicate, *O*bject, and *C*ontext (named graph IRI).

HashJoin(join key) : hash join algorithm, hashes the right operand. Pipeline breaker.

DirectHashJoin(join key) : a hash join algorithm which directly uses indexes for lookups instead of building a
hash table. Not a pipeline breaker.

MergeJoin(join key) : merge join algorithm, the fastest option for joining two streams of solutions. Requires both
operands be sorted on the join key. Not a pipeline breaker.

LoopJoin : the nested loops join algorithm, the slowest join option. Not a pipeline breaker.

Sort(sort key) : sorts the argument solutions by the sort key, typically used as a part of a merge join. Pipeline
breaker.

Filter(condition) : filters argument solutions according to the condition. Not a pipeline breaker.

Union : combines streams of argument solutions. If both streams are sorted by the same variable, the result is also
sorted by that variable. Not a pipeline breaker.

PropertyPath : evaluates a property path (https://www.w3.org/TR/sparql11-query/#propertypaths) pattern
against Stardog indexes. Not a pipeline breaker.

GroupBy : groups results of the child operator by values of the group-by expressions (i.e. keys) and aggregates
solutions for each key. Pipeline breaker (unless the input is sorted by first key).

Distinct : removes duplicate solutions from the input. Not a pipeline breaker but accumulates solutions in
memory as it runs so the memory pressure increases as the number of unique solutions increases.

VALUES : produces the inlined results (https://www.w3.org/TR/sparql11-query/#inline-data) specified in the query.
Not a pipeline breaker.

Search : evaluates a full-text search predicates against the Lucene index within a Stardog database.

Projection : projects variables as results of a query or a sub-query. Not a pipeline breaker.

Bind : evaluates expressions on each argument solution and binds their values to (new) variables. Not a pipeline
breaker.

Empty  and Singleton : correspond to the empty solution set and a single empty solution, respectively.

Type : reasoning operator for evaluating patterns of the form ?x rdf:type ?type  or :instance rdf:type ?
type . Not a pipeline breaker.

Property : operator for evaluating triple patterns with unbound predicate with reasoning. Not a pipeline breaker.

Service : SPARQL federation operator which evaluate a pattern against a remote SPARQL endpoint (or a virtual
graph (http://docs.stardog.com/#_structured_data_aka_virtual_graphs)).

Using Query Hints

Query hints help Stardog generate optimized query plans. They are implemented as SPARQL comments started with the
pragma  keyword.

The equality.identity  hint expects a comma-separated list of variables. It tells Stardog that these variables will be
bound to RDF terms (IRIs, bnodes, or literals) for which equality coincides with identity (i.e. any term is equal only to
itself). This is not true for literals of certain numerical datatypes [cf. Operator Mapping]
(https://www.w3.org/TR/sparql11-query/#OperatorMapping (https://www.w3.org/TR/sparql11-
query/#OperatorMapping)). However assuming that the listed variables do not take on values of such datatypes can
sometimes lead to faster query plans, for example, because of converting some filters to joins and through value
inlining.

 SELECT ?o ?o2 WHERE { 

   #pragma equality.identity ?o,?o2 

   :a :p  ?o . 

   :b :p ?o2 . 

 }

https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.w3.org/TR/sparql11-query/#inline-data
http://docs.stardog.com/#_structured_data_aka_virtual_graphs
https://www.w3.org/TR/sparql11-query/#OperatorMapping


/

Sometimes our query planner can produce sub-optimal join orderings. The group.joins  hint introduces an explicit
scoping mechanism to help with join order optimization. Patterns in the scope of the hint, given by the enclosing {} ,
will be joined together before being joined with anything else. This way, you can tell the query planner what you think is
the optimal way to join variables.

The push.filters  hint controls how the query optimizer pushes filters down the query plan. There are three possible
values: default , aggressive , and off . The aggressive  option means that the optimizer will push every filter to
the deepest operator in the plan which binds variables used in the filter expression. The off  option turn the
optimization o� and each filter will be applied to the top operator in the filter’s graph pattern (in case there’re multiple
filters, their order is not specified). Finally, the default  option (or absence of the hint) means that the optimizer will
decide whether to push each filter down the plan based on various factors, e.g. the filter’s cost, selectivity of the graph
pattern, etc.

ACID Transactions

What follows is specific guidance about Stardog’s transactional semantics and guarantees.

Atomicity

Databases may guarantee atomicity— groups of database actions (i.e., mutations) are irreducible and indivisible: either
all the changes happen or none of them happens. Stardog’s transacted writes are atomic. Stardog does not support
nested transactions.

Consistency

Data stored should be valid according to the data model (in this case, RDF) and to the guarantees o�ered by the
database, as well as to any application-specific integrity constraints that may exist. Stardog’s transactions are
guaranteed not to violate integrity constraints during execution. A transaction that would leave a database in an
inconsistent or invalid state is aborted.

See the Validating Constraints (#_validating_constraints) section for a more detailed consideration of Stardog’s integrity
constraint mechanism.

Isolation

select ?s where { 

  ?s :p ?o1 . 

  { 

    #pragma group.joins 

    #these patterns will be joined first, before being joined with the other pattern 

    ?s :p ?o2 . 

    ?o1 :p ?o3 . 

  } 

}

select ?s where { 

  #pragma push.filters off 

  #the filter in the top scope will not be pushed into the union 

  ?s :p ?o1 . 

  FILTER (?o2 > 10) 

  { 

    #pragma push.filters aggressive 

    #the optimizer will place this filter directly on top of ?s :r ?o3 

    #and it will be evaluated before the results are joined with ?s :p ?o2 

    ?s :p ?o2 ; 

       :r ?o3 . 

    FILTER (?o3 > 1000) 

  } 

  UNION 

  { 

    #pragma push.filters default 

    #the optimizer will decide whether to place the filter directly 

    #on top of ?s :q ?o3 or leave it on top of the join 

    ?s a :Type ; 

       :q ?o3 . 

    FILTER (?o3 < 50) 

  } 

}

[12 (#_footnote_12)]

[13 (#_footnote_13)]



/

A Stardog connection will run in READ COMMITTED
(http://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed) isolation level if it has not started an
explicit transaction and will run in READ COMMITTED SNAPSHOT  or SERIALIZABLE  isolation level depending on the
value of the transaction.isolation . In any of these modes, uncommitted changes will only be visible to the
connection that made the changes: no other connection can see those values before they are committed. Thus, "dirty
reads" can never occur.

The di�erence between READ COMMITTED  and READ COMMITTED SNAPSHOT  isolation levels is that in the former case a
connection will see updates committed by another connection immediately, whereas in the latter case a connection will
see a transactionally consistent snapshot of the data as it existed at the start of the transaction and will not see any
updates.

We illustrate the di�erence between these two levels with the following example where initially the database has a
single triple :x :val 1 .

4. Table of the di�erence between RCI and RCSI

Time Connection 1 Connection 2 Connection 3

0 SELECT ?val {?x :val ?

val}  
⇐ 1

SELECT ?val {?x :val ?

val}  
⇐ 1

SELECT ?val {?x :val ?

val}  
⇐ 1

1 BEGIN TX

2 INSERT {:x :value 2} 

DELETE {:x :value ?

old}

3 SELECT ?val {?x :val ?

val}  
⇐ 2

SELECT ?val {?x :val ?

val}  
⇐ 1

SELECT ?val {?x :val ?

val}  
⇐ 1

4 BEGIN TX

5 COMMIT

6 SELECT ?val {?x :val ?

val}  
⇐ 2

SELECT ?val {?x :val ?

val}   
⇐ 2

SELECT ?val {?x :val ?

val}  
⇐ 1

8 INSERT {:x :value 3} 

DELETE {:x :value ?

old}

9 COMMIT

10 SELECT ?val {?x :val ?

val}  
⇐ 3

SELECT ?val {?x :val ?

val}  
⇐ 3

SELECT ?val {?x :val ?

val}  
⇐ 3

No locks are taken, or any conflict resolution performed, for concurrent transactions in READ COMMITTED SNAPSHOT
isolation level. If there are conflicting changes, the latest commit wins which may yield unexpected results since every
transaction reads from a snapshot that was created at the time transaction started.

Consider the following query being executed by two concurrent threads in READ COMMITTED SNAPSHOT  isolation level
against a database having the triple :counter :val 1  initially:

INSERT { :counter :val ?newValue } 

DELETE { :counter :val ?oldValue } 

WHERE  { :counter :val ?oldValue 

         BIND (?oldValue+1 AS ?newValue) }

http://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed


/

Since each transaction will read the current value from its snapshot, it is possible that both transactions will read the
value 1  and insert the value 2  even though we expect the final value to be 3 .

Isolation level SERIALIZABLE  can be used to avoid these situations. In SERIALIZABLE  mode an exclusive lock needs
to be acquired before a transaction begins. This ensures concurrent updates cannot interfere with each other, but as a
result update throughput will decrease since only one transaction can run at a time.

Durability

By default Stardog’s transacted writes are durable and no other actions are required.

Commit Failure Autorecovery

Stardog’s transaction framework is low maintenance; but there are some rare conditions in which manual intervention
may be needed.

Stardog’s strategy for recovering automatically from commit failure is as follows:

1. Stardog will roll back the transaction upon a commit failure;

2. Stardog takes the a�ected database o�line for maintenance;  then

3. Stardog will begin recovery, bringing the recovered database back online once that task is successful so that
operations may resume.

With an appropriate logging configuration for production usage (at least error-level logging), log messages for the
preceding recovery operations will occur. If for whatever reason the database fails to be returned automatically to
online status, an administrator may use the CLI tools (i.e., stardog-admin db online ) to try to online the database.

Optimizing Bulk Data Loading

Stardog tries hard to do bulk loading at database creation time in the most e�icient and scalable way possible. But data
loading time can vary widely, depending on factors in the data to be loaded, including the number of unique resources,
etc. Here are some tuning tips that may work for you:

1. Use the bulk_load  memory configuration for loading large databases (see Memory Configuration
(#_memory_configuration) section).

2. Load compressed data (#_loading_compressed_data) since compression minimizes disk access

3. Use a multicore machine since bulk loading is highly parallelized and indexes are built concurrently

4. Load many files together at creation time since di�erent files will be parsed and processed concurrently improving
the load speed

5. Turn o� strict parsing (see Configuring a Database (#_configuring_a_database) for the details).

6. If you are not using named graphs, use triples only indexing (#_database_create_options).

Memory Management

As of version 5.0, Stardog by default uses a custom memory management approach to minimize GC activity during
query evaluation. All intermediate query results are now managed in native (o�-heap) memory which is pre-allocated
on server start-up and never returned to the OS until server shutdown. Every query, including SPARQL Update queries
with the WHERE clause, gets a chunk of memory from that pre-allocated pool to handle intermediate results and will
return it back to the pool when it finishes or gets cancelled. More technical details about this GC-less memory
management scheme are available in a recent blog post (https://blog.stardog.com/saying-goodbye-to-garbage/).

The main goal of this memory management approach is to improve server’s resilience under heavy load. A common
problem with JVM applications under load is the notorious Out-Of-Memory (OOM) exceptions which are hard to foresee
and impossible to reliably recover from. Also, in the SPARQL world, it is generally di�icult to estimate how many
intermediate results any particular query will have to process before the query starts (although the selectivity statistics
o�ers great help to this end). As such, the server has to deal with the situation when there is no memory available to
continue with the current query. Stardog handles this by placing all intermediate results into custom collections which
are tightly integrated with the memory manager. Every collection, e.g. for hashing, sorting, or aggregating binding sets,
requests memory blocks from the manager and transparently spills data to disk when such requests are denied.

[14 (#_footnote_14)]

https://blog.stardog.com/saying-goodbye-to-garbage/


/

This helps avoid OOMs at any time during query evaluation since running out of memory only means triggering spilling
and the query will continue slower because of additional disk access. This also means Stardog 5.0+ can run harder, e.g.
analytic, queries which may exceed the memory capacity on your server. We have also seen performance improvements
in specific (but common) scenarios, such as with many concurrent queries, where the GC pressure would considerably
slow down the server running on heap. However, everything comes at a price and the custom collections can be slightly
slower than those based on JDK collections when the server is under light load, all queries are selective, and there is no
GC pressure. For that reason Stardog has a server option memory.management  which you can set to JVM  in
stardog.properties  to disable custom memory management and have Stardog run all queries on heap.

The spilling.dir  server option specifies the directory which will be used for spilling data in case the server runs out
of native memory. It may make sense to set this to another disk to minimize disk contention.

Memory Configuration

Stardog 5.0 provides a range of configuration options related to memory management. Query engine by default uses
the custom memory management approach described above but it is not the only critical Stardog component which
may require a large amount of memory. Memory is also consumed aggressively during bulk loading and updates.
Stardog defines three standard memory consumption modes to allow users to configure how memory should be
distributed based on the usage scenario. The corresponding server property is memory.mode  which accepts the
following values:

1. default : This is the default option which provides roughly equal amount of memory for queries and updates
(including bulk loading). This should be used either when the server is expected to run both read queries and
updates in roughly equal proportion or when the expected load is unknown.

2. read_optimized : This option provides more memory to read queries and SPARQL Update queries with the
WHERE clause. This minimizes the chance of having to spill data to disk during query execution at the expense of
update and bulk loading operations. This option should be used when the transactions will be infrequent or small
in size, e.g. up to a thousand triples since such transactions do not use significant amount of memory.

3. write_optimized : This option should be used for optimal loading and update performance. Queries may run
slower if there is not enough memory for processing intermediate results. It may be also suitable when the server is
doing a lot of updates and some read queries but the latter are selective and are not highly concurrent.

4. bulk_load : This option should be used for bulk loading very large databases (billions of triples) where there is no
other workload on the server. When bulk loading is complete, the memory configuration should be changed and
the server restarted.

As with any server option the server has to be restarted a�er the user changes the memory mode. The stardog-admin
server status  command displays detailed information on memory usage and the current configuration.

Capacity Planning

The primary system resources used by Stardog are CPU, memory, and disk.  Stardog will take
advantage of more than one CPU, core, and core-based thread in data loading and in throughput-heavy or multi-user
loads. Stardog performance is influenced by the speed of CPUs and cores. But some workloads are bound by main
memory or by disk I/O (or both) more than by CPU. Use the fastest CPUs you can a�ord with the largest secondary
caches and the most number of cores and core-based threads of execution, especially in multi-user workloads.

The following subsections provides more detailed guidance for the memory and disk resource requirements of Stardog.

Memory usage

Stardog uses system memory aggressively and the total system memory available to Stardog is o�en the most
important factor in performance. Stardog uses both JVM memory (heap memory) and also the operating system
memory outside the JVM (o� heap memory). Having more system memory available is always good; however,
increasing JVM memory too close to total system memory is not prudent as it may tend to increase Garbage Collection
(GC) time in the JVM.

The following table shows recommended JVM memory and system memory requirements for Stardog.

5. Table of Memory Usage for Capacity Planning

[15 (#_footnote_15)]

[16 (#_footnote_
16)]



/

# of Triples JVM Memory O�-heap memory

100 million 3GB 3GB

1 billion 4GB 8GB

10 billion 8GB 64GB

20 billion 16GB 128GB

50 billion 16GB 256GB

Out of the box, Stardog sets the maximum JVM memory to 2GB and o�-heap memory to 1GB. These settings work fine
for most small databases (up to, say, 100 million triples). As the database size increases, we recommend increasing
memory. You can increase the memory for Stardog by setting the system property STARDOG_SERVER_JAVA_ARGS  using
the standard JVM options. For example, you can set this property to "-Xms4g -Xmx4g -
XX:MaxDirectMemorySize=8g"  to increase the JVM memory to 4GB and o�-heap to 8GB. We recommend setting the
minimum heap size ( -Xms  option) and max heap size ( -Xmx  option) to the same value.

System Memory and JVM Memory

Stardog uses an o�-heap, custom memory allocation scheme. Please note that the memory provisioning
recommendations above are for two kinds of memory allocations for the JVM in which Stardog will run. The first is for
memory that the JVM will manage explicitly (i.e., "JVM memory"); and the second, i.e., "O�-heap memory" is for
memory that Stardog will manage explicitly, i.e., o� the JVM heap, but for which the JVM should be notified via the
MaxDirectMemorySize  property. The sum of these two values should be less than 90% of the total memory available

to the underlying operating system as requirements dictate.

Disk usage

Stardog stores data on disk in a compressed format. The disk space needed for a database depends on many factors
besides the number of triples, including the number of unique resources and literals in the data, average length of
resource identifiers and literals, and how much the data is compressed. The following table shows typical disk space
used by a Stardog database.

6. Table of Typical Disk Space Requirements

# of triples Disk space

1 billion 70GB to 100GB

10 billion 700GB to 1TB

These numbers are given for information purposes only; the actual disk usage for a database may be di�erent in
practice. Also it is important to realize the amount of disk space needed at creation time for bulk loading data is higher
as temporary files will be created. The extra disk space needed at bulk loading time can be 40% to 70% of the final
database size.

Disk space used by a database is non-trivially smaller if triples-only indexing (#_database_create_options) is used.
Triples-only indexing reduces overall disk space used by 25% on average; however, note the tradeo�: SPARQL queries
involving named graphs perform better with quads indexing.

The disk space used by Stardog is additive for more than one database and there is little disk space used other than
what is required for the databases. To calculate the total disk space needed for more than one database, one may sum
the disk space needed by each database.

Using Stardog on Windows

Stardog provides batch ( .bat ) files for use on Windows; they o�er roughly the same set of functionality provided by
the Bash scripts which are used on Unix-like systems. There are, however, a few small di�erences between the two.
When you start a server with server start  on Windows, this does not detach to the background, it will run in the



/

current console.

To shut down the server correctly, you should either issue a server stop  command from another window or press 
Ctrl + C  (and then Y  when asked to terminate the batch job). Do not under any circumstance close the window

without shutting down the server. This will simply kill the process without shutting down Stardog, which may cause
your database to be corrupted.

The .bat  scripts for Windows support our standard STARDOG_HOME  and STARDOG_SERVER_JAVA_ARGS  environment
variables which can be used to control where Stardog’s database is stored and how much memory is given to Stardog’s
JVM when it starts. By default, the script will use the JVM that is available in the directory from which Stardog is run via
the JAVA_HOME  environment variable. If this is not set, it will simply execute java  from within that directory.

Running Stardog as a Windows Service

You can run Stardog as a Windows Service using the following configuration. Please, note, that the following assumes
commands are executed from a Command Prompt with administrative privileges.

Installing the Service

Change the directory to the Stardog installation directory:

Configuring the Service

The default settings with which the service will be installed are

2048 MB of RAM

STARDOG_HOME  is the same as the installation directory

the name of the installed service will be "Stardog Service"

Stardog service will write logs to the "logs" directory within the installation directory

To change these settings, set appropriate environment variables:

STARDOG_MEMORY : the amount of memory in MB (e.g., set STARDOG_MEMORY =4096)

STARDOG_HOME : the path to STARDOG_HOME  (e.g., set STARDOG_HOME =c:\\stardog-home)

STARDOG_SERVICE_DISPLAY_NAME : a di�erent name to be displayed in the list of services (e.g., set
STARDOG_SERVICE_DISPLAY_NAME =Stardog Service)

STARDOG_LOG_PATH : a path to a directory where the log files should be written (e.g., set
STARDOG_LOG_PATH =c:\\stardog-logs)

If you have changed the default administrator password, you also need to change stop-service.bat  and specify the
new username and password there (by passing -u  and -p  parameters in the line that invokes stardog-admin
server stop ).

Installing Stardog as a Service

Run the install-service.bat  script.

At this point the service has been installed, but it is not running. To run it, see the next section or use any Windows
mechanism for controlling the services (e.g., type services.msc  on the command line).

Starting, Stopping, & Changing Service Configuration

Once the service has been installed, execute stardog-serverw.exe , which will allow you to configure the service
(e.g., set whether the service is started automatically or manually), manually start and stop the service, as well as to
configure most of the service parameters.

Uninstalling the Stardog Service

The service can be uninstalled by running uninstall-service.bat  script.

cd c:\stardog-$VERSION



/

Using Stardog with Kerberos

Stardog can be configured to run in both MIT and Active Directory Kerberos environments. In order to do so a keytab
(https://web.mit.edu/kerberos/krb5-1.12/doc/basic/keytab_def.html) file must be properly created.

Once the keytab file is acquired the following options can be set in stardog.properties :

1. krb5.keytab : The path to the keytab file for the Stardog server.

2. krb5.principal : The principal of the credential stored in the keytab  file. O�en this is of the format
HTTP/<canonical DNS name of the host>@<REALM>.

3. krb5.admin.principal : The Kerberos principal that will be the default administrator of this service.

4. krb5.debug : A boolean value to enable debug logging in the Java Kerberos libraries.

Once Stardog is propery configured for Kerberos Stardog user names should be created that match their associated
Kerberos principal names. Authentication will be done based on the Kerberos environment and authorization is done
based on the principal names matching Stardog users.

TIP Kerberos: Three-Headed Stardog (https://www.stardog.com/blog/kerberos-three-headed-stardog/)

ENTERPRISE DATA UNIFICATION

Stardog is an Enterprise Knowledge Graph platform, which means that it’s also a data unification platform. Enterprises
have lots of data and lots of data sources and almost all of them are locked away in IT silos and stovepipes that impede
insight, analysis, reporting, compliance, and operations.

State of the art IT management tells us to organize data, systems, assets, sta�s, schedules, and budgets vertically to
mirror lines of business. But increasingly all the internal and external demands on IT are horizontal in nature: the data is
organized vertically, but the enterprise increasingly needs to access and understand it horizontally.

Structured Data

Stardog supports a set of techniques for unifing structured enterprise data, chiefly, Virtual Graphs: tabular data
declaratively mapped into a Stardog database graph and queries by Stardog in situ, typically using SQL. Stardog
rewrites (a portion of) SPARQL queries against the Stardog database into SQL, issues that SQL query to an RDBMS, and
translates the SQL results into SPARQL results. Virtual Graphs can be used for mapping any tabular data, e.g. CSV, to RDF
and Stardog will support mapping other tabular formats to graphs in future releases, including XML, JSON, and
enterprise directory services.

A Virtual Graph has three components:

a unique name

configuration options (#_virtual_graph_configuration_options)

data source connection parameters

query and data parameters

mappings for the data

A virtual graph’s name must conform to the regular expression [A-Za-z]{1}[A-Za-z0-9_-] . The configuration file
includes several parameters, including a JDBC connection. Finally, the mappings define how the tabular data stored in
the RDBMS will be represented in RDF. The mappings are defined using the R2RML (http://www.w3.org/TR/r2rml/)
mapping language, but a simpler Stardog Mapping Syntax (#_stardog_mapping_syntax) is also supported for serializing
R2RML mappings.

Supported RDBMSes

[17 (#_footnote_17)]

https://web.mit.edu/kerberos/krb5-1.12/doc/basic/keytab_def.html
https://www.stardog.com/blog/kerberos-three-headed-stardog/
http://www.w3.org/TR/r2rml/


/

Stardog Virtual Graphs supports the following relational database systems; please inquire
(mailto:inquiries@stardog.com) if you need support for another.

Apache Hive

Apache/Cloudera Impala

IBM DB2

H2 & Derby

Microso� SQL Server

MySQL & MariaDB

Oracle

PostgreSQL

Sybase ASE

Managing Virtual Graphs

In order to query a Virtual Graph it first must be registered with Stardog. Adding a new virtual graph is done via the
following command:

The first argument ( dept.properties ) is the configuration file for the virtual graph and the second argument
('dept.ttl') is the mappings file. The name of the configuration file is used as the name of the virtual graph, so the above
command registers a virtual graph named dept . Configuration files should be in the Java properties file format and
provide JDBC data source and virtual graph configuration. The configuration reference is at Virtual Graph Configuration
Options (#_virtual_graph_configuration_options). A minimal example looks like this:

NOTE
Stardog does not ship with JDBC drivers. You need to manually copy the JAR file containing the driver
to the STARDOG/server/dbms/  or STARDOG_EXT  directory so that it will be available to the Stardog
server. The server needs to be restarted a�er the JAR is copied.

The credentials for the JDBC connection need to be provided in plain text. An alternative way to provide credentials is to
use the password file (#_using_a_password_file) mechanism. The credentials should be stored in a password file called
services.sdpass  located in STARDOG_HOME  directory. The password file entries are in the format
hostname:port:database:username:password  so for the above example there should be an entry
localhost:*:dept:admin:admin  in this file. Then the credentials in the configuration file can be omitted.

The configuration file can also contain a property called base  to specify a base URI (http://www.w3.org/TR/r2rml/#dfn-
base-iri) for resolving relative URIs generated by the mappings (if any). If no value is provided, the base URI will be
virtual://myGraph  where myGraph  is the name of the virtual graph.

The add command by default assumes the mappings are using the Stardog Mapping Syntax
(#_stardog_mapping_syntax). Mappings in standard R2RML syntax can be used by adding the --format r2rml  option
in the above command. If there are no mappings provided to the add commands then the R2RML direct mapping
(http://www.w3.org/TR/rdb-direct-mapping/) is used.

Registered virtual graphs can be listed:

$ stardog-admin virtual add dept.properties dept.ttl

jdbc.url=jdbc:mysql://localhost/dept 

jdbc.username=admin 

jdbc.password=admin 

jdbc.driver=com.mysql.jdbc.Driver

$ stardog-admin virtual list 

1 virtual graphs 

dept

mailto:inquiries@stardog.com
http://www.w3.org/TR/r2rml/#dfn-base-iri
http://www.w3.org/TR/rdb-direct-mapping/


/

The commands virtual mappings  and virtual options  can be used to retrieve the mappings and configuration
options associated with a virtual graph respectively. Registered virtual graphs can be removed using the virtual
remove  command. See the Man Pages (#_man_pages) for the details of these commands.

Querying Virtual Graphs

Querying Virtual Graphs is done by using the GRAPH  clause, using a special graph URI in the form virtual://myGraph
to query the Virtual Graph named myGraph . The following example shows how to query dept :

Virtual graphs are defined globally in Stardog Server. Once they are registered with the server they can be accessed via
any Stardog database as allowed by the access rules (#_virtual_graph_security).

We can query the local Stardog database and virtual graph’s remote data in a single query. Suppose we have the dept
virtual graph, defined as above, that contains employee and department information, and the Stardog database
contains data about the interests of people. We can use the following query to combine the information from both
sources:

NOTE Query performance will be best if the GRAPH  clause for Virtual Graphs is as selective as possible.

Virtual Graph Query Syntax

Virtual Graph queries are implemented by executing a query against the remote data source. This is a powerful feature
and care must be taken to ensure peak performance. SPARQL and SQL don’t have feature parity, especially given the
varying capabilities of SQL implementations. Stardog’s query translator supports most of the salient features of SPARQL
including:

Arbitrarily nested subqueries (including solution modifiers)

Aggregation

FILTER  (including most SPARQL functions)

OPTIONAL , UNION , BIND

That said, there are also limitations on translated queries. This includes:

SPARQL MINUS  is not currently translated to SQL

Transitive reasoning queries are not currently translated to SQL

Comparisons between objects with di�erent datatypes don’t always follow XML Schema semantics

Named graphs in R2RML are not supported

Virtual Graph Security

Accessing Virtual Graphs can be controlled similar to regular named graphs as explained in the Named Graph Security
(#_named_graph_security) section. If named graph security is not enabled for a database, all registered Virtual Graphs
in the server will be accessible through that database. If named graph security is enabled for a database, then users will
be able to query only the Virtual Graphs for which they have been granted access.

SELECT * { 

   GRAPH <virtual://dept> { 

      ?person a emp:Employee ; 

           emp:name "SMITH" 

   } 

}

SELECT * { 

   GRAPH <virtual://dept> { 

      ?person a emp:Employee ; 

           emp:name "SMITH" 

   } 

   ?person foaf:interest ?interest 

}



/

If the virtual graphs contain any sensitive information, then it is recommended to enable named graph security globally
by setting security.named.graphs=true  in stardog.properties . Otherwise creating a new database without
proper configuration would allow users to access those Virtual Graphs.

Materializing Virtual Graphs

In some cases you need to materialize the information stored in RDBMS directly into RDF. There is a special command
virtual import  that can be used to import the contents of the RDBMS into Stardog. The command can be used as

follows:

This command adds all the mapped triples from the RDBMS into the default graph. Similar to virtual add , this
command assumes Stardog Mapping Syntax (#_stardog_mapping_syntax) by default and can accept R2RML mappings
using the --format r2rml  option.

It is also possible to specify a target named graph by using the -g / --namedGraph  option:

This virtual import  command is equivalent to the following SPARQL update query:

If the RDBMS contents change over time, and we need to update the materialization results in the future, we can clear
the named graph contents and rematerialize again. This can be done by using the --remove-all  option in virtual
import  or with the following SPARQL query:

Query performance over materialized graphs will be better as the data will be indexed locally by Stardog, but
materialization may not be practical in cases where frequency of change is very high.

CSV as Virtual Graph

Mappings can be used to treat CSV files as Virtual Graphs since they represent tabular data similar to RDBMS tables. But
unlike RDBMS tables, CSV files are supported only for importing into Stardog. The same import command above can be
used to specify a mappings file and an input CSV file:

If the input file is using di�erent kind of separators, e.g. tab character, a configuration file can be provided

The configuration file for CSV files can specify values for the following properties: csv.separator  (character for
separating fields), csv.quote  (character for strings), csv.escape  (character for escaping special characters),
csv.header  (boolean value for specifying whether or not the input file has a header line at the beginning). Note that,

whitespace characters in Java properties file need to be escaped so if you want to import tab-separated value files set
csv.separator=\t  in the configuration file.

NOTE

CSV files are processed on the client side and then sent to the Stardog server. If you run out of
memory, you can increase the memory for the client using the STARDOG_JAVA_ARGS  environment
variable. This environment variable should only be set for the virtual import  command to avoid
a�ecting other client command invocations. This can be done like so:

$ stardog-admin virtual import myDb dept.properties dept.ttl

$ stardog-admin virtual import -g http://example.com/targetGraph myDb dept.properties dept.ttl

ADD <virtual://dept> TO <http://example.com/targetGraph>

COPY <virtual://dept> TO <http://example.com/targetGraph>

$ stardog-admin virtual import myDB cars.ttl cars.csv

$ stardog-admin virtual import myDB cars.properties cars.ttl cars.tsv

$ STARDOG_JAVA_ARGS="-Xmx1g" stardog-admin virtual import myDB cars.properties cars.ttl cars.csv



/

Stardog Mapping Syntax

The Stardog Mapping Syntax (SMS) is an alternative way to serialize R2RML mappings that is much simpler to read and
write and has the same expressive power as R2RML. Mappings written in SMS can be converted to R2RML and vice versa.
We will use the example database (http://www.w3.org/TR/r2rml/#example-input-database) from the R2RML
specification to explain SMS. The SQL schema that corresponds to this example is

Suppose we would like to represent this information in RDF using the same translation for job codes
(http://www.w3.org/TR/r2rml/#example-translationtable) as in the original example:

SMS looks very similar to the output RDF representation:

SMS is based on Turtle, but it’s not valid Turtle since it uses the URI templates (http://www.w3.org/TR/r2rml/#from-
template) of R2RML— curly braces can appear in URIs. Other than this di�erence, we can treat an SMS document as a set
of RDF triples. SMS documents use the special namespace tag:stardog:api:mapping:  that we will represent with
the sm  prefix below.

CREATE TABLE "DEPT" ( 

      "deptno" INTEGER UNIQUE, 

      "dname" VARCHAR(30), 

      "loc" VARCHAR(100)); 

INSERT INTO "DEPT" ("deptno", "dname", "loc") 

       VALUES (10, 'APPSERVER', 'NEW YORK'); 

 

CREATE TABLE "EMP" ( 

      "empno" INTEGER PRIMARY KEY, 

      "ename" VARCHAR(100), 

      "job" VARCHAR(30), 

      "deptno" INTEGER REFERENCES "DEPT" ("deptno"), 

      "etype" VARCHAR(30)); 

INSERT INTO "EMP" ("empno", "ename", "job", "deptno", "etype" ) 

       VALUES (7369, 'SMITH', 'CLERK', 10, 'PART_TIME');

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix emp: <http://example.com/emp/> . 

@prefix dept: <http://example.com/dept/> . 

 

dept:10 a dept:Department ; 

    dept:location "NEW YORK" ; 

    dept:deptno "10"^^xsd:integer . 

 

emp:7369 a emp:Employee ; 

    emp:name "SMITH" ; 

    emp:role emp:general-office ; 

    emp:department dept:10 .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix emp: <http://example.com/emp/> . 

@prefix dept: <http://example.com/dept/> . 

@prefix sm: <tag:stardog:api:mapping:> . 

 

dept:{"deptno"} a dept:Department ; 

    dept:location "{\"loc\"}" ; 

    dept:deptno "{\"deptno\"}"^^xsd:integer ; 

    sm:map [ 

      sm:table "DEPT" ; 

    ] . 

 

emp:{"empno"} a emp:Employee ; 

    emp:name "{\"ename\"}" ; 

    emp:role emp:{ROLE} ; 

    emp:department dept:{"deptno"} ; 

    sm:map [ 

      sm:query """ 

        SELECT \"empno\", \"ename\", \"deptno\", (CASE \"job\" 

            WHEN 'CLERK' THEN 'general-office' 

            WHEN 'NIGHTGUARD' THEN 'security' 

            WHEN 'ENGINEER' THEN 'engineering' 

        END) AS ROLE FROM \"EMP\" 

        """ ; 

    ] .

http://www.w3.org/TR/r2rml/#example-input-database
http://www.w3.org/TR/r2rml/#example-translationtable
http://www.w3.org/TR/r2rml/#from-template


/

Every subject in the SMS document that has a sm:map  property maps a single row from the corresponding table/view
to one or more triples. If an existing table/view is being mapped, sm:table  is used to refer to the table. Alternatively, a
SQL query can be provided inline using the sm:query  property.

The values generated will be a URI, blank node, or a literal based on the type of the value used in the mapping. The
column names referenced between curly braces will be replaced with the corresponding values from the matching row.

SMS can be translated to the standard R2RML syntax. For completeness, we provide the R2RML mappings
corresponding to the above example:

Virtual Graph Configuration Options

The following table lists the allowed options in the virtual graph configuration file. Additionally, connection pool
configuration of the built-in Tomcat connection pool are allowed. The set of allowed properties is listed in the Tomcat
JDBC Connection Pool (https://tomcat.apache.org/tomcat-9.0-doc/jdbc-pool.html#Common_Attributes)
documentation. Any unknown options will be ignored.

7. Table of Virtual Graph Configuration Options

Option Default

base

Base IRI used to resolve relative IRIs from virtual graphs.

jdbc.url

@prefix rr: <http://www.w3.org/ns/r2rml#> . 

@prefix emp: <http://example.com/emp#> . 

@prefix dept: <http://example.com/dept#> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@base <http://example.com/base/> . 

 

<DeptTriplesMap> 

    a rr:TriplesMap; 

    rr:logicalTable [ rr:tableName "DEPT" ]; 

    rr:subjectMap [ rr:template "http://data.example.com/dept/{\"deptno\"}" ; 

                    rr:class dept:Department ]; 

    rr:predicateObjectMap [ 

      rr:predicate   dept:deptno ; 

      rr:objectMap    [ rr:column "\"deptno\""; rr:datatype xsd:positiveInteger ] 

    ]; 

    rr:predicateObjectMap [ 

      rr:predicate dept:location ; 

      rr:objectMap [ rr:column "\"loc\"" ] 

    ]. 

 

<EmpTriplesMap> 

 a rr:TriplesMap; 

    rr:logicalTable [ rr:sqlQuery """ 

        SELECT "EMP".*, (CASE "job" 

            WHEN 'CLERK' THEN 'general-office' 

            WHEN 'NIGHTGUARD' THEN 'security' 

            WHEN 'ENGINEER' THEN 'engineering' 

        END) AS ROLE FROM "EMP" 

        """ ]; 

    rr:subjectMap [ 

        rr:template "http://data.example.com/employee/{\"empno\"}"; 

        rr:class emp:Employee

    ]; 

    rr:predicateObjectMap [ 

      rr:predicate  emp:name ; 

      rr:objectMap    [ rr:column "\"ename\"" ]; 

    ]; 

    rr:predicateObjectMap [ 

        rr:predicate emp:role; 

        rr:objectMap [ rr:template "http://data.example.com/roles/{ROLE}" ]; 

    ]; 

    rr:predicateObjectMap [ 

        rr:predicate emp:department; 

        rr:objectMap [ rr:template "http://example.com/dept/{\"deptno\"}"; ]; 

    ].

https://tomcat.apache.org/tomcat-9.0-doc/jdbc-pool.html#Common_Attributes


/

Option Default

The URL of the JDBC connection.

jdbc.username

The username used to make the JDBC connection.

jdbc.password

The password used to make the JDBC connection.

jdbc.driver

The driver class name used to make the JDBC connection.

csv.separator ,

A single-character separator used when importing tabular data files.

csv.quote "

A single character used to used to encapsulate values containing special characters.

csv.escape

A single character used to escape values containing special characters.

csv.header true

Should the import process read the header row? When headers are enabled the first row of the input file is used to
retrieve the column names and mappings can refer to those column names. ( true / false )

csv.skip.empty true

Should empty values be skipped in the CSV file? If true  no triples will be generated for templates that refer to a
column with empty value. ( true / false )

percent.encode true

Should IRI template strings be percent-encoded to be valid IRIs? ( true / false )

optimize.import true

Should virtual import  and ?s ?p ?o  queries use the optimized translation? ( true / false )

parser.sql.quoting

If unspecified, R2RML views (using rr:sqlQuery ) will be parsed using the DB-native identifier quoting convention.
For example, MySQL queries will be parsed treating backtick as the identifier quote character. If set to ANSI , the
ANSI SQL convention of treating a double quote as the identifier quote character will be used instead.

query.translation

If unspecified, use the core query translation algorithm. If set to legacy, the previous algorithm will be used. This
option is intended for debugging and not production use.

sql.functions

A comma-separated list of SQL function names to register with the parser. If an R2RML view (using rr:sqlQuery)
fails to parse, this option can be set to allow use of non-standard functions.

sql.schemas

A comma-separated list of schemas to append to the schema search path. This option allows R2RML tables and
queries to reference tables that are outside of the default schema for the connected user.



/

Option Default

default.mapping.include.tables

A comma-separated list of tables to include when generating default mappings. If blank, mappings will be generated
for all tables in the default schema for the connected user, plus any schemas listed in sql.schemas . Cannot be
combined with default.mapping.exclude.tables .

default.mapping.exclude.tables

A comma-separated list of tables to exclude when generating default mappings. Mappings will be generated for all
tables in the default schema for the connected user, plus any schemas listed in sql.schemas , except those tables
listed in this option. Cannot be combined with default.mapping.include.tables .

Unstructured Data

Unifying unstructured data is, by necessity, a di�erent process from unifying structured or semistructured data. As of
4.2, Stardog includes a document storage subsystem called BITES , which provides configurable
storage and processing for unifying unstructured data with the Stardog graph. The following figure shows the main
BITES components:

Storage

BITES allows storage and retrieval of documents in the form of files. Stardog treats documents as opaque blobs of data;
it defers to the extraction process to make sense of individual documents. Document storage is independent of file and
data formats.

Stardog internally stores documents as files. The location of these files defaults to a subdirectory of STARDOG_HOME  but
this can be overridden. Documents can be stored on local filesystem, or an abstraction thereof, accessible from the
Stardog server or on Amazon S3 by setting the docs.filesystem.uri  configuration option. The exact location is given
by the docs.path  configuration option.

Structured Data Extraction

BITES supports an optional processing stage in which a document is processed to extract an RDF graph to add to the
database. BITES has the following built-in RDF extractors:

tika : This extractor is based on Apache Tika, collects metadata about the document and asserts this set of RDF
statements to a named graph specific to the document.

text : (Since version 5.3) Adds a RDF statement with the full text extracted from the document. Side-e�ect of this
extractor is that a document’s text will be indexed by the search index twice: one for the document itself, other for
the value of this RDF statement.

entities : [Beta] (Since version 5.2) This extractor uses OpenNLP (https://opennlp.apache.org/) to extract all the
mentions of named entities from the document and adds this information to the document named graph.

[18 (#_footnote_18)]

https://opennlp.apache.org/


/

linker : [Beta] (Since version 5.2) This extractor works just like entities  but a�er it finds a named entity mention
in the document it also finds the entity in the database that best matched that mention.

dictionary : [Beta] (Since version 5.2.3) Similar to linker , but using a user-provided dictionary that maps
named entity mentions to IRIs.

CoreNLPMentionRDFExtractor , CoreNLPMentionRDFExtractor , and CoreNLPRelationRDFExtractor
available through the bites-corenlp (https://github.com/stardog-union/bites-corenlp) repository.

See Entity Extraction and Linking (#_entity_extraction_and_linking) section for more details about some of these
extractors.

Text Extraction

The document store is fully integrated with Stardog’s Search (#_search). As with RDF extraction, text extraction supports
arbitrary file formats and pluggable extractors are able to retrieve the textual contents of a document for indexing. Once
a document is added to BITES, its contents can be searched in the same way as other literals using the standard
textMatch  predicate in SPARQL queries.

Managing Documents

CRUD operations on documents can be performed from the command line, Java API or HTTP API. Please refer to the
StardocsConnection (/docs/5.3.6/java/snarl/com/complexible/stardog/docs/stardocsconnection) API for details of
using the document store from Java.

The following is an example session showing how to manage documents from the command line:

See the Man Pages (#_man_pages) for more details about the CLI commands.

Named Graphs and Document Queries

# We have a document stored in the file `whyfp90.pdf' which we will add to the document store 

$ ls -al whyfp90.pdf 

-rw-r--r-- 1 user user 200007 Aug 30 09:46 whyfp90.pdf 

 

# We add it to the document store and receive the document's IRI as a return value 

$ bin/stardog doc put myDB whyfp90.pdf 

Successfully put document in the document store: tag:stardog:api:docs:myDB:whyfp90.pdf 

 

# Adding the same document again will delete all previous extraction results and insert new ones. 

# By setting the correct argument, previous assertions will be kept, and new ones appended.

$ bin/stardog doc put myDB —keep-assertions -r text whyfp90.pdf 

Successfully put document in the document store: tag:stardog:api:docs:myDB:whyfp90.pdf 

 

# Alternatively, we can add it with a different name. Repeated calls 

# will update the document and refresh extraction results 

$ bin/stardog doc put myDB --name why-functional-programming-matters.pdf whyfp90.pdf 

Successfully put document in the document store: tag:stardog:api:docs:myDB:why-functional-programming-

matters.pdf 

 

# We can subsequently retrieve documents and store them locally 

$ bin/stardog doc get myDB whyfp90.pdf 

Wrote document 'whyfp90.pdf' to file 'whyfp90.pdf'

 

# Local files will not be overwritten 

$ bin/stardog doc get myDB whyfp90.pdf 

File 'whyfp90.pdf' already exists. You must remove it or specify a different filename. 

 

# How many documents are in the document store? 

$ bin/stardog doc count myDB 

Count: 2 documents 

 

# Removing a document will also clear it's named graph and full-text search index entries 

$ bin/stardog doc delete myDB whyfp90.pdf 

Successfully executed deletion. 

 

# Re-indexing the docstore allows to apply a different rdf or text extractor 

# to all the documents, refreshing extraction results 

$ bin/stardog doc reindex myDB -r entities 

"Re-indexed 1 documents"

https://github.com/stardog-union/bites-corenlp
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/docs/stardocsconnection


/

Documents in BITES are identified by IRI. As shown in the command line examples above, the IRI is returned from a
document put  call. The IRI is a combination of a prefix, the database name, and the document name. The CLI uses the
document name to refer to the documents. The RDF index, and therefore SPARQL queries, use the IRIs to refer to the
documents. RDF assertions extracted from a document are placed into a named graph identified by the document’s IRI.

Here we can see the results of querying a document’s named graph when using the default metadata extractor:

Entity Extraction and Linking

BITES, by default, uses the tika  RDF extractor that only extracts metadata from documents. Stardog can be configured
to use the OpenNLP (http://opennlp.sourceforge.net) library to detect named entities mentioned in documents and
optionally link those mentions to existing resources in the database.

Stardog can also be configured to use Stanford’s CoreNLP (https://stanfordnlp.github.io/CoreNLP/) library for entity
extraction, linking, and relationship extraction. More information in the bites-corenlp (https://github.com/stardog-
union/bites-corenlp) repository.

TIP

Entity Linking in the Knowledge Graph (https://www.stardog.com/blog/entity-linking-in-the-
knowledge-graph/)

Extending NLP (https://www.stardog.com/blog/extending-nlp/)

Link All the Entities! (https://www.stardog.com/blog/link-all-the-entities/)

Augmenting Search (https://www.stardog.com/blog/augmenting-search/)

The first step to use entity extractors is to identify the set of OpenNLP models that will be used. The following models
are always required:

A tokenizer and sentence detector. OpenNLP (http://opennlp.sourceforge.net/models-1.5/) provides models for
several languages (e.g., en-token.bin  and en-sent.bin )

At least one name finder model. Stardog supports both dictionary-based
(https://opennlp.apache.org/docs/1.8.2/manual/opennlp.html#tools.cli.dictionary) and custom trained
(https://opennlp.apache.org/docs/1.8.2/manual/opennlp.html#tools.namefind.training) models. OpenNLP
(http://opennlp.sourceforge.net/models-1.5/) provides models for several types of entities and languages (e.g., en-
ner-person.bin ). We provide our own name finder models (https://complexible.jfrog.io/complexible/stardog-
nlp/ner/) created from Wikipedia and DBPedia, which provide high recall / low precision in identifying Person,
Organization, and Location types from English language documents.

All this files should be put in the same directory and, a�er or during database creation time, the configuration option
docs.opennlp.models.path  should be set to its location.

For example, suppose you have a folder /data/stardog/opennlp  with files en-token.bin , en-sent.bin , and en-
ner-person.bin . The database creation command would be as follows:

$ stardog query execute myDB "select ?p ?o { graph <tag:stardog:api:docs:myDB:whyfp90.pdf> { ?s ?p ?o } }" 

 

+--------------------------------------------+--------------------------------------+ 

|                     p                      |                  o                   | 

+--------------------------------------------+--------------------------------------+ 

| rdf:type                                   | http://xmlns.com/foaf/0.1/Document   | 

| rdf:type                                   | tag:stardog:api:docs:Document        | 

| tag:stardog:api:docs:fileSize              | 200007                               | 

| http://purl.org/dc/elements/1.1/identifier | "whyfp90.pdf"                        | 

| rdfs:label                                 | "whyfp90.pdf"                        | 

| http://ns.adobe.com/pdf/1.3/PDFVersion     | "1.3"                                | 

| http://ns.adobe.com/xap/1.0/CreatorTool    | "TeX"                                | 

| http://ns.adobe.com/xap/1.0/t/pg/NPages    | 23                                   | 

| http://purl.org/dc/terms/created           | "2006-05-19T13:42:00Z"^^xsd:dateTime | 

| http://purl.org/dc/elements/1.1/format     | "application/pdf; version=1.3"       | 

| http://ns.adobe.com/pdf/1.3/encrypted      | "false"                              | 

+--------------------------------------------+--------------------------------------+ 

 

Query returned 11 results in 00:00:00.045

$ stardog-admin db create -o docs.opennlp.models.path=/data/stardog/opennlp -n movies

http://opennlp.sourceforge.net/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/stardog-union/bites-corenlp
https://www.stardog.com/blog/entity-linking-in-the-knowledge-graph/
https://www.stardog.com/blog/extending-nlp/
https://www.stardog.com/blog/link-all-the-entities/
https://www.stardog.com/blog/augmenting-search/
http://opennlp.sourceforge.net/models-1.5/
https://opennlp.apache.org/docs/1.8.2/manual/opennlp.html#tools.cli.dictionary
https://opennlp.apache.org/docs/1.8.2/manual/opennlp.html#tools.namefind.training
http://opennlp.sourceforge.net/models-1.5/
https://complexible.jfrog.io/complexible/stardog-nlp/ner/


/

For consistency, model filenames should follow specific patterns:

*-token.bin  for tokenizers (e.g., en-token.bin )

*-sent.bin  for sentence detectors (e.g., en-sent.bin )

*-ner-*.dict  for dictionary-based name finders (e.g., dbpedia-en-ner-person.dict )

*-ner-*.bin  for custom trained name finders (e.g., wikipedia-en-ner-organization.bin )

Entities

The entities  extractor detects the mentions of named entities based on the configured models and creates RDF
statements for those entities. When we are putting a document we need to specify that we want to use a non-default
extractor. We can use both the tika  metadata extractor and the entities  extractor at the same time:

The result of entity extraction will be in a named graph where an auto-generated IRI is used for the entity:

Linker

The linker  extractor performs the same task as entities  but a�er the entities are extracted it links those entities to
the existing resources in the database. Linking is done by matching the mention text with the identifier and labels of
existing resources in the database. This extractor requires the search feature (#_enabling_search) to be enabled to find
the matching candidates and uses string similarity metrics to choose the best match. The commonly used properties for
labels are supported: rdfs:label , foaf:name , dc:title , skos:prefLabel  and skos:altLabel .

The extraction results of linker  will be similar to entities , but only contain existing resources for which a link was
found. The link is available through the dc:references  property.

Dictionary

The dictionary  extractor fullfills the same purpose as the linker , but instead of heuristically trying to match a
mention’s text with existent resources, it uses a user-defined dictionary to perform that task. The dictionary provides a
set of mappings between text and IRIs. Each mention found in the document will be searched in the dictionary and, if
found, the IRIs will be added as dc:references  links.

Dictionaries are .linker  files, which need to be available in the docs.opennlp.models.path  folder. Stardog
provides several dictionaries (https://complexible.jfrog.io/complexible/stardog-nlp/dictionary/) created from Wikipedia
and DBPedia, which allow users to automatically link entity mentions to IRIs in those knowledge bases.

When using the dictionary  option, all .linker  files in the docs.opennlp.models.path  folder will be used. The
output follows the same syntax as the linker .

$ stardog doc put --rdf-extractors tika,entities movies CastAwayReview.pdf

<tag:stardog:api:docs:movies:CastAwayReview.pdf> { 

 <tag:stardog:api:docs:entity:9ad311b4-ddf8-4da2-a49f-3fa8f79813c2> rdfs:label "Wilson" . 

 <tag:stardog:api:docs:entity:0d25b4ed-9cd4-4e00-ac3d-f984012b67f5> rdfs:label "Tom Hanks" . 

 <tag:stardog:api:docs:entity:e559b828-714f-407d-aa73-7bdc39ee8014> rdfs:label "Robert Zemeckis" . 

}

$ stardog doc put --rdf-extractors linker movies CastAwayReview.pdf

<tag:stardog:api:docs:movies:CastAwayReview.pdf> { 

 

 <tag:stardog:api:docs:entity:0d25b4ed-9cd4-4e00-ac3d-f984012b67f5> rdfs:label "Tom Hanks" ; 

  <http://purl.org/dc/terms/references> <http://www.imdb.com/name/nm0000158> . 

 

 <tag:stardog:api:docs:entity:e559b828-714f-407d-aa73-7bdc39ee8014> rdfs:label "Robert Zemeckis" ; 

  <http://purl.org/dc/terms/references> <http://www.imdb.com/name/nm0000709> . 

}

$ stardog doc put --rdf-extractors dictionary movies CastAwayReview.pdf

https://complexible.jfrog.io/complexible/stardog-nlp/dictionary/


/

User-defined dictionaries can be created programmatically. For example, the Java class below will create a dictionary
that links every mention of Tom Hanks  to two IRIs.

SPARQL

Both entities , linker , and dictionary  extractors are also available as a SPARQL service, which makes them
applicable to any data in the graph, whether stored directly in Stardog or accessed remotely on SPARQL endpoints or
virtual graphs.

The entities  extractor is accessed by using the docs:entityExtractor  service, which receives one input
argument, docs:text , with the text to be analyzed. The output will be the extracted named entity mentions, bound to
the variable given in the docs:mention  property.

By adding an extra output variable, docs:entity , the linker  extractor will be used instead.

<tag:stardog:api:docs:movies:CastAwayReview.pdf> { 

 

 <tag:stardog:api:docs:entity:0d25b4ed-9cd4-4e00-ac3d-f984012b67f5> rdfs:label "Tom Hanks" ; 

  <http://purl.org/dc/terms/references> <http://en.wikipedia.org/wiki/Tom_Hanks> ; 

        <http://purl.org/dc/terms/references> <http://dbpedia.org/resource/Tom_Hanks> . 

}

import java.io.File; 

import java.io.IOException; 

import com.complexible.stardog.docs.nlp.impl.DictionaryLinker; 

import com.google.common.collect.ImmutableMultimap; 

import org.openrdf.model.IRI;

import static com.complexible.common.rdf.model.Values.iri; 

 

public class CreateLinker { 

 

 public static void main(String[] args) throws IOException { 

  ImmutableMultimap<String, IRI> aDictionary = ImmutableMultimap.<String, IRI>builder() 

                                                .putAll("Tom Hanks", 

iri("https://en.wikipedia.org/wiki/Tom_Hanks"), iri("http://www.imdb.com/name/nm0000158")) 

                                                .build(); 

 

  DictionaryLinker.Linker aLinker = new DictionaryLinker.Linker(aDictionary); 

 

  aLinker.to(new File("/data/stardog/opennlp/TomHanks.linker")); 

 } 

}

prefix docs: <tag:stardog:api:docs:> 

 

select * { 

  ?review :content ?text 

 

  service docs:entityExtractor { 

    []  docs:text ?text ; 

        docs:mention ?mention

  } 

}

+-----------------------------------------------------------------------------------+------------------+---

------------+ 

|                                       text                                        |      mention     |     

review    | 

+-----------------------------------------------------------------------------------+------------------+---

------------+ 

| "Directed by Robert Zemeckis, featuring Tom Hanks and a volleyball called Wilson" | "Robert Zemeckis"| 

:MovieReview  | 

| "Directed by Robert Zemeckis, featuring Tom Hanks and a volleyball called Wilson" | "Tom Hanks"      | 

:MovieReview  | 

| "Directed by Robert Zemeckis, featuring Tom Hanks and a volleyball called Wilson" | "Wilson"         | 

:MovieReview  | 

+-----------------------------------------------------------------------------------+------------------+---

------------+



/

The dictionary  extractor is called in a similar way to linker , with an extra argument docs:mode  set to
docs:Dictionary .

All extractors accept one more output variable, docs:type , which will output the type of entity (e.g., Person,
Organization), when available.

Custom Extractors

The included extractors are intentionally basic, especially when compared to machine learning or text mining
algorithms. A custom extractor connects the document store to algorithms tailored specifically to your data. The
extractor SPI allows integration of any arbitrary workflow or algorithm from NLP methods like part-of-speech tagging,

prefix docs: <tag:stardog:api:docs:> 

 

select * { 

  ?review :content ?text 

 

  service docs:entityExtractor { 

    []  docs:text ?text ; 

        docs:mention ?mention ; 

        docs:entity ?entity 

  } 

}

+-------------------------+------------------+----------------+---------------+ 

|         text            |      mention     |     entity     |     review    | 

+-------------------------+------------------+----------------+---------------+ 

| "Directed by Robert..." | "Tom Hanks"      | imdb:nm0000158 | :MovieReview  | 

| "Directed by Robert..." | "Robert Zemeckis"| imdb:nm0000709 | :MovieReview  | 

+-------------------------+------------------+----------------+---------------+

prefix docs: <tag:stardog:api:docs:> 

 

select * { 

  ?review :content ?text 

 

  service docs:entityExtractor { 

    []  docs:text ?text ; 

        docs:mention ?mention ; 

        docs:entity ?entity ;

        docs:mode docs:Dictionary 

  } 

}

+-------------------------+------------------+---------------------+---------------+ 

|         text            |      mention     |        entity       |     review    | 

+-------------------------+------------------+---------------------+---------------+ 

| "Directed by Robert..." | "Tom Hanks"      | imdb:nm0000158      | :MovieReview  | 

| "Directed by Robert..." | "Tom Hanks"      | wikipedia:Tom_Hanks | :MovieReview  | 

+-------------------------+------------------+---------------------+---------------+

prefix docs: <tag:stardog:api:docs:> 

 

select * { 

  ?review :content ?text 

 

  service docs:entityExtractor { 

    []  docs:text ?text ; 

        docs:mention ?mention ; 

        docs:entity ?entity ;

        docs:type ?type 

  } 

}

+-------------------------+------------------+----------------+-----------+---------------+

|         text            |      mention     |     entity     |    type   |     review    | 

+-------------------------+------------------+----------------+-----------+---------------+

| "Directed by Robert..." | "Tom Hanks"      | imdb:nm0000158 | :Person   | :MovieReview  | 

| "Directed by Robert..." | "Robert Zemeckis"| imdb:nm0000709 | :Person   | :MovieReview  | 

+-------------------------+------------------+----------------+-----------+---------------+



/

entity recognition, relationship learning, or sentiment analysis to machine learning models such as document ranking
and clustering.

Extracted RDF assertions are stored in a named graph specific to the document, allowing provenance tracking and
versatile querying. The extractor must implement the RDFExtractor
(/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/rdfextractor) interface. The convenience class
TextProvidingRDFExtractor
(/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/tika/textprovidingrdfextractor) is provided which
extracts the text from the document before calling the extractor. Entity linking extractors can be tweaked to specific
needs by extending their classes, EntityRDFExtractor
(java/snarl/com/complexible/stardog/docs/nlp/impl/EntityRDFExtractor.html) and EntityLinkingRDFExtractor
(java/snarl/com/complexible/stardog/docs/nlp/impl/EntityLinkingRDFExtractor.html).

The text extractor SPI gives you the opportunity to support arbitrary document formats. Implementations will be given
a raw document and be expected to extract a string of text which will be added to the full-text search index. Text
extractors should implement the TextExtractor
(/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/textextractor) interface.

Custom extractors are registered with the Java ServiceLoader under the RDFExtractor
(/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/rdfextractor) or TextExtractor
(/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/textextractor) class names. Custom extractors can be
referred to from the command line or APIs by their fully qualified or "simple" class names.

For an example of a custom extractor, see our github repository (https://github.com/stardog-union/stardog-
examples/tree/develop/examples/docs).

HIGH AVAILABILITY CLUSTER

In this section we explain how to configure, use, and administer Stardog Cluster for uninterrupted operations. Stardog
Cluster is a collection of Stardog Server instances running on one or more virtual or physical machines that, from the
client’s perspective, behave like a single Stardog Server instance. To fully achieve this e�ect requires DNS (i.e., with
SRV  records) and proxy configuration that’s le� as an exercise for the user.

Of course Stardog Cluster should have some di�erent operational properties, the main one of which is high availability.
But from the client’s perspective Stardog Cluster should be indistinguishable from non-clustered Stardog.

 While Stardog Cluster is primarily geared toward HA, it is also important to remember that it should be tuned for
your specific use case. Our detailed blog post (https://www.stardog.com/blog/tuning-cluster-for-cloud/) discusses a
variety of factors that you should consider when deploying Stardog Cluster as well as some adjustments you should
make depending on your workload.

[19 (#_footno
te_19)]

https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/rdfextractor
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/tika/textprovidingrdfextractor
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/nlp/impl/EntityRDFExtractor.html
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/docs/nlp/impl/EntityLinkingRDFExtractor.html
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/textextractor
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/rdfextractor
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/docs/extraction/textextractor
https://github.com/stardog-union/stardog-examples/tree/develop/examples/docs
https://www.stardog.com/blog/tuning-cluster-for-cloud/


/

NOTE

Stardog Cluster depends on Apache ZooKeeper. High Availability requires at least three Stardog and
three ZooKeeper nodes in the Cluster. ZooKeeper works best, with respect to fault resiliency, with an
ensemble size that is an odd-number greater than or equal to three: 3, 5, 7, etc.  With respect to
performance, larger Stardog clusters perform better than smaller ones for reads, while larger cluster
sizes perform worse for writes. It is the responsibility of the administrator to find the right balance.

TIP Tuning Cluster for Cloud (https://www.stardog.com/blog/tuning-cluster-for-cloud/)

Guarantees

A cluster is composed of a set of Stardog servers and a ZooKeeper ensemble running together. One of the Stardog
servers is the Coordinator and the others are Participants. The Coordinator orchestrates transactions and maintains
consistency by expelling any nodes that fail an operation. An expelled node must sync with a current member to rejoin
the cluster.

In case the Coordinator fails at any point, a new Coordinator will be elected out of the remaining available Participants.
Stardog Cluster supports both read  (e.g., querying) and write  (e.g., adding data) requests. All read and write
requests can be handled by any of the nodes in the cluster. When a client commits a transaction (containing a list of
write  requests), it will be acknowledged by the receiving node only a�er every non-failing peer node has committed

the transaction. If a peer node fails during the process of committing a transaction, it will be expelled from the cluster
by the Coordinator and put in a temporary failed  state. If the Coordinator fails during the process, the transaction
will be aborted. At that point the client can retry the transaction and it should succeed with the new cluster coordinator.

Since failed  nodes are not used for any subsequent read  or write  requests, if a commit is acknowledged, then
Stardog Cluster guarantees that the data has been accordingly modified at every available node in the cluster.

While this approach is less performant with respect to write operations than eventual consistency used by other
distributed databases, typically those databases o�er a much less expressive data model than Stardog, which makes an
eventually consistency model more appropriate for those systems (and less so for Stardog). But since Stardog’s data
model is not only richly expressive but rests in part on provably correct semantics, we think that a strong consistency
model is worth the cost.

Single Server Migration

It is assumed that Stardog nodes in a Stardog Cluster are always going to be used within a cluster context. Therefore, if
you want to migrate from a Stardog instance running in single server mode to running in a cluster, it is advised that you
create backups of your current databases and then import them to the cluster in order to be able to provide the
guarantees explained above. If you simply add a Stardog instance to cluster that was previously running in single server
mode, it will sync to the state of the cluster; local data could be removed when syncing with the cluster state.

Configuration

In this section we will explain how to manually deploy a Stardog Cluster using stardog-admin  commands and some
additional configuration. If you are deploying your cluster to AWS then you can use the Stardog Graviton
(#_stardog_graviton) that will automate this process.

You can use the stardog-admin cluster generate  command to bootstrap a cluster configuration and, thus, to ease
installation by simply passing a list of hostnames or IP addresses for the cluster’s nodes.

See the man page (/man/cluster-generate.html) for the details.

In a production environment we strongly recommend that each ZooKeeper process runs in a di�erent machine and, if
possible, that ZooKeeper has a separate drive for its data directory. If you need a larger cluster, adjust accordingly.

In the following example we will set up a cluster with total of 6 nodes. Zookeeper will be deployed on nodes 1-3 whereas
Stardog will be deployed on nodes 4-6.

[20]

[21 (#_footnote_21)]

$ stardog-admin cluster generate --output-dir /home/stardog 10.0.0.1 10.0.0.2 10.0.0.3

https://www.stardog.com/blog/tuning-cluster-for-cloud/
https://www.stardog.com/man/cluster-generate.html


/

1. Install (#_quick_start_guide) Stardog 5.3.6 on each machine in the cluster.

NOTE
The best thing to do here, of course, is to use whatever infrastructure you have in place to
automate so�ware installation. Adapting Stardog installation to Chef, Puppet, cfengine, etc. is le�
as an exercise for the reader.

2. Make sure a valid Stardog license key (whether Developer, Enterprise, or a 30-day eval key) for the size of cluster
you’re creating exists and resides in STARDOG_HOME  on each node. You must also have a stardog.properties
file with the following information for each Stardog node in the cluster:

pack.zookeeper.address  is a ZooKeeper connection string where cluster stores its state. pack.node.address
is not a required property. The local address of the node, by default, is
InetAddress.getLocalhost().getAddress() , which should work for many deployments. However if you’re

using an atypical network topology and the default value is not correct, you can provide a value for this property.

3. Create the ZooKeeper configuration for each ZooKeeper node. This config file is just a standard ZooKeeper
configuration file and the same config file can be used for all ZooKeeper nodes. The following config file should be
su�icient for most cases.

NOTE
The clientPort  specified in zookeeper.properties  and the ports used in
pack.cluster.address  in stardog.properties  must be the same.

4. dataDir  is where ZooKeeper persists cluster state and where it writes log information about the cluster.

5. ZooKeeper requires a myid  file in the dataDir  folder to identify itself, you will create that file as follows for
node1 , node2 , and node3 , respectively:

Installation

In the next few steps you will use the Stardog Admin CLI commands to deploy Stardog Cluster: that is, ZooKeeper and
Stardog itself. We’ll also configure HAProxy as an example of how to use Stardog Cluster behind a proxy for load-
balancing and fail-over capability. There’s nothing special about HAProxy here; you could implement this proxy
functionality in many di�erent ways. For example, Stardog Graviton (#_stardog_graviton) uses Amazon’s Elastic Load
Balancer.

# Flag to enable the cluster, without this flag set, the rest of the properties have no effect 

pack.enabled=true 

# this node's IP address (or hostname) where other Stardog nodes are going to connect 

# this value is optional but if provided it should be unique for each Stardog node 

pack.node.address=196.69.68.4

# the connection string for ZooKeeper where cluster state is stored 

pack.zookeeper.address=196.69.68.1:2180,196.69.68.2:2180,196.69.68.3:2180

tickTime=3000 

# Make sure this directory exists and 

# ZK can write and read to and from it. 

dataDir=/data/zookeeperdata/ 

clientPort=2180 

initLimit=5 

syncLimit=2 

# This is an enumeration of all Zk nodes in 

# the cluster and must be identical in 

# each node's config. 

server.1=196.69.68.1:2888:3888 

server.2=196.69.68.2:2888:3888 

server.3=196.69.68.3:2888:3888

$ mkdir /data/zookeeperdata # on node 1 

$ mkdir /data/zookeeperdata # on node 2 

$ mkdir /data/zookeeperdata # on node 3

$ echo 1 > /data/zookeeperdata/myid # on node 1 

$ echo 2 > /data/zookeeperdata/myid # on node 2 

$ echo 3 > /data/zookeeperdata/myid # on node 3



/

1. Start ZooKeeper instances

First, you need to start ZooKeeper nodes. You can do this using the standard command line tools that come with
ZooKeeper. As a convenience, we provide a stardog-admin cluster zkstart  subcommand that you can use to
start ZooKeeper instances:

This uses the zookeeper.properties  config file in ~/stardog  and log its output to
~/stardog/zookeeper.log . If your $STARDOG_HOME  is set to ~/stardog , then you don’t need to specify the --
home  option. For more info about the command:

2. Start Stardog instances

Once ZooKeeper is started, you can start Stardog instances:

Important: When starting Stardog instances for the cluster, unlike single server mode, you need to provide the
credentials of a superuser that will be used for securing the data stored in ZooKeeper and for intra-cluster
communication. Each node should be started with the same superuser credentials. By default, Stardog comes with
a superuser admin  that has password "admin"  and that is the default credentials used by the above command.
For a secure installation of Stardog cluster you should change these credentials by specifying the
pack.zookeeper.auth  setting in stardog.properties and restart the cluster with new credentials:

And again, if your $STARDOG_HOME  is set to ~/stardog , you don’t need to specify the --home  option.

NOTE

Make sure to allocate roughly twice as much heap for Stardog than you would normally do for
single-server operation since there can be an additional overhead involved for replication in the
cluster. Also, we start Stardog here on the non-default port ( 5821 ) so that you can use a proxy or
load-balancer in the same machine which can run on the default port ( 5820 ), meaning that
Stardog clients can act normally (i.e., use the default port, 5820 ) since they need to interact with
HAProxy.

3. Start HAProxy (or equivalent)

In most Unix-like systems, HAProxy is available via package managers, e.g. in Debian-based systems:

At the time of this writing, this will install HAProxy 1.4. You can refer to the o�icial site (http://www.haproxy.org/) to
install a later release.

Place the following configuration in a file (such as haproxy.cfg ) in order to point HAProxy to the Stardog Cluster.
You’ll notice that there are two backends specified in the config file: stardog_coordinator  and all_stardogs .
An ACL is used to route all requests containing transaction  in the path to the coordinator. All other tra�ic is
routed via the default backend, which is simply round-robin across all of the Stardog nodes. For some use cases
routing transaction-specific operations (e.g. commit) directly to the coordinator performs slightly better. However,
round-robin routing across all of the nodes is generally su�icient.

$ ./stardog-admin cluster zkstart --home ~/stardog # on node 1 

$ ./stardog-admin cluster zkstart --home ~/stardog # on node 2 

$ ./stardog-admin cluster zkstart --home ~/stardog # on node 3

$ ./stardog-admin help cluster zkstart

$ ./stardog-admin server start --home ~/stardog --port 5821 # on node 4 

$ ./stardog-admin server start --home ~/stardog --port 5821 # on node 5 

$ ./stardog-admin server start --home ~/stardog --port 5821 # on node 6

pack.zookeeper.auth=username:password

$ sudo apt-get update 

$ sudo apt-get install haproxy

http://www.haproxy.org/


/

If you wish to operate the cluster in HTTP-only mode, you can add the mode http  to backend settings.

Finally,

For more info on configuring HAProxy please refer to the o�icial documentation (http://www.haproxy.org/#docs).
In production environments we recommend running multiple proxies to avoid single point of failures, and use DNS
solutions for fail-over.

Now Stardog Cluster is running on 3 nodes, one each on 3 machines. Since HAProxy was conveniently configured to
use port 5820  you can execute standard Stardog CLI commands to the Cluster:

global 

    daemon 

    maxconn 256 

 

defaults 

    # you should update these values to something that makes

    # sense for your use case

    timeout connect 5s 

    timeout client 1h 

    timeout server 1h 

    mode http 

 

# where HAProxy will listen for connections 

frontend stardog-in 

    option tcpka # keep-alive

    bind *:5820 

    # the following lines identify any routes with "transaction" 

    # in the path and send them directly to the coordinator, if 

    # haproxy is unable to determine the coordinator all requests 

    # will fall through and be routed via the default_backend 

    acl transaction_route path_sub -i transaction 

    use_backend stardog_coordinator if transaction_route 

    default_backend all_stardogs 

 

# the Stardog coordinator 

backend stardog_coordinator 

    option tcpka 

    # the following line returns 200 for the coordinator node 

    # and 503 for non-coordinators so traffic is only sent 

    # to the coordinator 

    option httpchk GET /admin/cluster/coordinator 

    # the check interval can be increased or decreased depending 

    # on your requirements and use case, if it is imperative that 

    # traffic be routed to the coordinator as quickly as possible 

    # after the coordinator changes, you may wish to reduce this value 

    default-server inter 5s 

    # replace these IP addresses with the corresponding node address 

    # maxconn value can be upgraded if you expect more concurrent 

    # connections 

    server stardog1 196.69.68.1:5821 maxconn 64 check 

    server stardog2 196.69.68.2:5821 maxconn 64 check 

    server stardog3 196.69.68.3:5821 maxconn 64 check 

 

# the Stardog servers 

backend all_stardogs 

    option tcpka # keep-alive

    # the following line performs a health check 

    # HAProxy will check that each node accepts connections and 

    # that it's operational within the cluster. Health check

    # requires that Stardog nodes do not use --no-http option 

    option httpchk GET /admin/healthcheck 

    default-server inter 5s 

    # replace these IP addresses with the corresponding node address 

    # maxconn value can be upgraded if you expect more concurrent 

    # connections 

    server stardog1 196.69.68.1:5821 maxconn 64 check 

    server stardog2 196.69.68.2:5821 maxconn 64 check 

    server stardog3 196.69.68.3:5821 maxconn 64 check

$ haproxy -f haproxy.cfg

$ ./stardog-admin db create -n myDb 

$ ./stardog data add myDb /path/to/my/data 

$ ./stardog query myDb "select * { ?s ?p ?o } limit 5"

http://www.haproxy.org/#docs


/

If your cluster is running on another machine then you will need to provide a fully qualified connection string
(#_how_to_make_a_connection_string) in the above commands.

Shutdown

In order to shut down the cluster you only need to execute the following command once:

The cluster stop  request will cause all available nodes in the cluster to shutdown. If a node was expelled from the
cluster due to a failure it would not receive this command and might need to be shutdown manually. In order to
shutdown a single node in the cluster use the regular server stop  command and be sure to specify the server
address:

If you send the server stop  command to the load balancer then a random node selected by the load balancer will
shutdown.

In addition to the Stardog cluster you still need to shut down the ZooKeeper cluster independently. Refer to the
ZooKeeper documentation for details.

Configuration Issues

Topologies & Size

In the configuration instructions above, we assume a particular Cluster topology, which is to say, for each node n  of a
cluster, we run Stardog, ZooKeeper, and a load balancer. But this is not the only topology supported by Stardog Cluster.
ZooKeeper nodes run independently, so other topologies— three ZooKeeper servers and five Stardog servers are
possible— you just have to point Stardog to the corresponding ZooKeeper ensemble.

To add more Stardog Cluster nodes, simply repeat the steps for Stardog on additional machines. Generally, as
mentioned above, Stardog Cluster size should be an odd number greater or equal to 3.

WARNING

ZooKeeper uses a very write heavy protocol; having Stardog and ZooKeeper both writing to the same
disk can yield contention issues, resulting in timeouts at scale. We recommend at a minimum having
the two services writing to separate disks to reduce contention or, ideally, have them run on separate
nodes entirely.

Open File Limits

If you expect to use Stardog Cluster with heavy concurrent write workloads, then you should probably increase the
number of open files that host OS will permit on each Cluster node. You can typically do this on a Linux machine with
ulimit -n  or some variant thereof. Because nodes communicate between themselves and with ZooKeeper, it’s

important to make sure that there are su�icient file handle resources available.

Connection/Session Timeouts

Stardog nodes connect to the ZooKeeper cluster and establishes a session
(https://zookeeper.apache.org/doc/trunk/zookeeperProgrammers.html#ch_zkSessions). The session is kept alive by
PING requests sent by the client. If the Stardog node does not send these requests to the ZooKeeper server (due to
network issues, node failure, etc.) the session will timeout and the Stardog node will get into a suspended state and it
will reject any queries or transactions until it can establish the session again.

If a Stardog node is overloaded then it might fail to send the PING requests to ZooKeeeper server in a timely manner.
This usually happens when Stardog’s memory usage is close to the limit and there are frequent GC pauses. This would
cause Stardog nodes to be suspended unnecessarily. In order to prevent this problem make sure Stardog nodes have
enough memory allocated and tweak the timeout options.

$ ./stardog-admin cluster stop

$ ./stardog-admin --server http://localhost:5821 server stop

[22 (#_footnote_22)]

https://zookeeper.apache.org/doc/trunk/zookeeperProgrammers.html#ch_zkSessions


/

There are two di�erent configuration options that control timeouts for the ZooKeeper server. The
pack.connection.timeout  option specifies the max time that Stardog waits to establish a connection to ZooKeeper.

The pack.session.timeout  option specifies the session timeout explained above. You can set these values in
stardog.properties  as follows:

Note that, ZooKeeper has limitations about how these values can be set based on the tickTime  value specified in the
ZooKeeper configuration file. Session timeout needs to be a minimum of 2 times the tickTime  and a maximum of 20
times the tickTime . So a session timeout of 60s  requires the tickTime  to be at least 3s  (in ZooKepeer
configuration file this value should be entered in milliseconds). If the session timeout is not in the allowed range the
ZooKeeper will negotiate a new timeout value and Stardog will print a warning about this in the stardog.log  file.

Client Usage

To use Stardog Cluster with standard Stardog clients and CLI tools in the ordinary way-- stardog-admin  and
stardog --you must have Stardog installed locally. With the provided Stardog binaries in the Stardog Cluster

distribution you can query the state of Cluster:

where ipaddress  is the IP address of any of the nodes in the cluster. This will print the available nodes in the cluster,
as well as the roles (participant or coordinator). You can also input the proxy IP address and port to get the same
information.

To add or remove data, issue stardog data add  or remove  commands to any node in the cluster. Queries can be
issued to any node in the cluster using the stardog query  command. All the stardog-admin  features are also
available in Cluster, which means you can use any of the commands to create databases, administer users, and the rest
of the functionality.

Adding Nodes to a Cluster

Stardog cluster stores the UUID of the last committed transaction for each database in ZooKeeper. When a new node is
joining the cluster it will compare the local transaction ID of each database with the corresponding transaction ID stored
in ZooKeeper. If there is a mismatch the node will synchronize the database contents from another node in the cluster. If
there are no nodes in the cluster the new node cannot join the cluster and will shut itself down. For this reason, if you
are starting a new cluster then you should make sure that the ZooKeeper state is cleared. If you are retaining an existing
cluster then new nodes should be started when there is at least one node in the cluster.

If there are active transactions in the cluster joining node will wait for those transactions to finish and then synchronize
its databases. More transactions may take place during synchronization and in that case the joining node will continue
synchronization and retrieve the data from new transactions. Thus, it will take longer for a node to join the cluster if
there are continuous transactions. Note that, the new node will not be available for requests until all the databases are
synchronized. The proxy/load-balancer should perform a health check before forwarding the requests to a new node (as
shown in the above configuration) so user requests will always be forwarded to available nodes.

Upgrading the Cluster

The process to upgrade Stardog Cluster is straightfoward; however, there are a few extra steps you should take to ensure
the upgrade goes as quickly and smoothly as possible. Before you begin the upgrade, make sure to place the new
Stardog binaries on all of the cluster nodes.

Also make sure to note which node is the coordinator since this is the first node that will be started as part of the
upgrade. stardog-admin cluster info  will show the nodes in the cluster and which one is the coordinator.

Next you should ensure that there are no transactions running, e.g., stardog-admin db status <db name>  will show
if there are any open transactions for a database. This step is not strictly required, however, it can minimize downtime
and streamline the process, allowing the cluster to stop quickly and helping avoid non-coordinator nodes from having
to re-sync when they attempt to join the upgraded cluster.

pack.connection.timeout=15s 

pack.session.timeout=60s

$ ./stardog-admin --server http://<ipaddress>:5820/ cluster info



/

When you are ready to begin the upgrade, you can shutdown the cluster with stardog-admin cluster stop . Once all
nodes have stopped, backup the STARDOG_HOME  directories on all of the nodes.

With the new version of Stardog, bring the cluster up one node at a time, starting with the previous coordinator. As each
node starts make sure that it is able to join the cluster cleanly before moving on to the next node.

SEARCH

Stardog’s builtin full-text search system indexes data stored in Stardog for information retrieval queries.

Indexing Strategy

The indexing strategy creates a "search document" per RDF literal. Each document consists of two fields: literal ID and
literal value. See User-defined Lucene Analyzer (#_user_defined_lucene_analyzer) for details on customizing Stardog’s
search programmatically.

Enabling Search

Full-text support for a database is disabled by default but can be enabled at any time by setting the configuration option
search.enabled  to true. For example, you can create a database with full-text support as follows:

Similarly, you can set the option using SearchOptions#SEARCHABLE  when creating the database programmatically:

Integration with SPARQL

We use the predicate tag:stardog:api:property:textMatch  (or
http://jena.hpl.hp.com/ARQ/property#textMatch ) to access the search index in a SPARQL query.

The textMatch  function has one required argument, the search query in Lucene syntax
(http://lucene.apache.org/core/5_3_0/queryparser/org/apache/lucene/queryparser/classic/package-
summary.html#package_description) and it returns, by default, all literals matching the query string. For example,

This query selects all literals which match 'mac'. These literals are then joined with the generic BGP ?s ?p ?l  to get the
resources ( ?s ) that have those literals. Alternatively, you could use ?s rdf:type ex:Book  if you only wanted to select
the books which reference the search criteria; you can include as many other BGPs as you like to enhance your initial
search results.

You can change the number of results textMatch  returns by providing an optional second argument with the limit:

$ stardog-admin db create -o search.enabled=true -n myDb

aAdminConnection.disk("myDB")

                .set(SearchOptions.SEARCHABLE, true) 

                .create()

SELECT DISTINCT ?s ?score 

WHERE { 

?s ?p ?l. 

(?l ?score) <tag:stardog:api:property:textMatch> 'mac'. 

}

SELECT DISTINCT ?s ?score 

WHERE { 

?s ?p ?l. 

(?l ?score) <tag:stardog:api:property:textMatch> ('mac' 100). 

}

http://lucene.apache.org/core/5_3_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description


/

Limit in textMatch  only limits the number of literals returned, which is di�erent than the number of total results the
query will return. When a LIMIT  is specified in the SPARQL query, it does not a�ect the full-text search, rather, it only
restricts the size of the result set.

Lucene returns a score (https://lucene.apache.org/core/5_3_0/core/org/apache/lucene/search/package-
summary.html#scoring) with each match. It is possible to return these scores and define filters based on the score:

This query returns 10 matching literals where the score is greater than 0.5. Note that, as explained in the Lucene
documentation (https://lucene.apache.org/core/5_3_0/core/org/apache/lucene/search/package-
summary.html#scoring) scoring is very much dependent on the way documents are indexed and the range of scores
might change significantly between di�erent databases.

Escaping Characters in Search

The "/" character must be escaped because Lucene says so. In fact, there are several characters that are part of Lucene’s
query syntax that must be escaped
(http://lucene.apache.org/core/5_3_0/queryparser/org/apache/lucene/queryparser/classic/package-
summary.html#Escaping_Special_Characters).

Search Syntax

Stardog search is based on Lucene 5.3.0: we support all of the search modifiers
(http://lucene.apache.org/core/5_3_0/queryparser/org/apache/lucene/queryparser/classic/package-
summary.html#package_description) that Lucene supports, with the exception of fields.

wildcards: ?  and *

fuzzy: ~  and ~  with similarity weights (e.g. foo~0.8 )

proximities: "semantic web"~5

term boosting

booleans: OR , AND , NOT , + , and ̀ - .

grouping

For a more detailed discussion, see the Lucene docs
(http://lucene.apache.org/core/5_3_0/queryparser/org/apache/lucene/queryparser/classic/package-
summary.html#package_description).

OWL & RULE REASONING

In this chapter we describe how to use Stardog’s reasoning capabilities; we address some common problems and
known issues. We also describe Stardog’s approach to query answering with reasoning in some detail, as well as a set of
guidelines that contribute to e�icient query answering with reasoning. If you are not familiar with the terminology, you
can peruse the section on terminology.

The semantics of Stardog’s reasoning is based in part on the OWL 2 Direct Semantics Entailment Regime
(https://www.w3.org/TR/sparql11-entailment/#OWLRDFBSEntRegime). However, the implementation of Stardog’s
reasoning system is worth understanding as well. For the most part, Stardog performs reasoning in a lazy and late-
binding fashion: it does not materialize inferences; but, rather, reasoning is performed at query time according to a
user-specified "reasoning type". This approach allows for maximum flexibility  while maintaining
excellent performance. The one exception to this general approach is equality reasoning which is eagerly materialized.
See Same As Reasoning (#_same_as_reasoning) for more details.

SELECT DISTINCT ?s ?score 

WHERE { 

?s ?p ?l. 

(?l ?score) <tag:stardog:api:property:textMatch> ('mac' 0.5 10). 

}

[23 (#_footnote_23)]

https://lucene.apache.org/core/5_3_0/core/org/apache/lucene/search/package-summary.html#scoring
https://lucene.apache.org/core/5_3_0/core/org/apache/lucene/search/package-summary.html#scoring
http://lucene.apache.org/core/5_3_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#Escaping_Special_Characters
http://lucene.apache.org/core/5_3_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
http://lucene.apache.org/core/5_3_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
https://www.w3.org/TR/sparql11-entailment/#OWLRDFBSEntRegime


/

TIP How to Debug Reasoning (https://www.stardog.com/blog/how-to-debug-reasoning/)

Reasoning Types

Reasoning can be enabled or disabled using a simple boolean flag— in HTTP, reasoning ; in CLI, -r  or --reasoning ;
in the Web Console, a reasoning button in the query panel; and in Java APIs, a connection option
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration#reasoning(boolean)) or a query option
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/query#reasoning(boolean)):

false No axioms or rules are considered; no reasoning is performed.

true Axioms and rules are considered and reasoning is performed according to the value of the
reasoning.type  database option.

Reasoning is disabled by default; that is, no reasoning is performed without explicitly setting the reasoning flag to
"true".

When reasoning is enabled by the boolean flag, the axioms and rules in the database are first filtered according to the
value of the reasoning.type  database option. The default value of reasoning.type  is SL  and for the most part
users don’t need to worry too much about which reasoning type is necessary since SL  covers all of the OWL 2 profiles
as well as user-defined rules via SWRL. However, this value may be set to any other reasoning type that Stardog
supports: RDFS  is the OWL 2 axioms allowed in RDF Schema (http://www.w3.org/TR/rdf-schema/) (mainly subclasses,
subproperties, domain, and ranges); QL  for the OWL 2 QL (http://www.w3.org/TR/owl2-profiles/#OWL_2_QL) axioms;
RL  for the OWL 2 RL (http://www.w3.org/TR/owl2-profiles/#OWL_2_RL) axioms; EL  for the OWL 2 EL

(http://www.w3.org/TR/owl2-profiles/#OWL_2_EL) axioms; DL  for OWL 2 DL axioms (http://www.w3.org/TR/2012/REC-
owl2-syntax-20121211/); and SL  for a combination of RDFS, QL, RL, and EL axioms, plus SWRL rules
(http://www.w3.org/Submission/SWRL/). Any axiom outside the selected type will be ignored by the reasoner.

The DL  reasoning type behaves significantly di�erent than other types. Stardog normally uses the Query Rewriting
(#_query_rewriting) technique for reasoning which scales very well with increasing number of instances; only the
schema needs to be kept in memory. But query rewriting cannot handle axioms outside the OWL 2 profiles; however,
DL  reasoning type can be used so that no axiom or rule is ignored as long as they satisfy the OWL 2 DL restrictions

(http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL). With DL
reasoning, both the schema and the instance data need to pulled into memory, which limits its applicability with large
number of instances. DL  reasoning also requires the database to be logically consistent or no reasoning can be
performed. Finally, DL  reasoning requires more computation upfront compared to query rewriting which exhibits a
"pay-as-you-go" behavior.

The reasoning.type  can also be set to the special value NONE  which will filter all axioms and rules thus e�ectively
disables reasoning. This value can be used for the database option to prevent reasoning to be used by any client even
though they might enable it with the boolean flag on the client side.

Using Reasoning

In order to perform query evaluation with reasoning, Stardog requires a schema  to be present in
the database. Since schemas are serialized as RDF, they are loaded into a Stardog database in the same way that any
RDF is loaded into a Stardog database. Also, note that, since the schema is just more RDF triples, it may change as
needed: it is neither fixed nor compiled in any special way.

The schema may reside in the default graph, in a specific named graph, or in a collection of graphs. You can tell Stardog
where the schema is by setting the reasoning.schema.graphs  property to one or more named graph URIs. If you
want the default graph to be considered part of the schema, then you can use the special built-in URI
tag:stardog:api:context:default . If you want to use all named graphs (that is, to tell Stardog to look for the

schema in every named graph), you can use tag:stardog:api:context:all .

NOTE The default value for this property is to use all graphs, i.e., tag:stardog:api:context:all .

This design is intended to support both of Stardog’s primary use cases:

[24 (#_footnote_24)]

https://www.stardog.com/blog/how-to-debug-reasoning/
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration#reasoning(boolean)
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/query#reasoning(boolean)
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL


/

1. managing the data that constitutes the schema

2. reasoning with the schema during query evaluation

Query Answering

All of Stardog’s interfaces (API, network, and CLI) support reasoning during query evaluation.

Command Line

In order to evaluate queries in Stardog using reasoning via the command line, we use the reasoning flag:

HTTP

For HTTP, the reasoning flag is specified with the other HTTP request parameters:

Reasoning Connection API

In order to use the ReasoningConnection  API one needs to enable reasoning. See the Java Programming
(#_java_programming) section for details.

Currently, the API has two methods:

isConsistent() , which can be used to check if the database is (logically) consistent with respect to the reasoning
type.

isSatisfiable(URI theURIClass) , which can be used to check if the given class if satisfiable with respect to the
database and reasoning type.

Explaining Reasoning Results

Stardog can be used to check if the current database logically entails a set of triples; moreover, Stardog can explain why
this is so.  An explanation of an inference is the minimum set of statements explicitly stored in the
database that, together with the schema and any valid inferences, logically justify the inference. Explanations are useful
for understanding data, schema, and their interactions, especially when large number of statements interact with each
other to infer new statements.

Explanations can be retrieved using the CLI by providing an input file that contains the inferences to be explained:

The output is displayed in a concise syntax designed to be legible; but it can be rendered in any one of the supported
RDF syntaxes if desired. Explanations are also accessible through Stardog’s extended HTTP protocol
(#_network_programming) and in Java (#_java_programming). See the examples in the stardog-examples Github repo
(https://github.com/Complexible/stardog-examples/) for more details about retrieving explanations programmatically.

Proof Trees

Proof trees are a hierarchical presentation of multiple explanations (of inferences) to make data, schemas, and rules
more intelligible. Proof trees  provide an explanation for an inference or an inconsistency as a
hierarchical structure. Nodes in the proof tree may represent an assertion in a Stardog database. Multiple assertion
nodes are grouped under an inferred node.

Example

For example, if we are explaining the inferred triple :Alice rdf:type :Employee , the root of the proof tree will show
that inference:

$ ./stardog query --reasoning myDB "SELECT ?s { ?s a :C } LIMIT 10"

$ curl -u admin:admin -X GET "http://localhost:5822/myDB/query?reasoning=true&query=..."

[25 (#_footnote_25)]

$ stardog reasoning explain myDB inference_to_explain.ttl

[26 (#_footnote_26)]

https://github.com/Complexible/stardog-examples/


/

The children of an inferred node will provide more explanation for that inference:

The fully expanded proof tree will show the asserted triples and axioms for every inference:

The CLI explanation command prints the proof tree using indented text; but, using the SNARL API, it is easy to create a
tree widget in a GUI to show the explanation tree, such that users can expand and collapse details in the explanation.

Another feature of proof trees is the ability to merge multiple explanations into a single proof tree with multiple
branches when explanations have common statements. Consider the following example database:

In this database, there are three di�erent unique explanations for the inference :Alice rdf:type :Employee :

Explanation 1

Explanation 2

Explanation 3

All three explanations have some triples in common; but when explanations are retrieved separately, it is hard to see
how these explanations are related. When explanations are merged, we get a single proof tree where alternatives for
subtrees of the proof are shown inline. In indented text rendering, the merged tree for the above explanations would
look as follows:

INFERRED :Alice rdf:type :Employee

INFERRED :Alice rdf:type :Employee 

    ASSERTED :Manager rdfs:subClassOf :Employee 

    INFERRED :Alice rdf:type :Manager

INFERRED :Alice rdf:type :Employee 

    ASSERTED :Manager rdfs:subClassOf :Employee 

    INFERRED :Alice rdf:type :Manager 

        ASSERTED :Alice :supervises :Bob 

        ASSERTED :supervises rdfs:domain :Manager

#schema 

:Manager rdfs:subClassOf :Employee 

:ProjectManager rdfs:subClassOf :Manager 

:ProjectManager owl:equivalentClass (:manages some :Project)

:supervises rdfs:domain :Manager 

:ResearchProject rdfs:subClassOf :Project 

:projectID rdfs:domain :Project 

 

#instance data 

:Alice :supervises :Bob 

:Alice :manages :ProjectX 

:ProjectX a :ResearchProject 

:ProjectX :projectID "123-45-6789"

:Manager rdfs:subClassOf :Employee 

:ProjectManager rdfs:subClassOf :Manager 

:supervises rdfs:domain :Manager 

:Alice :supervises :Bob

:Manager rdfs:subClassOf :Employee 

:ProjectManager rdfs:subClassOf :Manager 

:ProjectManager owl:equivalentClass (:manages some :Project)

:ResearchProject rdfs:subClassOf :Project 

:Alice :manages :ProjectX 

:ProjectX a :ResearchProject

:Manager rdfs:subClassOf :Employee 

:ProjectManager rdfs:subClassOf :Manager 

:ProjectManager owl:equivalentClass (:manages some :Project)

:projectID rdfs:domain :Project 

:Alice :manages :ProjectX 

:ProjectX :projectID "123-45-6789"



/

In the merged proof tree, alternatives for an explanation are shown with a number id. In the above tree, :Alice a
:Manager  is the first inference for which we have multiple explanations so it gets the id 1 . Then each alternative
explanation gets an id appended to this (so explanations 1.1  and 1.2  are both alternative explanations for inference
1 ). We also have multiple explanations for inference :ProjectX a :Project  so its alternatives get ids 2.1  and 2.2 .

User-defined Rule Reasoning

Many reasoning problems may be solved with OWL’s axiom-based approach; but, of course, not all reasoning problems
are amenable to this approach. A user-defined rules approach complements the OWL axiom-based approach nicely and
increases the expressive power of a reasoning system from the user’s point of view. Many RDF databases support user-
defined rules only. Stardog is the only RDF database that comprehensively supports both axioms and rules. Some
problems (and some people) are simply a better fit for a rules-based approach to modeling and reasoning than to an
axioms-based approach (and, of course, vice versa).

NOTE
There isn’t a one-size-fits-all answer to the question "rules or axioms or both?" Use the thing that
makes the most sense given the task at hand. This is engineering, not religion.

Stardog supports user-defined rule reasoning together with a rich set of built-in functions using the SWRL
(http://www.w3.org/Submission/SWRL/) syntax and builtins library. In order to apply SWRL user-defined rules, you
must include the rules as part of the database’s schema: that is, put your rules where your axioms are, i.e., in the
schema. Once the rules are part of the schema, they will be used for reasoning automatically when using the SL
reasoning type.

Assertions implied by the rules will not be materialized. Instead, rules are used to expand queries just as regular axioms
are used.

NOTE To trigger rules to fire, execute a relevant query— simple and easy as the truth.

Stardog Rules Syntax

Stardog supports two di�erent syntaxes for defining rules. The first is native Stardog Rules syntax and is based on
SPARQL, so you can re-use what you already know about SPARQL to write rules. Unless you have specific requirements
otherwise, you should use this syntax for user-defined rules in Stardog. The second is the de facto standard RDF/XML
syntax for SWRL. It has the advantage of being supported in many tools; but it’s not fun to read or to write. You probably
don’t want to use it. Better: don’t use this syntax!

Stardog Rules Syntax is basically SPARQL "basic graph patterns" (BGPs) plus some very explicit new bits ( IF-THEN ) to
denote the head and the body of a rule.  You define URI prefixes in the normal way (examples
below) and use regular SPARQL variables for rule variables. As you can see, some SPARQL 1.1 syntactic sugar— property
paths, especially, but also bnode syntax— make complex Stardog Rules concise and elegant.

NOTE
Starting in Stardog 3.0, it’s legal to use any valid Stardog function in Stardog Rules (see rule
limitations below for few exceptions).

How to Use Stardog Rules

INFERRED :Alice a :Employee 

   ASSERTED :Manager rdfs:subClassOf :Employee 

   1.1) INFERRED :Alice a :Manager 

      ASSERTED :supervises rdfs:domain :Manager 

      ASSERTED :Alice :supervises :Bob 

   1.2) INFERRED :Alice a :Manager 

      ASSERTED :ProjectManager rdfs:subClassOf :Manager 

      INFERRED :Alice a :ProjectManager 

         ASSERTED :ProjectManager owl:equivalentClass (:manages some :Project) 

         ASSERTED :Alice :manages :ProjectX 

         2.1) INFERRED :ProjectX a :Project 

            ASSERTED :projectID rdfs:domain :Project 

            ASSERTED :ProjectX :projectID "123-45-6789" 

         2.2) INFERRED :ProjectX a :Project 

            ASSERTED :ResearchProject rdfs:subClassOf :Project 

            ASSERTED :ProjectX a :ResearchProject

[27 (#_footnote_27)]

http://www.w3.org/Submission/SWRL/


/

There are three things to sort out:

1. Where to put these rules?

2. How to represent these rules?

3. What are the gotchas?

First, the rules go into the database, of course. Unless you’ve changed the value of reasoning.schema.graphs  option,
you can store the rules in any named graph (or the default graph) in the database and you will be fine; that is, just add
the rules to the database and it will all work out.

Second, you include the rules directly in a Turtle file loaded into Stardog. Rules can be mixed with triples in the file.
Here’s an example:

That’s pretty easy. Third, what are the gotchas?

Rule Representation Options

Inline rules in Turtle data can be named for later reference and management. We assign an IRI, :FatherRule  in this
example, to the rule and use it as the subject of other triples:

In addition to the inline Turtle representation of rules, you can represent the rules with specially constructed RDF
triples. This is useful for maintaining Turtle compatibility or for use with SPARQL INSERT DATA . This example shows
the object of a triple which contains one rule in Stardog Rules syntax embedded as literal.

Rule Limitations & Gotchas

1. The RDF serialization of rules in, say, a Turtle file has to use the tag:stardog:api:rule:  namespace URI and
then whatever prefix, if any, mechanism that’s valid for that serialization. In the examples here, we use Turtle.
Hence, we use @prefix , etc.

[28 (#_footnote_28)]

:c a :Circle ; 

   :radius 10 . 

 

IF { 

 ?r a :Rectangle ; 

    :width ?w ; 

    :height ?h 

    BIND (?w * ?h AS ?area) 

} 

THEN { 

    ?r :area ?area 

}

@prefix : <http://example.org/> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

 

RULE :FatherRule 

IF { 

   ?x a <http://example.org/Male> , <http://example.org/Parent> . 

} 

THEN { 

   ?x a <http://example.org/Father> . 

} 

 

:FatherRule rdfs:comment "This rule defines fathers" ; 

 a :MyRule .

@prefix rule: <tag:stardog:api:rule:> . 

 

[] a rule:SPARQLRule; 

   rule:content """ 

      IF { 

       ?r a :Rectangle ; 

          :width ?w ; 

          :height ?h 

          BIND (?w * ?h AS ?area) 

      } 

      THEN { 

          ?r :area ?area 

      } 

   """.



/

2. However, the namespace URIs used by the literal embedded rules can be defined in two places: the string that
contains the rule— in the example above, you can see the default namespace is urn:test: --or in the Stardog
database in which the rules are stored. Either place will work; if there are conflicts, the "closest definition wins",
that is, if foo:Example  is defined in both the rule content and in the Stardog database, the definition in the rule
content is the one that Stardog will use.

3. Stardog Rule Syntax has the same expressivity of SWRL (https://www.w3.org/Submission/SWRL/) which means the
SPARQL features allowed in rules are limited. Specifically, a triple pattern in a rule should be in one of the following
forms:

a) term  rdf:type  class-uri

b) term  prop-uri term

where class-uri is a URI referring to a user-defined class and prop-uri is a URI referring to a user-defined property.

Only type of property paths allowed in rules are inverse paths ( ^p ), sequence paths ( p1 / p2 ) and alternative
paths ( p1 | p2 ) but these paths should not violate the above conditions. For example, the property path
rdf:type/rdfs:label  is not valid because according to the SPARQL spec (https://www.w3.org/TR/sparql11-

query/#propertypath-syntaxforms) this would mean the object of a rdf:type  triple pattern is a variable and not a
user-defined class.

Rule body ( IF ) and only rule body may optionally contain UNION , BIND  or FILTER  clauses. However, functions
EXISTS , NOT EXISTS , or NOW()  cannot be used in rules. User-defined functions (UDF) may be used in rules but if

the UDF is not a pure function (https://en.wikipedia.org/wiki/Pure_function) then the results are undefined.

Other SPARQL features are not allowed in rules.

4. Having the same predicate both in the rule body ( IF ) and the rule head ( THEN ) are supported in a limited way.
Cycles are allowed only if the rule body does not contain type triples or filters and the triples in the rule body are
linear (i.e. no cycles in the rule body either).

In other words, a property used in the rule head depends on a property in the rule body and this dependency graph
may contain cycles under some limits. One of these is that a rule body should not contain type triples or filters.
Tree-like dependencies are always allowed.

Of course the rule body may also contain triple patterns, which constitute a di�erent kind of graph: it should be
linear when edge directions are ignored. So no cycles or trees are allowed in this graph pattern. Linear when
directions are ignored means that { ?x :p ?y . ?x :p ?z }  is linear but { ?x :p ?y . ?x :p ?z . ?x :p ?t }  is
not because there are three edges for the node represented by ?x .

The reason for these limits boils down to the fact that recursive rules and axioms are rewritten as SPARQL property
paths. This is why rule bodies cannot contain anything but property atoms. Cycles are allowed as long as we can
express these as a regular grammar. Another way to think about this is that these rules should be as expressive as
OWL property chains and the same restrictions defined for property chains apply here, too.

Let’s consider some examples.

These rules are acceptable since no cycles appear in dependencies:

These rules are not acceptable since there is a cycle:

1

1 2
[2

9 (#_footnote_29)]

IF 

  { ?x :hasFather ?y . ?y :hasBrother ?z } 

THEN 

  { ?x :hasUncle ?z }

IF 

  { ?x :hasUncle ?y . ?y :hasWife ?z } 

THEN 

  { ?x :hasAuntInLaw ?z }

IF 

  { ?x :hasFather ?y . ?y :hasBrother ?z } 

THEN 

  { ?x :hasUncle ?z }

https://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/sparql11-query/#propertypath-syntaxforms
https://en.wikipedia.org/wiki/Pure_function


/

This kind of cycle is allowed:

NOTE
(3) is a general limitation, not specific to Stardog Rules Syntax: recursion or cycles can occur through
multiple rules, or it may occur as a result of interaction of rules with other axioms (or just through
axioms alone).

Stardog Rules Examples

This example is self-contained: it contains some data (the :Product…  triples) and a rule. It also demonstrates the use
of SPARQL’s FILTER  to do numerical (and other) comparisons.

Here’s a more complex example that includes four rules and, again, some data.

IF 

  { ?x :hasChild ?y . ?y :hasUncle ?z } 

THEN 

  { ?x :hasBrother ?z }

IF 

  { ?x :hasChild ?y . ?y :hasSibling ?z } 

THEN 

  { ?x :hasChild ?z }

PREFIX rule: <tag:stardog:api:rule:> 

PREFIX : <urn:test:> 

PREFIX gr: <http://purl.org/goodrelations/v1#> 

 

:Product1 gr:hasPriceSpecification [ gr:hasCurrencyValue 100.0 ] . 

:Product2 gr:hasPriceSpecification [ gr:hasCurrencyValue 500.0 ] . 

:Product3 gr:hasPriceSpecification [ gr:hasCurrencyValue 2000.0 ] . 

 

IF { 

   ?offering gr:hasPriceSpecification ?ps . 

   ?ps gr:hasCurrencyValue ?price . 

   FILTER (?price >= 200.00).

} 

THEN { 

   ?offering a :ExpensiveProduct . 

}



/

This example also demonstrates how to use SPARQL’s BIND  to introduce intermediate variables and do calculations
with or to them.

Let’s look at some other rules, but just the rule content this time for concision, to see some use of other SPARQL
features.

This rule says that a person between 13 and 19 (inclusive) years of age is a teenager:

This rule says that a male person with a sibling who is the parent of a female is an "uncle with a niece":

PREFIX rule: <tag:stardog:api:rule:> 

PREFIX : <urn:test:> 

 

:c a :Circle ; 

   :radius 10 . 

 

:t a :Triangle ; 

   :base 4 ; 

   :height 10 . 

 

:r a :Rectangle ; 

   :width 5 ; 

   :height 8 . 

 

:s a :Rectangle ; 

   :width 10 ; 

   :height 10 . 

 

IF { 

   ?r a :Rectangle ; 

      :width ?w ; 

      :height ?h 

   BIND (?w * ?h AS ?area) 

} 

THEN { 

    ?r :area ?area 

} 

 

IF { 

   ?t a :Triangle ; 

      :base ?b ; 

      :height ?h 

   BIND (?b * ?h / 2 AS ?area) 

} 

THEN { 

    ?t :area ?area 

} 

 

IF { 

     ?c a :Circle ; 

        :radius ?r 

     BIND (math:pi() * math:pow(?r, 2) AS ?area) 

} 

THEN { 

    ?c :area ?area 

} 

 

 

IF { 

     ?r a :Rectangle ; 

        :width ?w ; 

        :height ?h 

     FILTER (?w = ?h) 

} 

THEN { 

    ?r a :Square 

}

PREFIX swrlb: <http://www.w3.org/2003/11/swrlb#> 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

 

IF { 

      ?x a :Person; hasAge ?age. 

      FILTER (?age >= 13 && ?age <= 19) 

} 

THEN { 

      ?x a :Teenager. 

}



/

We can use SPARQL 1.1 property paths (and bnodes for unnecessary variables (that is, ones that aren’t used in the
THEN )) to render this rule even more concisely:

Aside: that’s pure awesome.

And of course a person who’s male and has a niece or nephew is an uncle of his niece(s) and nephew(s):

Next rule example: a super user can read all of the things!

Supported Built-Ins

Stardog supports a wide variety of functions from SPARQL, XPath, SWRL, and some native Stardog functions, too. All of
them may be used in either Stardog Rules syntax or in SWRL syntax. The supported functions are enumerated here
(#_sparql_query_functions).

Special Predicates

Stardog supports some builtin predicates with special meaning in order to make queries and rules easier to read and
write. These special predicates are primarily syntactic sugar for more complex structures.

Direct/Strict Subclasses, Subproperties, & Direct Types

Besides the standard RDF(S) predicates rdf:type , rdfs:subClassOf  and rdfs:subPropertyOf , Stardog supports
the following special built-in predicates:

sp:directType

sp:directSubClassOf

sp:strictSubClassOf

sp:directSubPropertyOf

sp:strictSubPropertyOf

IF { 

      ?x a Person; a :Male; :hasSibling ?y; 

      ?y :isParentOf ?z; 

      ?z a :Female. 

} 

THEN { 

      ?x a :UncleOfNiece. 

}

IF { 

      ?x a :Person, :Male; :hasSibling/:isParentOf [a :Female] 

} 

THEN { 

      ?x a :UncleOfNiece. 

}

IF { 

     ?x a :Male; :isSiblingOf/:isParentOf ?z 

} 

THEN { 

      ?x :isUncleOf ?z. 

}

IF { 

      ?x a :SuperUser. 

      ?y a :Resource. 

      ?z a <http://www.w3.org/ns/sparql#UUID>. 

} 

THEN { 

      ?z a :Role. 

      ?x :hasRole ?z; :readPermission ?y. 

}



/

Where the sp  prefix binds to tag:stardog:api:property: . Stardog also recognizes sesame:directType ,
sesame:directSubClassOf , and sesame:strictSubClassOf  predicates where the prefix sesame  binds to
http://www.openrdf.org/schema/sesame# (http://www.openrdf.org/schema/sesame#) .

We show what these each of these predicates means by relating them to an equivalent triple pattern; that is, you can
just write the predicate rather than the (more unwieldy) triple pattern.

The predicates sp:directSubPropertyOf  and sp:strictSubPropertyOf  are defined analogously.

New Individuals with SWRL

Stardog also supports a special predicate that extends the expressivity of SWRL rules. According to SWRL, you can’t
create new individuals (i.e., new instances of classes) in a SWRL rule.

NOTE
Don’t get hung up by the tech vocabulary here… "new individual" just means that you can’t have a
rule that creates a new instance of some RDF or OWL class as a result of the rule firing.

This restriction is well-motivated; without it, you can easily create rules that do not terminate, that is, never reach a
fixed point. Stardog’s user-defined rules weakens this restriction in some crucial aspects, subject to the following
restrictions, conditions, and warnings.

WARNING
This special predicate is basically a loaded gun with which you may shoot yourselves in the foot if
you aren’t very careful.

So despite the general restriction in SWRL, in Stardog we actually can create new individuals with a rule by using the
function UUID()  as follows:

NOTE
Alternatively, we can use the predicate http://www.w3.org/ns/sparql#UUID
(http://www.w3.org/ns/sparql#UUID)  as a unary SWRL built-in.

This rule will create a random URI for each instance of the class :Parent  and also assert that each new instance is an
instance of :Person --parents are people, too!

Remarks

#c1 is a subclass of c2 but not equivalent to c2 

 

:c1 sp:strictSubClassOf :c2      =>       :c1 rdfs:subClassOf :c2 . 

                                          FILTER NOT EXISTS { 

                                             :c1 owl:equivalentClass :c2 . 

                                          } 

 

#c1 is a strict subclass of c2 and there is no c3 between c1 and c2 in 

#the strict subclass hierarchy 

 

:c1 sp:directSubClassOf :c2      =>       :c1 sp:strictSubClassOf :c2 . 

                                          FILTER NOT EXISTS { 

                                             :c1 sp:strictSubClassOf :c3 . 

                                             :c3 sp:strictSubClassOf :c2 . 

                                          } 

 

#ind is an instance of c1 but not an instance of any strict subclass of c1 

 

:ind sp:directType :c1           =>       :ind rdf:type :c1 . 

                                          FILTER NOT EXISTS { 

                                             :ind rdf:type :c2 . 

                                             :c2 sp:strictSubClassOf :c1 . 

                                          }

IF { 

    ?p a :Parent . 

    BIND (UUID() AS ?parent) . 

} 

THEN { 

    ?parent a :Person . 

}

http://www.openrdf.org/schema/sesame#
http://www.w3.org/ns/sparql#UUID


/

1. The URIs for the generated individuals are meaningless in the sense that they should not be used in further queries;
that is to say, these URIs are not guaranteed by Stardog to be stable.

2. Due to normalization, rules with more than one atom in the head are broken up into several rules.

Thus,

will be normalized into two rules:

As a consequence, instead of stating that the new individual is both an instance of :Male  and :Parent , we would
create two di�erent new individuals and assert that one is male and the other is a parent. If you need to assert various
things about the new individual, we recommend the use of extra rules or axioms. In the previous example, we can
introduce a new class ( :Father ) and add the following rule to our schema:

And then modify the original rule accordingly:

Query Rewriting

Reasoning in Stardog is based (mostly) on a query rewriting technique: Stardog rewrites the user’s query with respect
to any schema or rules, and then executes the resulting expanded query (EQ) against the data in the normal way. This
process is completely automated and requires no intervention from the user.

As can be seen in Figure 1, the rewriting process involves five di�erent phases.

IF { 

    ?person a :Person . 

    BIND (UUID() AS ?parent) . 

} 

THEN { 

    ?parent a :Parent ; 

            a :Male . 

}

IF { 

    ?person a :Person . 

    BIND (UUID() AS ?parent) . 

} 

THEN { 

    ?parent a :Parent . 

} 

 

IF { 

    ?person a :Person . 

    BIND (UUID() AS ?parent) . 

} 

THEN { 

    ?parent a :Male . 

}

IF { 

    ?person a :Father . 

} 

THEN { 

    ?parent a :Parent ; 

            a :Male . 

}

IF { 

    ?person a :Person . 

    BIND (UUID() AS ?parent) . 

} 

THEN { 

    ?parent a :Father . 

}



/

1. Figure 1 Query Answering

2. Figure 2. Query Rewriting

We illustrate the query answering process by means of an example. Consider a Stardog database, MyDB , containing
the following schema:

Which says that a senior manager manages at least one manager, that every person that manages an employee is a
manager, and that every manager is also an employee.

Let’s also assume that MyDB  contains the following data assertions:

Finally, let’s say that we want to retrieve the set of all employees. We do this by posing the following query:

To answer this query, Stardog first rewrites it using the information in the schema. So the original query is rewritten
into four queries:

Then Stardog executes these queries over the data as if they were written that way to begin with. In fact, Stardog can’t
tell that they weren’t. Reasoning in Stardog just is query answering in nearly every case.

The form of the EQ depends on the reasoning type. For OWL 2 QL, every EQ produced by Stardog is guaranteed to be
expanded into a set of queries. If the reasoning type is OWL 2 RL or EL, then the EQ may (but may not) include a
recursive rule. If a recursive rule is included, Stardog’s answers may be incomplete with respect to the semantics of the
reasoning type.

1

 :SeniorManager rdfs:subClassOf :manages some :Manager 

 :manages some :Employee rdfs:subClassOf :Manager 

 :Manager rdfs:subClassOf :Employee

1

:Bill rdf:type :SeniorManager

:Robert rdf:type :Manager 

:Ana :manages :Lucy 

:Lucy rdf:type :Employee

SELECT ?employee WHERE { ?employee rdf:type :Employee }

SELECT ?employee WHERE { ?employee rdf:type :Employee } 

SELECT ?employee WHERE { ?employee rdf:type :Manager } 

SELECT ?employee WHERE { ?employee rdf:type :SeniorManager }

SELECT ?employee WHERE { ?employee :manages ?x. ?x rdf:type :Employee }



/

Why Query Rewriting?

Query rewriting has several advantages over materialization. In materialization, the data gets expanded with respect to
the schema, not with respect to any actual query. And it’s the data— all of the data— that gets expanded, whether any
actual query subsequently requires reasoning or not. The schema is used to generate new triples, typically when data is
added or removed from the system. However, materialization introduces several thorny issues:

1. data freshness. Materialization has to be performed every time the data or the schema change. This is particularly
unsuitable for applications where the data changes frequently.

2. data size. Depending on the schema, materialization can significantly increase the size of the data, sometimes
dramatically so. The cost of this data size blowup may be applied to every query in terms of increased I/O.

3. OWL 2 profile reasoning. Given the fact that QL, RL, and EL are not comparable with respect to expressive power,
an application that requires reasoning with more than one profile would need to maintain di�erent corresponding
materialized versions of the data.

4. Resources. Depending on the size of the original data and the complexity of the schema, materialization may be
computationally expensive. And truth maintenance, which materialization requires, is always computationally
expensive.

Same As Reasoning

Stardog 3.0 adds full support for OWL 2 sameAs  reasoning. However, sameAs  reasoning works in a di�erent way than
the rest of the reasoning mechanism. The sameAs  inferences are computed and indexed eagerly so that these
materialized inferences can be used directly at query rewriting time. The sameAs  index is updated automatically as the
database is modified so the di�erence is not of much direct concern to users.

In order to use sameAs  reasoning, the database configuration option reasoning.sameas  should be set either at
database creation time or at a later time when the database is o�line. This can be done through the Web Console or
using the command line as follows:

There are legal three values for this option:

OFF  disables all sameAs  inferences, that is, only asserted sameAs  triples will be included in query results.

ON  computes sameAs  inferences using only asserted sameAs  triples, considering the reflexivity, symmetry and
transitivity of the sameAs  relation.

FULL  same as ON  but also considers OWL functional properties, inverse functional properties, and hasKey
axioms while computing sameAs  inferences.

NOTE

The way sameAs  reasoning works di�ers from the OWL semantics slightly in the sense that Stardog
designates one canonical individual for each sameAs  equivalence set and only returns the canonical
individual. This avoids the combinatorial explosion in query results while providing the data
integration benefits.

Let’s see an example showing how sameAs  reasoning works. Consider the following database where sameAs
reasoning is set to ON :

$ ./stardog-admin db create -o reasoning.sameas=FULL -n myDB

[30 (#_f
ootnote_30)]

dbpedia:Elvis_Presley 

    dbpedia-owl:birthPlace dbpedia:Mississippi ; 

    owl:sameAs freebase:en.elvis_presley . 

 

nyt:presley_elvis_per 

    nyt:associated_article_count 35 ; 

    rdfs:label "Elvis Presley" ; 

    owl:sameAs dbpedia:Elvis_Presley . 

 

freebase:en.elvis_presley 

 freebase:common.topic.official_website <http://www.elvis.com/> .



/

Now consider the following query and its results:

Let’s unpack this carefully. There are three things to note.

First, the query returns only one result even though there are three di�erent URIs that denote Elvis Presley. Second, the
URI returned is fixed but chosen randomly. Stardog picks one of the URIs as the canonical URI and always returns that
and only that canonical URI in the results. If more sameAs  triples are added the chosen canonical individual may
change. Third, it is important to point out that even though only one URI is returned, the e�ect of sameAs  reasoning is
visible in the results since the rdfs:label  and dbpedia-owl:birthPlace  properties were asserted about di�erent
instances (i.e., di�erent URIs).

Now, you might be inclined to write queries such as this to get all the properties for a specific URI:

However, this is completely unnecessary; rather, you can write the following query and get the same results since
sameAs  reasoning would automatically merge the results for you. Therefore, the query

would return these results:

NOTE
The URI used in the query does not need to be the same one returned in the results. Thus, the
following query would return the exact same results, too:

The only time Stardog will return a non-canonical URI in the query results is when you explicitly query for the sameAs
inferences as in this next example:

$ ./stardog query --reasoning elvis 'SELECT * { ?s dbpedia-owl:birthPlace ?o; rdfs:label "Elvis Presley" }'

+-----------------------+---------------------+ 

|           s           |          o          | 

+-----------------------+---------------------+ 

| nyt:presley_elvis_per | dbpedia:Mississippi | 

+-----------------------+---------------------+

SELECT * { 

   nyt:presley_elvis_per owl:sameAs ?elvis . 

   ?elvis ?p ?o 

}

SELECT * { 

   nyt:presley_elvis_per ?p ?o 

}

+----------------------------------------+-----------------------+ 

|                   p                    |           o           | 

+----------------------------------------+-----------------------+ 

| rdfs:label                             | "Elvis Presley"       | 

| dbpedia-owl:birthPlace                 | dbpedia:Mississippi   | 

| nyt:associated_article_count           | 35                    | 

| freebase:common.topic.official_website | http://www.elvis.com/ | 

| rdf:type                               | owl:Thing             | 

+----------------------------------------+-----------------------+

SELECT * { 

   dbpedia:Elvis_Presley ?p ?o 

}

$ ./stardog query -r elvis 'SELECT * { freebase:en.elvis_presley owl:sameAs ?elvis }'



/

In the FULL  sameAs  reasoning mode, Stardog will also take other OWL axioms into account when computing sameAs
inferences. Consider the following example:

For this database, with sameAs  reasoning set to FULL , we would get the following answers:

We can follow the chain of inferences to understand how these results were computed:

1. :JohnDoe owl:sameAs :JohnD  can be computed due to the fact that both have the same SSN numbers and
hasSSN  property is inverse functional.

2. We can infer :Acme owl:sameAs :AcmeInc  since :JohnDoe  can work for at most one company.

3. :JohnDoe owl:sameAs :JohnD  can be inferred using the owl:hasKey  definition since both individuals are
known to work for the same company and have the same employee ID.

4. No more sameAs  inferences can be computed due to the key definition, since other employees either have
di�erent IDs or work for other companies.

Removing Unwanted Inferences

Sometimes reasoning can produce unintended inferences. Perhaps there are modeling errors in the schema or incorrect
assertions in the data. A�er an unintended inference is detected, it might be hard to figure out how to fix it, because
there might be multiple di�erent reasons for the inference. The reasoning explain  command can be used to see the

+---------------------------+

|           elvis           |

+---------------------------+

| dbpedia:Elvis_Presley     |

| freebase:en.elvis_presley |

| nyt:presley_elvis_per     |

+---------------------------+

#Everyone has a unique SSN number 

:hasSSN a owl:InverseFunctionalProperty , owl:DatatypeProperty . 

 

:JohnDoe :hasSSN "123-45-6789" . 

:JDoe :hasSSN "123-45-6789" .

 

#Nobody can work for more than one company (for the sake of the example) 

:worksFor a owl:FunctionalProperty , owl:ObjectProperty ; 

 rdfs:domain :Employee ; 

 rdfs:range :Company .

 

:JohnDoe :worksFor :Acme . 

:JDoe :worksFor :AcmeInc . 

 

#For each company, there can only be one employee with the same employee ID 

:Employee owl:hasKey (:employeeID :worksFor ). 

 

:JohnDoe :employeeID "1234-ABC" . 

 

:JohnD :employeeID "1234-ABC" ; 

       :worksFor :AcmeInc . 

 

:JD :employeeID "5678-XYZ" ; 

    :worksFor :AcmeInc . 

 

:John :employeeID "1234-ABC" ; 

      :worksFor :Emca .

$ ./stardog query -r acme "SELECT * {?x owl:sameAs ?y}"

+----------+----------+ 

|    x     |    y     | 

+----------+----------+ 

| :JohnDoe | :JohnD   | 

| :JDoe    | :JohnD   | 

| :Acme    | :AcmeInc | 

+----------+----------+



/

di�erent explanations and the reasoning undo  command can be used to generate a SPARQL update query that will
remove the minimum amount of triples necessary to remove the unwanted inference:

Performance Hints

The query rewriting approach suggests some guidelines for more e�icient query answering.

Hierarchies and Queries

Avoid unnecessarily deep class/property hierarchies.

If you do not need to model several di�erent types of a given class or property in your schema, then don’t do that!
The reason shallow hierarchies are desirable is that the maximal hierarchy depth in the schema partly determines the
maximal size of the EQs produced by Stardog. The larger the EQ, the longer it takes to evaluate, generally.

For example, suppose our schema contains a very thorough and detailed set of subclasses of the class :Employee :

If we wanted to retrieve the set of all employees, Stardog would produce an EQ containing a query of the following
form for every subclass :Ci  of :Employee :

Thus, ask the most specific query su�icient for your use case. Why? More general queries— that is, queries that
contain concepts high up in the class hierarchy defined by the schema— will typically yield larger EQs.

Domains and Ranges

Specify domain and range of the properties in the schema.

These types of axiom can improve query performance significantly. Consider the following query asking for people
and the employees they manage:

We know that this query would cause a large EQ given a deep hierarchy of :Employee  subclasses. However, if we
added the following single range axiom:

then the EQ would collapse to

which is considerably easier to evaluate.

Very Large Schemas

$ ./reasoning undo myDB ":AcmeInc a :Person"

:Manager rdfs:subClassOf :Employee 

:SeniorManager rdfs:subClassOf :Manager 

... 

 

:Supervisor rdfs:subClassOf :Employee 

:DepartmentSupervisor rdfs:subClassOf :Supervisor 

... 

 

:Secretary rdfs:subClassOf :Employee 

...

SELECT ?employee WHERE { ?employee rdf:type :Ci }

SELECT ?manager ?employee WHERE 

  { ?manager :manages ?employee. 

    ?employee rdf:type :Employee. }

:manages rdfs:range :Employee

 SELECT ?manager ?employee WHERE { ?manager :manages ?employee }



/

If you are working with a very large schema like SNOMED then there are couple things to note. First of all, Stardog
reasoning works by pulling the complete schema into memory. This means you might need to increase the default
memory settings for Stardog for a large schema. Stardog performs all schema reasoning upfront and only once but
waits until the first reasoning query arrives. With a large schema, this step can be slow but subsequent reasoning
queries will be fast. Also note that, Stardog will update schema reasoning results automatically a�er the database is
modified so there will be some processing time spent then.

Reasoning with very expressive schemas can be time consuming and use a lot of memory. To get the best performance
out of Stardog with large schemas, limit the expressivity of your schema to OWL 2 EL (http://www.w3.org/TR/2012/REC-
owl2-profiles-20121211/#OWL_2_EL). You can also set the reasoning type of the database to EL  and Stardog will
automatically filter any axiom outside the EL expressivity. See Reasoning Types (#_reasoning_types) for more details on
reasoning types. OWL 2 EL allows range declarations for properties and user-defined datatypes but avoiding these two
constructs will further improve schema reasoning performance in Stardog.

Not Seeing Expected Results?

Here’s a few things that you might want to consider.

Are variable types ambiguous?

When a SPARQL query gets executed, each variable is bound to a URI, blank node, or to a literal to form a particular
result (a collection of these results is a result set). In the context of reasoning, URIs might represent di�erent entities:
individuals, classes, properties, etc. According to the relevant standard (http://www.w3.org/TR/sparql11-
entailment/#OWLDSEnRegime), every variable in a SPARQL query must bind to at most one of these types of entity.

Stardog can o�en figure out the right entity type from the query itself (e.g., given the triple pattern ?i ?p "a
literal" , we know ?p  is supposed to bind to a data property); however, sometimes this isn’t possible (e.g., ?s ?p ?
o ). In case the types can’t be determined automatically, Stardog logs a message and evaluates the query by making
some assumptions, which may not be what the query writer intended, about the types of variables.

You can add one or more type triples to the query to resolve these ambiguities.

These "type triples" have the form ?var a TYPE , where TYPE  is a URI representing the type of entity to which the
variable ?var  is supposed to bind: the most common are owl:ObjectProperty  or owl:DatatypeProperty ; in
some cases, you might want owl:NamedIndividual , or owl:Class . For instance, you can use the following query to
retrieve all object properties and their characteristics; without the type triple, ?s  will bind only to individuals:

Since Stardog now knows that ?s  should bind to an object property, it can now infer that ?o  binds to property
characteristics of ?s .

Is the schema where you think it is?

Starting in Stardog 3.0, Stardog will extract the schema from all named graphs and the default graph.

If you require that the schema only be extracted from one or more specific named graphs, then you must tell Stardog
where to find the schema. See database configuration options (#_configuration_options) for details. You can also use
the reasoning schema  (https://stardog.com/docs/man/reasoning-schema) command to export the contents of the
schema to see exactly what is included in the schema that Stardog uses.

Are you using the right reasoning type?

Perhaps some of the modeling constructs (a.k.a. axioms) in your database are being ignored. By default, Stardog uses
the SL  reasoning type. You can find out which axioms are being ignored by looking at the Stardog log file.

Are you using DL?

[31 (#_footnote_31)]

    SELECT ?o 

    WHERE { 

        ?s rdf:type ?o. 

        ?s a owl:ObjectProperty. 

    }.

http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/#OWL_2_EL
http://www.w3.org/TR/sparql11-entailment/#OWLDSEnRegime
https://stardog.com/docs/man/reasoning-schema


/

Stardog supports full OWL 2 DL reasoning but only for data that fits into main memory.

Are you using SWRL?

SWRL rules— whether using SWRL syntax or Stardog Rules Syntax— are only taken into account using the SL reasoning
type.

Do you know what to expect?

The OWL 2 primer (http://www.w3.org/TR/owl2-primer/) is a good place to start.

Known Issues

Stardog 5.3.6 does not

Follow ontology owl:imports  statements automatically; any imported OWL ontologies that are required must be
loaded into a Stardog database in the normal way.

Handle recursive queries. If recursion is necessary to answer the query with respect to the schema, results will be
sound (no wrong answers) but potentially incomplete (some correct answers not returned) with respect to the
requested reasoning type.

Terminology

This chapter uses the following terms of art.

Databases

A database (DB), a.k.a. ontology, is composed of two di�erent parts: the schema or Terminological Box (TBox) and the
data or Assertional Box (ABox). Analogus to relational databases, the TBox can be thought of as the schema, and the
ABox as the data. In other words, the TBox is a set of axioms, whereas the ABox is a set of assertions.

As we explain in OWL 2 Profiles (#_owl_2_profiles), the kinds of assertion and axiom that one might use for a particular
database are determined by the fragment of OWL 2 to which you’d like to adhere. In general, you should choose the
OWL 2 profile that most closely fits the data modeling needs of your application.

The most common data assertions are class and property assertions. Class assertions are used to state that a particular
individual is an instance of a given class. Property assertions are used to state that two particular individuals (or an
individual and a literal) are related via a given property. For example, suppose we have a DB MyDB  that contains the
following data assertions. We use the usual standard prefixes for RDF(S) and OWL.

Which says that :complexible  is a company, and that :complexible  maintains :Stardog .

The most common schema axioms are subclass axioms. Subclass axioms are used to state that every instance of a
particular class is also an instance of another class. For example, suppose that MyDB  contains the following TBox
axiom:

stating that companies are a type of organization.

Queries

When reasoning is enabled, Stardog executes SPARQL queries depending on the type of Basic Graph Patterns they
contain. A BGP is said to be an "ABox BGP" if it is of one of the following forms:

term  rdf:type  uri

2

:complexible rdf:type :Company 

:complexible :maintains :Stardog

2

:Company rdfs:subClassOf :Organization

1

http://www.w3.org/TR/owl2-primer/


/

term  uri term

term  owl:differentFrom  term

term  owl:sameAs  term

A BGP is said to be a TBox BGP if it is of one of the following forms:

term  rdfs:subClassOf  term

term  owl:disjointWith  term

term  owl:equivalentClass  term

term  rdfs:subPropertyOf  term

term  owl:equivalentProperty  term

term  owl:inverseOf  term

term  owl:propertyDisjointWith  term

term  rdfs:domain  term

term  rdfs:range  term

A BGP is said to be a Hybrid BGP if it is of one of the following forms:

term  rdf:type  ?var

term  ?var term

where term (possibly with subscripts) is either an URI or variable; uri is a URI; and ?var is a variable.

When executing a query, ABox BGPs are handled by Stardog. TBox BGPs are executed by Pellet embedded in Stardog.
Hybrid BGPs by a combination of both.

Reasoning

Intuitively, reasoning with a DB means to make implicit knowledge explicit. There are two main use cases for reasoning:
to infer implicit knowledge and to discover modeling errors.

With respect to the first use case, recall that MyDB  contains the following assertion and axiom:

From this DB, we can use Stardog in order to infer that :complexible  is an organization:

Using reasoning in order to infer implicit knowledge in the context of an enterprise application can lead to simpler
queries. Let us suppose, for example, that MyDB  contains a complex class hierarchy including several types of
organization (including company). Let us further suppose that our application requires to use Stardog in order to get the
list of all considered organizations. If Stardog were used with reasoning, then we would need only issue the following
simple query:

In contrast, if we were using Stardog with no reasoning, then we would have to issue a more complex query that
considers all possible types of organization, thus coupling queries to domain knowledge in a tight way:

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1

1 2

2

 :complexible rdf:type :Company 

 :Company rdfs:subClassOf :Organization

:complexible rdf:type :Organization

2

SELECT ?org WHERE { ?org rdf:type :Organization}

SELECT ?org WHERE 

              { { ?org rdf:type :Organization } UNION 

              { ?org rdf:type :Company } UNION 

... 

}



/

Which of these queries seems more loosely coupled and more resilient to change?

Stardog can also be used in order to discover modeling errors in a DB. The most common modeling errors are
unsatisfiable classes and inconsistent DBs.

An unsatisfiable class is simply a class that cannot have any instances. Say, for example, that we added the following
axioms to MyDB :

stating that companies cannot be organizations and vice versa, and that an LLC is a company and an organization. The
disjointness axiom causes the class :LLC  to be unsatisfiable because, for the DB to be free of any logical contradiction,
there can be no instances of :LLC .

Asserting (or inferring) that an unsatisfiable class has an instance, causes the DB to be inconsistent. In the particular
case of MyDB , we know that :complexible  is a company and an organization; therefore, we also know that it is an
instance of :LLC , and as :LLC  is known to be unsatisfiable, we have that MyDB  is inconsistent.

Using reasoning in order to discover modeling errors in the context of an enterprise application is useful in order to
maintain a correct contradiction-free model of the domain. In our example, we discovered that :LLC  is unsatisfiable
and MyDB  is inconsistent, which leads us to believe that there is a modeling error in our DB. In this case, it is easy to
see that the problem is the disjointness axiom between :Company  and :Organization .

OWL 2 Profiles

As explained in the OWL 2 Web Ontology Language Profiles Specification (http://www.w3.org/TR/owl2-profiles/), an
OWL 2 profile is a reduced version of OWL 2 that trades some expressive power for e�iciency of reasoning. There are
three OWL 2 profiles, each of which achieves e�iciency di�erently.

OWL 2 QL (http://www.w3.org/TR/owl2-profiles/#OWL_2_QL) is aimed at applications that use very large volumes of
instance data, and where query answering is the most important reasoning task. The expressive power of the profile
is necessarily limited; however, it includes most of the main features of conceptual models such as UML class
diagrams and ER diagrams.

OWL 2 EL (http://www.w3.org/TR/owl2-profiles/#OWL_2_EL) is particularly useful in applications employing
ontologies that contain very large numbers of properties and classes. This profile captures the expressive power
used by many such ontologies and is a subset of OWL 2 for which the basic reasoning problems can be performed in
time that is polynomial with respect to the size of the ontology.

OWL 2 RL (http://www.w3.org/TR/owl2-profiles/#OWL_2_RL) is aimed at applications that require scalable
reasoning without sacrificing too much expressive power. It is designed to accommodate OWL 2 applications that
can trade the full expressivity of the language for e�iciency, as well as RDF(S) applications that need some added
expressivity.

Each profile restricts the kinds of axiom and assertion that can be used in a DB. Colloquially, QL is the least expressive of
the profiles, followed by RL and EL; however, strictly speaking, no profile is more expressive than any other as they
provide incomparable sets of constructs.

Stardog supports the three profiles of OWL 2. Notably, since TBox BGPs are handled completely by Pellet, Stardog
supports reasoning for the whole of OWL 2 for queries containing TBox BGPs only.

VALIDATING CONSTRAINTS

Stardog Integrity Constraint Validation ("ICV") validates RDF data stored in a Stardog database according to data rules
(i.e., "constraints") described by users and that make sense for their domain, application, and data. These constraints
may be written in SPARQL, OWL, or SWRL. This chapter explains how to use ICV.

The use of high-level languages (OWL 2, SWRL, and SPARQL) to validate RDF data using closed world semantics is one
of Stardog’s unique capabilities. Using high level languages like OWL, SWRL, and SPARQL as schema or constraint
languages for RDF and Linked Data has several advantages:

2

 :Company owl:disjointWith :Organization 

 :LLC owl:equivalentClass :Company and :Organization

2
2

2

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.w3.org/TR/owl2-profiles/#OWL_2_RL


/

Unifying the domain model with data quality rules

Aligning the domain model and data quality rules with the integration model and language (i.e., RDF)

Being able to query the domain model, data quality rules, integration model, mapping rules, etc with SPARQL

Being able to use automated reasoning about all of these things to insure logical consistency, explain errors and
problems, etc.

TIP Data Quality with ICV (https://www.stardog.com/blog/data-quality-with-icv/)

Getting Started with ICV

See the extended ICV tutorial (https://github.com/Complexible/stardog-examples/tree/master/examples/cli/icv) in the
stardog-examples repo on Github for more details.

ICV & OWL 2 Reasoning

An integrity constraint may be satisfied or violated in either of two ways: by an explicit statement in a Stardog
database or by a statement that’s been validly inferred by Stardog.

When ICV is enabled for a Stardog database, it has to be enabled with respect to a reasoning type or level. The valid
choices of reasoning type are any type or kind of reasoning supported by Stardog. See OWL & Rule Reasoning
(#_owl_rule_reasoning) for the details.

So ICV is performed with three inputs:

1. a Stardog database,

2. a set of constraints, and

3. a reasoning type (which may be, of course, no reasoning).

This is the case because domain modelers, ontology developers, or integrity constraint authors must consider the
interactions between explicit and inferred statements and how these are accounted for in integrity constraints.

Using ICV from CLI

To add constraints to a database:

To drop all constraints from a database:

To remove one or more specific constraints from a database:

To convert new or existing constraints into SPARQL queries for export:

To explain a constraint violation:

To export constraints:

$ stardog-admin icv add myDb constraints.rdf

$ stardog-admin icv drop myDb

$ stardog-admin icv remove myDb constraints.rdf

$ stardog icv convert myDb constraints.rdf

$ stardog icv explain --contexts http://example.org/context1 http://example.org/context2 -- myDb

https://www.stardog.com/blog/data-quality-with-icv/
https://github.com/Complexible/stardog-examples/tree/master/examples/cli/icv


/

To validate a database (or some named graphs) with respect to constraints:

ICV Guard Mode

Stardog will also apply constraints as part of its transactional cycle and fail transactions that violate constraints. We call
this "guard mode". It must be enabled explicitly in the database configuration options. Using the command line, these
steps are as follows:

In the Web Console you can set the database o�line, click Edit , change the "ICV Enable" value, click Save

and set the database online again.

Once guard mode is enabled, modifications of the database (via SPARQL Update or any other method), whether adds or
deletes, that violate the integrity constraints will cause the transaction to fail.

Explaining ICV Violations

ICV violations can be explained using Stardog’s Proof Trees (#_proof_trees). The following command will explain the IC
violations for constraints stored in the database:

The command is flexible to change the number of violations displayed, and to explain violations for external constraints
by passing the file with constraints as an additional argument:

Security Note

WARNING

There is a security implication in this design that may not be obvious. Changing the reasoning type
associated with a database and integrity constraint validation may have serious security
implications with respect to a Stardog database and, thus, may only be performed by a user role
with su�icient privileges for that action.

Repairing ICV Violations

Stardog 3.0 adds support for automatic repair of some kinds of integrity violation. This can be accomplished
programmatically via API, as well as via CLI using the icv fix  subcommand.

Repair plans are emitted as a sequence of SPARQL Update queries, which means they can be applied to any system that
understands SPARQL Update. If you pass --execute  the repair plan will be applied immediately.

$ stardog icv export myDb constraints.rdf

$ stardog icv validate --contexts http://example.org/context1 http://example.org/context2 -- myDb

$ ./stardog-admin db offline --timeout 0 myDb #take the database offline 

$ ./stardog-admin metadata set -o icv.enabled=true myDb #enable ICV 

$ ./stardog-admin db online myDb #put the database online

[ ] [ ]

$ stardog icv explain --reasoning "myDB"

$ stardog icv explain --reasoning --limit 2 "myDB" constraints.ttl

$ stardog help icv fix



/

icv fix  will repair violations of all constraints in the database; if you’d prefer to fix the violations for only some
constraints, you can pass those constraints as an additional argument. Although a possible (but trivial) fix for any
violation is to remove one or more constraints, icv fix  does not suggest that kind of repair, even though it may be
appropriate in some cases.

ICV Examples

Stardog ICV has a formal semantics (/icv/icv-specification.html). But let’s just look at some examples instead; these
examples use OWL 2 Manchester syntax, and they assume a simple data schema, which is available as an OWL ontology
(/icv/company.owl) and as a UML diagram (/icv/ClassDiagram.png). The examples assume that the default namespace
is http://example.com/company.owl# (http://example.com/company.owl#)  and that xsd:  is bound to the
standard, http://www.w3.org/2001/XMLSchema# (http://www.w3.org/2001/XMLSchema#) .

Reference Java code (https://gist.github.com/1333767) is available for each of the following examples and is also
distributed with Stardog.

Subsumption Constraints

This kind of constraint guarantees certain subclass and superclass (i.e., subsumption) relationships exist between
instances.

Managers must be employees.

Constraint

Database A (invalid)

Database B (valid)

This constraint says that if an RDF individual is an instance of Manager , then it must also be an instance of Employee .
In A, the only instance of Manager , namely Alice , is not an instance of Employee ; therefore, A is invalid. In B, Alice
is an instance of Database both Manager  and Employee ; therefore, B is valid.

Domain-Range Constraints

These constraints control the types of subjects and objects used with a property.

Only project leaders can be responsible for projects.

Constraint

Database A (invalid)

Database B (invalid)

Database C (valid)

:Manager rdfs:subClassOf :Employee

:Alice a :Manager .

:Alice a :Manager , :Employee .

:is_responsible_for rdfs:domain :Project_Leader ; 

                    rdfs:range :Project .

:Alice :is_responsible_for :MyProject . 

 

:MyProject a :Project .

:Alice a :Project_Leader ; 

 :is_responsible_for :MyProject .

https://www.stardog.com/icv/icv-specification.html
https://www.stardog.com/icv/company.owl
https://www.stardog.com/icv/ClassDiagram.png
http://example.com/company.owl#
http://www.w3.org/2001/XMLSchema#
https://gist.github.com/1333767


/

This constraint says that if two RDF instances are related to each other via the property is_responsible_for , then
the subject must be an instance of Project_Leader  and the object must be an instance of Project . In Database A,
there is only one pair of individuals related via is_responsible_for , namely (Alice, MyProject) , and
MyProject  is an instance of Project ; but Alice  is not an instance of Project_Leader . Therefore, A is invalid. In B,
Alice  is an instance of Project_Leader , but MyProject  is not an instance of Project ; therefore, B is not valid. In

C, Alice  is an instance of Project_Leader , and MyProject  is an instance of Project ; therefore, C is valid.

Only employees can have an SSN.

Constraint

Database A (invalid)

Database B (valid)

This constraint says that if an RDF instance i  has a data assertion via the the property SSN , then i  must be an
instance of Employee . In A, Bob  is not an instance of Employee  but has SSN ; therefore, A is invalid. In B, Bob  is an
instance of Employee ; therefore, B is valid.

A date of birth must be a date.

Constraint

Database A (invalid)

Database B (valid)

This constraint says that if an RDF instance i  is related to a literal l  via the data property DOB , then l  must have the
XML Schema type xsd:date . In A, Bob  is related to the untyped literal "1970-01-01"  via DOB  so A is invalid. In B,
the literal "1970-01-01"  is properly typed so it’s valid.

Participation Constraints

These constraints control whether or not an RDF instance participates in some specified relationship.

Each supervisor must supervise at least one employee.

Constraint

:Alice a :Project_Leader ; 

 :is_responsible_for :MyProject . 

 

:MyProject a :Project .

:ssn rdfs:domain :Employee

:Bob :ssn "123-45-6789" .

:Bob a :Employee ; 

 :ssn "123-45-6789" .

:dob rdfs:range xsd:date

:Bob :dob "1970-01-01" .

:Bob :dob "1970-01-01"^^xsd:date

#this constraint is very concise in Terp syntax: 

#:Supervisor rdfs:subClassOf (:supervises some :Employee) 

 

:Supervisor rdfs:subClassOf 

              [ a owl:Restriction ; 

                owl:onProperty :supervises ; 

                owl:someValuesFrom :Employee 

              ] .



/

Database A (valid)

Database B (invalid)

Database C (invalid)

Database D (valid)

This constraint says that if an RDF instance i  is of type Supervisor , then i  must be related to an individual j  via
the property supervises  and also that j  must be an instance of Employee . In A, Supervisor  has no instances;
therefore, A is trivially valid. In B, the only instance of Supervisor , namely Alice , is related to no individual;
therefore, B is invalid. In C, Alice  is related to Bob  via supervises , but Bob  is not an instance of Employee ;
therefore, C is invalid. In D, Alice  is related to Bob  via supervises , and Bob  is an instance of Employee ; hence, D
is valid.

Each project must have a valid project number.

Constraint

Database A (valid)

Database B (invalid)

Database C (invalid)

Database D (invalid)

Database E (valid)

:Alice a owl:Thing .

:Alice a :Supervisor .

:Alice a :Supervisor ; 

 :supervises :Bob .

:Alice a :Supervisor ; 

 :supervises :Bob . 

 

:Bob a :Employee

#Again, this constraint in Terp syntax rocks the hizzous: 

#:Project rdfs:subClassOf (:number some xsd:integer[>= 0, < 5000]) 

 

:Project rdfs:subClassOf 

              [ a owl:Restriction ; 

                owl:onProperty :number ; 

                owl:someValuesFrom 

                        [ a rdfs:Datatype ; 

                          owl:onDatatype xsd:integer ; 

                          owl:withRestrictions ([xsd:minInclusive 0] [ xsd:maxExclusive 5000]) 

                        ] 

              ] .

:MyProject a owl:Thing .

:MyProject a :Project

:MyProject a :Project ; 

 :number "23" .

:MyProject a :Project ; 

 :number "6000"^^xsd:integer .

:MyProject a :Project ; 

 :number "23"^^xsd:integer .



/

This constraint says that if an RDF instance i  is of type Project , then i  must be related via the property number  to
an integer between 0  and 5000  (inclusive)—that is, projects have project numbers in a certain range. In A, the
individual MyProject  is not known to be an instance of Project  so the constraint does not apply at all and A is valid.
In B, MyProject  is an instance of Project  but doesn’t have any data assertions via number  so A is invalid. In C,
MyProject  does have a data property assertion via number  but the literal "23"  is untyped— that is, it’s not an integer

— therefore, C is invalid. In D, MyProject  is related to an integer via number  but it is out of the range: D is invalid.
Finally, in E, MyProject  is related to the integer 23  which is in the range of [0,5000]  so E is valid.

Cardinality Constraints

These constraints control the number of various relationships or property values.

Employees must not work on more than 3 projects.

Constraint

Database A (valid)

Database B (valid)

Database C (invalid)

If an RDF instance i  is an Employee , then i  must not be related via the property works_on  to more than 3 instances
of Project . In A, Bob  is not known to be an instance of Employee  so the constraint does not apply and the A is valid.
In B, Bob  is an instance of Employee  but is known to work on only a single project, namely MyProject , so B is valid.
In C, Bob  is related to 4 instances of Project  via works_on .

NOTE
Stardog ICV implements a weak form of the unique name assumption, that is, it assumes that things
which have di�erent names are, in fact, di�erent things.

Since Stardog ICV uses closed world (instead of open world) semantics,  it assumes that the
di�erent projects with di�erent names are, in fact, separate projects, which (in this case) violates the constraint and
makes C invalid.

Departments must have at least 2 employees.

Constraint

#Constraint in Terp syntax: 

#:Employee rdfs:subClassOf (:works_on max 3 :Project) 

 

:Employee rdfs:subClassOf 

              [ a owl:Restriction ; 

                owl:onProperty :works_on; 

                owl:maxQualifiedCardinality "3"^^xsd:nonNegativeInteger ; 

                owl:onClass :Project 

              ] .

:Bob a owl:Thing.

:Bob a :Employee ; 

 :works_on :MyProject . 

 

:MyProject a :Project .

:Bob a :Employee ; 

 :works_on :MyProject , :MyProjectFoo , :MyProjectBar , :MyProjectBaz . 

 

:MyProject a :Project . 

 

:MyProjectFoo a :Project . 

 

:MyProjectBar a :Project . 

 

:MyProjectBaz a :Project .

[32]

[33 (#_footnote_33)]



/

Database A (valid)

Database B (invalid)

Database C (valid)

This constraint says that if an RDF instance i  is a Department , then there should exist at least 2 instances j  and k  of
class Employee  which are related to i  via the property works_in  (or, equivalently, i  should be related to them via
the inverse of works_in ). In A, MyDepartment  is not known to be an instance of Department  so the constraint does
not apply. In B, MyDepartment  is an instance of Department  but only one instance of Employee , namely Bob , is
known to work in it, so B is invalid. In C, MyDepartment  is related to the individuals Bob  and Alice , which are both
instances of Employee  and (again, due to weak Unique Name Assumption in Stardog ICV), are assumed to be distinct,
so C is valid.

Managers must manage exactly 1 department.

Constraint

Database A (valid)

Database B (invalid)

Database C (invalid)

Database D (valid)

#Constraint in Terp syntax: 

#:Department rdfs:subClassOf (inverse :works_in min 2 :Employee) 

 

:Department rdfs:subClassOf 

              [ a owl:Restriction ; 

                owl:onProperty [owl:inverseOf :works_in] ; 

                owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ; 

                owl:onClass :Employee 

              ] .

:MyDepartment a owl:NamedIndividual .

:MyDepartment a :Department .

 

:Bob a :Employee ; 

 :works_in :MyDepartment .

:MyDepartment a :Department .

 

:Alice a :Employee ; 

 :works_in :MyDepartment . 

 

:Bob a :Employee ; 

 :works_in :MyDepartment .

#Constraint in Terp syntax: 

#:Manager rdfs:subClassOf (:manages exactly 1 :Department) 

 

:Manager rdfs:subClassOf 

              [ a owl:Restriction ; 

                owl:onProperty :manages ; 

                owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ; 

                owl:onClass :Department 

              ] .

    Individual: Isabella

:Isabella a :Manager .

:Isabella a :Manager ; 

 :manages :MyDepartment .



/

Database E (invalid)

This constraint says that if an RDF instance i  is a Manager , then it must be related to exactly 1 instance of
Department  via the property manages . In A, the individual Isabella  is not known to be an instance of Manager  so

the constraint does not apply and A is valid. In B, Isabella  is an instance of Manager  but is not related to any
instances of Department , so B is invalid. In C, Isabella  is related to the individual MyDepartment  via the property
manages  but MyDepartment  is not known to be an instance of Department , so C is invalid. In D, Isabella  is related

to exactly one instance of Department , namely MyDepartment , so D is valid. Finally, in E, Isabella  is related to two
(assumed to be) distinct (again, because of weak UNA) instances of Department , namely MyDepartment  and
MyDepartment1 , so E is invalid.

Entities may have no more than one name.

Constraint

Database A (valid)

Database B (valid)

Database C (invalid)

This constraint says that no RDF instance i  can have more than one assertion via the data property name . In A,
MyDepartment  does not have any data property assertions so A is valid. In B, MyDepartment  has a single assertion via
name , so the ontology is also valid. In C, MyDepartment  is related to 2 literals, namely "Human Resources"  and
"Legal" , via name , so C is invalid.

Property Constraints

These constraints control how instances are related to one another via properties.

The manager of a department must work in that department.

Constraint

Database A (invalid)

Database B (valid)

:Isabella a :Manager ; 

 :manages :MyDepartment . 

 

:MyDepartment a :Department .

:Isabella a :Manager ; 

 :manages :MyDepartment , :MyDepartment1 . 

 

:MyDepartment a :Department .

 

:MyDepartment1 a :Department .

:name a owl:FunctionalProperty .

:MyDepartment a owl:Thing .

:MyDepartment :name "Human Resources" .

:MyDepartment :name "Human Resources" , "Legal" .

:manages rdfs:subPropertyOf :works_in .

:Bob :manages :MyDepartment

:Bob :works_in :MyDepartment ; 

 :manages :MyDepartment .



/

This constraint says that if an RDF instance i  is related to j  via the property manages , then i  must also be related
to j  via the property works_in . In A, Bob  is related to MyDepartment  via manages , but not via works_in , so A is
invalid. In B, Bob  is related to MyDepartment  via both manages  and works_in , so B is valid.

Department managers must supervise all the department’s employees.

Constraint

Database A (invalid)

Database B (valid)

This constraint says that if an RDF instance i  is related to j  via the property manages  and k  is related to j  via the
property works_in , then i  must be related to k  via the property is_supervisor_of . In A, Jose  is related to
MyDepartment  via manages , Diego  is related to MyDepartment  via works_in , but Jose  is not related to Diego

via any property, so A is invalid. In B, Jose  is related to Maria  and Diego --who are both related to MyDepartment
by way of works_in --via the property is_supervisor_of , so B is valid.

Complex Constraints

Constrains may be arbitrarily complex and include many conditions.

Employee Constraints

Each employee works on at least one project, or supervises at least one employee that works on at least one project, or
manages at least one department.

Constraint

Database A (invalid)

:is_supervisor_of owl:propertyChainAxiom (:manages [owl:inverseOf :works_in]) .

:Jose :manages :MyDepartment ; 

 :is_supervisor_of :Maria . 

 

:Maria :works_in :MyDepartment . 

 

:Diego :works_in :MyDepartment .

:Jose :manages :MyDepartment ; 

 :is_supervisor_of :Maria , :Diego . 

 

:Maria :works_in :MyDepartment . 

 

:Diego :works_in :MyDepartment .

#Constraint in Terp syntax: 

#how are you not loving Terp by now?! 

#:Employee rdfs:subClassOf (:works_on some (:Project or 

#(:supervises some (:Employee and (:works_on some :Project))) or (:manages some :Department))) 

 

:Employee rdfs:subClassOf 

              [ a owl:Restriction ; 

                owl:onProperty :works_on ; 

                owl:someValuesFrom 

                        [ owl:unionOf (:Project 

                                      [ a owl:Restriction ; 

                                        owl:onProperty :supervises ; 

                                        owl:someValuesFrom 

                                              [ owl:intersectionOf (:Employee 

                                                                    [ a owl:Restriction ; 

                                                                      owl:onProperty :works_on ; 

                                                                      owl:someValuesFrom :Project 

                                                                    ]) 

                                              ] 

                                      ] 

                                      [ a owl:Restriction ; 

                                        owl:onProperty :manages ; 

                                        owl:someValuesFrom :Department 

                                      ]) 

                        ] 

              ] .



/

Database B (invalid)

Database C (valid)

Database D (valid)

Database E (valid)

This constraint says that if an individual i  is an instance of Employee , then at least one of three conditions must be
met:

it is related to an instance of Project  via the property works_on

it is related to an instance j  via the property supervises  and j  is an instance of Employee  and is also related to
some instance of Project  via the property works_on

it is related to an instance of Department  via the property manages .

A and B are invalid because none of the conditions are met. C meets the second condition: Esteban  (who is an
Employee ) is related to Lucinda  via the property supervises  whereas Lucinda  is both an Employee  and related

to MyProject , which is a Project , via the property works_on . D meets the third condition: Esteban  is related to
an instance of Department , namely MyDepartment , via the property manages . Finally, E meets the first and the third
conditions because in addition to managing a department Esteban  is also related an instance of Project , namely
MyProject , via the property works_on .

Employees and US government funding

Only employees who are American citizens can work on a project that receives funds from a US government agency.

Constraint

:Esteban a :Employee .

:Esteban a :Employee ; 

 :supervises :Lucinda . 

 

:Lucinda a :Employee .

:Esteban a :Employee ; 

 :supervises :Lucinda . 

 

:Lucinda a :Employee ; 

 :works_on :MyProject . 

 

:MyProject a :Project .

:Esteban a :Employee ; 

 :manages :MyDepartment . 

 

:MyDepartment a :Department .

:Esteban a :Employee ; 

 :manages :MyDepartment ; 

 :works_on :MyProject . 

 

:MyDepartment a :Department .

 

:MyProject a :Project .



/

Database A (valid)

Database B (invalid)

Database C (valid)

Database D (invalid)

Database E (valid)

#Constraint in Terp syntax: 

#:Project and (:receives_funds_from some :US_Government_Agency)) rdfs:subClassOf 

#(inverse :works_on only (:Employee and (:nationality value "US"))) 

 

[ owl:intersectionOf (:Project 

                       [ a owl:Restriction ; 

                         owl:onProperty :receives_funds_from ; 

                         owl:someValuesFrom :US_Government_Agency 

                       ]) . 

] rdfs:subClassOf 

              [ a owl:Restriction ; 

                owl:onProperty [owl:inverseOf :works_on] ; 

                owl:allValuesFrom [ owl:intersectionOf (:Employee 

                                                        [ a owl:Restriction ; 

                                                          owl:hasValue "US" ; 

                                                          owl:onProperty :nationality 

                                                        ]) 

                                  ] 

              ] .

:MyProject a :Project ; 

 :receives_funds_from :NASA . 

 

:NASA a :US_Government_Agency

:MyProject a :Project ; 

 :receives_funds_from :NASA . 

 

:NASA a :US_Government_Agency . 

 

:Andy a :Employee ; 

 :works_on :MyProject .

:MyProject a :Project ; 

 :receives_funds_from :NASA . 

 

:NASA a :US_Government_Agency . 

 

:Andy a :Employee ; 

 :works_on :MyProject ; 

 :nationality "US" .

:MyProject a :Project ; 

 :receives_funds_from :NASA . 

 

:NASA a :US_Government_Agency . 

 

:Andy a :Employee ; 

 :works_on :MyProject ; 

 :nationality "US" . 

 

:Heidi a :Supervisor ; 

 :works_on :MyProject ; 

 :nationality "US" .



/

This constraint says that if an individual i  is an instance of Project  and is related to an instance of
US_Government_Agency  via the property receives_funds_from , then any individual j  which is related to i  via

the property works_on  must satisfy two conditions:

it must be an instance of Employee

it must not be related to any literal other than "US"  via the data property nationality .

A is valid because there is no individual related to MyProject  via works_on , so the constraint is trivially satisfied. B is
invalid since Andy  is related to MyProject  via works_on , MyProject  is an instance of Project  and is related to an
instance of US_Government_Agency , that is, NASA , via receives_funds_from , but Andy  does not have any data
property assertions. C is valid because both conditions are met. D is not valid because Heidi  violated the first
condition: she is related to MyProject  via works_on  but is not known to be an instance of Employee . Finally, this is
fixed in E— by way of a handy OWL axiom— which states that every instance of Supervisor  is an instance of
Employee , so Heidi  is inferred to be an instance of Employee  and, consequently, E is valid.

If you made it this far, you deserve a drink!

Constraints Formats

In addition to OWL, ICV constraints can be expressed in SPARQL and Stardog Rules. In both cases, the constraints define
queries and rules to find violations. These constraints can be added individually, or defined together in a file as shown
below:

:MyProject a :Project ; 

 :receives_funds_from :NASA . 

 

:NASA a :US_Government_Agency . 

 

:Andy a :Employee ; 

 :works_on :MyProject ; 

 :nationality "US" . 

 

:Heidi a :Supervisor ; 

 :works_on :MyProject ; 

 :nationality "US" . 

 

:Supervisor rdfs:subClassOf :Employee . 

    SubClassOf: Employee

[34 (#_footnote_34)]



/

Using ICV Programmatically

Here we describe how to use Stardog ICV via the SNARL APIs. For more information on using SNARL in general, please
refer to the chapter on Java Programming (#_java_programming).

There is command-line interface support for many of the operations necessary to using ICV with a Stardog database;
please see Administering Stardog (#_administering_stardog) for details.

To use ICV in Stardog, one must:

1. create some constraints

2. associate those constraints with a Stardog database

Creating Constraints

Constraints  (/docs/5.3.6/java/snarl/com/complexible/stardog/icv/constraint) can be created using the
ConstraintFactory  (/docs/5.3.6/java/snarl/com/complexible/stardog/icv/constraintfactory) which provides methods

for creating integrity constraints. ConstraintFactory  expects your constraints, if they are defined as OWL axioms, as
RDF triples (or graph). To aid in authoring constraints in OWL, ExpressionFactory
(/docs/5.3.6/java/snarl/com/complexible/common/openrdf/util/expressionfactory) is provided for building the RDF
equivalent (http://www.w3.org/TR/owl2-mapping-to-rdf/) of the OWL axioms of your constraint.

You can also write your constraints in OWL in your favorite editor and load them into the database from your OWL file.

We recommend defining your constraints as OWL axioms, but you are free to define them using SPARQL SELECT
queries. If you choose to define a constraint using a SPARQL SELECT  query, please keep in mind that if your query
returns results, those are interpreted as the violations of the integrity constraint.

An example of creating a simple constraint using ExpressionFactory :

@prefix rule: <tag:stardog:api:rule:> . 

@prefix icv: <tag:stardog:api:icv:> . 

 

# Rule Constraint 

[] a rule:SPARQLRule ; 

 

   rule:content """ 

 

    prefix : <http://example.org/> 

 

 IF { 

     ?x a :Employee . 

 } 

 THEN { 

  ?x :employeeNum ?number . 

 } 

 

   """ . 

 

 

# SPARQL Constraint 

[] a icv:Constraint ; 

 

   icv:query """ 

    prefix : <http://example.org/> 

 

    select * { 

 

        ?x a :Employee . 

 

     FILTER NOT EXISTS { 

         ?x :employeeNum ?number . 

     } 

 } 

 

   """ .

Unresolved directive in icv.ad - 

include::https://gist.githubusercontent.com/mhgrove/1333767/raw/CreateConstraint.java[]

https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/icv/constraint
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/icv/constraintfactory
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/common/openrdf/util/expressionfactory
http://www.w3.org/TR/owl2-mapping-to-rdf/


/

Adding Constraints to Stardog

The ICVConnection (/docs/5.3.6/java/snarl/com/complexible/stardog/icv/api/icvconnection) interface provides
programmatic access to the ICV support in Stardog. It provides support for adding, removing and clearing integrity
constraints in your database as well as methods for checking whether or not the data is valid; and when it’s not,
retrieving the list of violations.

This example shows how to add an integrity constraint to a Stardog database.

Here we show how to add a set of constraints as defined in a local OWL ontology.

IC Validation

Checking whether or not the contents of a database are valid is easy. Once you have an ICVConnection
(/docs/5.3.6/java/snarl/com/complexible/stardog/icv/api/icvconnection) you can simply call its isValid()
(/docs/5.3.6/java/snarl/com/complexible/stardog/icv/api/icvconnection#isValid()) method which will return whether or
not the contents of the database are valid with respect to the constraints associated with that database. Similarly, you
can provide some constraints  (/docs/5.3.6/java/snarl/com/complexible/stardog/icv/constraint) to the isValid()
method to see if the data in the database is invalid for those specific constraints; which can be a subset of the
constraints associated with the database, or they can be new constraints you are working on.

If the data is invalid for some constraints—either the explicit constraints in your database or a new set of constraints you
have authored—you can get some information about what the violation was from the SNARL IC Connection.
ICVConnection.getViolationBindings()

(/docs/5.3.6/java/snarl/com/complexible/stardog/icv/api/icvconnection#getViolationBindings()) will return the
constraints which are violated, and for each constraint, you can get the violations as the set of bindings that satisfied
the constraint query. You can turn the bindings into the individuals which are in the violation using
ICV.asIndividuals()  (/docs/5.3.6/java/snarl/com/complexible/stardog/icv/icv#asIndividuals()).

ICV and Transactions

In addition to using the ICConnection as a data oracle to tell whether or not your data is valid with respect to some
constraints, you can also use Stardog’s ICV support to protect your database from invalid data by using ICV as a guard
within transactions.

When guard mode for ICV is enabled in Stardog, each commit is inspected to ensure that the contents of the database
are valid for the set of constraints that have been associated with it. Should someone attempt to commit data which
violates one or more of the constraints defined for the database, the commit will fail and the data will not be
added/removed from your database.

By default, reasoning is not used when you enable guard mode, however you are free to specify any of the reasoning
types supported by Stardog when enabling guard mode. If you have provided a specific reasoning type for guard mode
it will be used during validation of the integrity constraints. This means you can author your constraints with the
expectation of inference results satisfying a constraint.

This illustrates how to create a persistent disk database with ICV guard mode and reasoning enabled. Guard mode can
also be enabled when the database is created on the CLI (#_command_line_interface).

Terminology

This chapter may make more sense if you read this section on terminology a few times.

Unresolved directive in icv.ad - 

include::https://gist.githubusercontent.com/mhgrove/1333767/raw/AddConstraint.java[]

Unresolved directive in icv.ad - 

include::https://gist.githubusercontent.com/mhgrove/1333767/raw/AddConstraint2.java[]

Unresolved directive in icv.ad - 

include::https://gist.githubusercontent.com/mhgrove/1333782/raw/CreateDiskAndICV.java[]

https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/icv/api/icvconnection
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/icv/api/icvconnection
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/icv/api/icvconnection#isValid()
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/icv/constraint
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/icv/api/icvconnection#getViolationBindings()
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/icv/icv#asIndividuals()


/

ICV, Integrity Constraint Validation

The process of checking whether some Stardog database is valid with respect to some integrity constraints. The result
of ICV is a boolean value (true if valid, false if invalid) and, optionally, an explanation of constraint violations .

Schema, TBox

A schema (or "terminology box" a.k.a., TBox) is a set of statements that define the relationships between data elements,
including property and class names, their relationships, etc. In practical terms, schema statements for a Stardog
database are RDF Schema and OWL 2 terms, axioms, and definitions.

Data, ABox

All of the triples in a Stardog database that aren’t part of the schema are part of the data (or "assertional box" a.k.a.
ABox).

Integrity Constraint

A declarative expression of some rule or constraint which data must conform to in order to be valid. Integrity
Constraints are typically domain and application specific. They can be expressed in OWL 2 (any legal syntax), SWRL
rules, or (a restricted form of) SPARQL queries.

Constraints

Constraints that have been associated with a Stardog database and which are used to validate the data it contains. Each
Stardog may optionally have one and only one set of constraints associated with it.

Closed World Assumption, Closed World Reasoning

Stardog ICV assumes a closed world with respect to data and constraints: that is, it assumes that all relevant data is
known to it and included in a database to be validated. It interprets the meaning of Integrity Constraints in light of this
assumption; if a constraint says a value must  be present, the absence of that value is interpreted as a constraint
violation and, hence, as invalid data.

Open World Assumption, Open World Reasoning

A legal OWL 2 inference may violate or satisfy an Integrity Constraint in Stardog. In other words, you get to have your
cake (OWL as a constraint language) and eat it, too (OWL as modeling or inference language). This means that
constraints are applied to a Stardog database with respect to an OWL 2 profile .

Monotonicity

OWL is a monotonic language: that means you can never add  anything to a Stardog database that causes there to be
fewer  legal inferences. Or, put another way, the only way to decrease the number of legal inferences is to delete

something.

Monotonicity interacts with ICV in the following ways:

1. Adding data to or removing it from a Stardog database may make it invalid.

2. Adding schema statements to or removing them from a Stardog database may make it invalid.

3. Adding new constraints to a Stardog database may make it invalid.

4. Deleting constraints from a Stardog database cannot make it invalid.

GRAPHQL QUERIES

NOTE Stardog Web Console does not support executing GraphQL queries.

Introduction



/

Stardog supports querying data stored (or mapped) in a Stardog database using GraphQL (http://graphql.org/) queries.
You can load data into Stardog as usual and execute GraphQL queries without creating a GraphQL schema. You can also
associate one or more GraphQL schemas (#_graphql_schemas) with a database and execute GraphQL queries against
one of those schemas.

The following table shows the correspondence between RDF concepts and GraphQL:

RDF GraphQL

Node Object

Class Type

Property Field

Literal Scalar

Execution of GraphQL queries in Stardog does not follow the procedural rules defined in the GraphQL spec
(https://facebook.github.io/graphql/October2016/#sec-Executing-Selection-Sets). Instead Stardog translates GraphQL
queries to SPARQL and then SPARQL results to GraphQL results based on the correspondences shown in the preceding
table. Each RDF node represents a GraphQL object. Properties of the node are the fields of the object with the exception
of rdf:type  property which represents the type of the object. Literals in RDF are mapped to GraphQL scalars.

RDF GraphQL

xsd:integer IntValue

xsd:float FloatValue

xsd:string StringValue

xsd:boolean BooleanValue

UNDEF NullValue

IRI EnumValue

In the following sections we will use a slightly modified version of the canonical GraphQL Star Wars example to explain
how GraphQL queries work in Stardog. The following graph shows the core elements of the dataset and links between
those nodes:

3. Subset of the Star Wars Graph

The full dataset in Turtle format is available in the examples repo (https://github.com/stardog-union/stardog-
examples/blob/develop/examples/api/data/starwars.ttl).

Executing GraphQL Queries

http://graphql.org/
https://facebook.github.io/graphql/October2016/#sec-Executing-Selection-Sets
https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/data/starwars.ttl


/

GraphQL queries can be run via the CLI (/docs/5.3.6/man/data-add), the Java API
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/graphql/graphqlconnection) or the HTTP API
(#_execute_graphql_query).

The GraphQL command can be executed by providing a query string:

or a file containing the query:

The --reasoning  flag can be used with the CLI command to enable reasoning.

The HTTP command can be used to execute GraphQL queries. The endpoint for GraphQL queries is
http://HOST:PORT/{db}/graphql (http://HOST:PORT/{db}/graphql) . The following command uses curl  to

execute a GraphQL query:

Reasoning can be enabled by setting a special variable @reasoning  in the GraphQL query variables.

Any standard GraphQL client, like GraphiQL (https://github.com/graphql/graphiql), can be used with Stardog:

NOTE

Stardog by default uses HTTP basic access authentication
(https://en.wikipedia.org/wiki/Basic_access_authentication#Client_side). In order to use GraphiQL
with Stardog you either need to start the Stardog server with --disable-security  option so it
won’t require credentials or set the HTTP header Authorization  in the request. If the default
credentials admin/admin  are being used in non-production settings, the HTTP header
Authorization  may be set to the value Basic YWRtaW46YWRtaW4=  in the GraphiQL UI. The curl

example above can be used to see the correct value of the header for your credentials.

Fields and Selection Sets

A top-level element in GraphQL by default represents a type and will return all the nodes with that type. The fields in the
query will return matching properties:

$ stardog graphql starwars "{ Human { name }}"

$ stardog graphql starwars query.file

$ curl -G -vsku admin:admin --data-urlencode query="{ Human { name }}" localhost:5820/starwars/graphql

https://www.stardog.com/docs/5.3.6/man/data-add
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/graphql/graphqlconnection
https://github.com/graphql/graphiql
https://en.wikipedia.org/wiki/Basic_access_authentication#Client_side


/

Query Result

Each field in the query is treated as a required property of the node (unless an @optional  directive is used) so any
node without corresponding properties will not appear in the results:

Query Result

If a node in the graph has multiple properties, then in the query results those results will be returned as an array:

Query Result

Also note that Stardog does not enforce the GraphQL requirement that leaf fields must be scalars
(https://facebook.github.io/graphql/October2016/#sec-Leaf-Field-Selections). In the previous example friends of a
droid are objects but the query does not provide any fields. In those cases, the identifier of the node will be returned as
a string.

Arguments

In GraphQL fields are, conceptually, functions which return values and may accept arguments
(https://facebook.github.io/graphql/October2016/#sec-Language.Arguments) that alter their behavior. Arguments have
no predefined semantics but the typical usage is for defining lookup values for fields. Stardog adopts this usage and
treats arguments as filters for the query. The following query return only the node whose id  field is 1000 :

Query Result

{ 

   Human { 

     name 

   } 

}

{ 

  "data" : [ { 

    "name" : "Luke Skywalker" 

  }, { 

    "name" : "Han Solo" 

  }, { 

    "name" : "Leia Organa" 

  }, { 

    "name" : "Darth Vader" 

  }, { 

    "name" : "Wilhuff Tarkin" 

  } ] 

}

{ 

   Human { 

     name 

     homePlanet 

   } 

}

{ 

  "data" : [ { 

    "name" : "Luke Skywalker", 

    "homePlanet" : "Tatooine" 

  }, { 

    "name" : "Leia Organa", 

    "homePlanet" : "Alderaan" 

  }, { 

    "name" : "Darth Vader", 

    "homePlanet" : "Tatooine" 

  } ] 

}

{ 

   Droid { 

     name 

     friends 

   } 

}

{ 

  "data" : [ { 

    "name" : "C-3PO", 

    "friends" : [ "luke", "han", "leia", "artoo" 

] 

  }, { 

    "name" : "R2-D2", 

    "friends" : [ "luke", "han", "leia" ] 

  } ] 

}

https://facebook.github.io/graphql/October2016/#sec-Leaf-Field-Selections
https://facebook.github.io/graphql/October2016/#sec-Language.Arguments


/

Arrays can be used to specify multiple values for a field in which case nodes matching any field will be returned:

Query Result

Reasoning

GraphQL queries by default only return results based on explicit nodes and edges in the graph. Reasoning may be
enabled in the usual ways to run queries with inferred nodes and edges, e.g. to perform type inheritance. In the example
graph, Human  and Droid  are defined as subclasses of the Character  class. The following query will return no results
without reasoning but when reasoning is enabled Character  will act like a GraphQL interface
(https://facebook.github.io/graphql/October2016/#sec-Interfaces) and the query will return both humans and droids:

Query Result

Query Variables

Fragments

Stardog supports GraphQL fragments (both inline (https://facebook.github.io/graphql/October2016/#sec-Inline-
Fragments) or via fragment definitions (https://facebook.github.io/graphql/October2016/#sec-Language.Fragments)).
This query shows how fragments can be combined with reasoning to select di�erent fields for subtypes:

{ 

  Human(id: 1000) { 

    id 

    name 

    homePlanet 

  } 

}

{ 

  "data": { 

    "name": "Luke Skywalker", 

    "id": 1000, 

    "homePlanet": "Tatooine" 

  } 

}

{ 

  Human(id: [1000, 1003]) { 

    id 

    name 

    homePlanet 

  } 

}

{ 

  "data": [ 

    { 

      "name": "Luke Skywalker", 

      "id": 1000, 

      "homePlanet": "Tatooine" 

    }, 

    { 

      "name": "Leia Organa", 

      "id": 1003, 

      "homePlanet": "Alderaan" 

    } 

  ] 

}

{ 

   Character { 

     name 

   } 

}

{ 

  "data" : [ { 

    "name" : "Luke Skywalker" 

  }, { 

    "name" : "Han Solo" 

  }, { 

    "name" : "Leia Organa" 

  }, { 

    "name" : "C-3PO" 

  }, { 

    "name" : "R2-D2" 

  }, { 

    "name" : "Darth Vader" 

  }, { 

    "name" : "Wilhuff Tarkin" 

  } ] 

}

{ 

   "@reasoning": true 

}

https://facebook.github.io/graphql/October2016/#sec-Interfaces
https://facebook.github.io/graphql/October2016/#sec-Inline-Fragments
https://facebook.github.io/graphql/October2016/#sec-Language.Fragments


/

Query Result

Aliases

By default, the key in the response object will use the field name queried. However, you can define a di�erent name by
specifying an alias (https://facebook.github.io/graphql/October2016/#sec-Field-Alias). The following query renames
both of the fields in the query:

Query Result

Variables

A GraphQL query can be parameterized with variables (https://facebook.github.io/graphql/October2016/#sec-
Language.Variables) which must be defined at the top of an operation. Variables are in scope throughout the execution
of that operation. A value should be provided for GraphQL variables before execution or an error will occur. The
following query will return a single result when executed with the input {"id": 1000} :

Query Result

{ 

  Character { 

    name 

    ... on Human { 

      friends 

    } 

    ... on Droid { 

      primaryFunction 

    } 

  } 

}

{ 

  "data" : [ { 

    "name" : "Luke Skywalker", 

    "friends" : [ "threepio", "artoo", "han", 

"leia" ] 

  }, { 

    "name" : "Han Solo", 

    "friends" : [ "leia", "artoo", "luke" ] 

  }, { 

    "name" : "Leia Organa", 

    "friends" : [ "threepio", "artoo", "luke", 

"han" ] 

  }, { 

    "name" : "C-3PO", 

    "primaryFunction" : "Protocol" 

  }, { 

    "name" : "R2-D2", 

    "primaryFunction" : "Astromech" 

  }, { 

    "name" : "Darth Vader", 

    "friends" : "tarkin" 

  }, { 

    "name" : "Wilhuff Tarkin", 

    "friends" : "vader" 

  } ] 

}

{ 

  Human { 

    fullName: name 

    bornIn: homePlanet 

  } 

}

{ 

  "data": [ 

    { 

      "fullName": "Luke Skywalker", 

      "bornIn": "Tatooine" 

    }, 

    { 

      "fullName": "Leia Organa", 

      "bornIn": "Alderaan" 

    }, 

    { 

      "fullName": "Darth Vader", 

      "bornIn": "Tatooine" 

    } 

  ] 

}

https://facebook.github.io/graphql/October2016/#sec-Field-Alias
https://facebook.github.io/graphql/October2016/#sec-Language.Variables


/

Query Variables

Ordering Results

The results of GraphQL queries may be randomly ordered. A special argument orderBy  can be used at the top level to
specify which field to use for ordering the results. The following query uses the values of the name  field for ordering the
results:

Query Result

The results are ordered in ascending order by default. We can sort results in descending order as follows:

Query Result

Multiple ordering criteria can be used:

Query Result

query getHuman($id: Integer) { 

  Human(id: $id) { 

    id 

    name 

  } 

}

{ 

  "data": { 

    "name": "Luke Skywalker", 

    "id": 1000 

  } 

}

{ 

   "id": 1000 

}

{ 

  Human(orderBy: name) { 

    name 

  } 

}

{ 

  "data": [ 

    { "name": "Darth Vader" }, 

    { "name": "Han Solo" }, 

    { "name": "Leia Organa" }, 

    { "name": "Luke Skywalker" }, 

    { "name": "Wilhuff Tarkin" } 

  ] 

}

{ 

  Human(orderBy: {field: name, desc: true}) { 

    name 

  } 

}

{ 

  "data": [ 

    { "name": "Wilhuff Tarkin" }, 

    { "name": "Luke Skywalker" }, 

    { "name": "Leia Organa" }, 

    { "name": "Han Solo" }, 

    { "name": "Darth Vader" } 

  ] 

}



/

We first use the homePlanet  field for ordering and the results with no home planet come up first. If two results have
the same value for the first order criteria, e.g. Luke Skywalker  and Darth Vader , then the second criteria is used for
ordering.

Paging Results

Paging through the GraphQL results is accomplished with first  and skip  arguments used at the top level. The
following query returns the first three results:

Query Result

The following query skips the first result and returns the next two results:

Query Result

Directives

Directives provide a way to describe alternate runtime execution and type validation behavior in GraphQL. The spec
defines two built-in directives (https://facebook.github.io/graphql/October2016/#sec-Type-System.Directives): @skip
and @include . Stardog supports both directives and introduces several others.

@skip(if: EXPR)

The skip  directive includes a field value in the result conditionally. If the provided expression evaluates to true  the
field will not be included. Stardog allows arbitrary SPARQL expressions (https://www.w3.org/TR/sparql11-
query/#expressions) to be used as the conditions. Any of the supported SPARQL Query Functions
(#_sparql_query_functions) can be used in these expressions. The expression can refer to any field in the same
selection set and is not limited to the field directive is attached to. The following query returns the name field only if the
name does not start with the letter L :

{ 

  Human(orderBy: [homePlanet,

                  {field: name, desc: false}]) { 

    name 

    homePlanet @optional 

  } 

}

{ 

  "data": [ 

    { "name": "Wilhuff Tarkin" }, 

    { "name": "Han Solo" }, 

    { "name": "Leia Organa", 

      "homePlanet": "Alderaan" }, 

    { "name": "Luke Skywalker", 

      "homePlanet": "Tatooine" }, 

    { "name": "Darth Vader", 

      "homePlanet": "Tatooine" } 

  ] 

}

{ 

  Human(orderBy: name, first: 3) { 

    name 

  } 

}

{ 

  "data": [ 

    { "name": "Darth Vader" }, 

    { "name": "Han Solo" }, 

    { "name": "Leia Organa" } 

  ] 

}

{ 

  Human(orderBy: name, skip:1, first: 2) { 

    name 

  } 

}

{ 

  "data": [ 

    { "name": "Han Solo" }, 

    { "name": "Leia Organa" } 

  ] 

}

https://facebook.github.io/graphql/October2016/#sec-Type-System.Directives
https://www.w3.org/TR/sparql11-query/#expressions


/

Query Result

@include(if: EXPR)

The @include  directive works negation of the @skip  directive; that is, the field is included only if the expression
evaluates to true . We can use variables (#_variables) inside the conditions, too. The following example executed with
input {"withFriends": false}  will not include friends in the results:

Query Result

Query Variables

@filter(if: EXPR)

The @filter  directive looks similar to @skip  and @include  but filters the whole object instead of just a single field.
In that regard it works more like arguments (#_arguments) but arbitrary expressions can be used to select specific
nodes. The next query returns all humans whose id  is less than 1003 :

Query Result

{ 

  Human { 

    id 

    name @skip(if: "strstarts($name, 'L')") 

  } 

}

{ 

  "data": [ 

    { 

      "id": 1000 

    }, 

    { 

      "name": "Han Solo", 

      "id": 1002 

    }, 

    { 

      "id": 1003 

    }, 

    { 

      "name": "Darth Vader", 

      "id": 1001 

    }, 

    { 

      "name": "Wilhuff Tarkin", 

      "id": 1004 

    } 

  ] 

}

query HumanAndFriends($withFriends: Boolean) { 

  Human @type { 

    name 

    friends @include(if: $withFriends) { 

      name 

    } 

  } 

}

{ 

  "data": [ 

    { 

      "name": "Luke Skywalker" 

    }, 

    { 

      "name": "Han Solo" 

    }, 

    { 

      "name": "Leia Organa" 

    }, 

    { 

      "name": "Darth Vader" 

    }, 

    { 

      "name": "Wilhuff Tarkin" 

    } 

  ] 

}

{ 

   "withFriends": false 

}



/

Unlike the previous two filters it doesn’t matter which field the @filter  directive is syntactically adjacent to since it
applies to the whole selection set.

@optional

Stardog treats every field as required by default and will not return any nodes if they don’t have a matching value for the
fields in the selection set. The @optional  directive can be used to mark a field as optional. The following query returns
the home planets for humans if it exists but skips that field if it doesn’t:

Query Result

@type

By default every field in the GraphQL query other than the topmost field represents a property in the graph. Sometimes
we might want to filter some nodes based on their types; that is, based on the values of the special built-in property
rdf:type . Stardog provides a directive as a shortcut for this purpose. The following query returns only the droid

friends of humans because the Droid  field is marked with the @type  directive:

Query Result

{ 

  Human { 

    name 

    id @filter(if: "$id < 1003") 

  } 

}

{ 

  "data": [ 

    { 

      "name": "Luke Skywalker", 

      "id": 1000 

    }, 

    { 

      "name": "Han Solo", 

      "id": 1002 

    }, 

    { 

      "name": "Darth Vader", 

      "id": 1001 

    } 

  ] 

}

{ 

  Human { 

    name 

    homePlanet @optional 

  } 

}

{ 

  "data": [ 

    { 

      "name": "Luke Skywalker", 

      "homePlanet": "Tatooine" 

    }, 

    { 

      "name": "Han Solo" 

    }, 

    { 

      "name": "Leia Organa", 

      "homePlanet": "Alderaan" 

    }, 

    { 

      "name": "Darth Vader", 

      "homePlanet": "Tatooine" 

    }, 

    { 

      "name": "Wilhuff Tarkin" 

    } 

  ] 

}



/

@bind(to: EXPR)

Fields bind to properties in the graph but it is also possible to have fields with computed values. When @bind  directive
is used for a field the value of that field will be compared by evaluating the given SPARQL expression
(https://www.w3.org/TR/sparql11-query/#expressions). The following example splits the name field on a space to
compute firstName  and lastName  fields:

Query Result

@hide

{ 

  Human { 

    name 

    friends { 

      Droid @type 

      name 

    } 

  } 

}

{ 

  "data": [ 

    { 

      "name": "Luke Skywalker", 

      "friends": [ 

        { 

          "name": "R2-D2" 

        }, 

        { 

          "name": "C-3PO" 

        } 

      ] 

    }, 

    { 

      "name": "Han Solo", 

      "friends": { 

        "name": "R2-D2" 

      } 

    }, 

    { 

      "name": "Leia Organa", 

      "friends": [ 

        { 

          "name": "R2-D2" 

        }, 

        { 

          "name": "C-3PO" 

        } 

      ] 

    } 

  ] 

} 

}

{ 

  Human { 

    name @hide 

    firstName @bind(to: "strbefore($name, ' ')") 

    lastName @bind(to: "strafter($name, ' ')") 

  } 

}

{ 

  "data": [ 

    { 

      "firstName": "Luke", 

      "lastName": "Skywalker" 

    }, 

    { 

      "firstName": "Han", 

      "lastName": "Solo" 

    }, 

    { 

      "firstName": "Leia", 

      "lastName": "Organa" 

    }, 

    { 

      "firstName": "Darth", 

      "lastName": "Vader" 

    }, 

    { 

      "firstName": "Wilhuff", 

      "lastName": "Tarkin" 

    } 

  ] 

}

https://www.w3.org/TR/sparql11-query/#expressions


/

Query results can be flattened using the @hide  directive. For example, in our data characters are linked to episode
instances that have an index  property. The following query retrieves the episode indexes but, by hiding the
intermediate episode instances, humans are directly linked to the episode index:

Query Result

Namespaces

RDF uses IRIs as identifiers whereas in GraphQL we have simple names as identifiers. The examples so far use a single
default namespace where names in GraphQL are treated as local names in that namespace. If a Stardog graph uses
multiple namespaces, then it is possible to use them in GraphQL queries in several di�erent ways.

If there are stored namespaces (#_namespacing) in the database then the associated prefixes can be used in the
queries. For example, suppose we have the prefix foaf  associated with the namespace
http://xmlns.com/foaf/0.1/ (http://xmlns.com/foaf/0.1/)  in the database. In SPARQL the prefixed name
foaf:Person  would be used for the IRI http://xmlns.com/foaf/0.1/Person
(http://xmlns.com/foaf/0.1/Person) . In GraphQL, the :  character cannot be used in field names so instead
Stardog uses the _  character: the prefixed name here would be foaf_Person . The query using FOAF namespace
would look like this:

If the namespace is not stored in the database an inline prefix definition can be provided with the @prefix  directive:

{ 

  Human { 

    name 

    appearsIn @hide { 

      episodes: index 

    } 

  } 

}

{ 

  "data": [ 

    { 

      "name": "Luke Skywalker", 

      "episodes": [4, 5, 6] 

    }, 

    { 

      "name": "Han Solo", 

      "episodes": [4, 5, 6] 

    }, 

    { 

      "name": "Leia Organa", 

      "episodes": [4, 5, 6] 

    }, 

    { 

      "name": "Darth Vader", 

      "episodes": [4, 5, 6] 

    }, 

    { 

      "name": "Wilhuff Tarkin", 

      "episodes": 4 

    } 

  ] 

}

{ 

  foaf_Person { 

    foaf_name 

    foaf_mbox 

  } 

}

query withPrefixes @prefix(foaf: "http://xmlns.com/foaf/0.1/") { 

  foaf_Person { 

    foaf_name 

    foaf_mbox 

  } 

}

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person


/

NOTE

Sometimes field names might use the underscore character and it might not indicate a prefix. To
di�erentiate two cases Stardog looks at the prefix before the underscore and checks if it is defined in
the query or if it is stored in the database. In some cases the IRI local name might be using characters
like -  that is not allowed in GraphQL names. In those cases an alias can be defined to map a field
name to an IRI. These aliases are defined in a @config  directive at the query level as follows:

Named Graphs

GraphQL queries by default are evaluated over the union of all graphs stored in the Stardog database. It is possible to
limit the scope of the query to one or more specific named graphs. Suppose we partition the Star Wars dataset by
moving instances of each type to a di�erent named graph using the following SPARQL update query:

The following queries (with reasoning) will return 5 humans, 2 droids and all 7 characters respectively:

Query Result

Query Result

Query Result

query withAliases @config(alias: {myType: "http://example.com/my-type", 

                                  myProp: "http://example.com/my-prop"}) 

{ 

  myType { 

    myProp 

  } 

}

DELETE { ?s ?p ?o }

INSERT { GRAPH ?type { ?s ?p ?o } } 

WHERE { ?s a ?type ; ?p ?o }

query onlyHumanGraph @config(graph: Human) { 

  Character { 

    name 

  } 

}

{ 

  "data": [ 

    { "name": "Luke Skywalker" }, 

    { "name": "Han Solo" }, 

    { "name": "Leia Organa" }, 

    { "name": "Darth Vader" }, 

    { "name": "Wilhuff Tarkin" } 

  ] 

}

query onlyDroidGraph @config(graph: Droid) { 

  Character { 

    name 

  } 

}

{ 

  "data": [ 

    { "name": "C-3PO" }, 

    { "name": "R2-D2" } 

  ] 

}

query bothGraphs @config(graph: [Human, Droid]) 

{ 

  Character { 

    name 

  } 

}

{ 

  "data": [ 

    { "name": "Luke Skywalker" }, 

    { "name": "Han Solo" }, 

    { "name": "Leia Organa" }, 

    { "name": "C-3PO" }, 

    { "name": "R2-D2" }, 

    { "name": "Darth Vader" }, 

    { "name": "Wilhuff Tarkin" } 

  ] 

}



/

GraphQL Schemas

GraphQL is a strongly-typed language where the fields used in a query should conform to the type definitions in a
GraphQL schema (http://graphql.org/learn/schema/). By default, Stardog relaxes this restriction and allows queries to
be executed without an explicit schema. However, if desired, one or more GraphQL schemas can be added to the
database and used during query execution. The benefits of using an explicit schema are as follows:

Queries will be validated with strict typing

Default translation of RDF values to GraphQL values can be overridden

Only the parts of the graph defined in the schema will be exposed to the user

Here is an example schema that can be used with the Star Wars dataset:

Each GraphQL schema defines a query type which specifies the top-level field that can be used in a query. In Stardog
the query type is simply an enumeration of classes in the database that we want to expose in queries. For example, the
schema defines the Episode  type but does not list it under QueryType  which means you cannot query for episodes
directly.

Note that, without a schema each top-level type can have various built-in arguments like first  or skip . In this
schema we chose to define them for the Human  type but not for others. This means a query like { Droid(first: 1) {
name } }  will be invalid with respect to this schema and rejected even though it is valid if executed without a schema.

This schema can be added to the database by giving it a name:

We can then execute the query by specifying the schema name along with the query:

schema { 

    query: QueryType 

} 

 

type QueryType { 

    Character: Character 

    Human(id: Int, first: Int, skip: Int, orderBy: ID): Human 

    Droid(id: Int): Droid 

} 

 

interface Character { 

    id: Int! 

    name: String! 

    friends(id: Int): [Character] 

    appearsIn: [Episode] 

} 

 

type Human implements Character { 

    iri: ID! 

    id: Int! 

    name: String! 

    friends(id: Int): [Character] 

    appearsIn: [Episode] 

} 

 

type Droid implements Character { 

    id: Int! 

    name: String! 

    friends(id: Int): [Character] 

    appearsIn: [Episode] 

    primaryFunction: String 

} 

 

type Episode { 

  index: Int! 

  name: String! 

}

$ stardog graphql schema --add characters starwars characters.graphqls 

Added schema characters

$ stardog graphql --schema characters starwars "{ Human { name friends { name } } }"

http://graphql.org/learn/schema/


/

When a schema is specified for a query it gets added to the query parameters using a special variable named @schema .
When using the HTTP API directly this variable can be set to choose the schema for a query by sending the query
variable {"schema": "characters" } .

Query Result

Query Variables

Note that the friends field in the result is an array value due to the corresponding definition in the schema. This query
executed with a schema would return the single object value for the field.

An important point about schemas is that the types defined in the schema do not filter the query results. For example,
we can define a much simpler humans  schema against the Star Wars dataset:

This query allows only Human  instances to be queried at the top level and declares that the friend of each Human  is
also a Human . This schema definition is incompatible with the data since humans have droid friends. Stardog does not
check if the schema is correct with respect to the data and will not enforce type restrictions in the results. So if we ask
for the friends of a human, then the droids will also be returned in the results:

Query Result

Query Variables

{ 

  Human(id: 1004) { 

    name 

    friends { 

      name 

    } 

  } 

}

{ 

  "data": [ 

    { 

      "name": "Wilhuff Tarkin", 

      "friends": [ 

        { 

          "name": "Darth Vader" 

        } 

      ] 

    } 

  ] 

}

{ 

   "@schema": "characters" 

}

schema { 

  query: QueryType 

} 

 

type QueryType { 

  Human(id: [Int]): Human 

} 

 

type Human { 

  id: Int! 

  name: String! 

  friends: [Human] 

}

{ 

  Human(id: 1000) { 

    name 

    friends { 

      name 

    } 

  } 

}

{ 

  "data": [ 

    { 

      "name": "Luke Skywalker", 

      "friends": [ 

        { "name": "Han Solo" }, 

        { "name": "Leia Organa" }, 

        { "name": "C-3PO" }, 

        { "name": "R2-D2" } 

      ] 

    } 

  ] 

}

{ "@schema": "humans" }



/

Introspection

Stardog supports GraphQL introspection (http://graphql.org/learn/introspection/) which means GraphQL tooling works
out of the box with Stardog. Introspection allows schema queries to be discovered, exposed, and executed and to
retrieve information about the types and fields defined in a schema. This feature is used in GraphQL tools to support
features like autocompletion, query validation, etc.

Stardog supports introspection queries for the GraphQL schemas (#_graphql_schemas) registered in the system. There
is a separate dedicated endpoint for each schema registered in the system in the form
http://HOST:PORT/{db}/graphql/{schema} (http://HOST:PORT/{db}/graphql/{schema}) . The introspection

queries executed against this endpoint will be answered using the corresponding schema.

Introspection queries are not supported by the default GraphQL endpoint as there is no dedicated schema associated
with the default endpoint.

Implementation

Stardog translates GraphQL queries to SPARQL and SPARQL results to JSON. The CLI command graphql explain  can
be used to see the generated SPARQL query and the low-level query plan created for the SPARQL query which is useful
for debugging correctness and performance issues:

http://graphql.org/learn/introspection/


/

The variables in the SPARQL query will be mapped to objects and field values in the JSON results. The binding for
variable 0  will be the root object. The FIELDS  output show that 0  is linked to 1  via the name  field and linked to 2
via the knows  field (note that knows  is an alias and in the actual query we have the pattern ?0 :friends ?2 ).

The GraphQL query plans can also be retrieved by setting the special query variable @explain  to true when executing
a query.

PATH QUERIES

Stardog extends SPARQL to find paths between nodes in the RDF graph, which we call path queries. They are similar to
SPARQL 1.1 property paths (https://www.w3.org/TR/sparql11-query/#propertypaths) which traverse an RDF graph and
find pairs of nodes connected via a complex path of edges. But SPARQL property paths only return the start and end
nodes of a path and do not allow variables in property path expressions. Stardog path queries return all intermediate
nodes on each path— that is, they return a path from start to end— and allow arbitrary SPARQL graph patterns to be used
in the query.

TIP
A Path of Our Own (https://www.stardog.com/blog/a-path-of-our-own/)

GraphQL and Paths (https://www.stardog.com/blog/graphql-and-paths/)

Path Query Syntax

We add path queries as a new top-level query form, i.e. separate from SELECT , CONSTRUCT  or other query types. The
syntax is as follows:

$ stardog graphql explain starwars  "{ 

   Human(id: 1000) { 

     name 

     knows: friends { 

       name 

     } 

   } 

}" 

SPARQL: 

SELECT * 

FROM <tag:stardog:api:context:all> 

{ 

?0 rdf:type :Human . 

?0 :id "1000"^^xsd:integer . 

?0 :name ?1 . 

?0 :friends ?2 . 

?2 :name ?3 . 

} 

 

FIELDS: 

0 -> {1=name, 2=knows} 

2 -> {3=name} 

 

PLAN: 

prefix : <http://api.stardog.com/> 

 

From all 

Projection(?0, ?1, ?2, ?3) [#3] 

`─ MergeJoin(?2) [#3] 
   +─ Sort(?2) [#3] 
   │  `─ NaryJoin(?0) [#3] 
   │     +─ Scan[POSC](?0, :id, "1000"^^<http://www.w3.org/2001/XMLSchema#integer>) [#1] 
   │     +─ Scan[POSC](?0, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, :Human) [#5] 
   │     +─ Scan[PSOC](?0, :name, ?1) [#10] 
   │     `─ Scan[PSOC](?0, :friends, ?2) [#20] 
   `─ Scan[PSOC](?2, :name, ?3) [#10]

PATHS [SHORTEST|ALL] [CYCLIC] [<DATASET>] 

START ?s [ = <IRI> | <GRAPH PATTERN> ] END ?e [ = <IRI> | <GRAPH PATTERN> ] 

VIA <GRAPH PATTERN> | <VAR> | <PATH> 

[MAX LENGTH <int>] 

[ORDER BY <condition>] 

[OFFSET <int>] 

[LIMIT <int>]

https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.stardog.com/blog/a-path-of-our-own/
https://www.stardog.com/blog/graphql-and-paths/


/

The graph pattern in the VIA  clause must bind both ?s  and ?e  variables.

Next we informally present examples of common path queries and finally the formal Path Query Evaluation Semantics
(#_path_query_evaluation_semantics).

Shortest Paths

Suppose we have a simple social network where people are connected via di�erent relationships:

4. Simple Graph

If we want to find all the people Alice is connected to and how she is connected to them we can use the following path
query:

We specify a start node for the path query but the end node is unrestricted. So all paths starting from Alice will be
returned. Note that we use the shortcut VIA ?p  instead of a graph pattern to match each edge in the path. This is a
syntactic sugar for VIA { ?s ?p ?e } . Similarly we could use a predicate, e.g. VIA :knows  or a property path
expression, e.g. VIA :knows | :worksWith .

This query is e�ectively equivalent to the SPARQL property path :Alice :knows+ ?y , but the results will include the
nodes in the path(s). The path query results are printed in a tabular format by default:

Each row of the result table shows one edge and adjacent edges on a path are printed on subsequent rows of the table.
Multiple paths in the results are separated by an empty row. We can change the output format to text  which serializes
the results in a property graph like syntax:

PATHS START ?x = :Alice END ?y VIA ?p

+----------+------------+----------+ 

|    x     |     p      |    y     | 

+----------+------------+----------+ 

| :Alice   | :knows     | :Bob     | 

|          |            |          | 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :knows     | :David   | 

|          |            |          | 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :worksWith | :Charlie | 

|          |            |          | 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :worksWith | :Charlie | 

| :Charlie | :parentOf  | :Eve     | 

+----------+------------+----------+ 

 

Query returned 4 paths in 00:00:00.055



/

Execution happens by recursively evaluating the graph pattern in the query and replacing the start variable with the
binding of the end variable in the previous execution. If the query specifies a start node, that value is used for the first
evaluation of the graph pattern. If the query specifies an end node, which our example doesn’t, execution stops when
we reach the end node. Only simple cycles, i.e. paths where the start and the end nodes coincide, are allowed in the
results.

NOTE
The Stardog optimizer may choose to traverse paths backwards, i.e. from the end node to the start,
for performance reasons but it does not a�ect the results.

We can specify the end node in the query and restrict the kind of patterns in paths to a specific property as in the next
example that queries how Alice  is connected to David  via knows  relationships:

This query would return a single path with two edges:

Complex Paths

Graph patterns inside the path queries can be arbitrarily complex. Suppose, we want to find undirected paths between
Alice  and David  in this graph. Then we can make the graph pattern to match both outgoing and incoming edges:

Sometimes a relationship between two nodes might be implicit and there might not be an explicit link between those
two nodes in the RDF graph. Consider the following set of triples that show some movies and actors who starred in
those movies:

There is an implicit relationship between actors based on the movies they appeared together. We can use a basic graph
pattern with multiple triple patterns in the path query to extract this information:

$ stardog query -f text exampleDB "PATHS START ?x = :Alice END ?y VIA ?p" 

(:Alice)-[p=:knows]->(:Bob) 

 

(:Alice)-[p=:knows]->(:Bob)-[p=:knows]->(:David) 

 

(:Alice)-[p=:knows]->(:Bob)-[p=:worksWith]->(:Charlie) 

 

(:Alice)-[p=:knows]->(:Bob)-[p=:worksWith]->(:Charlie)-[p=:parentOf]->(:Eve) 

 

Query returned 4 paths in 00:00:00.047

PATHS START ?x = :Alice END ?y = :David VIA :knows

+--------+--------+ 

|   x    |   y    | 

+--------+--------+ 

| :Alice | :Bob   | 

| :Bob   | :David | 

+--------+--------+

$ stardog query exampleDB "PATHS START ?x = :Alice END ?y = :David VIA ^:knows | :knows" 

+--------+--------+ 

|   x    |   y    | 

+--------+--------+ 

| :Alice | :Bob   | 

| :Bob   | :David | 

+--------+--------+

:Apollo_13 a :Film ; :starring :Kevin_Bacon , :Gary_Sinise .

 

:Spy_Game a :Film ; :starring :Brad_Pitt , :Robert_Redford .

 

:Sleepers a :Film ; :starring :Kevin_Bacon , :Brad_Pitt . 

 

:A_Few_Good_Men a :Film ; :starring :Kevin_Bacon , :Tom_Cruise . 

 

:Lions_for_Lambs a :Film ; :starring :Robert_Redford , :Tom_Cruise . 

 

:Captain_America a :Film ; :starring :Gary_Sinise , :Robert_Redford .



/

This query executed against the above set of triples would return three paths:

If the movie is irrelevant, then a more concise version can be used:

All Paths

Path queries return only shortest paths by default. We can use the ALL  keyword in the query to retrieve all paths
between two nodes. For example, the query above returned only one path between Alice  and David . We can get all
paths as follows:

CAUTION The ALL  qualifier can dramatically increase the number of paths so use with caution.

Cyclic Paths

There’s a special keyword CYCLIC  to specifically query for cyclic paths in the data. For example, there might be a
dependsOn  relationship in the database and we might want to query for cyclic dependencies:

Again, arbitrary cycles in the paths are not allowed to ensure a finite number of results.

Limiting Paths

In a highly connected graph the number of possible paths between two nodes can be impractically high. There are two
di�erent ways we can limit the results of path queries. The first possibility is to use the LIMIT  keyword just like in other
query types. We can ask for at most 2 paths starting from Alice  as follows:

PATHS START ?x = :Kevin_Bacon END ?y = :Robert_Redford 

VIA { ?movie a :Film ; :starring ?x , ?y  }

+--------------+------------------+-----------------+ 

|      x       |      movie       |        y        | 

+--------------+------------------+-----------------+ 

| :Kevin_Bacon | :Apollo_13       | :Gary_Sinise    | 

| :Gary_Sinise | :Captain_America | :Robert_Redford | 

|              |                  |                 | 

| :Kevin_Bacon | :Sleepers        | :Brad_Pitt      | 

| :Brad_Pitt   | :Spy_Game        | :Robert_Redford | 

|              |                  |                 | 

| :Kevin_Bacon | :A_Few_Good_Men  | :Tom_Cruise     | 

| :Tom_Cruise  | :Lions_for_Lambs | :Robert_Redford | 

+--------------+------------------+-----------------+

PATHS START ?x = :Kevin_Bacon END ?y = :Robert_Redford VIA  ^:starring/:starring

$ stardog query exampleDB "PATHS ALL START ?x = :Alice END ?y = :David 

VIA { {?x ?p ?y} UNION {?y ?p ?x} }" 

+----------+------------+----------+ 

|    x     |     p      |    y     | 

+----------+------------+----------+ 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :knows     | :David   | 

|          |            |          | 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :worksWith | :Charlie | 

| :Charlie | :parentOf  | :Eve     | 

| :Eve     | :knows     | :David   | 

+----------+------------+----------+

PATHS CYCLIC START ?start END ?end VIA :dependsOn

PATHS START ?x = :Alice END ?y VIA ?p LIMIT 2



/

This query would return 2 results as expected :

Note that, the path from Alice  to Charlie  is not included in this result even though it is not any longer than the path
between Alice  and David . This is because with LIMIT  the query will stop producing results as soon as the
maximum number of paths are returned.

The other alternative for limiting the results is by specifying the maximum length of paths that can be returned. The
following query shows how to query for paths thar are at most 2-edge long:

This time we will get 3 results:

It is also possible to use both LIMIT  and MAX LENGTH  keywords in a single query.

Path Queries With Start and End Patterns

In all examples presented so far the start and end variables were either free variables or bound to a single IRI. This is
insu�icient for navigating paths which must begin at multiple nodes satisfying certain conditions and terminate at
nodes satisfying some other conditions. Assume the movie and actor data above is extended with information about
the date of birth of each actor:

Now, having only variables and constants as valid path start and end expressions would make it hard to write a query to
find all connections between Kevin Bacon and actors over 80 years old. The following attempt, for example, won’t
match any data:

+----------+------------+----------+ 

|    x     |     p      |    y     | 

+----------+------------+----------+ 

| :Alice   | :knows     | :Bob     | 

|          |            |          | 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :knows     | :David   | 

+----------+------------+----------+

PATHS START ?x = :Alice END ?y VIA ?p MAX LENGTH 2

+----------+------------+----------+ 

|    x     |     p      |    y     | 

+----------+------------+----------+ 

| :Alice   | :knows     | :Bob     | 

|          |            |          | 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :knows     | :David   | 

|          |            |          | 

| :Alice   | :knows     | :Bob     | 

| :Bob     | :worksWith | :Charlie | 

+----------+------------+----------+

:Kevin_Bacon :birthdate "1958-07-08"^^xsd:date 

 

:Gary_Sinise :birthdate "1957-03-17"^^xsd:date 

 

:Brad_Pitt :birthdate "1963-12-18"^^xsd:date 

 

:Robert_Redford :birthdate "1936-08-18"^^xsd:date 

 

:Tom_Cruise :birthdate "1962-07-03"^^xsd:date

PATHS START ?x = :Kevin_Bacon END ?y VIA { 

  ?movie a :Film ; :starring ?x , ?y . 

  ?y :birthdate ?date . 

  FILTER (year(?date) - year(now()) >= 80) 

}



/

The problem is that the age filter is applied at each recursive step, i.e. the query is looking for paths where every
intermediate actor is over 80, but none of those co-starred with Kevin Bacon (in our toy dataset). Instead we need a
query which checks the condition only at candidate end nodes:

This query will return the expected results along with the date of birth for end nodes:

Path Queries With Reasoning

As other kinds of queries, path queries can be evaluated with reasoning. If reasoning is enabled, a path query will return
paths in the inferred graph, i.e. each edge corresponds to a relationship between the nodes which is inferred from the
data based on the schema.

Consider the following example:

Adding the following rule (or an equivalent OWL sub-property chain axiom) infers :partOf  edges based on
compositions of :partOf  and :locatedIn  edges:

Now the following path query will find the inferred path from :Arlington  to :NorthAmerica  via :DCArea  and :US :

NOTE
This feature should be used with care. There may be a lot more paths than one expects. Also keep in
mind that some patterns are particularly expensive with reasoning, e.g. triple patterns with the
unbound predicate variable or with a variable in the object position of rdf:type .

Path Query Evaluation Semantics

PATHS START ?x = :Kevin_Bacon

END ?y { ?y :birthdate ?date . 

         FILTER (year(?date) - year(now()) >= 80) } 

VIA ^:starring/:starring

+------------------+---------------------+------------------------+ 

|        x         |          y          |          date          | 

+------------------+---------------------+------------------------+ 

| test:Kevin_Bacon | test:Gary_Sinise    |                        | 

| test:Gary_Sinise | test:Robert_Redford | "1936-08-18"^^xsd:date | 

|                  |                     |                        | 

| test:Kevin_Bacon | test:Brad_Pitt      |                        | 

| test:Brad_Pitt   | test:Robert_Redford | "1936-08-18"^^xsd:date | 

|                  |                     |                        | 

| test:Kevin_Bacon | test:Tom_Cruise     |                        | 

| test:Tom_Cruise  | test:Robert_Redford | "1936-08-18"^^xsd:date | 

+------------------+---------------------+------------------------+

:Arlington :partOf :DCArea . 

 

:DCArea :locatedIn :EastCoast . 

 

:EastCoast :partOf :US . 

 

:US :locatedIn :NorthAmerica .

IF 

  { ?x :partOf ?y . ?y :locatedIn ?z } 

THEN 

  { ?x :partOf ?z }

PATHS START ?x = :Arlington END ?y = :NorthAmerica VIA { 

  ?x :partOf ?y 

}



/

Given a pair of variable names s  and e  a path is a sequence of SPARQL solutions S[1], … , S[n]  s.t. S[i](t) =
S[i-1](s)  for i  from 2  to n . We call the S[0](s)  and S[n](t)  values the start and end nodes of the path, resp.
Each solution in the sequence is called an edge.

The evaluation semantics of path queries is based on the following recursive extension of SPARQL solution:

Informally such extensions allow us to represent each path as a single solution where a distinguished variable (in the
sequel called path variable) is mapped to an ordered array of solutions representing edges.

We first consider simple path queries for ALL  paths with only variables a�er the START  and END  keywords, i.e.
queries of the form PQ(s, e, p, P) , where s  and e  are start and end variable names, p  is a path variable name,
and P  is a SPARQL graph pattern. Given a dataset D  with the active graph G , abbreviated as D(G) , we define
eval(PQ(s, e, P), D(G))  as a set of all such (extended) solutions S  that:

where sub(P, var, t)  is a graph pattern obtained by substituting the variable var  by the fixed RDF term t .

Informally conditions (2) and (3) state that each edge in a path is obtained by evaluating the path pattern with the start
variable substituted by the end variable value of the previous edge (to ensure connectedness). The conditions (4) and
(5) bind the s  and e  variables in the top level solution.

Next we define the semantics of path queries with start and end patterns:

where PS  and PE  are start and end graph patterns which must bind s  and e  variables, respectively. Here Join
stands for the standard SPARQL join semantics which does not require extensions since joins are performed on
variables s  and e  which bind to RDF terms only, rather than arrays or solutions (conditions (4) and (5) above ensure
that).

Finally we note that path queries with start or end constants are a special case of path queries with the corresponding
singleton VALUES  patterns, e.g.

is a syntactic sugar for

Keywords SHORTEST  (default) and CYCLIC  are self-explanatory and place further restrictions on each S(p) : the
sequence should be the shortest among all results or represent a simple cycle. The solution modifiers ORDER BY ,
LIMIT , and OFFSET  have the exact same semantics as in SPARQL 1.1.

GEOSPATIAL QUERY

Stardog supports geospatial queries over data encoded using WGS 84 (http://www.w3.org/2003/01/geo/) or the OGC’s
GeoSPARQL vocabulary (http://www.opengeospatial.org/standards/geosparql). Any RDF data stored in Stardog using
one or both of these vocabularies will be automatically indexed for geospatial queries.

(1) Solution := { (V -> Value)* }    // solution: mapping from variables to values (as in SPARQL) 

(2) Value := RDF-Term                // an RDF term is a value (as in SPARQL) 

(3) Value := Solution                // a solution is a value (extension) 

(4) Value := [ Value* ]              // an array of values is a value (extension)

(1) S(p) is a path Sp[1] ... Sp[n] w.r.t. s and e 

(2) Sp(1) is in eval(P, D(G))

(3) Sp[i] is a solution to eval(sub(P, s, Sp[i-1](e), D(G)) for i = 2 ... n 

(4) S(s) = Sp[1](s) 

(5) S(e) = Sp[n](e) 

(6) All terms which s and e bind to in all Sp[i] are unique except that Sp[1](s) could be equal to Sp[n](e)

eval(PQ(s, PS, e, PE, PQ) = Join(PS, Join(PE, eval(PQ(s, e, PQ), DG)))

PATHS START ?s = :Alice END ?e = :Dave VIA :knows

PATHS START ?s { VALUES ?s { :Alice } } END ?e { VALUES ?e { :Dave } } VIA :knows

http://www.w3.org/2003/01/geo/
http://www.opengeospatial.org/standards/geosparql


/

TIP Geospatial: A Primer (https://www.stardog.com/blog/geospatial-a-primer/)

Enabling Geospatial Support

To get started using Stardog’s geospatial support, you’ll need to create a database with geospatial support enabled. You
can do this by setting the option spatial.enabled  to true :

Similarly, you can set the option using GeospatialOptions#SPATIAL_ENABLED  when creating the database
programmatically:

Precision & Accuracy

When creating a database with geospatial support, you can specify the precision with which the features are indexed.
The database property spatial.precision  or programmatically via GeospatialOptions#SPATIAL_PRECISION ,
which can only be specified when the database is created, can control the index precision. The default value is 11
which yields sub-meter precision; a value of 8  will give a precision +/- 50m. Setting the precision value lower than the
default can improve the performance of spatial queries at the cost of accuracy.

Geospatial Data

The WGS84 or OGC vocabularies can be used to encode geospatial features within your dataset. When data is
committed, Stardog will look for these vocabularies and automatically extract all features and insert them into the
geospatial index. Here is an example of using WKT to define the location of the White House:

Note that for WKT formatted points, the location is <long, lat> . The location of the White House can also be encoded
using the WGS 84 vocabulary:

SPARQL Integration

Once your data has been indexed, you can perform several type of geospatial queries on the data. These are seamlessly
integrated into SPARQL so you can query for non-spatial information about features in your dataset alongside the
geospatial queries.

The operators supported by Stardog are geof:relate , geof:distance , geof:within , geof:nearby  and
geof:area . The geof  namespace is http://www.opengis.net/def/function/geosparql/
(http://www.opengis.net/def/function/geosparql/) .

This query gets all features within 2km of Complexible HQ in DC:

stardog-admin db create -o spatial.enabled=true -n mySpatialDb

aAdminConnection.disk("mySpatialDb") 

    .set(GeospatialOptions.SPATIAL_ENABLED, true) 

    .create()

:whiteHouse a geo:Feature ; 

    rdfs:label "White House" ; 

    geo:hasGeometry :whiteHouseGeo . 

 

:whiteHouseGeo a geo:Geometry ; 

    geo:asWKT "Point(-77.03653 38.897676 )"^^geo:wktLiteral .

:whiteHouse a :Location ; 

    rdfs:label "White House" ; 

    wgs:lat "38.897676"^^xsd:float ; 

    wgs:long "-77.03653"^^xsd:float .

https://www.stardog.com/blog/geospatial-a-primer/
http://www.opengis.net/def/function/geosparql/


/

More query examples can be found on our blog (https://www.stardog.com/blog/geospatial-a-primer).

Geospatial Datatypes

The QUDT (http://www.qudt.org/) ontology, namespace http://qudt.org/vocab/unit#
(http://qudt.org/vocab/unit#) , is used to specify units for distances; Kilometer , Meter , Centimeter ,
MileUSStatute , Yard , Foot , Inch . Additionally, the OGC units vocabulary
http://www.opengis.net/def/uom/OGC/1.0/ (http://www.opengis.net/def/uom/OGC/1.0/)  defines degree ,
radian  and metre .

Enhanced Polygons

Stardog’s geospatial support covers the use of basic WKT formatted shapes; specifically points and rectangles. However,
WKT can encode more complex spatial structures, most notably, polygons.

To enable support for these more complex shapes, download JTS
(http://central.maven.org/maven2/com/vividsolutions/jts-core/1.14.0/jts-core-1.14.0.jar) and include the JAR in
Stardog’s classpath by placing it into the server/ext  folder of the installation (you may need to create this folder) or
into the folder specified by the STARDOG_EXT  environment variable. Then set spatial.use.jts=true  in your
stardog.properties  file. When you restart Stardog, it will pick up JTS and you’ll be able to use more complex WKT

formatted shapes.

MACHINE LEARNING

In this section, you’ll learn how to use Stardog’s machine learning capabilities for the general problem of predictive
analytics. We’ll show you how to build a machine learning model and use it for prediction, plus best practices on
modelling your data and improving the quality of results.

TIP

Machine Learning Tutorial (https://github.com/stardog-union/stardog-
examples/tree/develop/examples/machinelearning)

Learning to Predict (https://www.stardog.com/blog/learning-to-predict/)

Boosting Machine Learning (https://www.stardog.com/blog/boosting-machine-learning/)

Predictive Analytics

Suppose you have data about movies. But that data is incomplete; some movies are missing the genre  field. Filling out
that missing data is time consuming, and you would like to do it automatically using all the information you already
have about the movies. This is where Stardog’s predictive analytics comes into the game. Using the data you have about
movies with genre, you can create a machine learning model that will predict the genre for the movies that are missing
it. Isn’t that sweet?

Supervised learning is the basis of this capability. You give Stardog some data about the domain you’re interested in,
and it will learn a model that can be used to make predictions about properties of that data.

Learning a Model

First step is learning a model, by defining which data will be used in the learning and the target that we are actually
trying to predict.

select ?name where { 

  ?loc rdfs:label ?name . 

  ?loc geo:hasGeometry ?feature . 

  ?hq geo:hasGeometry ?hqGeo ; rdfs:label "Complexible Headquarters" . 

  ?feature geof:nearby (?hqGeo 2 <http://qudt.org/vocab/unit#Kilometer>). 

}

https://www.stardog.com/blog/geospatial-a-primer
http://www.qudt.org/
http://qudt.org/vocab/unit#
http://www.opengis.net/def/uom/OGC/1.0/
http://central.maven.org/maven2/com/vividsolutions/jts-core/1.14.0/jts-core-1.14.0.jar
https://github.com/stardog-union/stardog-examples/tree/develop/examples/machinelearning
https://www.stardog.com/blog/learning-to-predict/
https://www.stardog.com/blog/boosting-machine-learning/


/

With Stardog, all this is naturally done via SPARQL. The best way to understand the syntax is through an example. Here,
we learn a model to predict the genre of a movie given its director, year, and studio.

The WHERE  clause selects the data and a special graph, spa:model , is used to specify the parameters of the training.
:myModel  is the unique identifier given to this model and is composed of 3 mandatory properties.

First, we need to define the type of learning we are performing:

classification, spa:ClassificationModel , if we are interested in predicting a categorical value that has a limited
set of possible values (e.g., genre of a movie)

regression, spa:RegressionModel , if we predict a numerical value that can naturally have an unlimited set of
values (e.g., box o�ice of a movie)

similarity, spa:SimilarityModel , if we want to predict the degree of similarity between two objects (e.g., most
similar movies)

The second property, spa:arguments , defines the variables from the WHERE  clause that will be used as features when
learning the model. Here is where you define the data that you think will help to predict the third property, given by
spa:predict .

In this case, our model will be trained to predict the value of ?genre  based on the values of ?director  , ?year , and
?studio .

Properly defining this 3 properties is the main task when creating any model. Using more advanced parameters is
covered in the Mastering the Machine (#_mastering_the_machine) section.

Making Predictions

Now that we’ve learned a model, we can move on to more exciting stu� and use it to actually predict things.

We select a movie’s properties and use them as arguments to the model Stardog previously learned. The magic comes
with the ?predictedGenre  variable; during query execution, its value is not going to come from the data itself (like ?
originalGenre ), but will instead be predicted by the model, based on the values of the arguments.

The result of the query will look like this:

prefix spa: <tag:stardog:api:analytics:> 

 

INSERT { 

  graph spa:model { 

    :myModel  a spa:ClassificationModel ; 

              spa:arguments (?director ?year ?studio) ; 

              spa:predict ?genre . 

  } 

} 

WHERE { 

   ?movie :directedBy ?director ; 

          :year ?year ; 

          :studio ?studio ; 

          :genre ?genre . 

}

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT * WHERE { 

  graph spa:model { 

      :myModel  spa:arguments (?director ?year ?studio) ; 

                spa:predict ?predictedGenre . 

  } 

 

  :TheGodfather :directedBy ?director ; 

                :year ?year ;

                :studio ?studio ; 

                :genre ?originalGenre . 

}



/

Our model seems to be predicting correctly the genre for The Godfather. Yee!

Query Syntax Restrictions

At this point, only basic graph patterns can be used directly inside the prediction query. If more advanced constructs,
like OPTIONAL  or FILTER , are necessary, that part of the query needs to be in a sub-query, e.g.:

Selecting a Library

For classification and regression, Stardog can use two distinct machine learning libraries under the covers: Vowpal
Wabbit (https://github.com/JohnLangford/vowpal_wabbit) (default) and XGBoost
(https://xgboost.readthedocs.io/en/latest/). Both support the same set of functionalities, and can be used
interchangeably.

At model creation, the desired library can be selected with the spa:library  property: spa:VowpalWabbit  or
spa:XGBoost .

Vowpal Wabbit is recommended for large, sparse, datasets, while XGBoost is known to perform better in domains with
numeric values. We recommend testing both libraries, as their strengths are largely dependent on particularities of the
data.

NOTE

Learning models with large datasets might exceed the default max query execution time, especially
with XGBoost. In those cases, it is recommended to increase the value for the query.timeout
configuration. Increasing the amount of memory available to Stardog might also make the learning
faster.

Assessing Model Quality

Metrics

| director            | year | studio             | originalGenre | predictedGenre | 

| ------------------- | ---- | ------------------ | ------------- | -------------- | 

| :FrancisFordCoppola | 1972 | :ParamountPictures | Drama         | Drama          |

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT * WHERE { 

  graph spa:model { 

      :myModel  spa:arguments (?director ?year ?studio) ; 

                spa:predict ?predictedGenre . 

  } 

 

  { 

    SELECT * WHERE { 

        ?movie  :directedBy ?director ; 

                :year ?year ;

                :genre ?originalGenre . 

        OPTIONAL { ?movie :studio ?studio } 

        FILTER (?year > 2000)

    } 

  } 

}

prefix spa: <tag:stardog:api:analytics:> 

 

INSERT { 

  graph spa:model { 

      :myModel  a spa:ClassificationModel ; 

                spa:library spa:XGBoost ; 

                spa:arguments (?director ?year ?studio) ; 

                spa:predict ?genre . 

  } 

} 

...

https://github.com/JohnLangford/vowpal_wabbit
https://xgboost.readthedocs.io/en/latest/


/

We provide some special aggregate operators that help quantify the quality of a model.

For classification and similarity problems, one of the most important measures is accuracy , that is, the frequency that
we predict the target variable correctly.

For regression, we provide three di�erent measures:

Mean absolute error, or, on average, how far away is the prediction from the real target number: spa:mae(?
originalValue, ?predictedValue)

Mean square error, on average, how much is the squared di�erence between prediction and the target number:
spa:mse(?originalValue, ?predictedValue)

Root mean square error, the square root of the mean square error: spa:rmse(?originalValue, ?
predictedValue)

Automatic Validation

Classification and regression models are automatically validated with the data used in their training. The score and
respective metric can be queried from spa:model .

By default, spa:accuracy  is used for classification problems, and spa:mae  for regression. This metric can be
changed during model learning, by setting the spa:validationMetric  argument.

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT (spa:accuracy(?originalGenre, ?predictedGenre) as ?accuracy) WHERE { 

  graph spa:model { 

      :myModel  spa:arguments (?director ?year ?studio) ; 

                spa:predict ?predictedGenre . 

  } 

 

  ?movie  :directedBy ?director ; 

          :year ?year ; 

          :studio ?studio ; 

          :genre ?originalGenre . 

}

+---------------------+ 

| accuracy            | 

| ------------------- | 

| 0.92488254018       | 

+---------------------+

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT * WHERE { 

  graph spa:model { 

    :myModel  spa:validationMetric ?metric ; 

              spa:validationScore ?score . 

  } 

}

+------------------------------------+-------+ 

|               metric               | score | 

+------------------------------------+-------+ 

| tag:stardog:api:analytics:accuracy | 1.0   | 

+------------------------------------+-------+

prefix spa: <tag:stardog:api:analytics:> 

 

INSERT { 

  graph spa:model { 

    :myModel  a spa:RegressionModel ; 

              spa:validationMetric spa:rmse ; 

              ... 

  } 

} 

...



/

Cross Validation

The default automatic validation technique of measuring the accuracy of the model on the same data as training might
be prone to overfitting. The most accurate measure we can have is testing on data that the model has never seen
before.

We provide a spa:crossValidation  property, which will automatically apply K-Fold cross validation on the training
data, with the number of folds given as an argument.

Modelling Data

The way you input data into Stardog during model learning is of utmost importance in order to achieve good quality
predictions.

Data Representation

For better results, each individual you are trying to model should be encoded in a single SPARQL result.

For example, suppose you want to add information about actors into the previous model. The query selecting the data
would look as follow:

Due to the nature of relational query languages like SPARQL, results are returned for all the combinations between the
values of the selected variables.

prefix spa: <tag:stardog:api:analytics:> 

 

INSERT { 

  graph spa:model { 

    :myModel  a spa:RegressionModel ; 

              spa:crossValidation 10 ; 

              spa:validationMetric spa:rmse ; 

              ... 

  } 

} 

  ...

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT * WHERE { 

   graph spa:model { 

       :myModel  spa:validation ?validation ; 

                 spa:validationMetric ?metric ; 

                 spa:validationScore ?score . 

      } 

}

+-------------+------------------------------------+-------+

| validation  |               metric               | score |

+-------------+------------------------------------+-------+

| "KFold=10"  | tag:stardog:api:analytics:rmse     | 0.812 | 

+-------------+------------------------------------+-------+

SELECT * WHERE { 

   ?movie :actor ?actor ; 

          :directedBy ?director ; 

          :year ?year ; 

          :studio ?studio ; 

          :genre ?genre . 

}

| movie         | actor         | director            | year | studio             | genre  | 

| ------------- | ------------- | ------------------- | ---- | ------------------ | ------ | 

| :TheGodfather | :MarlonBrando | :FrancisFordCoppola | 1972 | :ParamountPictures | Drama  | 

| :TheGodfather | :AlPacino     | :FrancisFordCoppola | 1972 | :ParamountPictures | Drama  |



/

In order to properly model relational domains like this, we introduced a special aggregate operator, set . Used in
conjunction with GROUP BY , we can easily model this kind of data as a single result per individual.

Data Types

Carefully modelling your data with the correct datatypes can dramatically increase the quality of your model.

As of 5.3.6, Stardog does special treatment on values of the following types:

Numbers, such as xsd:int , xsd:short , xsd:byte , xsd:float , and xsd:double , are treated internally as
weights and properly model the di�erence between values

Strings, xsd:string  and rdf:langString , are tokenized and used in a bag-of-words fashion

Sets, created with the spa:set  operator, are interpreted as a bag-of-words of categorical features

Booleans, xsd:boolean , are modeled as binary features

Everything else is modeled as categorical features.

Setting the correct data type for the target variable, given through spa:predict , is extremely important:

with regression, make sure values are numeric

with classification, individuals of the same class should have consistent data types and values

with similarity, use values that uniquely identify an object, e.g., an IRI

For evertything else, using the datatype that is closer to its original meaning is a good rule of thumb.

Mastering the Machine

Let’s look at some other issues around the daily care and feeding of predictive analytics and models in Stardog.

Overwriting Models

By default, you cannot create a new model with the same identifier as an already existent one. If you try to do so, you’ll
be greeted with a Model already exists  error.

In order to reuse an existent identifier, users can set the spa:overwrite  property to True . This will delete the
previous model and save the new one in its place.

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT ?movie (spa:set(?actor) as ?actors) ?director ?studio ?genre WHERE { 

   ?movie :actor ?actor ; 

          :directedBy ?director ; 

          :year ?year ; 

          :studio ?studio ; 

          :genre ?genre . 

} 

GROUP BY ?movie ?director ?studio ?genre

| movie         | actors                    | director            | year | studio             | genre  | 

| ------------- | ------------------------- | ------------------- | ---- | ------------------ | ------ | 

| :TheGodfather | [:MarlonBrando :AlPacino] | :FrancisFordCoppola | 1972 | :ParamountPictures | Drama  |

prefix spa: <tag:stardog:api:analytics:> 

 

INSERT { 

  graph spa:model { 

    :myModel  a spa:RegressionModel ; 

              spa:overwrite True ; 

              ... 

  } 

} 

  ...



/

Deleting Models

Finding good models is an iterative process, and sometimes you’ll want to delete your old---not as awesome and now
unnecessary---models. This can be achieved with DELETE DATA  and the spa:deleteModel  property applied to the
model identifier.

Classification and Similarity with Confidence Levels

Sometimes, besides predicting the most probable value for a property, you will be interested to know the confidence of
that prediction. By providing the spa:confidence  property, you can get confidence levels for all the possible
predictions.

These values can be interpreted as the probability of the given prediction being the correct one and are useful for tasks
like ranking and multi-label classification.

Tweaking Parameters

Both Vowpal Wabbit (https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments), XGBoost
(https://xgboost.readthedocs.io/en/latest//parameter.html), and similarity search can be configured with the
spa:parameters  property.

Parameter names for both libraries are valid properties in the spa  prefix, and their values can be set during model
creation.

prefix spa: <tag:stardog:api:analytics:> 

 

DELETE DATA { 

  graph spa:model { 

      [] spa:deleteModel :myModel . 

  } 

}

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT * WHERE { 

  graph spa:model { 

      :myModel  spa:arguments (?director ?year ?studio) ; 

                spa:confidence ?confidence ; 

                spa:predict ?predictedGenre . 

  } 

 

  :TheGodfather :directedBy ?director ; 

          :year ?year ; 

          :studio ?studio . 

} 

ORDER BY DESC(?confidence) 

LIMIT 3

| director            | year | studio             | predictedGenre | confidence     | 

| ------------------- | ---- | ------------------ | -------------- | -------------- | 

| :FrancisFordCoppola | 1972 | :ParamountPictures | Drama          | 0.649688932    | 

| :FrancisFordCoppola | 1972 | :ParamountPictures | Crime          | 0.340013045    | 

| :FrancisFordCoppola | 1972 | :ParamountPictures | Sci-fi         | 0.010298023    |

prefix spa: <tag:stardog:api:analytics:> 

 

INSERT { 

  graph spa:model { 

    :myModel  a spa:ClassificationModel ; 

              spa:library spa:VowpalWabbit ; 

              spa:parameters [ 

                spa:learning_rate 0.1 ; 

                spa:sgd True ; 

                spa:hash 'all' 

              ] ; 

              spa:arguments (?director ?year ?studio) ; 

              spa:predict ?genre . 

  } 

} 

...

https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments
https://xgboost.readthedocs.io/en/latest//parameter.html


/

Vowpal Wabbit

By default, models are learned with [ spa:loss_function "logistic"; spa:probabilities true; spa:oaa true
]  in classification mode, and [ spa:loss_function "squared" ]  in regression. Those parameters are overwritten
when using the spa:arguments  property with regression, and appended in classification.

Check the o�icial documentation (https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments)
for a full list of parameters. Some tips that might help with your choices:

Use cross-validation when tweaking parameters. Otherwise, make sure your testing set is not biased and represents
a true sample of the original data.

The most important parameter to tweak is the learning rate spa:l . Values between 1 and 0.01 usually give the best
results.

To prevent overfitting, set spa:l1  or spa:l2  parameters, preferably with a very low value (e.g., 0.000001).

If number of distinct features is large, make sure to increase the number of bits spa:b  to a larger value (e.g., 22).

Each argument given with spa:arguments  has its own namespace, identified by its numeric position in the list
(starting with 0). For example, to create quadratic features between ?director  and ?studio , set spa:q "02" .

If caching is enabled (e.g., with spa:passes ), always use the [ spa:k true; spa:cache_file "fname" ]
parameters, where fname  is a unique filename for that model.

In regression, the target variable given with spa:predict  is internally normalized into the [0-1]  range, and
denormalized back to its normal range during query execution. For certain problems where numeric arguments
have large values, performance might be improved by performing a similar normalization as a pre-processing step.

XGBoost

Models are learned with spa:objective "multi:softprob"  in classification, and spa:objective "reg:linear"  in
regression. See this list (https://xgboost.readthedocs.io/en/latest//parameter.html) for a complete set of available
parameters.

Similarity Search

The underlying algorithm is based on cluster pruning (https://nlp.stanford.edu/IR-book/html/htmledition/cluster-
pruning-1.html), an approximate search algorithm which groups items based on their similarity in order to speed up
query performance.

The minimum number of items per cluster can be configured with the spa:minClusterSize  property, which is set to
100 by default.

This number should be increased with datasets containing many near-duplicate items.

During prediction, there are two parameters available:

spa:limit , which restricts the number of top N items to return; by default, it returns only the top item, or all items
if using spa:confidence .

spa:clusters , which sets the number of similarity clusters used during the search, with a default value of 1.
Larger numbers will increase recall, at the expense of slower query time.

For example, the following query will return the top 3 most similar items and their confidence scores, restricting the
search to 10 clusters.

prefix spa: <tag:stardog:api:analytics:> 

 

INSERT { 

  graph spa:model { 

    :myModel  a spa:SimilarityModel ; 

              spa:parameters [ 

                spa:minClusterSize 100 ; 

              ] ; 

              spa:arguments (?director ?year ?studio) ; 

              spa:predict ?movie . 

  } 

} 

...

https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments
https://xgboost.readthedocs.io/en/latest//parameter.html
https://nlp.stanford.edu/IR-book/html/htmledition/cluster-pruning-1.html


/

Hyperparameter Optimization

Finding the best parameters for a model is a time consuming, laborious, process. Stardog helps to ease the pain by
performing an exhaustive search through a manually specified subset of parameter values.

All possible sets of parameter configurations that can be built from the given values ( spa:learning_rate 0.1 ;
spa:hash 'all' , spa:learning_rate 1 ; spa:hash 'all' , and so on) will be evaluated (#_automatic_validation).
The best configuration will be chosen, and its model saved in the database.

A�erwards, parameters are available for querying, just like any other model metadata.

Native Library Errors

Stardog ships with a pre-compiled version of Vowpal Wabbit (VW) that works out of the box with most MacOSX/Linux
64bit distributions.

If you have a 32 bit operating system, or an older version of Linux, you will be greeted with a Unable to load
analytics native library  error when trying to create your first model.

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT * WHERE { 

  graph spa:model { 

    :myModel  spa:parameters [ 

                spa:limit 3 ;

                spa:clusters 10 . 

              ] ; 

              spa:confidence ?confidence ; 

              spa:arguments (?director ?year ?studio) ; 

              spa:predict ?similar . 

  } 

} 

...

prefix spa: <tag:stardog:api:analytics:> 

 

INSERT { 

  graph spa:model { 

    :myModel  a spa:ClassificationModel ; 

              spa:library spa:VowpalWabbit ; 

              spa:parameters [ 

                spa:learning_rate (0.1 1 10) ; 

                spa:hash ('all' 'strings') 

              ] ; 

              spa:arguments (?director ?year ?studio) ; 

              spa:predict ?genre . 

  } 

} 

...

prefix spa: <tag:stardog:api:analytics:> 

 

SELECT * WHERE { 

    graph spa:model { 

        :myModel  spa:parameters [ ?parameter ?value ] 

    } 

}

+-------------------+-------+

|     parameter     | value |

+-------------------+-------+

| spa:hash          | "all" | 

| spa:learning_rate | 1     |

+-------------------+-------+



/

In this case, you will need to install VW manually. Fear not! Instructions are easy to follow.

You might need to install some dependencies, namely zlib-devel , automake , libtool , and autoconf .

A�er this process is finished, restart the Stardog server and everything should work as expected.

PROPERTY GRAPHS

In addition to RDF, SPARQL, OWL, and SNARL, Stardog supports the non-semantic property graph model
(http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#intro), Gremlin graph traversal language, and Apache
TinkerPop 3 (http://tinkerpop.com/) APIs. For information on how to use the TinkerPop 3, please refer to its
documentation (http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating). Details about Stardog’s support for
TinkerPop 3 Features (http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#_features) can be found in
Stardog Feature Set (/docs/5.3.6/java/snarl/com/complexible/stardog/gremlin/features/stardogfeatureset).

NOTE Stardog 5.3.6  supports TinkerPop 3.0.2-incubating .

Motivation & Implementation

Stardog’s implementation of TinkerPop 3 is based ultimately on a (seamless and opaque) translation to and from RDF,
in which Stardog persists all vertices, edges and properties. In order to support edge properties in the RDF model,
Stardog includes a reification function which allows statement identifiers to be used as the subject of an RDF quad; this
extends the RDF Quad model used in Stardog to have a notion of virtual "quints".

Having virtual quints in Stardog lets us manipulate existing RDF content as a property graph; but, most importantly, it
lets us use Stardog capabilities (reasoning, ICV, etc) with property graphs. Reification extends existing Stardog graph
database and let users add edge properties if required via the TinkerPop 3 or even SPARQL.

Okay, so why add property graph support to Stardog? A few reasons:

1. sometimes you need to traverse, rather than query, a graph

2. sometimes you need to traverse a semantic graph

Example

Loading the TinkerGraph Modern (http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#intro) graph via
TinkerPop 3 (using Gremlin Console), using the described Graph Configuration (#_graph_configuration):

1. Get the Graph from the StardogGraphFactory

2. Load the graph tinkerpop-modern  included in Gremlin Console distribution at data/tinkerpop-modern.xml .

That produces the following internal representation in Stardog:

Exception in thread "main" java.lang.RuntimeException: Unable to load analytics native library. Please 

refer to http://www.stardog.com/docs/#_native_library_errors 

 at vowpalWabbit.learner.VWLearners.loadNativeLibrary(VWLearners.java:94) 

 at vowpalWabbit.learner.VWLearners.initializeVWJni(VWLearners.java:76) 

 at vowpalWabbit.learner.VWLearners.create(VWLearners.java:44) 

 ... 

Caused by: java.lang.RuntimeException: Unable to load vw_jni library for Linux (i386)

git clone https://github.com/cpdomina/vorpal.git 

cd vorpal/build-jni/ 

./build.sh 

sudo cp transient/lib/vw_wrapper/vw_jni.lib /usr/lib/libvw_jni.so

Graph graph = StardogGraphFactory.open(...)  (1) 

graph.io(graphml()).readGraph('data/tinkerpop-modern.xml')  (2)

http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#intro
http://tinkerpop.com/
http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating
http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#_features
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/gremlin/features/stardogfeatureset
http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#intro


/

WARNING

This translation between RDF and property graph models is transparent to the user. It just works.
But, of course, since in the end it’s just RDF, you can always query or interact with it as RDF directly
using SPARQL, Jena, Sesame, or SNARL code, etc. However, the mapping between Property Graphs
and RDF is not considered part of Stardog’s contract so it may change without notice. You’ve been
warned!

Getting properties for in-edges for a vertex from the previous graph, using the TinkerPop 3 API:

1. Get a traversal that can be reused

2. Get a vertex using its IRI Id and list in-edge properties

3. Get a vertex filtering by name and list in-edge properties

Integration with SPARQL

Access to the reification function is available via SPARQL in order to be able to query edge properties created via the
TinkerPop 3 API, e.g. query to find the first 10 edge properties, excluding the label:

1. Using the stardog:identifier()  (aka "reification") function.

Database Configuration

Any Stardog database should work out-of-the-box with the Stardog TinkerPop 3 implementation, but given that Stardog
enables by default RDF literal canonicalization
(/docs/5.3.6/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERALS), some property value
types may not be as expected when fetching them from the TinkerPop 3 graph. To allow for better compatibility
between TinkerPop 3 and Stardog, the setting index.literals.canonical  must be disabled in the database at
creation time, using the following command:

Graph Configuration

In order to create TinkerPop 3 graphs, a configuration object must be created to set up the graph. The TinkerPop 3
implementation for Stardog contains a tool for creating this configuration easily, supporting many of the features
available in Stardog, such as reasoning and named-graphs. The StardogGraphConfiguration
(/docs/5.3.6/java/snarl/com/complexible/stardog/gremlin/stardoggraphconfiguration), is available via the API or the
Gremlin Console in Groovy.

Unresolved directive in property-graph.ad - 

include::https://gist.githubusercontent.com/edgarRd/c20e5bd963e7526c54f3/raw/13a54e8fc771a33c2fa6ef42f98904

c7d7265c1b/tinkerpop-modern.ttl[]

g = graph.traversal()                        (1) 

g.V('https://www.tinkerpop.com/software-5964a0af-1bb4-4469-b362-6b7db5e617e2').inE().properties()  (2) 

g.V().has('name','lop').inE().properties()  (3)

select ?srcName ?edgeLabel ?destName ?edgeProp ?val where { 

  ?src ?pred ?dest . 

  ?src tp:name ?srcName . 

  ?dest tp:name ?destName . 

  BIND(stardog:identifier(?src, ?pred, ?dest) as ?edgeId) . (1) 

  ?edgeId rdfs:label ?edgeLabel . 

  ?edgeId ?edgeProp ?val . 

  FILTER (?edgeProp != rdfs:label) . 

} limit 10

$ stardog-admin db create -o index.literals.canonical=false -n <dbname>

https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERALS
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/gremlin/stardoggraphconfiguration


/

Stardog & Gremlin Console

Stardog’s TinkerPop 3 implementation includes a plugin for Gremlin Console
(http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#gremlin-console).

Installation

The following steps describe how to install the Stardog plugin into the Gremlin console:

1. Create stardog-gremlin/plugin  directory within the ext/  directory in the Gremlin console directory.

2. Flat-copy all Stardog client jar files to the directory created in the previous step.

3. Make sure the jar file stardog-gremlin-X.X.X.jar  is contained in the stardog-gremlin/plugin  directory
along with all other Stardog jars; copy the jar if it doesn’t exist.

4. Start the Gremlin Console and make sure the complexible.stardog  plugin has been loaded.

5. Activate the complexible.stardog  plugin in Gremlin Console

6. You’re done installing the stardog-gremlin plugin for Gremlin Console. Now you can create a StardogGraph  and
start exploring the TinkerPop 3 API with Stardog.

Using a Stardog Graph

The following describes the process to create a StardogGraph  and explore data in Stardog using the TinkerPop 3 API
via the Gremlin Console.

gremlin> graphConf = StardogGraphConfiguration.builder() 

... 

gremlin> graphConf.connectionString("http://localhost:5820/mygraph").credentials("admin", "admin") 

... 

gremlin> graphConf.baseIRI("http://tinkerpop.incubator.apache.org/").reasoning(false) 

==>gremlin.graph=tag:stardog:api:context:default 

stardog.computer.cache_size=5000 

stardog.label_iri=http://www.w3.org/2000/01/rdf-schema#label

stardog.connection=http://localhost:5820/mygraph 

stardog.user=admin 

stardog.password=admin 

stardog.base_iri=http://tinkerpop.incubator.apache.org/ 

stardog.reasoning_enabled=false 

gremlin> graph = StardogGraphFactory.open(graphConf.build())

==>cachedstardoggraph[cachedstardoggraph]

~/gremlin-console/ext/$ mkdir -p stardog-gremlin/plugin

~/gremlin-console/ext/stardog-gremlin/plugin$ find stardog/client -iname '*.jar' -exec cp \{\} . \;

~/gremlin-console$ bin/gremlin.sh 

         \,,,/ 

         (o o) 

-----oOOo-(3)-oOOo----- 

plugin activated: tinkerpop.server 

plugin activated: tinkerpop.utilities 

plugin activated: tinkerpop.tinkergraph 

gremlin> :plugin list 

==>tinkerpop.server[active] 

==>tinkerpop.gephi 

==>tinkerpop.utilities[active] 

==>tinkerpop.sugar 

==>complexible.stardog 

==>tinkerpop.tinkergraph[active]

gremlin> :plugin use complexible.stardog 

==>complexible.stardog activated

http://tinkerpop.incubator.apache.org/docs/3.0.2-incubating/#gremlin-console


/

The only requirement is that you have an existent database in Stardog as directed in Database Configuration
(#_database_configuration), which could be in-memory or disk based. Assuming you already installed the Stardog
plugin for the Gremlin Console and it is active, start the Gremlin Console.

In the Gremlin Console, create the configuration settings for opening the StardogGraph . Assuming the Stardog server
is running in localhost:5820 , the user is admin  and password admin .

Named Graphs

The previous commands will create a Graph within the default  graph of the Stardog database mygraph . A database
can contain multiple graphs, which would be the equivalent to named-graphs  in Stardog.

To create a StardogGraph  over a specific named-graph, just set the named-graph URI in the Graph Configuration
(#_graph_configuration) for the StardogGraph  to create:

NOTE
by default, the property gremlin.graph  is set to the default graph in a Stardog database; setting the
stardog.named_graph  configuration option will override the graph option.

Stardog & Gremlin Server

The TinkerPop 3 implementation for Stardog includes a plugin for Gremlin Server
(http://tinkerpop.incubator.apache.org/docs/3.0.0.M9-incubating/#gremlin-server).

Installation

The following steps describe how to install the Stardog plugin into the gremlin server:

1. Create stardog-gremlin/plugin  directory within the ext/  directory in the gremlin server directory.

2. Flat-copy all Stardog client jar files to the directory created in the previous step.

3. Make sure the jar file stardog-gremlin-X.X.X.jar  is contained in the stardog-gremlin/plugin  directory
along with all other Stardog jars; copy the jar if it doesn’t exist.

Configure Stardog Graphs

gremlin-console$ bin/gremlin.sh

gremlin> graphConf = StardogGraphConfiguration.builder() 

... 

gremlin> graphConf.connectionString("http://localhost:5820/mygraph").credentials("admin", 

"admin").baseIRI("http://tinkerpop.incubator.apache.org/") 

==>gremlin.graph=tag:stardog:api:context:default 

stardog.computer.cache_size=5000 

stardog.label_iri=http://www.w3.org/2000/01/rdf-schema#label

stardog.connection=http://localhost:5820/mygraph 

stardog.user=admin 

stardog.password=admin 

stardog.base_iri=http://tinkerpop.incubator.apache.org/ 

gremlin> graph = StardogGraphFactory.open(graphConf.build())

==>cachedstardoggraph[cachedstardoggraph]

gremlin> graphConf.namedGraph("tag:graph1") 

==>gremlin.graph=tag:stardog:api:context:default 

... 

stardog.named_graph=tag:graph1 

...

~/gremlin-server/ext/$ mkdir -p stardog-gremlin/plugin

~/gremlin-server/ext/stardog-gremlin/plugin$ find ~/stardog/client -iname '*.jar' -exec cp \{\} . \;

http://tinkerpop.incubator.apache.org/docs/3.0.0.M9-incubating/#gremlin-server


/

To setup a graph for use with the Gremlin Server you need to create a configuration file in conf/  with the Stardog
graph properties. The following example file, stardoggraph-mygraph.properties , contains the required properties
to use a Stardog graph, described in Graph Configuration (#_graph_configuration):

In the previous example, gremlin.graph  defines the TinkerPop Class implementation to use, in this case is the
StardogGraph . The property gremlin.stardog.named_graph  is required when configuring a graph in Gremlin

Server, if the graph is contained in the Stardog DB’s default graph, the value to use is:
tag:stardog:api:graph:default  as shown in the example; if other named-graph is used, just set the value to the

named-graph’s URI . The rest of the properties are just connection settings to the Stardog server.

Now you need to point to the Stardog graph properties file from the server configuration file, conf/gremlin-
server.yaml , and enable the Stardog plugin. the following are the relevant parts of the configuration file that need to
be set:

1. set the stardog graph properties

2. enable the stardog gremlin plugin

Running the Gremlin Server

Having a Stardog server running, at this point you’re ready to start the Gremlin Server.

You should see that the Gremlin Server creates an instance of the StardogGraph , named graph , based on the
properties file configured.

SECURITY

Stardog’s security model is based on standard role-based access control: users have permissions over resources during
sessions; permissions can be grouped into roles; and roles can be assigned to users.

Stardog uses Apache Shiro (http://shiro.apache.org/) for authentication, authorization, and session management and
jBCrypt (http://www.mindrot.org/projects/jBCrypt/) for password hashing.

Resources

A resource is some Stardog entity or service to which access is controlled. Resources are identified by their type and
their name. A particular resource is denoted as type_prefix:name . The valid resource types with their prefixes are
shown below.

8. Table of System Resources

Resource Prefix Description

# Properties for creating a StardogGraph in Gremlin Server 

gremlin.graph=com.complexible.stardog.gremlin.structure.StardogGraph 

stardog.connection=http://localhost:5820/mygraph 

stardog.user=admin 

stardog.password=admin 

stardog.named_graph=tag:stardog:api:graph:default 

stardog.reasoning_enabled=false

graphs: { 

  graph: conf/stardoggraph-mygraph.properties      (1) 

} 

plugins: 

  - complexible.stardog                            (2) 

...

~/gremlin-server$ bin/gremlin-server.sh

[INFO] Graphs - Graph [graph] was successfully configured via [conf/stardoggraph-mygraph.properties].

http://shiro.apache.org/
http://www.mindrot.org/projects/jBCrypt/


/

Resource Prefix Description

User user A user (e.g., user:admin)

Role role A role assigned to a user
(role:reader)

Database db A database (db:myDB)

Named Graph named-graph A named graph (graph subset)
(named-graph:myDb\named-graph-
id)

Database Metadata metadata Metadata of a database
(metadata:myDB)

Database Admin admin Database admin tasks (e.g.,
admin:myDB)

Integrity Constraints icv-constraints Integrity constraints associated with
a database (e.g., icv-
constraints:myDB)

Permissions

Permissions are composed of a permission subject, an action, and a permission object, which is interpreted as the
subject resource can perform the specified action over the object resource.

Permission subjects can be of type user  or role  only. Permission objects can be of any valid type.

NOTE
write  permission in Stardog refers to graph contents, including mutative operations performed via

SPARQL Update (i.e., INSERT , DELETE , etc.). The other permissions, i.e., create  and delete ,
apply to resources of the system itself, i.e., users, databases, database metadata, etc.

Valid actions include the following:

read

Permits reading the resource properties

write

Permits changing the resource properties

create

Permits creating new resources

delete

Permits deleting a resource

grant

Permits granting permissions over a resource

revoke

Permits revoking permissions over a resource

execute

Permits executing administration actions over a database

all

Special action type that permits all previous actions over a resource



/

Wildcards

Stardog understands the use of wildcards to represent sets of resources. A wildcard is denoted with the character * .
Wildcards can be used to create complex permissions; for instance, we can give a user the ability to create any database
by granting it a create  permission over db:* . Similarly, wildcards can be used in order to revoke multiple
permissions simultaneously.

Superusers

It is possible at user-creation time to specify that a given user is a superuser. Being a superuser is equivalent to having
been granted an all  permission over every resource, i.e., *:* . Therefore, as expected, superusers are allowed to
perform any valid action over any existing (or future) resource.

Database Owner Default Permissions

When a user creates a resource, it is automatically granted delete , write , read , grant , and revoke  permissions
over the new resource. If the new resource is a database, then the user is additionally granted write , read , grant ,
and revoke  permissions over icv-constraints:theDatabase  and execute  permission over
admin:theDatabase . These latter two permissions give the owner of the database the ability to administer the ICV

constraints for the database and to administer the database itself.

Default Security Configuration

WARNING
Out of the box, the Stardog security setup is minimal and insecure: user:admin  with password set
to "admin" is a superuser; user:anonymous  with password "anonymous" has the "reader" role;
role:reader  allows read  of any resource.

Do not deploy Stardog in production or in hostile environments with the default security settings.

Setting Password Constraints

To setup the constraints used to validate passwords when adding new users, configure the following settings in the
stardog.properties  configuration file.

password.length.min : Sets the password policy for the minimum length of user passwords, the value can’t be
less than 1 or greater than password.length.max . Default: 4 .

password.length.max : Sets the password policy for the maximum length of user passwords, the value can’t be
greater than 1024 or less than 1. Default: 20 .

password.regex : Sets the password policy of accepted chars in user passwords, via a Java regular expression.
Default: [\w@#$%!&]+

Using a Password File

To avoid putting passwords into scripts or environment variables, you can put them into a suitably secured password
file. If no credentials are passed explicitly in CLI invocations, or you do not ask Stardog to prompt you for credentials
interactively, then it will look for credentials in a password file.

On a Unix system, Stardog will look for a file called .sdpass  in the home directory of the user Stardog is running as; on
a Windows system, it will look for sdpass.conf  in Application Data\stardog  in the home directory of the user
Stardog is running as. If the file is not found in these locations, Stardog will look in the location provided by the
stardog.passwd.file  system property.

Password File Format

The format of the password file is as follows:

any line that starts with a #  is ignored

each line contains a single password in the format: hostname:port:database:username:password .

wildcards, * , are permitted for any field but the password field; colons and backslashes in fields are escaped with
\ .



/

For example,

Of course you should secure this file carefully, making sure that only the user that Stardog runs as can read it.

Named Graph Security

Stardog’s security model is based on standard RBAC notions: users have permissions over resources during sessions;
permissions can be grouped into roles; and roles can be assigned to users. Stardog defines a database resource type so
that users and roles can be given read or write access to a database. With Named Graph Security added in Stardog 3.1,
Stardog lets you specify which named graphs a user can read from or write to; that is, named graphs are now an explicit
resource type in Stardog’s security model.

Example

To grant a user permissions to a named graph,

Note the use of "\" to separate the name of the database ("myDB") from the named graph identifier
("http://example.org/g1").

IMPORTANT
Named Graph Security is disabled by default (for backwards compatibility with the installed base).
It can be enabled globally (or per database) by setting security.named.graphs=true , in
stardog.properties  globally, or per database.

Named Graph Operations

Stardog does not support the notion of an empty named graph; thus, there is no operation to create a named graph.
Deleting a named graph is simply removing all the triples in that named graph; so it’s also not a special operation. For
this reason, only read and write permissions can be used with named graphs and create and delete permissions cannot
be used with named graphs.

How Named Graph Permissions Work

The set of named graphs to which a user has read or write access is the union of named graphs for which it has been
given explicit access plus the named graphs for which the user’s roles have been given access.

Querying

An e�ect of named graph permissions is changing the RDF Dataset associated with a query. The default and named
graphs specified for an RDF Dataset will be filtered to match the named graphs that a user has read access to.

NOTE
A read query never triggers a security exception due to named graph permissions. The graphs that a
user cannot read from would be silently dropped from the RDF dataset for the query, which may
cause the query to return no answers, despite there being matching triples in the database.

The RDF dataset for SPARQL update queries will be modified similarly based on read permissions.

NOTE The RDF dataset for an update query a�ects only the WHERE  clause.

Writing

#this is my password file; there are no others like it and this one is mine anyway... 

*:*:*:flannery:aNahthu8 

*:*:summercamp:jemima:foh9Moaz

$ stardog-admin user grant -a read -o named-graph:myDB\http://example.org/g1 myUser 

$ stardog-admin user grant -a write -o named-graph:myDB\http://example.org/g2 myUser



/

Write permissions are enforced by throwing a security exception whenever a named graph is being updated by a user
that does not have write access to the graph. Adding a triple to an unauthorized named graph will raise an exception
even if that triple already exists in the named graph. Similarly trying to remove a non-existent triple from an
unauthorized graph raises an error.

NOTE
The unauthorized graph may not exist in the database; any graph that is not explicitly listed in a user’s
permissions is unauthorized.

Updates either succeed as a whole or fail. If an update request tries to modify both an authorized graph an
unauthorized graph, it would fail without making any modifications.

Reasoning

Stardog allows a set of named graphs to be used as the schema for reasoning. The OWL axioms and rules defined in
these graphs are extracted and used in the reasoning process. The schema graphs are specified in the database
configuration and a�ect all users running reasoning queries.

Named graph permissions do not a�ect the schema axioms used in reasoning and every reasoning query will use the
same schema axioms even though some users might not have been granted explicit read access to schema graphs. But
non-schema axioms in those named graphs would not be visible to users without authorization.

Enterprise Authentication

Stardog can use an LDAP server to authenticate enterprise users. Stardog assumes the existence of two di�erent groups
to identify regular and superusers, respectively. Groups must be identified with the cn  attribute and be instances of the
groupOfNames  object class. Users must be specified using the member  attribute.

For example,

Credentials and other user information are stored as usual:

Configuring Stardog

In order to enable LDAP authentication in Stardog, we need to include the following mandatory properties in
stardog.properties :

security.realms : with a value of ldap

ldap.provider.url : The URL of the LDAP server

ldap.security.principal : An LDAP user allowed to retrieve group members from the LDAP server

ldap.security.credentials : The principal’s password

ldap.user.dn.template : A template to form LDAP names from Stardog usernames

ldap.group.lookup.string : A string to lookup the Stardog user groups

ldap.users.cn : The cn  of the group identifying regular Stardog users

dn: cn=stardogSuperUsers,ou=group,dc=example,dc=com 

cn: stardogSuperUsers 

objectclass: groupOfNames 

member: uid=superuser,ou=people,dc=example,dc=com 

 

dn: cn=stardogUsers,ou=group,dc=example,dc=com 

cn: stardogUsers 

objectclass: groupOfNames 

member: uid=regularuser,ou=people,dc=example,dc=com 

member: uid=anotherregularuser,ou=people,dc=example,dc=com

dn: uid=superuser,ou=people,dc=example,dc=com 

objectClass: inetOrgPerson 

cn: superuser 

sn: superuser 

uid: superuser 

userPassword: superpassword



/

ldap.superusers.cn : The cn  of the group identifying Stardog super users

ldap.cache.invalidate.time : The time duration to invalidate cache entries, default to 24h .

Here’s another example:

User Management

Users can no longer be added/removed/modified via Stardog. User management is delegated to the LDAP server.

An LDAP Quirk

When Stardog manages users, instead of delegating to LDAP, when a user is created, they are assigned the permission
read:user:$NEW_USER . But when user management is delegated to LDAP, this permission is not automatically created

at new user creation time in Stardog and, therefore, it should be added manually to Stardog. If this doesn’t happen,
users won’t be able to— among other things— log into the Web Console.

Authenticated User Cache

Stardog includes a time constrained cache with a configurable time for eviction, default to 24 hours. To disable the
cache, the eviction time must be set to 0ms .

Authorization

The LDAP server is used for authentication only. Permissions and roles are assigned in Stardog.

Stale Permissions/Roles

Permissions and roles in Stardog might refer to users that no long exist, i.e., those that were deleted from the LDAP
server. This is safe as these users will not be able to authenticate (see above). It is possible to configure Stardog to
periodically clean up the list of permissions and roles according to the latest users in the LDAP server. In order to do this,
we pass a Quartz cron expression (http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger)
using the ldap.consistency.scheduler.expression  property:

Managing Stardog Securely

Stardog resources can be managed securely by using the tools included in the admin CLI or by programming against
Stardog APIs. In this section we describe the permissions required to manage various Stardog resources either by CLI or
API.

Users

Create a user

create  permission over user:* . Only superusers can create other superusers.

Delete a user

delete  permission over the user.

Enable/Disable a user

User must be a superuser.

security.realms = ldap 

ldap.provider.url = ldap://localhost:5860 

ldap.security.principal = uid=admin,ou=people,dc=example,dc=com 

ldap.security.credentials = secret 

ldap.user.dn.template = uid={0},ou=people,dc=example,dc=com 

ldap.group.lookup.string = ou=group,dc=example,dc=com 

ldap.users.cn = stardogUsers 

ldap.superusers.cn = stardogSuperUsers 

ldap.cache.invalidate.time = 1h

## Execute the consistency cleanup at 6pm every day 

ldap.consistency.scheduler.expression = 0 0 18 * * ?

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger


/

Change password of a user

User must be a superuser or user must be trying to change its own password.

Check if a user is a superuser

read  permission over the user or user must be trying to get its own info.

Check if a user is enabled

read  permission over the user or user must be trying to get its own info.

List users

Superusers can see all users. Other users can see only users over which they have a permission.

Roles

Create a role

create  permission over role:* .

Delete a role

delete  permission over the role.

Assign a role to a user

grant  permission over the role and user must have all the permissions associated to the role.

Unassign a role from a user

revoke  permission over the role and user must have all the permissions associated to the role.

List roles

Superusers can see all roles. Other users can see only roles they have been assigned or over which they have a
permission.

Databases

Create a database

create  permission over db:* .

Delete a database

delete  permission over db:theDatabase .

Add/Remove integrity constraints to a database

write  permission over icv-constraints:theDatabase .

Verify a database is valid

read  permission over icv-constraints:theDatabase .

Online/O�line a database

execute  permission over admin:theDatabase .

Migrate a database

execute  permission over admin:theDatabase .

Optimize a database

execute  permission over admin:theDatabase .

List databases

Superusers can see all databases. Regular users can see only databases over which they have a permission.

Permissions

Grant a permission

grant  permission over the permission object and user must have the permission that it is trying to grant.



/

Revoke a permission from a user or role over an object resource

revoke  permission over the permission object and user must have the permission that it is trying to revoke.

List user permissions

User must be a superuser or user must be trying to get its own info.

List role permissions

User must be a superuser or user must have been assigned the role.

Deploying Stardog Securely

To ensure that Stardog’s RBAC access control implementation will be e�ective, all non-administrator access to Stardog
databases should occur over network (i.e., non-native) database connections.

To ensure the confidentiality of user authentication credentials when using remote connections, the Stardog server
should only accept connections that are encrypted with SSL.

Configuring Stardog to use SSL

Stardog HTTP server includes native support for SSL. To enable Stardog to optionally support SSL connections, just
pass --enable-ssl  to the server start command. If you want to require the server to use SSL only, that is, to reject any
non-SSL connections, then use --require-ssl .

When starting from the command line, Stardog will use the standard Java properties for specifying keystore
information:

javax.net.ssl.keyStorePassword  (the password)

javax.net.ssl.keyStore  (location of the keystore)

javax.net.ssl.keyStoreType  (type of keystore, defaults to JKS)

These properties are checked first in stardog.properties ; then in JVM args passed in from the command line, e.g. -
Djavax.net.ssl.keyStorePassword=mypwd . If you’re creating a Server programmatically via ServerBuilder , you
can specify values for these properties using the appropriate ServerOptions  when creating the server. These values
will override anything specified in stardog.properties  or via normal JVM args.

Configuring Stardog Client to use SSL

Stardog HTTP client supports SSL when the https:  scheme is used in the database connection string. For example,
the following invocation of the Stardog command line utility will initiate an SSL connection to a remote database:

If the client is unable to authenticate to the server, then the connection will fail and an error message like the following
will be generated.

The most common cause of this error is that the server presented a certificate that was not issued by an authority that
the client trusts. The Stardog client uses standard Java security components to access a store of trusted certificates. By
default, it trusts a list of certificates installed with the Java runtime environment, but it can be configured to use a
custom trust store.

The client can be directed to use a specific Java KeyStore file as a trust store by setting the
javax.net.ssl.trustStore  system property. To address the authentication error above, that trust store should

contain the issuer of the server’s certificate. Standard Java tools can create such a file. The following invocation of the
keytool  utility creates a new trust store named my-truststore.jks  and initializes it with the certificate in my-
trusted-server.crt . The tool will prompt for a passphrase to associate with the trust store. This is not used to
encrypt its contents, but can be used to ensure its integrity.

[35 (#_footnote_35)]

$ stardog query https://stardog.example.org/sp2b_10k "ask { ?s ?p ?o }"

Error during connect.  Cause was SSLPeerUnverifiedException: peer not authenticated

[36 (#_footnote_36)]

[37 (#_footnote_37)]



/

The following Stardog command line invocation uses the newly created truststore.

For custom Java applications that use the Stardog client, the system property can be set programmatically or when the
JVM is initialized.

The most common deployment approach requiring a custom trust store is when a self-signed certificate is presented by
the Stardog server. For connections to succeed, the Stardog client must trust the self-signed certificate. To accomplish
this with the examples given above, the self-signed certificate should be in the my-trusted-server.crt  file in the
keytool invocation.

A client may also fail to authenticate to the server if the hostname in the Stardog database connection string does not
match a name contained in the server certificate.

This will cause an error message like the following

The client does not support connecting when there’s a mismatch; therefore, the only workarounds are to replace the
server’s certificate or modify the connection string to use an alias for the same server that matches the certificate.

PROGRAMMING STARDOG

You can program Stardog in Java, over HTTP, JavaScript, Clojure, Groovy, Spring, and .Net.

Sample Code

There’s a Github repo of example Java code (https://github.com/complexible/stardog-examples) that you can fork and
use as the starting point for your Stardog projects. Feel free to add new examples using pull requests in Github.

JAVA PROGRAMMING

In the Network Programming (#_network_programming) section, we look at how to interact with Stardog over a
network via HTTP. In this chapter we describe how to program Stardog from Java using SNARL Stardog Native API for
the RDF Language, Sesame, and Jena. We prefer SNARL to Sesame to Jena and recommend them— all other things
being equal— in that order.

If you’re a Spring developer, you might want to read Spring Programming (#_spring_programming) or if you prefer a
ORM-style approach, you might want to checkout Empire (https://github.com/mhgrove/Empire), an implementation of
JPA (http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html) for RDF that works with
Stardog.

Examples

The best way to learn to program Stardog with Java is to study the examples:

1. SNARL (https://gist.github.com/1045573)

2. Sesame bindings (https://gist.github.com/1045568)

3. Jena bindings (https://gist.github.com/1045572)

4. SNARL and OWL 2 reasoning (https://gist.github.com/1045578)

$ keytool -importcert  -keystore my-truststore.jks -alias stardog-server -file my-trusted-server.crt

$ STARDOG_SERVER_JAVA_ARGS="-Djavax.net.ssl.trustStore=my-truststore.jks" 

$ stardog query https://stardog.example.org/sp2b_10k "ask { ?s ?p ?o }"

[38 (#_footnote_38)]

Error during connect.  Cause was SSLException: hostname in certificate didn't match

https://github.com/complexible/stardog-examples
https://github.com/mhgrove/Empire
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
https://gist.github.com/1045573
https://gist.github.com/1045568
https://gist.github.com/1045572
https://gist.github.com/1045578


/

5. SNARL and Connection Pooling (https://gist.github.com/1070230)

6. SNARL and Searching (https://gist.github.com/1085116)

We o�er some commentary on the interesting parts of these examples below.

Creating & Administering Databases

AdminConnection  provides simple programmatic access to all administrative functions available in Stardog.

Creating a Database

You can create a basic temporary memory database with Stardog with one line of code:

WARNING
It’s crucially important to always clean up connections to the database by calling
`AdminConnection#close().

You can also use the memory  (/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/adminconnection#memory)
and disk  (/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/adminconnection#disk) functions to configure
and create a database in any way you prefer. These methods return DatabaseBuilder
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/databasebuilder) objects which you can use to configure
the options of the database you’d like to create. Finally, the create
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/databasebuilder#create) method takes the list of files to
bulk load into the database when you create it and returns a valid ConnectionConfiguration
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration) which can be used to create new
Connections  (/docs/5.3.6/java/snarl/com/complexible/stardog/api/connection) to your database.

WARNING
It is important to note that you must take care to always log out of the server when you are done
working with AdminConnection .

This illustrates how to create a temporary memory database named test  which supports full text search via Searching
(#_searching).

This illustrates how to create a persistent disk database with ICV guard mode and reasoning enabled. For more
information on what the available options for set  are and what they mean, see the Database Admin
(#_database_admin) section. Also note, Stardog database administration can be performed from the CLI
(#_command_line_interface).

Creating a Connection String

As you can see, the ConnectionConfiguration
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration) in com.complexible.stardog.api
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/package-summary) package class is where the initial action takes
place:

The to  (/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration#to) method takes a Database
Name  as a string; and then connect
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration#connect) connects to the database

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1333782/raw/CreateTempMemDb.java[]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1333782/raw/CreateMemSearchDb.java[]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1333782/raw/CreateDiskAndICV.java[]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045578/raw/L4044.java[]

https://gist.github.com/1070230
https://gist.github.com/1085116
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/adminconnection#memory
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/adminconnection#disk
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/databasebuilder
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/databasebuilder#create
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connection
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/package-summary
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration#to
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration#connect


/

using all specified properties on the configuration. This class and its constructor methods are used for all of Stardog’s
Java APIs: SNARL native Stardog API, Sesame, Jena, as well as HTTP. In the latter cases, you must also call server
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration#serverjava.lang.String) and pass it a
valid URL to the Stardog server using HTTP.

Without the call to server , ConnectionConfiguration  will attempt to connect to a local, embedded version of the
Stardog server. The Connection  still operates in the standard client-server mode, the only di�erence is that the server
is running in the same JVM as your application.

NOTE
Whether using SNARL, Sesame, or Jena, most perhaps all Stardog Java code will use
ConnectionConfiguration  to get a handle on a Stardog database— whether embedded or remote

— and, a�er getting that handle, can use the appropriate API.

See the ConnectionConfiguration  (/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration)
API docs or How to Make a Connection String (#_how_to_make_a_connection_string) for more information.

Managing Security

We discuss the security system in Stardog in Security (#_security). When logged into the Stardog DBMS
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/adminconnection) you can access all security related
features detailed in the security section using any of the core security interfaces for managing users
(/docs/5.3.6/java/snarl/com/complexible/stardog/security/usermanager), roles
(/docs/5.3.6/java/snarl/com/complexible/stardog/security/rolemanager), and permissions
(/docs/5.3.6/java/snarl/com/complexible/stardog/security/permissionmanager).

Using SNARL

In examples 1 and 4 above, you can see how to use SNARL in Java to interact with Stardog. The SNARL API will give the
best performance overall and is the native Stardog API. It uses some Sesame domain classes but is otherwise a clean-
sheet API and implementation.

The SNARL API is fluent with the aim of making code written for Stardog easier to write and easier to maintain. Most
objects are easily re-used to make basic tasks with SNARL as simple as possible. We are always interested in feedback
on the API, so if you have suggestions or comments, please send them to the mailing list.

Let’s take a closer look at some of the interesting parts of SNARL.

Adding Data

You must always enclose changes to a database within a transaction begin and commit or rollback. Changes are local
until the transaction is committed or until you try and perform a query operation to inspect the state of the database
within the transaction.

By default, RDF added will go into the default context unless specified otherwise. As shown, you can use Adder
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/adder) directly to add statements and graphs to the database;
and if you want to add data from a file or input stream, you use the io
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/io), format , and stream  chain of method invocations.

See the SNARL API (java/snarl) Javadocs for all the gory details.

Removing Data

Let’s look at removing (/docs/5.3.6/java/snarl/com/complexible/stardog/api/remover) data via SNARL; in the example
above, you can see that file or stream-based removal is symmetric to file or stream-based addition, i.e., calling remove
in an io  chain with a file or stream call. See the SNARL API docs for more details about finer-grained deletes, etc.

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045573/raw/SNARLAddData.java[]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045573/raw/SNARLRemoveData.java[]

https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration#serverjava.lang.String
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connectionconfiguration
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/admin/adminconnection
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/security/usermanager
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/security/rolemanager
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/security/permissionmanager
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/adder
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/io
https://www.stardog.com/docs/java/snarl
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/remover


/

Parameterized SPARQL Queries

SNARL also lets us parameterize SPARQL queries. We can make a Query  object by passing a SPARQL query in the
constructor. Simple. Obvious.

Next, let’s set a limit for the results: aQuery.limit10 ; or if we want no limit, aQuery.limitQuery.NO_LIMIT . By
default, there is no limit imposed on the query object; we’ll use whatever is specified in the query. But you can use limit
to override any limit specified in the query, however specifying NO_LIMIT will not remove a limit specified in a query, it
will only remove any limit override you’ve specified, restoring the state to the default of using whatever is in the query.

We can execute that query with executeSelect  and iterate over the results. We can also rebind the "?s" variable
easily: aQuery.parameter"s", aURI , which will work for all instances of "?s" in any BGP in the query, and you can
specify null  to remove the binding.

Query objects are re-usable, so you can create one from your original query string and alter bindings, limit, and o�set in
any way you see fit and re-execute the query to get the updated results.

We strongly recommend the use of SNARL’s parameterized queries over concatenating strings together in order to build
your SPARQL query. This latter approach opens up the possibility for SPARQL injection attacks unless you are very
careful in scrubbing your input.

Getter Interface

SNARL also supports some sugar for the classic statement-level getSPO --scars, anyone?--interactions. We ask in the
first line of the snippet above for an iterator over the Stardog connection, based on aURI  in the subject position. Then
a while-loop, as one might expect… You can also parameterize Getter`s by binding different positions of the
`Getter  which acts like a kind of RDF statement filter— and then iterating as usual.

NOTE
the aIter.close  which is important for Stardog databases to avoid memory leaks. If you need to
materialize the iterator as a graph, you can do that by calling graph .

The snippet doesn’t show object  or context  parameters on a Getter , but those work, too, in the obvious way.

Reasoning

Stardog supports query-time reasoning (#_owl_rule_reasoning) using a query rewriting technique. In short, when
reasoning is requested, a query is automatically rewritten to n queries, which are then executed. As we discuss below in
Connection Pooling, reasoning is enabled at the Connection  layer and then any queries executed over that
connection are executed with reasoning enabled; you don’t need to do anything up front when you create your
database if you want to use reasoning.

In this code example, you can see that it’s trivial to enable reasoning for a Connection : simply call reasoning  with
true  passed in.

Search

Stardog’s search (#_searching) system can be used from Java. The fluent Java API for searching in SNARL looks a lot like
the other search interfaces: We create a Searcher  instance with a fluent constructor: limit  sets a limit on the results;
query  contains the search query, and threshold  sets a minimum threshold for the results.

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045573/raw/SNARLQuery.java[]

[39 (#_footnote_39)]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045573/raw/SNARLGetter.java[]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045578/raw/CreateReasoningConn.java[]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1085116/raw/SearcherUsage.java[]



/

Then we call the search  method of our Searcher  instance and iterate over the results i.e., SearchResults . Last, we
can use offset  on an existing Searcher  to grab another page of results.

Stardog also supports performing searches over the full-text index within a SPARQL query via the LARQ SPARQL syntax
(http://jena.apache.org/documentation/larq/). This provides a powerful mechanism for querying both your RDF index
and full-text index at the same time while also giving you a more performant option to the SPARQL regex  filter.

User-defined Lucene Analyzer

Stardog’s Semantic Search (#_searching) capability uses Lucene’s default text analyzer
(https://lucene.apache.org/core/4_7_2/analyzers-
common/org/apache/lucene/analysis/standard/StandardAnalyzer.html), which may not be ideal for your data or
application. You can implement a custom analyzer that Stardog will use by implementing
org.apache.lucene.analysis.Analyzer . That lets you customize Stardog to support di�erent natural languages,

domain-specific stop word lists, etc.

See Custom Analyzers (https://github.com/complexible/stardog-examples/tree/master/examples/analyzer) in the
stardog-examples Github repo for a complete description of the API, registry, sample code, etc.

User-defined Functions and Aggregates

Stardog may be extended via Function and Aggregate extensibility APIs, which are fully documented, including sample
code, in the stardog-examples Github repo (https://github.com/complexible/stardog-
examples/blob/master/examples/function/readme.md) section about function extensibility.

In short you can extend Stardog’s SPARQL query evaluation with custom functions and aggregates easily. Function
extensibility corresponds to built-in expressions used in FILTER , BIND  and SELECT  expressions, as well as aggregate
operators in a SPARQL query like COUNT  or SAMPLE .

SNARL Connection Views

SNARL Connections  (/docs/5.3.6/java/snarl/com/complexible/stardog/api/connection#) support obtaining a specified
type of Connection . This lets you extend and enhance the features available to a Connection  while maintaining the
standard, simple Connection API. The Connection as
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/connection#as) method takes as a parameter the interface, which
must be a sub-type of a Connection , that you would like to use. as  will either return the Connection  as the view
you’ve specified, or it will throw an exception if the view could not be obtained for some reason.

An example of obtaining an instance of a SearchConnection
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/search/searchconnection) to use Stardog’s full-text search
support would look like this:

SNARL API Docs

Please see SNARL API (java/snarl/) docs for more information.

Using Sesame

Stardog supports the Sesame API; thus, for the most part, using Stardog and Sesame is not much di�erent from using
Sesame with other RDF databases. There are, however, at least two di�erences worth pointing out.

Wrapping connections with StardogRepository

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1085116/raw/SearchConnectionView.java[]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045568/raw/init.java[]

http://jena.apache.org/documentation/larq/
https://lucene.apache.org/core/4_7_2/analyzers-common/org/apache/lucene/analysis/standard/StandardAnalyzer.html
https://github.com/complexible/stardog-examples/tree/master/examples/analyzer
https://github.com/complexible/stardog-examples/blob/master/examples/function/readme.md
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connection#
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connection#as
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/search/searchconnection
https://www.stardog.com/docs/java/snarl/


/

As you can see from the code snippet, once you’ve created a ConnectionConfiguration  with all the details for
connecting to a Stardog database, you can wrap that in a StardogRepository  which is a Stardog-specific
implementation of the Sesame Repository  interface. At this point, you can use the resulting Repository  like any
other Sesame Repository  implementation. Each time you call Repository.getConnection , your original
ConnectionConfiguration  will be used to spawn a new connection to the database.

Autocommit

Stardog’s RepositoryConnection  implementation will, by default, disable autoCommit  status. When enabled, every
single statement added or deleted via the Connection  will incur the cost of a transaction, which is too heavyweight for
most use cases. You can enable autoCommit  and it will work as expected; but we recommend leaving it disabled.

Using RDF4J

Stardog also supports RDF4J (http://rdf4j.org), the follow-up to Sesame. Its use is nearly identical to the Stardog
Sesame API, mostly with package name updates.

Wrapping connections with StardogRepository

The RDF4J API uses com.complexible.stardog.rdf4j.StardogRepository , which works the same way as the
Sesame StardogRepository  mentioned above. Its constructor will take either a ConnectionConfiguration  like
Sesame’s or a Connection String (#_how_to_make_a_connection_string).

Autocommit

The major di�erence between the RDF4J and Sesame APIs is that the RDF4J one will leave the autoCommit  mode ON
by default, instead of disabling it. This is because as of RDF4J’s 2.7.0 release, they have deprecated the setAutoCommit
method in favor of assuming it to be always on unless begin()/commit()  are used, which we still VERY highly
recommend.

Using Jena

Stardog supports Jena via a Sesame-Jena bridge, so it’s got more overhead than Sesame or SNARL. YMMV. There are
two points in the Jena example to emphasize.

Init in Jena

The initialization in Jena is a bit di�erent from either SNARL or Sesame; you can get a Jena Model  instance by passing
the Connection  instance returned by ConnectionConfiguration  to the Stardog factory, SDJenaFactory .

Add in Jena

Jena also wants to add data to a Model  one statement at a time, which can be less than ideal. To work around this
restriction, we recommend adding data to a Model  in a single Stardog transaction, which is initiated with
aModel.begin . Then to read data into the model, we recommend using RDF/XML, since that triggers the
BulkUpdateHandler  in Jena or grab a BulkUpdateHandler  directly from the underlying Jena graph.

The other options include using the Stardog CLI (#_command_line_interface) client to bulk load a Stardog database or
to use SNARL for loading and then switch to Jena for other operations, processing, query, etc.

Client-Server Stardog

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045572/raw/InitJena.java[]

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1045572/raw/AddToJena.java[]

http://rdf4j.org/


/

Using Stardog from Java in either embedded or client-server mode is very similar--the only visible di�erence is the use
of url  in a ConnectionConfiguration : when it’s present, we’re in client-server model; else, we’re in embedded
mode.

That’s a good and a bad thing: it’s good because the code is symmetric and uniform. It’s bad because it can make
reasoning about performance di�icult, i.e., it’s not entirely clear in client-server mode which operations trigger or don’t
trigger a round trip with the server and, thus, which may be more expensive than they are in embedded mode.

In client-server mode, everything triggers a round trip with these exceptions:

closing a connection outside a transaction

any parameterizations or other of a query or getter instance

any database state mutations in a transaction that don’t need to be immediately visible to the transaction; that is,
changes are sent to the server only when they are required, on commit, or on any query or read operation that
needs to have the accurate up-to-date state of the data within the transaction.

Stardog generally tries to be as lazy as possible; but in client-server mode, since state is maintained on the client, there
are fewer chances to be lazy and more interactions with the server.

Connection Pooling

Stardog supports connection pools for SNARL Connection  objects for e�iciency and programmer sanity. Here’s how
they work:

Per standard practice, we first initialize security and grab a connection, in this case to the testConnectionPool
database. Then we setup a ConnectionPoolConfig , using its fluent API, which establishes the parameters of the pool:

using Sets which ConnectionConfiguration we want to pool; this is what is used to actually create
the connections.

minPool ,
maxPool

Establishes min and max pooled objects; max pooled objects includes both leased and idled
objects.

expiration Sets the idle life of objects; in this case, the pool reclaims objects idled for 1 hour.

blockAtCapacity Sets the max time in minutes that we’ll block waiting for an object when there aren’t any idle
ones in the pool.

Whew! Next we can create  the pool using this ConnectionPoolConfig  thing.

Finally, we call obtain  on the ConnectionPool  when we need a new one. And when we’re done with it, we return it
to the pool so it can be re-used, by calling release . When we’re done, we shutdown  the pool.

Since reasoning (#_owl_rule_reasoning) in Stardog is enabled per Connection , you can create two pools: one with
reasoning connections, one with non-reasoning connections; and then use the one you need to have reasoning per
query; never pay for more than you need.

API Deprecation

Methods and classes in SNARL API that are marked with the com.google.common.annotations.Beta  are subject to
change or removal in any release. We are using this annotation to denote new or experimental features, the behavior or
signature of which may change significantly before it’s out of "beta".

Unresolved directive in java.ad - 

include::https://gist.githubusercontent.com/mhgrove/1070230/raw/JustCode.java[]



/

We will otherwise attempt to keep the public APIs as stable as possible, and methods will be marked with the standard
@Deprecated  annotation for a least one full revision cycle before their removal from the SNARL API. See Compatibility

Policies (#_compatibility_policies) for more information about API stability.

Anything marked @VisibleForTesting  is just that, visible as a consequence of test case requirements; don’t write any
important code that depends on functions with this annotation.

Using Maven

As of Stardog 3.0, we support Maven for both client and server JARs. The following table summarizes the type of
dependencies that you will have to include in your project, depending on whether the project is a Stardog client, or
server, or both. Additionally, you can also include the Jena or Sesame bindings if you would like to use them in your
project. The Stardog dependency list below follows the Gradle (http://www.gradle.org) convention and is of the form:
groupId:artifactId:VERSION . Versions 3.0 and higher are supported.

9. Table of client type dependencies

Type Stardog Dependency Type

client com.complexible.stardog:client-

http:VERSION

pom

server com.complexible.stardog:server:VERSION pom

rdf4j com.complexible.stardog.rdf4j:stardog-

rdf4j:VERSION

jar

sesame com.complexible.stardog.sesame:stardog-

sesame-core:VERSION

jar

jena com.complexible.stardog.jena:stardog-

jena:VERSION

jar

gremlin com.complexible.stardog.gremlin:stardog-

gremlin:VERSION

jar

You can see an example of their usage in our examples repository on Github (https://github.com/complexible/stardog-
examples/blob/628cf3dab2/examples/api/build.gradle#L3-L14).

WARNING
If you’re using Maven as your build tool, then client-http  and server  dependencies require that
you specify the packaging type as POM ( pom ):

1. The dependency type must be set to pom .

Note: Though Gradle may still work without doing this, it is still best practice to specify the dependency type there as
well:

Public Maven Repo

The public Maven repository for the current Stardog release is http://maven.stardog.com (http://maven.stardog.com).
To get started, you need to add the following endpoint to your preferred build system, e.g. in your Gradle build script:

<dependency> 

  <groupId>com.complexible.stardog</groupId> 

  <artifactId>client-http</artifactId> 

  <version>$VERSION</version> 

  <type>pom</type> (1) 

</dependency>

compile "com.complexible.stardog:client-http:${VERSION}@pom"

http://www.gradle.org/
https://github.com/complexible/stardog-examples/blob/628cf3dab2/examples/api/build.gradle#L3-L14
http://maven.stardog.com/


/

Similarly, if you’re using Maven you’ll need to add the following to your Maven pom.xml :

Private Maven Repo

CUSTOMER ACCESS

This feature or service is available to Stardog customers. For information about licensing, please email
(mailto:sales@stardog.com) us.

For access to nightly builds, priority bug fixes, priority feature access, hot fixes, etc. Enterprise Premium Support
customers have access to their own private Maven repository that is linked to our internal development repository. We
provide a private repository which you can either proxy from your preferred Maven repository manager— e.g. Artifactory
or Nexus— or add the private endpoint to your build script.

Connecting to Your Private Maven Repo

Similar to our public Maven repo, we will provide you with a private URL and credentials to your private repo, which you
will refer to in your Gradle build script like this:

Or if you’re using Maven, add the following to your pom.xml :

Then in your ~/.m2/settings.xml  add:

repositories { 

  maven { 

    url "http://maven.stardog.com" 

  } 

}

<repositories> 

   <repository> 

     <id>stardog-public</id> 

     <url>http://maven.stardog.com</url> 

   </repository> 

</repositories>

repositories { 

  maven { 

    url $yourPrivateUrl 

       credentials { 

          username $yourUsername 

          password $yourPassword 

        } 

    } 

}

<repositories> 

   <repository> 

      <id>stardog-private</id> 

      <url>$yourPrivateUrl</url> 

   </repository> 

</repositories>

<settings> 

  <servers> 

    <server> 

      <id>stardog-private</id> 

      <username>$yourUsername</username> 

      <password>$yourPassword</password> 

    </server> 

  </servers> 

</settings>

mailto:sales@stardog.com


/

NETWORK PROGRAMMING

In the Java Programming (#_java_programming) section, we consider interacting with Stardog programmatically from a
Java program. In this section we consider interacting with Stardog over HTTP. In some use cases or deployment
scenarios, it may be necessary to interact with or control Stardog remotely over an IP-based network.

Stardog supports SPARQL 1.0 HTTP Protocol (http://www.w3.org/TR/rdf-sparql-protocol/); the SPARQL 1.1 Graph Store
HTTP Protocol (http://www.w3.org/TR/sparql11-http-rdf-update/); the Stardog HTTP Protocol; and SNARL, an RPC-style
protocol based on Google Protocol Bu�ers (http://code.google.com/apis/protocolbu�ers/).

SPARQL Protocol

Stardog supports the standard SPARQL Protocol HTTP bindings, as well as additional functionality via HTTP. Stardog
also supports SPARQL 1.1’s Service Description format. See the spec (https://www.w3.org/TR/sparql11-service-
description/) if you want details.

Stardog HTTP Protocol

The Stardog HTTP Protocol supports SPARQL Protocol 1.1 and additional resource representations and capabilities. The
Stardog HTTP API v4 is also available on Apiary: http://docs.stardog.apiary.io/ (http://docs.stardog.apiary.io/). The
Stardog Linked Data API (aka "Annex") is also documented on Apiary: http://docs.annex.apiary.io/
(http://docs.annex.apiary.io/).

Generating URLs

If you are running the HTTP server at

To form the URI of a particular Stardog Database, the Database Short Name is the first URL path segment appended to
the deployment URI. For example, for the Database called cytwombly , deployed in the above example HTTP server,
the Database Network Name might be

All the resources related to this database are identified by URL path segments relative to the Database Network Name;
hence:

In what follows, we use URI Template (http://code.google.com/p/uri-templates/)) notation to parameterize the actual
request URLs, thus: /{db}/size .

We also abuse notation to show the permissible HTTP request types and default MIME types in the following way: REQ |
REQ /resource/identifier → mime_type | mime_type . In a few cases, we use void  as short hand for the case
where there is a response code but the response body may be empty.

HTTP Headers: Content-Type & Accept

All HTTP requests that are mutative (add or remove) must include a valid Content-Type  header set to the MIME type of
the request body, where "valid" is a valid MIME type for N-Triples, Trig, Trix, Turtle, NQuads, JSON-LD, or RDF/XML:

RDF/XML application/rdf+xml

Turtle application/x-turtle  or text/turtle

N-Triples application/n-triples

http://localhost:12345/

http://localhost:12345/cytwombly

http://localhost:12345/cytwombly/size

http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://code.google.com/apis/protocolbuffers/
https://www.w3.org/TR/sparql11-service-description/
http://docs.stardog.apiary.io/
http://docs.annex.apiary.io/
http://code.google.com/p/uri-templates/)


/

TriG application/trig

TriX application/trix

N-Quads application/n-quads

JSON-LD application/ld+json

SPARQL CONSTRUCT  queries must also include a Accept  header set to one of these RDF serialization types.

When issuing a SELECT  query the Accept  header should be set to one of the valid MIME types for SELECT  results:

SPARQL XML Results Format application/sparql-results+xml

SPARQL JSON Results Format application/sparql-results+json

SPARQL Boolean Results text/boolean

SPARQL Binary Results application/x-binary-rdf-results-table

Response Codes

Stardog uses the following HTTP response codes:

200 Operation has succeeded.

202 Operation was received successfully and will be processed shortly.

400 Indicates parse errors or that the transaction identifier specified for an operation is invalid or does not
correspond to a known transaction.

401 Request is unauthorized.

403 User attempting to perform the operation does not exist, their username or password is invalid, or they do
not have the proper credentials to perform the action.

404 A resource involved in the request— for example the database or transaction— does not exist.

409 A conflict for some database operations; for example, creating a database that already exists.

500 A unspecified failure in some internal operation… Call your o�ice, Senator!

There are also Stardog-specific error codes in the SD-Error-Code  header in the response from the server. These can
be used to further clarify the reason for the failure on the server, especially in cases where it could be ambiguous. For
example, if you received a 404  from the server trying to commit a transaction denoted by the path
/myDb/transaction/commit/293845klf9f934 … it’s probably not clear what is missing: it’s either the transaction or

the database. In this case, the value of the SD-Error-Code  header will clarify.

The enumeration of SD-Error-Code  values and their meanings are as follows:



/

0 Authentication error

1 Authorization error

2 Query evaluation error

3 Query contained parse errors

4 Query is unknown

5 Transaction not found

6 Database not found

7 Database already exists

8 Database name is invalid

9 Resource (user, role, etc) already exists

10 Invalid connection parameter(s)

11 Invalid database state for the request

12 Resource in use

13 Resource not found

14 Operation not supported by the server

15 Password specified in the request was invalid

In cases of error, the message body of the result will include any error information provided by the server to indicate the
cause of the error.

Stardog Resources

To interact with Stardog over HTTP, use the following resource representations, HTTP response codes, and resource
identifiers.

A Stardog Database

Returns a representation of the database. As of Stardog 5.3.6, this is merely a placeholder; in a later release, this
resource will serve the web console where the database can be interacted with in a browser.

Database Size

GET /{db} → void



/

Returns the number of RDF triples in the database.

Query Evaluation

The SPARQL endpoint for the database. The valid Accept types are listed above in the HTTP Headers
(#_http_headers_content_type_accept) section.

To issue SPARQL queries with reasoning over HTTP, see Using Reasoning (#_using_reasoning).

SPARQL update

The SPARQL endpoint for updating the database with SPARQL Update. The valid Accept types are
application/sparql-update  or application/x-www-form-urlencoded . Response is the result of the update

operation as text, eg true  or false .

Query Plan

Returns the explanation for the execution of a query, i.e., a query plan. All the same arguments as for Query Evaluation
are legal here; but the only MIME type for the Query Plan resource is text/plain .

Transaction Begin

Returns a transaction identifier resource as text/plain , which is likely to be deprecated in a future release in favor of
a hypertext format. POST  to begin a transaction accepts neither body nor arguments.

Transaction Security Considerations

WARNING
Stardog’s implementation of transactions with HTTP is vulnerable to man-in-the-middle attacks,
which could be used to violate Stardog’s isolation guarantee (among other nasty side e�ects).

Stardog’s transaction identifiers are 64-bit GUIDs and, thus, pretty hard to guess; but if you can grab a response in-flight,
you can steal the transaction identifier if basic access auth or RFC 2069 digest auth is in use. You’ve been warned.

In a future release, Stardog will use RFC 2617 HTTP Digest Authentication (http://tools.ietf.org/html/rfc2617), which is
less vulnerable to various attacks and will never ask a client to use a di�erent authentication type, which should lessen
the likelihood of MitM attacks for properly restricted Stardog clients— that is, a Stardog client that treats any request by
a proxy server or origin server (i.e., Stardog) to use basic access auth or RFC 2069 digest auth as a MitM attack. See RFC
2617 (http://tools.ietf.org/html/rfc2617) for more information.

Transaction Commit

Returns a representation of the committed transaction; 200  means the commit was successful. Otherwise a 500  error
indicates the commit failed and the text returned in the result is the failure message.

As you might expect, failed commits exit cleanly, rolling back any changes that were made to the database.

GET /{db}/size → text/plain

GET | POST /{db}/query

GET | POST /{db}/update → text/boolean

GET | POST /{db}/explain → text/plain

POST /{db}/transaction/begin → text/plain

POST /{db}/transaction/commit/{txId} → void | text/plain

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617


/

Transaction Rollback

Returns a representation of the transaction a�er it’s been rolled back. 200  means the rollback was successful,
otherwise 500  indicates the rollback failed and the text returned in the result is the failure message.

Querying (Transactionally)

Returns a representation of a query executed within the txId  transaction. Queries within transactions will be slower as
extra processing is required to make the changes visible to the query. Again, the valid Accept types are listed above in
the HTTP Headers  section.

The SPARQL endpoint for updating the database with SPARQL Update. Update queries are executed within the specified
transaction txId  and are not atomic operations as with the normal SPARQL update endpoint. The updates are
executed when the transaction is committed like any other change. The valid Accept types are application/sparql-
update  or application/x-www-form-urlencoded . Response is the result of the update operation as text, eg true
or false .

Adding Data (Transactionally)

Returns a representation of data added to the database of the specified transaction. Accepts an optional parameter,
graph-uri , which specifies the named graph the data should be added to. If a named graph is not specified, the data

is added to the default (i.e., unnamed) context. The response codes are 200  for success and 500  for failure.

Deleting Data (Transactionally)

Returns a representation of data removed from the database within the specified transaction. Also accepts graph-uri
with the analogous meaning as above--Adding Data (Transactionally) (#_adding_data_transactionally). Response codes
are also the same.

Clear Database

Removes all data from the database within the context of the transaction. 200  indicates success; 500  indicates an
error. Also takes an optional parameter, graph-uri , which removes data from a named graph. To clear only the default
graph, pass DEFAULT  as the value of graph-uri .

Export Database

Exports the default graph in the database in Turtle format. Also takes an optional parameter, graph-uri , which selects
a named graph to export. The valid Accept types are the ones defined above in HTTP Headers
(#_http_headers_content_type_accept) for RDF Formats.

Explanation of Inferences

POST /{db}/transaction/rollback/{txId} → void | text/plain

GET | POST /{db}/{txId}/query

GET | POST /{db}/{txId}/update → text/boolean

POST /{db}/{txId}/add → void | text/plain

POST /{db}/{txId}/remove → void | text/plain

POST /{db}/{txId}/clear → void | text/plain

GET /{db}/export → RDF



/

Returns the explanation of the axiom which is in the body of the POST  request. The request takes the axioms in any
supported RDF format and returns the explanation for why that axiom was inferred as Turtle.

Explanation of Inconsistency

If the database is logically inconsistent, this returns an explanation for the inconsistency.

Consistency

Returns whether or not the database is consistent w.r.t to the TBox.

Listing Integrity Constraints

Returns the integrity constraints for the specified database serialized in any supported RDF format.

Adding Integrity Constraints

Accepts a set of valid Integrity constraints serialized in any RDF format supported by Stardog and adds them to the
database in an atomic action. 200 return code indicates the constraints were added successfully, 500 indicates that the
constraints were not valid or unable to be added.

Removing Integrity Constraints

Accepts a set of valid Integrity constraints serialized in any RDF format supported by Stardog and removes them from
the database in a single atomic action. 200  indicates the constraints were successfully remove; 500  indicates an error.

Clearing Integrity Constraints

Drops all integrity constraints for a database. 200  indicates all constraints were successfully dropped; 500  indicates
an error.

Converting Constraints to SPARQL Queries

The body of the POST  is a single integrity constraint, serialized in any supported RDF format, with Content-type  set
appropriately. Returns either a text/plain  result containing a single SPARQL query; or it returns 400  if more than
one constraint was included in the input.

Execute GraphQL Query

POST /{db}/reasoning/explain → RDF 
POST /{db}/reasoning/{txId}/explain → RDF

GET | POST /{db}/reasoning/explain/inconsistency → RDF

GET | POST /{db}/reasoning/consistency → text/boolean

GET /{db}/icv → RDF

POST /{db}/icv/add

POST /{db}/icv/remove

POST /{db}/icv/clear

POST /{db}/icv/convert



/

Executes a GraphQL query. The GET  request accepts a query  variable which should be a GraphQL query and an
optional variables  property that is a JSON document for representing input variable bindings. The body of the POST
request should be a JSON document with query  and (optionally) variables  fields. Reasoning can be enabled by
setting the @reasoning  variable to true  in the variables . A schema for the query can be used by setting the
@schema  variable to the name of the schema.

Adding GraphQL Schemas

Adds a GraphQL schema to the database. The name of the schema is specified by the path variable schema .

Getting GraphQL Schemas

Returns the contents of the specified GraphQL schema. The name of the schema is specified by the path variable
schema . The response is the GraphQL schema document.

Removing GraphQL Schemas

Removes a GraphQL schema from the database. The name of the schema is specified by the path variable schema .

Removing All GraphQL Schemas

Removes all GraphQL schemas from the database.

List GraphQL Schemas

Lists all the GraphQL schemas in the database. The response is a JSON document where the schemas  field is a list of
schema names.

Admin Resources

To administer Stardog over HTTP, use the following resource representations, HTTP response codes, and resource
identifiers.

List databases

Lists all the databases available.

Output JSON example:

GET | POST /{db}/graphql → application/json

PUT /{db}/graphql/schemas/{schema}

GET /{db}/graphql/schemas/{schema} → application/graphql

DELETE /{db}/graphql/schemas/{schema}

DELETE /{db}/graphql/schemas

GET /{db}/graphql/schemas → application/json

GET /admin/databases → application/json

{ "databases" : ["testdb", "exampledb"] }



/

Copy a database

Copies a database db  to another specified db_copy .

Create a new database

Creates a new database; expects a multipart request with a JSON specifying database name, options and filenames
followed by (optional) file contents as a multipart POST  request.

Expected input ( application/json ):

Drop an existing database

Drops an existing database db  and all the information that it contains. Goodbye Callahan!

Repair a database

Repairs a corrupted Stardog database. This command needs a running Stardog server and the database to be o�line.

Backup a database

Creates a backup of a database. A backup is a physical copy of the database and preserves database metadata in
addition to the database contents. By default, backups are stored in the '.backup' directory in your Stardog home (or the
'backup.dir' property specified in your 'stardog.configuration') but the to  parameter can be used to specify a di�erent
location.

Restore a database from a backup

Restores a database from its backup. The location of the backup should be the full path to the backup on the server
side. If you wish to restore the backup to a di�erent database, a new name can be provided. A backup will not be
restored over an existing database of the same name; the force flag should be used to overwrite the database.

Optimize a database

Optimizes a database for query answering a�er a database has been heavily modified.

PUT /admin/databases/{db}/copy?to={db_copy}

POST /admin/databases

{ 

  "dbname" : "testDb", 

  "options" : { 

    "icv.active.graphs" : "http://graph, http://another", 

    "search.enabled" : true, 

    ... 

  }, 

  "files" : [{ "filename":"fileX.ttl", "context":"some:context" }, ...]

}

DELETE /admin/databases/{db}

PUT /admin/databases/{db}/repair

PUT /admin/databases/{db}/backup[?to={backup_location}]

PUT /admin/databases?from={backup_location}[&name={new_name}][&force={true|false}]

PUT /admin/databases/{db}/optimize



/

Sets an existing database online.

Request message to set an existing database online.

Sets an existing database o�line.

Request message to set an existing database o�line; receives optionally a JSON input to specify a timeout for the o�line
operation. When not specified, defaults to 3 minutes as the timeout; the timeout should be provided in milliseconds.
The timeout is the amount of time the database will wait for existing connections to complete before going o�line. This
will allow open transaction to commit/rollback, open queries to complete, etc. A�er the timeout has expired, all
remaining open connections are closed and the database goes o�line.

Optional input ( application/json ):

Set option values to an existing database.

Set options in the database passed through a JSON object specification, i.e. JSON Request for option values. Database
options can be found here (#_configuring_a_database).

Expected input ( application/json ):

Get option values of an existing database.

Retrieves a set of options passed via a JSON object. The JSON input has empty values for each key, but will be filled with
the option values in the database in the output.

Expected input:

Output JSON example:

PUT /admin/databases/{db}/online

PUT /admin/databases/{db}/offline

{ "timeout" : timeout_in_ms}

POST /admin/databases/{kb}/options

{ 

  "database.name" : "DB_NAME", 

  "icv.enabled" : true | false, 

  "search.enabled" : true | false, 

  ... 

}

PUT /admin/databases/{kb}/options → application/json

{ 

  "database.name" : ..., 

  "icv.enabled" : ..., 

  "search.enabled" : ..., 

  ... 

}

{ 

  "database.name" : "testdb", 

  "icv.enabled" : true, 

  "search.enabled" : true, 

  ... 

}



/

Add a new user to the system.

Adds a new user to the system; allows a configuration option for superuser as a JSON object. Superuser configuration is
set as default to false. The password must be provided for the user.

Expected input:

Change user password.

Changes user’s password in the system. Receives input of new password as a JSON Object.

Expected input:

Check if user is enabled.

Verifies if user is enabled in the system.

Output JSON example:

Check if user is superuser.

Verifies if the user is a superuser:

Listing users.

Retrieves a list of users.

Output JSON example:

POST /admin/users

{ 

  "username"  : "bob", 

  "superuser" : true | false 

  "password"  : "passwd" 

}

PUT /admin/users/{user}/pwd

{"password" : "xxxxx"}

GET /admin/users/{user}/enabled → application/json

{ 

  "enabled": true 

}

GET /admin/users/{user}/superuser → application/json

{ 

  "superuser": true 

}

GET /admin/users → application/json

{ 

  "users": ["anonymous", "admin"] 

}



/

Listing user roles.

Retrieves the list of the roles assigned to user.

Output JSON example:

Deleting users.

Removes a user from the system.

Enabling users.

Enables a user in the system; expects a JSON object in the following format:

Setting user roles.

Sets roles for a given user; expects a JSON object specifying the roles for the user in the following format:

Adding new roles.

Adds the new role to the system.

Expected input:

Listing roles.

Retrieves the list of roles registered in the system.

Output JSON example:

GET /admin/users/{user}/roles → application/json

{ 

  "roles": ["reader"] 

}

DELETE /admin/users/{user}

PUT /admin/users/{user}/enabled

{ 

  "enabled" : true 

}

PUT /admin/users/{user}/roles

{ 

  "roles" : ["reader","secTestDb-full"] 

}

POST /admin/roles

{ 

  "rolename" : "" 

}

GET /admin/roles → application/json



/

Listing users with a specified role.

Retrieves users that have the role assigned.

Output JSON example:

Deleting roles.

Deletes an existing role from the system; the force parameter is a boolean flag which indicates if the delete call for the
role must be forced.

Assigning permissions to roles.

Creates a new permission for a given role over a specified resource; expects input JSON Object in the following format:

Assigning permissions to users.

Creates a new permission for a given user over a specified resource; expects input JSON Object in the following format:

Deleting permissions from roles.

Deletes a permission for a given role over a specified resource; expects input JSON Object in the following format:

{ 

  "roles": ["reader"] 

}

GET /admin/roles/{role}/users → application/json

{ 

  "users": ["anonymous"] 

}

DELETE /admin/roles/{role}?force={force}

PUT /admin/permissions/role/{role}

{ 

  "action" : "read" | "write" | "create" | "delete" | "revoke" | "execute" | "grant" | "*", 

  "resource_type" : "user" | "role" | "db" | "named-graph" | "metadata" | "admin" | "icv-constraints" | 

"*", 

  "resource" : "" 

}

PUT /admin/permissions/user/{user}

{ 

  "action" : "read" | "write" | "create" | "delete" | "revoke" | "execute" | "grant" | "*", 

  "resource_type" : "user" | "role" | "db" | "named-graph" | "metadata" | "admin" | "icv-constraints" | 

"*", 

  "resource" : "" 

}

POST /admin/permissions/role/{role}/delete



/

Deleting permissions from users.

Deletes a permission for a given user over a specified resource; expects input JSON Object in the following format:

Listing role permissions.

Retrieves permissions assigned to the role.

Output JSON example:

Listing user permissions.

Retrieves permissions assigned to the user.

Output JSON example:

Listing user e�ective permissions.

Retrieves e�ective permissions assigned to the user.

Output JSON example:

Get nodes in cluster

{ 

  "action" : "read" | "write" | "create" | "delete" | "revoke" | "execute" | "grant" | "*", 

  "resource_type" : "user" | "role" | "db" | "named-graph" | "metadata" | "admin" | "icv-constraints" | 

"*", 

  "resource" : "" 

}

POST /admin/permissions/user/{user}/delete

{ 

  "action" : "read" | "write" | "create" | "delete" | "revoke" | "execute" | "grant" | "*", 

  "resource_type" : "user" | "role" | "db" | "named-graph" | "metadata" | "admin" | "icv-constraints" | 

"*", 

  "resource" : "" 

}

GET /admin/permissions/role/{role} → application/json

{ 

  "permissions": ["stardog:read:*"] 

}

GET /admin/permissions/user/{user} → application/json

{ 

  "permissions": ["stardog:read:*"] 

}

GET /admin/permissions/effective/user/{user} → application/json

{ 

  "permissions": ["stardog:*"] 

}

GET /admin/cluster



/

Retrieves the list of nodes in the cluster; the elected cluster coordinator is the first element in the array. This route is
only available when Stardog is running within a cluster setup.

Output JSON example:

Shutdown server.

Shuts down the Stardog Server. If successful, returns a 202  to indicate that the request was received and that the
server will be shut down shortly.

Query Version Metadata

Issue a query over the version history metadata using SPARQL. Method has the same arguments and outputs as the
normal query method of a database.

Versioned Commit

Input example:

Accepts a commit message in the body of the request and performs a VCS commit of the specified transaction

Create Tag

Input example:

Create a tag from the given revision id with the specified commit message.

Delete Tag

Input example:

Delete the tag with the given revision.

Revert to Tag

{ 

  "nodes": [ 

    "192.168.69.1:5820 (Available)", 

    "192.168.69.2:5820 (Available)", 

    "192.168.69.3:5820 (Available)" 

  ] 

}

POST /admin/shutdown

GET | POST /{db}/vcs/query

POST /{db}/vcs/{tid}/commit_msg

This is the commit message

POST /{db}/vcs/tags/create

"f09c0e02350627480839da4661b8e9cbd70f6372", "This is the commit message"

POST /{db}/vcs/tags/delete

"f09c0e02350627480839da4661b8e9cbd70f6372"



/

Input example:

Perform a revert of a revision to the specified revision with the given commit message.

EXTENDING STARDOG

In this chapter we discuss the various ways you can extend the Stardog Knowledge Graph Platform. Stardog’s extension
mechanisms utilize the JDK Service Loader (http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html) to
load new services at runtime and make them available to the various parts of the system.

To register an extension, a file should be placed in META-INF/services  whose name is the fully-qualified of the
extension type. This must be included in the jar file with the compile source of the extension. The jar then should be
placed somewhere in Stardog’s classpath, usually either server/ext  or a folder specified by the environment variable
STARDOG_EXT . Stardog will pick up the implementations on startup by using the JDK ServiceLoader  framework.

HTTP Server

Your extension to the server should extend com.stardog.http.server.undertow.HttpService . You’ll need a
service definition in META-INF/services  called com.stardog.http.server.undertow.HttpService , which
contains the fully-qualified class name(s) of your extension(s). That service definition should be included in your jar file
and dropped into the classpath. On (re)start, Stardog will find the service and auto load it into the server.

An HttpService  uses a subset of the JAX-RS (https://jax-rs-spec.java.net/) specification for route definition. All
HttpService`s are scanned when the server starts and the routes are extracted, compiled into lambdas

to avoid the overhead of ̀ java.lang.reflect  and passed into the server for route handling.

For example, if you wanted to define a route that will accept only POST  requests whose body is JSON and produces
binary output, it would look like this:

There’s a couple things to note here. First, the path of the route is partially defined by the @Path  annotation. That value
is post-fixed to any root @Path  specified on the service itself. That complete path is normally with respect to the root of
the server. However, services can have sub-services, in which case it would be relative to the parent service, or you can
simply override this altogether by overriding the routes  method. Similarily, you can override the routes  method if
you would like to define child services for the route. Here’s how the transaction service mounts the SPARQL protocol
and SPARQL Update protocol as child services:

POST /{db}/vcs/revert

"f09c0e02350627480839da4661b8e9cbd70f6372", "893220fba7910792084dd85207db94292886c4d7", "This is the revert 

message"

@POST 

@Path("/path/to/my/service") 

@Consumes("application/json") 

@Produces("application/octet-stream") 

public void myMethod(final HttpServerExchange theExchange) { 

    // implementation goes here 

}

public Iterable<Route> routes(@Nonnull final HttpPath thePath) { 

 List<HttpService> aServices = Lists.newArrayList( 

  new SPARQLProtocol(mKernel), 

     new SPARQLUpdate(mKernel) 

 ); 

 

 final HttpPath aRoot = thePath.var(VAR_TX); 

 

 return () -> Iterators.concat(aServices.stream() 

                                        .flatMap(aService -> Streams.stream(aService.routes(aRoot))) 

                                        .iterator(), 

                               HttpService.super.routes(thePath).iterator()); 

}

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
https://jax-rs-spec.java.net/


/

Further, note that the route method takes a single parameter: HttpServerExchange . This is the raw Undertow
HttpServerExchange (http://undertow.io/javadoc/1.4.x/io/undertow/server/HttpServerExchange.html). No attempt is
made to parse out arguments such as javax.ws.rs.QueryParam , that is le� to the implementor. The only part of the
exchange that is parsed is any path variables. If your path is /myservice/{db}/myaction  then db  is a variable and
will match whatever is included in that segment of the path. This is included in
HttpServerExchange#getQueryParameters .

An HttpService  should either have a no-argument constructor, or a constructor that accepts a single argument of
type HttpServiceLoader.ServerContext . The ServerContext  argument will contain information about the server:
initialization options such as port, or whether security is disabled, as well as a reference to Stardog itself in the event
your service needs a handle to Stardog. If your service is extending Stardog in some way, for convenience, you can
extend from KernelHttpService .

The implementation of the route itself should conform to Undertow’s guide (http://undertow.io/undertow-
docs/undertow-docs-1.4.0/index.html#undertow-handler-authors-guide).

Here’s the implementation of user list :

Query Functions

The Stardog com.complexible.stardog.plan.filter.functions.Function
(/docs/5.3.6/java/snarl/com/complexible/stardog/plan/filter/functions/function) interface is the extension point for
section 17.6 (Extensible Value Testing) of the SPARQL spec (https://www.w3.org/TR/sparql11-
query/#extensionFunctions).

Function  corresponds to built-in expressions used in FILTER , BIND  and SELECT  expressions, as well as aggregate
operators in a SPARQL query. Examples include &&  and ||  and functions defined in the SPARQL spec like sameTerm ,
str , and now .

Implementing Custom Functions

The starting point for implementing your own custom function is to extend AbstractFunction
(/docs/5.3.6/java/snarl/com/complexible/stardog/plan/filter/functions/abstractfunction). This class provides much of
the basic sca�olding for implementing a new Function  from scratch.

If your new function falls into one of the existing categories, it should implement the appropriate marker interface:

com.complexible.stardog.plan.filter.functions.cast.CastFunction

com.complexible.stardog.plan.filter.functions.datetime.DateTimeFunction

com.complexible.stardog.plan.filter.functions.hash.HashFunction

com.complexible.stardog.plan.filter.functions.numeric.MathFunction

com.complexible.stardog.plan.filter.functions.rdfterm.RDFTermFunction

com.complexible.stardog.plan.filter.functions.string.StringFunction

@GET 

@Produces("application/json") 

public void listUsers(final HttpServerExchange theExchange) { 

 JsonArray aUsers = new JsonArray(); 

 

 mKernel.get().getUserManager().getAllUsers().stream() 

        .map(JsonPrimitive::new) 

        .forEach(aUsers::add); 

 

 JsonObject aObj = new JsonObject(); 

 aObj.add(HTTPAdminProtocolConsts.COLLECTION_USERS, aUsers); 

 

 final String aJSON = aObj.toString(); 

 

 HttpServerExchanges.Responses.contentType(theExchange, "application/json"); 

 HttpServerExchanges.Responses.contentLength(theExchange, aJSON.length()); 

 

 theExchange.getResponseSender().send(aJSON); 

}

http://undertow.io/javadoc/1.4.x/io/undertow/server/HttpServerExchange.html
http://undertow.io/undertow-docs/undertow-docs-1.4.0/index.html#undertow-handler-authors-guide
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/plan/filter/functions/function
https://www.w3.org/TR/sparql11-query/#extensionFunctions
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/plan/filter/functions/abstractfunction


/

If not, then it must implement com.complexible.stardog.plan.filter.functions.UserDefinedFunction .
Extending one of these marker interfaces is required for the Function  to be traverseable via the visitor pattern.

A zero-argument constructor must be provided which delegates some initialization to super , providing first the int
number of required arguments followed by one or more URIs which identify the function. Any these URIs can be used to
identify the function in a SPARQL query. The URIs are typed as String  but should be valid URIs.

For functions which take a range of arguments, for example a minimum of 2, but no more than 4 values, a Range
(http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/collect/Range.html) can
be used as the first parameter passed to super  rather than an int .

Function  extends from Copyable , therefore implementations should also provide a "copy constructor" which can be
called from the copy  method:

Evaluating the function is handled by Value internalEvaluate(final Value… )  The parameters of this method
correspond to the arguments passed into the function; it’s the values of the variables for each solution of the query.
Here we can perform whatever actions are required for our function. AbstractFunction  will have already taken care
of validating that we’re getting the correct number of arguments to the function, but we still have to validate the input.
AbstractFunction  provides some convenience methods to this end, for example assertURI  and
assertNumericLiteral  for requiring that inputs are either a valid URI, or a literal with a numeric datatype

respectively.

Errors that occur in the evaluation of the function should throw a
com.complexible.stardog.plan.filter.ExpressionEvaluationException ; this corresponds to the ValueError

concept defined in the SPARQL specification.

Registering Custom Functions

Create a file called com.complexible.stardog.plan.filter.functions.Function  in the META-INF/services
directory with the name of your custom Function class.

Using Custom Functions

Functions are identified by their URI; you can reference them in a query using their fully-qualified URI, or specify
prefixes for the namespaces and utilize only the qname. For this example, if the namespace tag:stardog:api:  is
associated with the prefix stardog  and within that namespace we have our function myFunc  we can invoke it from a
SPARQL query as: bind(stardog:myFunc(?var) as ?tc)

Custom Aggregates

While the SPARQL specification has an extension point for value testing and allows for custom functions in
FILTER / BIND / SELECT  expressions, there is no similar mechanism for aggregates. The space of aggregates is closed

by definition, all legal aggregates are enumerated in the spec itself.

However, as with custom functions, there are many use cases for creating and using custom aggregate functions.
Stardog provides a mechanism for creating and using custom aggregates without requiring custom SPARQL syntax.

Implementing Custom Aggregates

To implement a custom aggregate, you should extend AbstractAggregate
(java/snarl/com/complexible/stardog/plan/aggregates/AbstractAggregate.html).

The rules regarding constructor, "copy constructor" and the copy  method for Function  apply to Aggregate  as well.

private MyFunc(final MyFunc theFunc) { 

    super(myFunc); 

    // make copies of any local data structures 

} 

 

@Override 

public MyFunc copy() { 

 return new MyFunc(this); 

}

http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/collect/Range.html
https://www.stardog.com/docs/java/snarl/com/complexible/stardog/plan/aggregates/AbstractAggregate.html


/

Two methods must be implemented for custom aggregates, Value _getValue() throws
ExpressionEvaluationException  and void aggregate(final Value theValue, final long theMultiplicity)
throws ExpressionEvaluationException . _getValue  returns the computed aggregate value while aggregate
adds a Value to the current running aggregation. In terms of the COUNT  aggregate, aggregate  would increment the
counter and _getValue  would return the final count.

The multiplicity argument to aggregate  corresponds to the fact that intermediate solution sets have a multiplicity
associated with them. It’s most o�en 1, but joins and choice of the indexes used for the scans internally can a�ect this.
Rather than repeating the solution N times, we associate a multiplicity of N with the solution. Again, in terms of COUNT ,
this would mean that rather than incrementing the count by 1 , it would be incremented by the multiplicity.

Registering Custom Aggregates

Aggregates such as COUNT  or SAMPLE  are implementations of Function  in the same way sameTerm  or str  are and
are registered with Stardog in the exact same manner.

Using Custom Aggregates

You can use your custom aggregates just like any other aggregate function. Assuming we have a custom aggregate
gmean  defined in the tag:stardog:api:  namespace, we can refer to it within a query as such:

Database Archetypes

The Stardog database archetypes (http://docs.stardog.com/#_database_archetypes) provide a simple way to associate
one or more ontologies and optionally a set of constraints with a database. Stardog provides two built-in database
archetypes out-of-the-box: PROV and SKOS.

Running FOAF Example

This example shows a user-define archetype for FOAF (http://xmlns.com/foaf/spec/).

First build the jar file for this example using gradle:

Copy the jar file to your Stardog installation directory and (re)start the server:

Create a new database using the FOAF archetype:

That’s it. Even though you created a database without any data you will see that there is a default namespace, ontology
and constraints associated with this database:

PREFIX : <http://www.example.org> 

PREFIX stardog: <tag:stardog:api:> 

 

SELECT (stardog:gmean(?O) AS ?C) 

WHERE { ?S ?P ?O }

$ ./gradlew jar

$ cp examples/foaf/build/libs/foaf-*.jar $STARDOG/server/dbms/ 

$ $STARDOG/bin/stardog-admin server start

$ $STARDOG/bin/stardog-admin db create -o database.archetypes="foaf" -n foafDB

http://docs.stardog.com/#_database_archetypes
http://xmlns.com/foaf/spec/


/

Registering Archetypes

User-defined archetypes are loaded to Stardog through JDK ServiceLoader  framework. Create a file called
com.complexible.stardog.db.DatabaseArchetype  in the META-INF/services  directory. The contents of this file

should be all of the fully-qualified class names for your custom archetypes.

Search Analyzers

By default, the full-text index in Stardog uses Lucene’s StandardAnalyzer
(https://lucene.apache.org/core/4_7_2/analyzers-
common/org/apache/lucene/analysis/standard/StandardAnalyzer.html).

However, any class implementing org.apache.lucene.analysis.Analyzer  can be used in place of the default
analyzer. To specify a di�erent Analyzer  a service named com.complexible.stardog.search.AnalyzerFactory
should be registered. AnalyzerFactory  returns the desired Analyzer  implementation to be used when creating the
Lucene index from the RDF contained in the database.

This is an example of an AnalyzerFactory which uses the built-in Lucene analyzer for the French language:

Any of the common Lucene analyzers (https://lucene.apache.org/core/4_7_2/analyzers-common/index.html) can be
used as well as any custom implementation of Analyzer . In the latter case, be sure your implementation is in
Stardog’s class path.

Create a file called com.complexible.stardog.search.AnalyzerFactory  in the META-INF/services  directory.
The contents of this file should be the fully-qualified class name of your AnalyzerFactory .

Note, as of Stardog 3.0, only one AnalyzerFactory  can be registered at a time, attempts to register more than one will
yield errors on startup.

JAVASCRIPT PROGRAMMING

$ bin/stardog namespace list foafDB 

+---------+---------------------------------------------+ 

| Prefix  |                  Namespace                  | 

+---------+---------------------------------------------+ 

| foaf    | http://xmlns.com/foaf/0.1/                  | 

| owl     | http://www.w3.org/2002/07/owl#              | 

| rdf     | http://www.w3.org/1999/02/22-rdf-syntax-ns# | 

| rdfs    | http://www.w3.org/2000/01/rdf-schema#       | 

| stardog | tag:stardog:api:                            | 

| xsd     | http://www.w3.org/2001/XMLSchema#           | 

+---------+---------------------------------------------+ 

$ bin/stardog reasoning schema foafDB 

foaf:publications a owl:ObjectProperty 

foaf:jabberID a owl:InverseFunctionalProperty 

foaf:jabberID a owl:DatatypeProperty 

foaf:interest rdfs:domain foaf:Agent 

foaf:workInfoHomepage a owl:ObjectProperty 

foaf:schoolHomepage rdfs:range foaf:Document 

foaf:status a owl:DatatypeProperty 

foaf:currentProject rdfs:domain foaf:Person 

... 

$ bin/stardog icv export foafDB 

AxiomConstraint{foaf:isPrimaryTopicOf a owl:InverseFunctionalProperty}

public final class FrenchAnalyzerFactory implements AnalyzerFactory { 

 

 /** 

  * {@inheritDoc} 

  */ 

 @Override 

 public Analyzer get() { 

  return new FrenchAnalyzer(Version.LUCENE_47); 

 } 

}

https://lucene.apache.org/core/4_7_2/analyzers-common/org/apache/lucene/analysis/standard/StandardAnalyzer.html
https://lucene.apache.org/core/4_7_2/analyzers-common/index.html


/

Source code and documentation for stardog.js are available available on Github (https://github.com/stardog-
union/stardog.js) and npm (https://npmjs.org/package/stardog).

stardog.js

This framework wraps all the functionality of a client for the Stardog DBMS and provides access to a full set of functions
such as executing SPARQL Queries, administration tasks on Stardog, and the use of the Reasoning API.

The implementation uses the HTTP protocol, since most of Stardog functionality is available using this protocol. For
more information, see Network Programming (#_network_programming).

The framework is currently supported for node.js and the browser, including test cases for both environments. You’ll
need npm to run the test cases and install the dependencies.

CLOJURE PROGRAMMING

The stardog-clj source code (http://github.com/complexible/stardog-clj) is available as Apache 2.0 licensed code.

Installation

Stardog-clj is available from Clojars. To use, just include the following dependency:

Starting with Stardog 2.2.2, the stardog-clj version always matches the latest release of Stardog.

Overview

Stardog-clj provides a set of functions as API wrappers to the native SNARL API. These functions provide the basis for
working with Stardog, starting with connection management, connection pooling, and the core parts of the API, such as
executing a SPARQL query or adding and removing RDF from the Stardog database. Over time, other parts of the
Stardog API will be appropriately wrapped with Clojure functions and idiomatic Clojure data structures.

Stardog-clj provides the following features:

1. Specification based descriptions for connections, and corresponding "connection" and "with-connection-pool"
functions and macros

2. Functions for query, ask, graph, and update to execute SELECT , ASK , CONSTRUCT , and SPARQL Update queries
respectively

3. Functions for insert and remove, for orchestrating the Adder and Remover APIs in SNARL

4. Macros for resource handling, including with-connection-tx, with-connection-pool, and with-transaction

5. Support for programming Stardog applications with either the connection pool or direct handling of the
connection

6. Idiomatic clojure handling of data structures, with converters that can be passed to query functions

The API with source docs can be found in the stardog.core  and stardog.values  namespaces.

API Overview

The API provides a natural progression of functions for interacting with Stardog

This creates a connection space for use in connect  or make-datasource  with the potential parameters:

[stardog-clj "2.2.2"]

(create-db-spec "testdb" "snarl://localhost:5820/" "admin" "admin" "none")

https://github.com/stardog-union/stardog.js
https://npmjs.org/package/stardog
http://github.com/complexible/stardog-clj


/

Create a single Connection using the database spec. Can be used with with-open , with-transaction , and with-
connection-tx  macros.

Creates a data source, i.e. ConnectionPool , using the database spec. Best used within the with-connection-pool
macro.

Executes the body with a transaction on each of the connections. Or establishes a connection and a transaction to
execute the body within.

Evaluates body in the context of an active connection obtained from the connection pool.

Examples

Here are some examples of using stardog-clj

Create a connection and run a query

Insert data

Run a query with a connection pool

SPARQL Update

Graph function for Construct queries

Ask function for ASK queries

{:url "snarl://localhost:5820/" :db "testdb" :pass "admin" :user "admin" :max-idle 100 :max-pool 200 :min-

pool 10 :reasoning false}

(connect db-spec)

(make-datasource db-spec)

(with-transaction [connection...] body) 

(with-connection-tx binding-forms body)

(with-connection-pool [con pool] .. con, body ..)

Unresolved directive in clojure.ad - 

include::https://gist.githubusercontent.com/AlBaker/10039066/raw/Stardog.clj[]

Unresolved directive in clojure.ad - 

include::https://gist.githubusercontent.com/AlBaker/10039743/raw/StardogInsert.clj[]

Unresolved directive in clojure.ad - 

include::https://gist.githubusercontent.com/AlBaker/10041003/raw/StardogPool.clj[]

Unresolved directive in clojure.ad - 

include::https://gist.githubusercontent.com/AlBaker/11130645/raw/StardogUpdate.clj[]

Unresolved directive in clojure.ad - 

include::https://gist.githubusercontent.com/AlBaker/11130603/raw/StardogGraph.clj[]



/

.NET PROGRAMMING

In the Network Programming (#_network_programming) section, we looked at how to interact with Stardog over a
network via HTTP and SNARL protocols. In this chapter we describe how to program Stardog from .Net using
http://www.dotnetrdf.org (http://www.dotnetrdf.org).

NOTE
.dotNetRDF is an open source library developed and supported by third parties; questions or issues
with the .Net API should be directed to http://www.dotnetrdf.org (http://www.dotnetrdf.org).

You should also be aware that dotNetRDF uses the HTTP API for all communication with Stardog so you must enable the
HTTP server to use Stardog from .Net. It’s enabled by default so most users should not need to do anything to fulfill this
requirement.

dotNetRDF Documentation

See the documentation (https://bitbucket.org/dotnetrdf/dotnetrdf/wiki/Home) for using dotNetRDF with Stardog.

SPRING PROGRAMMING

The Spring for Stardog source code (http://github.com/complexible/stardog-spring) is available on Github. Binary
releases are available on the Github release page (https://github.com/complexible/stardog-spring/releases).

As of 2.1.3, Stardog-Spring and Stardog-Spring-Batch can both be retrieved from Maven central:

com.complexible.stardog:stardog-spring:2.1.3

com.complexible.stardog:stardog-spring-batch:2.1.3

The corresponding Stardog Spring version will match the Stardog release, e.g. stardog-spring-2.2.2 for Stardog 2.2.2.

Overview

Spring for Stardog makes it possible to rapidly build Stardog-backed applications with the Spring Framework. As with
many other parts of Spring, Stardog’s Spring integration uses the template design pattern for abstracting standard
boilerplate away from application developers.

Stardog Spring can be included via Maven with com.complexible.stardog:stardog-spring:version  and
com.complexible.stardog:stardog-spring-batch  for Spring Batch support. Both of these dependencies require

the public Stardog repository to be included in your build script, and the Stardog Spring packages installed in Maven.
Embedded server is still supported, but via providing an implementatino of the Provider interface. This enables users of
the embedded server to have full control over how to use the embedded server.

At the lowest level, Spring for Stardog includes

1. DataSouce  and DataSourceFactoryBean  for managing Stardog connections

2. SnarlTemplate  for transaction- and connection-pool safe Stardog programming

3. DataImporter  for easy bootstrapping of input data into Stardog

In addition to the core capabilities, Spring for Stardog also integrates with the Spring Batch framework. Spring Batch
enables complex batch processing jobs to be created to accomplish tasks such as ETL or legacy data migration. The
standard ItemReader  and ItemWriter  interfaces are implemented with a separate callback writing records using the
SNARL Adder API.

Unresolved directive in clojure.ad - 

include::https://gist.githubusercontent.com/AlBaker/11130618/raw/StardogAsk.clj[]

http://www.dotnetrdf.org/
http://www.dotnetrdf.org/
https://bitbucket.org/dotnetrdf/dotnetrdf/wiki/Home
http://github.com/complexible/stardog-spring
https://github.com/complexible/stardog-spring/releases


/

Basic Spring

There are three Beans to add to a Spring application context:

DataSourceFactoryBean : com.complexible.stardog.ext.spring.DataSourceFactoryBean

SnarlTemplate : com.complexible.stardog.ext.spring.SnarlTemplate

DataImporter : com.complexible.stardog.ext.spring.DataImporter

DataSourceFactoryBean  is a Spring FactoryBean  that configures and produces a DataSource . All of the Stardog
ConnectionConfiguration  and ConnectionPoolConfig  methods are also property names of the
DataSourceFactoryBean --for example, "to", "url", "createIfNotPresent". If you are interested in running an embedded

server, use the Provider  interface and inject it into the DataSourceFactoryBean . Note: all of the server jars must be
added to your classpath for using the embedded server.

javax.sql.DataSource , that can be used to retrieve a Connection  from the ConnectionPool . This additional
abstraction serves as place to add Spring-specific capabilities (e.g. spring-tx  support in the future) without directly
requiring Spring in Stardog.

SnarlTemplate  provides a template abstraction over much of Stardog’s native API, SNARL (#_java_programming),
and follows the same approach of other Spring template, i.e., JdbcTemplate , JmsTemplate , and so on.

Spring for Stardog also comes with convenience mappers, for automatically mapping result set bindings into common
data types. The SimpleRowMapper  projects the BindingSet  as a List>  and a SingleMapper  that accepts a
constructor parameter for binding a single parameter for a single result set.

The key methods on SnarlTemplate  include the following:

query()  executes the SELECT query with provided argument list, and invokes the mapper for result rows.

doWithAdder()  is a transaction- and connection-pool safe adder call.

doWithGetter()  is the connection pool boilerplate method for the Getter  interface, including the programmatic
filters.

doWithRemover()  As above, the remover method that is transaction and pool safe.

execute()  lets you work with a connection directly; again, transaction and pool safe.

construct()  executes a SPARQL CONSTRUCT query with provided argument list, and invokes the GraphMapper  for
the result set.

DataImporter  is a new class that automates the loading of RDF files into Stardog at initialization time.

It uses the Spring Resource API, so files can be loaded anywhere that is resolvable by the Resource API: classpath, file,
url, etc. It has a single load method for further run-time loading and can load a list of files at initialization time. The list
assumes a uniform set of file formats, so if there are many di�erent types of files to load with di�erent RDF formats,
there would be di�erent DataImporter  beans configured in Spring.

query(String sparqlQuery, Map args, RowMapper)

doWithAdder(AdderCallback)

doWithGetter(String subject, String predicate, GetterCallback)

doWithRemover(RemoverCallback)

execute(ConnectionCallback)

construct(String constructSparql, Map args, GraphMapper)



/

Spring Batch

In addition to the base DataSource  and SnarlTemplate , Spring Batch support adds the following:

SnarlItemReader : com.complexible.stardog.ext.spring.batch.SnarlItemReader

SnarlItemWriter : com.complexible.stardog.ext.spring.batch.SnarlItemWriter

BatchAdderCallback : com.complexible.stardog.ext.spring.batch.BatchAdderCallback

GROOVY PROGRAMMING

Groovy (http://http://groovy.codehaus.org/) is an agile and dynamic programming language for the JVM, making
popular programming features such as closures available to Java developers. Stardog’s Groovy support makes life
easier for developers who need to work with RDF, SPARQL, and OWL by way of Stardog.

The Groovy for Stardog source code (http://github.com/complexible/stardog-groovy) is available on Github.

Binary releases are available on the Github release page (https://github.com/complexible/stardog-groovy/releases) and
via Maven central as of version 2.1.3 and beyond using the following dependency declaration (Gradle style)
com.complexible.stardog:stardog-groovy:2.1.3 .

As of version 2.1.3, Stardog-Groovy can be included via "com.complexible.stardog:stardog-groovy:2.1.3" from Maven
central.

NOTE
You must include our public repository in your build script to get the Stardog client dependencies into
your local repository.

Using the embedded server with Stardog Groovy is not supported in 2.1.2, due to conflicts of the asm library for various
third party dependencies. If you wish to use the embedded server with similar convenience APIs, please try Stardog
with Spring (#_spring_programming). Also 2.1.3 and beyond of Stardog-Groovy no longer requires the use of the Spring
framework.

The Stardog-Groovy version always matches the Stardog release, e.g. for Stardog 2.2.2 use stardog-groovy-2.2.2.

Overview

Groovy for Stardog provides a set of Groovy API wrappers for developers to build applications with Stardog and take
advantage of native Groovy features. For example, you can create a Stardog connection pool in a single line, much like
Groovy SQL support. In Groovy for Stardog, queries can be iterated over using closures and transaction safe closures
can be executed over a connection.

For the first release, Groovy for Stardog includes com.complexible.stardog.ext.groovy.Stardog  with the
following methods:

1. Stardog(map)  constructor for managing Stardog connection pools

2. each(String, Closure)  for executing a closure over a query’s results, including projecting SPARQL result
variables into the closure.

3. query(String, Closure)  for executing a closure over a query’s results, passing the BindingSet to the closure

4. insert(List)  for inserting a list of vars as a triple, or a list of list of triples for insertion

5. remove(List)  for removing a triple from the database

6. withConnection  for executing a closure with a transaction safe instance of Connection
(/docs/5.3.6/java/snarl/com/complexible/stardog/api/connection)

Examples

http://http//groovy.codehaus.org/
http://github.com/complexible/stardog-groovy
https://github.com/complexible/stardog-groovy/releases
https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/api/connection


/

Here are some examples of the more interesting parts of Stardog Groovy.

Create a Connection

SPARQL Vars Projected into Groovy Closures

Add & Remove Triples

withConnection Closure

SPARQL Update Support

MIGRATION GUIDE

Given the impact of the new storage engine in Stardog 6, we are departing from our ordinary practice and running a
closed alpha release program for customers and then an open beta release program for anyone. The following
migration guidance is intended to smooth the migration path, both in alpha and beta release programs.

WARNING
You should not migrate mission-critical data or any data that you cannot a�ord to lose. This is
presently an alpha release so plan accordingly.

Migrating to Stardog 6

Stardog 6 introduces a new storage engine and snapshot isolation (https://en.wikipedia.org/wiki/Snapshot_isolation)
for concurrent transactions. This section provides an overview of those changes and how they a�ect users and
programs written against previous versions.

Stardog 6 introduces a completely new disk index format and databases created by previous versions of Stardog must
be migrated in order to work with Stardog 6. There is a dedicated CLI command for migrating the contents of an existing
Stardog home directory (i.e., all of the databases in a multi-tenant system).

Functionality Unavailable During Alpha

The following functionality of Stardog 5 is unavailable during the Stardog 6 alpha release and will be available in
Stardog 6 beta releases.

Versioning (#_versioning)

Machine Learning (#_machine_learning)

Unresolved directive in groovy.ad - 

include::https://gist.githubusercontent.com/AlBaker/4652565/raw/StardogConnection.groovy[]

Unresolved directive in groovy.ad - 

include::https://gist.githubusercontent.com/AlBaker/4652590/raw/Projection.groovy[]

Unresolved directive in groovy.ad - 

include::https://gist.githubusercontent.com/AlBaker/4652608/raw/StardogAddRemove.groovy[]

Unresolved directive in groovy.ad - 

include::https://gist.githubusercontent.com/AlBaker/4652621/raw/StardogWithConnection.groovy[]

Unresolved directive in groovy.ad - 

include::https://gist.githubusercontent.com/AlBaker/7862684/raw/StardogGroovyUpdate.groovy[]

https://en.wikipedia.org/wiki/Snapshot_isolation


/

NOTE

The following instructions are for migrating all the databases in an existing STARDOG_HOME
directory. Instead of migrating all the databases you can start with a new empty home directory and
restore select databases using backups created by Stardog versions 4 or 5. If you use the following
instructions with very large databases then you should increase the memory settings by setting the
environment variable STARDOG_JAVA_ARGS. The memory settings you use for Stardog 5 would work
well with the migrate command.

Migrating Stardog

The steps for a single server migration:

Stop the existing Stardog server; do not start Stardog 6 or have either server running

Create a new empty Stardog home folder (we’ll call it NEW_HOME )

Copy your license file to NEW_HOME

Unzip the Stardog 6 distribution

In Stardog 6 distribution, run the following command:

The command will migrate the contents of the each database along with the system database that contains users, roles,
permissions, and other metadata. Progress for the migration will be printed to STDOUT  and can take a significant
amount of time if you have large databases. The stardog.properties  (if it exists) file will not be copied
automatically. See the next section for changes to the configuration options.

Migrating Docker-hosted Stardog

The migration process for Stardog running in Docker is e�ectively the same with a couple of Docker-specific di�erences.

Stop your Docker container.

Create a new directory on the Docker host machine (we’ll call it NEW_HOME ).

Copy your license file to NEW_HOME

Run the Stardog 6 Docker container in the following way, which will bring you to a command prompt within the
container:

$ docker run -v <path to NEW_HOME>:/var/opt/stardog -v <path to OLD_HOME>:/old_stardog \ 

--entrypoint /bin/bash -it complexible-eps-docker.jfrog.io/stardog:6.0.0-alpha

Run the Stardog 6 migration tool in the following way:

$ /opt/stardog/bin/stardog-admin server migrate /old_stardog /var/opt/stardog

Migrating Stardog Cluster

The migration steps for the cluster:

Stop all of the cluster nodes, but not the ZK cluster

Follow the above steps for single server migration on any one cluster node

Run the command stardog-admin zk clear

Start the node where migration completed with Stardog 6

On the other cluster nodes, create empty home folders

Start another node, wait for the node to join the cluster, and then repeat for each cluster node

Disk Usage and Layout

$ stardog-admin server migrate OLD_HOME NEW_HOME



/

The layout of data in Stardog 6 home directory is di�erent than in all previous versions. Previously the data stored in a
database was stored under a directory with the name of the database. In Stardog 6 the data for all databases is stored in
a directory named data  in the home directory. The database directories still exist but they contain only index
metadata along with search and spatial index if those features are enabled.

The disk usage requirements for Stardog 6 are higher than Stardog 5. The actual di�erence will depend on the
characteristics of your data, but you should expect to see 20% to 30% increase in disk usage. Similar to Stardog 5, the
disk usage of bulk loaded databases, e.g. when data is loaded by the stardog-admin db create  command, will be
lower than the disk usage when the same data is added incrementally, that is, in smaller transactions over time.

Memory Databases

Stardog 6 no longer supports in-memory databases. If keeping all data in memory is desired, we recommend placing
the home directory on a RAM disk and create databases in the usual way.

Database Optimization & Compaction

Similar to Stardog 5, Stardog 6 performance degrades over time as the database is updated with transactions. The disk
usage will continue to increase and data deleted by transactions will not be removed from disk. The existing db
optimize  command can be used to perform index compaction on disk to improve the performance of reads and writes.

Database Configuration

Most server and database options and their semantics are unchanged in Stardog 6, with the following exceptions:

Options starting with index.differential. . Stardog 6 has a new mechanism which replaces the previous
implementation of di�erential index (#_di�erential_indexes).

transaction.isolation  needs to be set to SERIALIZABLE  for ICV guard mode (#ICV Guard Mode) in order to
ensure data integrity w.r.t. the constraints.

Snapshot Isolation

Stardog 6 uses a multi-versioned concurrency control (MVCC) model providing lock-free transactions with snapshot
isolation guarantees. Stardog 5 provided a weaker snapshot isolation mechanism that required writers to acquire locks
that sometimes blocked other transactions for a very long time, which is no longer the case. As a result, the
performance of concurrent updates is greatly improved in Stardog 6, especially in the cluster setting.

An implication of the new MVCC approach is that if two concurrent transactions try to add or remove the same triple,
one of the transactions will be aborted with a transaction conflict. In Stardog 5, such transactions were allowed. This
caused anomalies when transactions updated the same triples value, e.g. updating a counter. In Stardog 6, the client
should decide if conflicted transactions should be retried or aborted.

Migrating to Stardog 5

Stardog 5 introduces significant changes; this section provides an overview of those changes and how they a�ect users.

Disk Indexes

Stardog 5 does not change the format of disk indexes but uses new algorithms and data structures for computing an
storing statistics for improved query planning. Migration of statistics is performed automatically the first time Stardog is
started even if server start  is executed without the --upgrade  option. This migration might take a while based on
your databases size and a progress of the update will be printed on the console.

The new statistics is not backward compatible and old versions of Stardog cannot be started with the same home
directory a�er statistics has been migrated. If you want to revert back to an older version of Stardog you should
manually delete all the statistics.*  directories and Stardog 4 will recompute the statistics on start up. Again, this
might take considerable time for large databases. If you want to switch between Stardog 4 and Stardog 5 quickly you
should have two copies of your home directory.

Network Protocol



/

SNARL protocol was deprecated in Stardog 4 and is completely removed in Stardog 5. Note that, this does not a�ect the
SNARL Java API which continues to be the preferred API to work with Stardog 5. If you have been using SNARL protocol,
i.e. connection strings that begin with snarl://  (or snarls:// ), then you should change your connection strings to
begin with http://  (or https:// ). If you are using the SNARL Java API you might need to update your library
dependencies to use the HTTP client dependency. See the Using Maven (#_using_maven) section for details.

Embedded Mode

Stardog 5 no longer requires a running server for use of Stardog in an embedded manner. To use an embedded version
of Stardog, you simply start Stardog:

Then use the existing SNARL API methods for connecting to an embedded server. See our examples
(https://github.com/stardog-union/stardog-
examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/api/ConnectionAPIExample.java)
for a complete demonstration of using Stardog.

UNDERSTANDING STARDOG

Background information on performance, testing, terminology, known issues, compatibility policies, etc.

FAQ

Some frequently asked questions for which we have answers.

How do I report a bug? What information should I include?

Question

Something isn’t working and I don’t know what to do… 

Answer

A bug report seems prudent in this case; customers should use their dedicated support channel. Others may use the
support forum (https://community.stardog.com). You should include, at a minimum:

1. which release and version of Stardog you are using 4.x? 5.x? Community? Enterprise?

2. which JVM you are using

3. anything from stardog.log  (in STARDOG_HOME ) that seems relevant

Why can’t I load Dbpedia (or other RDF) data?

Question

I get a parsing error when loading Dbpedia or some other RDF. What can I do?

Answer

First, it’s not a bad thing to expect data providers to publish valid data. Second, it is, apparently, a very naive thing to
expect data providers to publish valid data… 

Stardog supports a loose parsing mode which will ignore certain kinds of data invalidity and may allow you to load
invalid data. See strict.parsing  in Configuration Options (#_configuration_options).

Why doesn’t search work?

Question

Stardog aStardog = Stardog.builder().create(); 

try { 

    // use stardog 

} 

finally { 

    aStardog.shutdown(); 

}

https://github.com/stardog-union/stardog-examples/blob/develop/examples/api/main/src/com/complexible/stardog/examples/api/ConnectionAPIExample.java
https://community.stardog.com/


/

I created a database but search doesn’t work.

Answer

Search is disabled by default; you can enable it at database creation time, or at any subsequent time, using the Web
Console or by using metadata set  (/man/metadata-set.html) CLI. It can be enabled using db create  (/man/db-
create.html) too.

Why don’t my queries work?!

Question

I’ve got some named graphs and blah blah my queries don’t work blah blah.

Answer

Queries with FROM NAMED with a named graph that is not in Stardog will not cause Stardog to download the data
from an arbitrary HTTP URL and include it in the query. Stardog will only evaluate queries over data that has been
loaded into it.

SPARQL queries without a context or named graph are executed against the default, unnamed graph. In Stardog, the
default graph is not the union of all the named graphs and the default graph. This behavior is configurable via the
query.all.graphs  configuration parameter.

Why is Stardog Cluster acting weird or running slowly?

Question

Should I put Stardog HA and Zookeeper on the same hard drives?

Answer

Never do this! Zookeeper is disk-intensive and displays bad I/O contention with Stardog query evaluation. Running
both Zk and Stardog on the same disks will result in bad performance and, in some cases, intermittent failures.

SPARQL 1.1

Question

Does Stardog support SPARQL 1.1?

Answer

Yes.

Deadlocks and Slowdowns

Question

Stardog slows down or deadlocks?! I don’t understand why, I’m just trying to send some queries and do something
with the results… in a tight inner loop of doom!

Answer

Make sure you are closing result sets ( TupleQueryResult  and GraphQueryResult ; or the Jena equivalents) when
you are done with them. These hold open resources both on the client and on the server and failing to close them
when you are done will cause files, streams, lions, tigers, and bears to be held open. If you do that enough, then you’ll
eventually exhaust all of the resources in their respective pools, which can cause slowness or, in some cases,
deadlocks waiting for resources to be returned.

Similarly close your connections when you are done with them. Failing to close Connections , Iterations ,
QueryResults , and other closeable objects will lead to undesirable behavior.

Update Performance

Question

I’m adding one triple at a time, in a tight loop, to Stardog; is this the ideal strategy with respect to performance?

Answer

https://www.stardog.com/man/metadata-set.html
https://www.stardog.com/man/db-create.html


/

The answer is "not really"… Update performance is best if there are fewer transactions that modify larger number of
triples. If you are using the Stardog Java API, the client will bu�er changes in large transactions and flush the bu�er
periodically so you don’t need to worry about memory problems. If you need transactions with small number of
triples then you may need to experiment to find the sweet spot with respect to your data, database size, the size of
the di�erential index, and update frequency.

Public Endpoint

Question

I want to use Stardog to serve a public SPARQL endpoint; is there some way I can do this without publishing user
account information?

Answer

We don’t necessarily recommend this, but it’s possible. Simply pass --disable-security  to stardog-admin
when you start the Stardog Server. This completely disables security in Stardog which will let users access the
SPARQL endpoint, and all other functionality, without needing authorization.

Remote Bulk Loading

Question

I’m trying to create a database and bulk load files from my machine to the server and it’s not working, the files don’t
seem to load, what gives?

Answer

Stardog does not transfer files during database creation to the server, sending big files over a network kind of defeats
the purpose of blazing fast bulk loading. If you want to bulk load files from your machine to a remote server, copy
them to the server and bulk load them.

Canonicalized Literals

Question

Why doesn’t my literal look the same as I when I added it to Stardog?

Answer

Stardog performs literal canonicalization
(/docs/5.3.6/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERALS) by default. This can
be turned o� by setting index.literals.canonical  to false . See Configuration Options
(#_configuration_options) for the details.

Cluster Isn’t Working

Question

I’ve setup Stardog Cluster, but it isn’t working and I have NoRouteToHostException  exceptions all over my
Zookeeper log.

Answer

Typically— but especially on Red Hat Linux and its variants— this means that iptables  is blocking one, some, or all
of the ports that the Cluster is trying to use. You can disable iptables  or, better yet, configure it to unblock the
ports Cluster is using.

Client Connection Isn’t Working

Question

I’m getting a ServiceConfigurationError  saying that SNARLDriver  could not be instantiated.

Answer

Make sure that your classpath includes all Stardog JARs and that the user executing your code has access to them.

Logging

Question

https://www.stardog.com/docs/5.3.6/java/snarl/com/complexible/stardog/index/indexoptions#CANONICAL_LITERALS


/

Why doesn’t Stardog implement our (byzantine and proprietary!) corporate logging scheme?

Answer

Stardog 4 will log to $STARDOG_HOME/stardog.log  by default (#_logging), but you can use a log4j 2 config file in
$STARDOG_HOME  so that Stardog will log wherever & however you want.

Loading Compressed Data

Question

How can I load data from a compressed format that Stardog doesn’t support without decompressing the file?

Answer

Stardog supports several compression formats by default (zip, gzip, bzip2) so files compressed with those formats
can be passed as input directly without decompression. Files compressed with other formats can also be loaded to
Stardog by decompressing them on-the-fly using named pipes (http://en.wikipedia.org/wiki/Named_pipe) in Unix-
like systems. The following example shows using a named pipe where the decompressed data is sent directly to
Stardog without being writing to disk.

SNARL Protocol

Question

I’m using Stardog and I’m seeing messages about SNARL deprecation, what’s that about?

Answer

As of Stardog 4.2, the SNARL protocol is no longer the default protocol for Stardog and is deprecated. Support for the
SNARL protocol will be removed in the Stardog 5 release. The HTTP protocol is now the default protocol and is
recommended for all users. If you’re seeing the deprecation warnings it’s because you’re explicitly using the SNARL
protocol somewhere in your application.

All you have to do to migrate these usages is change snarl / snarls  to http / https  and you’re done. You can no
longer disable support for HTTP when starting the server; the --no-http  option does noting, and the SNARL
protocol is not enabled by default anymore and has to be explicitly enabled by using --snarl .

Please note, the SNARL protocol has been deprecated. The SNARL API is still supported and the recommended Java
API for Stardog.

Working with RDF Files

Question

I have some RDF files that I need to process without loading into Stardog. What can I do?

Answer

As of Stardog 5.0, Stardog provides some CLI commands that work directly over files. These commands exist under
the stardog file  command. For example, you can use the file cat  (https://stardog.com/docs/man/file-cat)
command to concatenate multiple RDF files into a single file and file split  (https://stardog.com/docs/man/file-
split) command to split a single RDF file into multiple RDF files. These commands are similar to their *nix
counterparts but can handle RDF formats and perform compression/decompression on-the-fly. There is also the
file obfuscate  (https://stardog.com/docs/man/file-obfuscate) command that can create an obfuscated version of

the input RDF files similar to data obfuscate  (https://stardog.com/docs/man/data-obfuscate) command.

Virtual Graph JDBC Driver Requirements

Question

What JDBC driver do I need for a virtual graph connection?

Answer

$ mkfifo some-data.rdf 

$ xz -dc some-data.rdf.xz > some-data.rdf & 

$ stardog-admin db create -n test some-data.rdf

http://en.wikipedia.org/wiki/Named_pipe
https://stardog.com/docs/man/file-cat
https://stardog.com/docs/man/file-split
https://stardog.com/docs/man/file-obfuscate
https://stardog.com/docs/man/data-obfuscate


/

Virtual graph connections require a JDBC driver supporting JDBC 4.1 / Java 7. For Oracle, this means ojdbc7.jar  or
later.

Virtual Graph Identifier Quoting

Question

How do I quote field and table names in mappings and when should I do it?

Answer

Interpretation of identifiers follows that of the database system backing the virtual graph. For example, Oracle,
interprets nonquoted identifiers as uppercase. PostgreSQL interprets unquoted identifiers as lowercase. In general, if
you need to quote the identifier in a query, then you should quote it in a mapping.

Quoting is done using the native quoting character of the database. This means double quote for Oracle, PostgreSQL
and other SQL standard-compatible systems. MySQL uses a backquote and SQL Server uses square brackets. This
setting can be overridden by adding parser.sql.quoting=ANSI  to your virtual graph properties file. This will allow
the use of double quotes to quote identifiers. This is commonly done to write mappings using the R2RML convention
of using double quotes and supporting mappings generated by other systems.

Virtual Graph Table not Found

Question

Why am I getting an error when I try to create a virtual graph? Unable to parse logical table : From line 1,
column 15 to line 1, column 18: Object 'SOME_TABLE' not found

Answer

The virtual graph subsystem maintains a set of metadata including a list of tables and the types of their fields. If a
table is not found, it’s likely that it either needs to be quoted or the schema needs to be added to the search path by
adding sql.schemas  to your virtual graph properties file. This setting enables Stardog to see the table metadata in
the named schemas. The table/query still needs to be qualified with the schema name when referring to it.

Benchmark Results

Live, dynamically updated performance data
(https://docs.google.com/spreadsheets/d/1oHSWX_0ChZ61ofipZ1CMsW7OhyujioR28AfHzU9d56k/pubhtml) from BSBM,
SP2B, LUBM benchmarks against the latest Stardog release.

Compatibility Policies

The Stardog 5.x release ("Stardog" for short) is a major milestone in the development of the system. Stardog is a stable
platform for the growth of projects and programs written for Stardog.

Stardog provides (and defines) several user-visible things:

1. SNARL API

2. Stardog HTTP Protocol

3. a command-line interface

It is intended that programs—as well as SPARQL queries—written to Stardog APIs, protocols, and interfaces will
continue to run correctly, unchanged, over the lifetime of Stardog. That is, over all releases identified by version 5.x.y .
At some indefinite point, Stardog 6.x will be released; but, until that time, and likely even a�er it, Stardog programs that
work today should continue to work even as future releases of Stardog occur. APIs, protocols, and interfaces may grow,
acquiring new parts and features, but not in a way that breaks existing Stardog programs.

Expectations

Although we expect that nearly all Stardog programs will maintain this compatibility over time, it is impossible to
guarantee that no future change will break any program. This document sets expectations for the compatibility of
Stardog programs in the future. The main, foreseeable reasons for which this compatibility may be broken in the future

https://docs.google.com/spreadsheets/d/1oHSWX_0ChZ61ofipZ1CMsW7OhyujioR28AfHzU9d56k/pubhtml


/

include:

1. Security: We reserve the right to break compatibility if doing so is required to address a security problem in
Stardog.

2. Unspecified behavior: Programs that depend on unspecified  behaviors may not work in the
future if those behaviors are modified.

3. 3rd Party Specification Errors: It may become necessary to break compatibility of Stardog programs in order to
address problems in some 3rd party specification.

4. Bugs: It will not always be possible to fix bugs found in Stardog— or in its 3rd party dependencies— while also
preserving compatibility. With that proviso, we will endeavor to only break compatibility when repairing critical
bugs.

It is always possible that the performance of a Stardog program may be (adversely) a�ected by changes in the
implementation of Stardog. No guarantee can be made about the performance of a given program between releases,
except to say that our expectation is that performance will generally trend in the appropriate direction.

Data Migration & Safety

We expect that data safety will always be given greater weight than any other consideration. But since Stardog stores a
user’s data di�erently from the form in which data is input to Stardog, we may from time to time change the way it is
stored such that explicit data migration will be necessary.

Stardog provides for two data migration strategies:

1. Command-line migration tool(s)

2. Dump and reload

We expect that explicit migrations may be required from time to time between di�erent releases of Stardog. We will
endeavor to minimize the need for such migrations. We will only require the "dump and reload" strategy between major
releases of Stardog (that is, from 1.x to 2.x, etc.), unless that strategy of migration is required to repair a security or other
data safety bug.

Known Issues

The known issues in Stardog 5.3.6:

1. Our implementation of CONSTRUCT  slightly deviates from the SPARQL 1.1 specification
(http://www.w3.org/TR/sparql11-query/#construct): it does not implicitly DISTINCT  query results; rather, it
implicitly applies REDUCED  semantics to CONSTRUCT  query results.

2. Asking for all individuals with reasoning via the query {?s a owl:Thing}  might also retrieve some classes and
properties. WILLFIX

3. Schema queries do not bind graph variables.

4. Dropping a database deletes all of the data files in Stardog Home associated with that database. If you want to keep
the data files and remove the database from the system catalog, then you need to manually copy these files to
another location before dropping the database.

5. If relative URIs exist in the data files passed to create, add, or remove commands, then they will be resolved using
the constant base URI http://api.stardog.com/ (http://api.stardog.com/)  if, but only if, the format of the
file allows base URIs. Turtle and RDF/XML formats allows base URIs but N-Triples format doesn’t allow base URIs
and relative URIs in N-Triples data will cause errors.

6. Queries with FROM NAMED  with a named graph that is not in Stardog will not cause Stardog to download the data
from an arbitrary HTTP URL and include it in the query.

7. SPARQL queries without a context or named graph are executed against the default, unnamed graph. In Stardog,
the default graph is not the union of all the named graphs and the default graph. Note: this behavior is configurable
via the query.all.graphs  configuration parameter.

8. RDF literals are limited to 8MB (a�er compression) in Stardog. Input data with literals larger than 8MB (a�er
compression) will raise an exception.

[40 (#_footnote_40)]

[41 (#_footnote_41)]

http://www.w3.org/TR/sparql11-query/#construct
http://api.stardog.com/


/

Glossary

In the Stardog documentation, the following terms have a specific technical meaning.

Stardog Database
Management
System, aka
Stardog Server

An instance of Stardog; only one Stardog Server may run per JVM. A computer may run
multiple Stardog Servers by running one per multiple JVMs.

Stardog Home,
aka
STARDOG_HOME

A directory in a filesystem in which Stardog stores files and other information; established
either in a Stardog configuration file or by environment variable. Only one Stardog Server may
run simultaneously from a STARDOG_HOME .

Stardog Network
Home

A URL (HTTP or SNARL) which identifies a Stardog Server running on the network.

Database A Stardog database is a graph of RDF data under management of a Stardog Server. It may
contain zero or more RDF Named Graphs. A Stardog Server may manage more than one
Database; there is no hard limit, and the practical limit is disk space.

Database Short
Name, aka
Database Name

An identifier used to name a database, provided as input when a database is created.

Database Network
Name

A Database Short Name is part of the URI of a Database addressed over some network
protocol.

Index The unit of persistence for a Database. We sometimes (sloppily) use Database and Index
interchangeably in the manual.

Memory Database A Database may be stored in-memory or on disk; a Memory Database is read entirely into
system memory but can be (optionally) persisted to disk.

Disk Database A Disk Database is only paged into system memory as needed and is persisted using one or
more indexes.

Connection String An identifier (a restricted subset of legal URLs, actually) that is used to connect to a Stardog
database to send queries or perform other operations.

Named Graph A Named Graph is an explicitly named unit of data within a Database. Named Graphs are
queries explicitly by specifying them in SPARQL queries. There is no practical limit on the
number of Named Graphs in a Database.

Default Graph The Default Graph in a Database is the context into which RDF triples are stored when a
Named Graph is not explicitly specified. A SPARQL query executed by Stardog that does not
contain any Named Graph statements is executed against the data in the Default Graph only.

Security Realm A Security Realm defines the users and their permissions for each Database in an Stardog
Server. There is only one Security Realm per Stardog Server.

APPENDIX



/

Just move it to the Appendix for a great good!

SPARQL Query Functions

Stardog supports all of the functions in SPARQL, as well as some others from XPath and SWRL. Any of these functions
can be used in queries or rules. Function names don’t require namespace prefixes in general unless ambiguity is
present. XPath functions take precedence when resolving functions without namespace prefixes. Some functions
appear in multiple namespaces, but all of the namespaces will work:

10. Table of Stardog Function Namespaces

Prefix Namespace

stardog tag:stardog:api:functions:

fn http://www.w3.org/2005/xpath-functions# (http://www.w3.org/2005/xpath-

functions#)

math http://www.w3.org/2005/xpath-functions/math#

(http://www.w3.org/2005/xpath-functions/math#)

swrlb http://www.w3.org/2003/11/swrlb# (http://www.w3.org/2003/11/swrlb#)

leviathan http://www.dotnetrdf.org/leviathan# (http://www.dotnetrdf.org/leviathan#)

afn http://jena.hpl.hp.com/ARQ/function#

(http://jena.hpl.hp.com/ARQ/function#)

The function names and URIs supported by Stardog are included below. Some of these functions exist in SPARQL
natively, which just means they can be used without an explicit namespace. Some of the functions have a URI that can
be used but they are also overloaded arithmetic operators. For example, if you want to add two day time durations you
can simply use the expression ?duration1 + ?duration2  instead of swrlb:addDayTimeDurations(?duration1 + ?
duration2) .

11. Table of Stardog Function Names & URIs

Function name Recognized URIs and Symbols

abs ABS (https://www.w3.org/TR/sparql11-query/#func-abs), fn:numeric-abs
(http://www.w3.org/2005/xpath-functions#numeric-abs), swrlb:abs
(http://www.w3.org/2003/11/swrlb#abs)

acos math:acos (http://www.w3.org/2005/xpath-functions/math#acos),
leviathan:cos-1 (http://www.dotnetrdf.org/leviathan#cos-1)

addDayTimeDurations + , swrlb:addDayTimeDurations
(http://www.w3.org/2003/11/swrlb#addDayTimeDurations)

addDayTimeDurationToDate + , swrlb:addDayTimeDurationToDate
(http://www.w3.org/2003/11/swrlb#addDayTimeDurationToDate)

addDayTimeDurationToDateTime + , swrlb:addDayTimeDurationToDateTime
(http://www.w3.org/2003/11/swrlb#addDayTimeDurationToDateTime)

addDayTimeDurationToTime + , swrlb:addDayTimeDurationToTime
(http://www.w3.org/2003/11/swrlb#addDayTimeDurationToTime)

addYearMonthDurations + , swrlb:addYearMonthDurations
(http://www.w3.org/2003/11/swrlb#addYearMonthDurations)

addYearMonthDurationToDate + , swrlb:addYearMonthDurationToDate
(http://www.w3.org/2003/11/swrlb#addYearMonthDurationToDate)

http://www.w3.org/2005/xpath-functions#
http://www.w3.org/2005/xpath-functions/math#
http://www.w3.org/2003/11/swrlb#
http://www.dotnetrdf.org/leviathan#
http://jena.hpl.hp.com/ARQ/function#
https://www.w3.org/TR/sparql11-query/#func-abs
http://www.w3.org/2005/xpath-functions#numeric-abs
http://www.w3.org/2003/11/swrlb#abs
http://www.w3.org/2005/xpath-functions/math#acos
http://www.dotnetrdf.org/leviathan#cos-1
http://www.w3.org/2003/11/swrlb#addDayTimeDurations
http://www.w3.org/2003/11/swrlb#addDayTimeDurationToDate
http://www.w3.org/2003/11/swrlb#addDayTimeDurationToDateTime
http://www.w3.org/2003/11/swrlb#addDayTimeDurationToTime
http://www.w3.org/2003/11/swrlb#addYearMonthDurations
http://www.w3.org/2003/11/swrlb#addYearMonthDurationToDate


/

addYearMonthDurationToDateTime + , swrlb:addYearMonthDurationToDateTime
(http://www.w3.org/2003/11/swrlb#addYearMonthDurationToDateTime)

asin math:asin (http://www.w3.org/2005/xpath-functions/math#asin), leviathan:sin-
1 (http://www.dotnetrdf.org/leviathan#sin-1)

atan math:atan (http://www.w3.org/2005/xpath-functions/math#atan)

bnode BNODE (https://www.w3.org/TR/sparql11-query/#func-bnode)

boolean xsd:boolean (http://www.w3.org/2001/XMLSchema#boolean)

bound BOUND (https://www.w3.org/TR/sparql11-query/#func-bound)

cartesian leviathan:cartesian (http://www.dotnetrdf.org/leviathan#cartesian)

ceil CEIL (https://www.w3.org/TR/sparql11-query/#func-ceil), fn:numeric-ceil
(http://www.w3.org/2005/xpath-functions#numeric-ceil), swrlb:ceiling
(http://www.w3.org/2003/11/swrlb#ceiling)

coalesce COALESCE (https://www.w3.org/TR/sparql11-query/#func-coalesce)

concat CONCAT (https://www.w3.org/TR/sparql11-query/#func-concat), fn:concat
(http://www.w3.org/2005/xpath-functions#concat), swrlb:stringConcat
(http://www.w3.org/2003/11/swrlb#stringConcat)

contains CONTAINS (https://www.w3.org/TR/sparql11-query/#func-contains),
fn:contains (http://www.w3.org/2005/xpath-functions#contains),
swrlb:contains (http://www.w3.org/2003/11/swrlb#contains)

containsIgnoreCase swrlb:containsIgnoreCase
(http://www.w3.org/2003/11/swrlb#containsIgnoreCase)

cos math:cos (http://www.w3.org/2005/xpath-functions/math#cos), swrlb:cos
(http://www.w3.org/2003/11/swrlb#cos), leviathan:cos
(http://www.dotnetrdf.org/leviathan#cos)

cosec leviathan:cosec (http://www.dotnetrdf.org/leviathan#cosec)

cosec-1 leviathan:cosec-1 (http://www.dotnetrdf.org/leviathan#cosec-1)

cosh stardog:cosh

cotan leviathan:cotan (http://www.dotnetrdf.org/leviathan#cotan)

cotan-1 leviathan:cotan-1 (http://www.dotnetrdf.org/leviathan#cotan-1)

cube leviathan:cube (http://www.dotnetrdf.org/leviathan#cube)

datatype Datatype (https://www.w3.org/TR/sparql11-query/#func-datatype)

date swrlb:date (http://www.w3.org/2003/11/swrlb#date)

dateTime xsd:dateTime (http://www.w3.org/2001/XMLSchema#dateTime)

day DAY (https://www.w3.org/TR/sparql11-query/#func-day), fn:day-from-dateTime
(http://www.w3.org/2005/xpath-functions#day-from-dateTime), fn:day-from-
date (http://www.w3.org/2005/xpath-functions#day-from-date), fn:days-from-
duration (http://www.w3.org/2005/xpath-functions#days-from-duration)

dayTimeDuration swrlb:dayTimeDuration (http://www.w3.org/2003/11/swrlb#dayTimeDuration)

decimal xsd:decimal (http://www.w3.org/2001/XMLSchema#decimal)

divideDayTimeDuration / , swrlb:divideDayTimeDuration
(http://www.w3.org/2003/11/swrlb#divideDayTimeDuration)

http://www.w3.org/2003/11/swrlb#addYearMonthDurationToDateTime
http://www.w3.org/2005/xpath-functions/math#asin
http://www.dotnetrdf.org/leviathan#sin-1
http://www.w3.org/2005/xpath-functions/math#atan
https://www.w3.org/TR/sparql11-query/#func-bnode
http://www.w3.org/2001/XMLSchema#boolean
https://www.w3.org/TR/sparql11-query/#func-bound
http://www.dotnetrdf.org/leviathan#cartesian
https://www.w3.org/TR/sparql11-query/#func-ceil
http://www.w3.org/2005/xpath-functions#numeric-ceil
http://www.w3.org/2003/11/swrlb#ceiling
https://www.w3.org/TR/sparql11-query/#func-coalesce
https://www.w3.org/TR/sparql11-query/#func-concat
http://www.w3.org/2005/xpath-functions#concat
http://www.w3.org/2003/11/swrlb#stringConcat
https://www.w3.org/TR/sparql11-query/#func-contains
http://www.w3.org/2005/xpath-functions#contains
http://www.w3.org/2003/11/swrlb#contains
http://www.w3.org/2003/11/swrlb#containsIgnoreCase
http://www.w3.org/2005/xpath-functions/math#cos
http://www.w3.org/2003/11/swrlb#cos
http://www.dotnetrdf.org/leviathan#cos
http://www.dotnetrdf.org/leviathan#cosec
http://www.dotnetrdf.org/leviathan#cosec-1
http://www.dotnetrdf.org/leviathan#cotan
http://www.dotnetrdf.org/leviathan#cotan-1
http://www.dotnetrdf.org/leviathan#cube
https://www.w3.org/TR/sparql11-query/#func-datatype
http://www.w3.org/2003/11/swrlb#date
http://www.w3.org/2001/XMLSchema#dateTime
https://www.w3.org/TR/sparql11-query/#func-day
http://www.w3.org/2005/xpath-functions#day-from-dateTime
http://www.w3.org/2005/xpath-functions#day-from-date
http://www.w3.org/2005/xpath-functions#days-from-duration
http://www.w3.org/2003/11/swrlb#dayTimeDuration
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2003/11/swrlb#divideDayTimeDuration


/

divideYearMonthDuration / , swrlb:divideYearMonthDuration
(http://www.w3.org/2003/11/swrlb#divideYearMonthDuration)

double xsd:double (http://www.w3.org/2001/XMLSchema#double)

e leviathan:e (http://www.dotnetrdf.org/leviathan#e), math:exp
(http://www.w3.org/2005/xpath-functions/math#exp), afn:e
(http://jena.hpl.hp.com/ARQ/function#e)

encode_for_uri ENCODE_FOR_URI (https://www.w3.org/TR/sparql11-query/#func-
encode_for_uri), fn:encode-for-uri (http://www.w3.org/2005/xpath-
functions#encode-for-uri)

factorial leviathan:factorial (http://www.dotnetrdf.org/leviathan#factorial)

float xsd:float (http://www.w3.org/2001/XMLSchema#float)

floor FLOOR (https://www.w3.org/TR/sparql11-query/#func-floor), fn:numeric-floor
(http://www.w3.org/2005/xpath-functions#numeric-floor), swrlb:floor
(http://www.w3.org/2003/11/swrlb#floor)

gmean tag:stardog:api:gmean

hours HOURS (https://www.w3.org/TR/sparql11-query/#func-hours), fn:hours-from-
dateTime (http://www.w3.org/2005/xpath-functions#hours-from-dateTime),
fn:hours-from-time (http://www.w3.org/2005/xpath-functions#hours-from-
time), fn:hours-from-duration (http://www.w3.org/2005/xpath-
functions#hours-from-duration)

identifier tag:stardog:api:identifier

if IF (https://www.w3.org/TR/sparql11-query/#func-if)

integer xsd:integer (http://www.w3.org/2001/XMLSchema#integer)

iri IRI (https://www.w3.org/TR/sparql11-query/#func-iri), URI
(https://www.w3.org/TR/sparql11-query/#func-uri)

isbnode IsBNode (https://www.w3.org/TR/sparql11-query/#func-isbnode)

isiri IsIRI (https://www.w3.org/TR/sparql11-query/#func-isiri), IsURI
(https://www.w3.org/TR/sparql11-query/#func-isuri)

isliteral IsLiteral (https://www.w3.org/TR/sparql11-query/#func-isliteral)

isnumeric IsNumeric (https://www.w3.org/TR/sparql11-query/#func-isnumeric)

isresource IsResource (https://www.w3.org/TR/sparql11-query/#func-isresource)

lang Lang (https://www.w3.org/TR/sparql11-query/#func-lang)

langmatches LangMatches (https://www.w3.org/TR/sparql11-query/#func-langmatches)

lcase LCASE (https://www.w3.org/TR/sparql11-query/#func-lcase), fn:lower-case
(http://www.w3.org/2005/xpath-functions#lower-case), swrlb:lowerCase
(http://www.w3.org/2003/11/swrlb#lowerCase)

localname stardog:localname , afn:localname
(http://jena.hpl.hp.com/ARQ/function#localname)

log math:log (http://www.w3.org/2005/xpath-functions/math#log), leviathan:ln
(http://www.dotnetrdf.org/leviathan#ln)

log10 math:log10 (http://www.w3.org/2005/xpath-functions/math#log10),
leviathan:log (http://www.dotnetrdf.org/leviathan#log)

http://www.w3.org/2003/11/swrlb#divideYearMonthDuration
http://www.w3.org/2001/XMLSchema#double
http://www.dotnetrdf.org/leviathan#e
http://www.w3.org/2005/xpath-functions/math#exp
http://jena.hpl.hp.com/ARQ/function#e
https://www.w3.org/TR/sparql11-query/#func-encode_for_uri
http://www.w3.org/2005/xpath-functions#encode-for-uri
http://www.dotnetrdf.org/leviathan#factorial
http://www.w3.org/2001/XMLSchema#float
https://www.w3.org/TR/sparql11-query/#func-floor
http://www.w3.org/2005/xpath-functions#numeric-floor
http://www.w3.org/2003/11/swrlb#floor
https://www.w3.org/TR/sparql11-query/#func-hours
http://www.w3.org/2005/xpath-functions#hours-from-dateTime
http://www.w3.org/2005/xpath-functions#hours-from-time
http://www.w3.org/2005/xpath-functions#hours-from-duration
https://www.w3.org/TR/sparql11-query/#func-if
http://www.w3.org/2001/XMLSchema#integer
https://www.w3.org/TR/sparql11-query/#func-iri
https://www.w3.org/TR/sparql11-query/#func-uri
https://www.w3.org/TR/sparql11-query/#func-isbnode
https://www.w3.org/TR/sparql11-query/#func-isiri
https://www.w3.org/TR/sparql11-query/#func-isuri
https://www.w3.org/TR/sparql11-query/#func-isliteral
https://www.w3.org/TR/sparql11-query/#func-isnumeric
https://www.w3.org/TR/sparql11-query/#func-isresource
https://www.w3.org/TR/sparql11-query/#func-lang
https://www.w3.org/TR/sparql11-query/#func-langmatches
https://www.w3.org/TR/sparql11-query/#func-lcase
http://www.w3.org/2005/xpath-functions#lower-case
http://www.w3.org/2003/11/swrlb#lowerCase
http://jena.hpl.hp.com/ARQ/function#localname
http://www.w3.org/2005/xpath-functions/math#log
http://www.dotnetrdf.org/leviathan#ln
http://www.w3.org/2005/xpath-functions/math#log10
http://www.dotnetrdf.org/leviathan#log


/

max fn:max (http://www.w3.org/2005/xpath-functions#max), afn:max
(http://jena.hpl.hp.com/ARQ/function#max)

md5 MD5 (https://www.w3.org/TR/sparql11-query/#func-md5), leviathan:md5hash
(http://www.dotnetrdf.org/leviathan#md5hash)

min fn:min (http://www.w3.org/2005/xpath-functions#min), afn:min
(http://jena.hpl.hp.com/ARQ/function#min)

minutes MINUTES (https://www.w3.org/TR/sparql11-query/#func-minutes), fn:minutes-
from-dateTime (http://www.w3.org/2005/xpath-functions#minutes-from-
dateTime), fn:minutes-from-time (http://www.w3.org/2005/xpath-
functions#minutes-from-time), fn:minutes-from-duration
(http://www.w3.org/2005/xpath-functions#minutes-from-duration)

mod swrlb:mod (http://www.w3.org/2003/11/swrlb#mod)

month MONTH (https://www.w3.org/TR/sparql11-query/#func-month), fn:month-
from-dateTime (http://www.w3.org/2005/xpath-functions#month-from-
dateTime), fn:month-from-date (http://www.w3.org/2005/xpath-
functions#month-from-date), fn:months-from-duration
(http://www.w3.org/2005/xpath-functions#months-from-duration)

multiplyDayTimeDuration * , swrlb:multiplyDayTimeDuration
(http://www.w3.org/2003/11/swrlb#multiplyDayTimeDuration)

multiplyYearMonthDuration * , swrlb:multiplyYearMonthDuration
(http://www.w3.org/2003/11/swrlb#multiplyYearMonthDuration)

namespace stardog:namespace , afn:namespace
(http://jena.hpl.hp.com/ARQ/function#namespace)

normalizeSpace normalizeSpace (https://www.w3.org/TR/sparql11-query/#func-
normalizeSpace), fn:normalize-space (http://www.w3.org/2005/xpath-
functions#normalize-space), swrlb:normalizeSpace
(http://www.w3.org/2003/11/swrlb#normalizeSpace)

now NOW (https://www.w3.org/TR/sparql11-query/#func-now)

numeric-add fn:numeric-add (http://www.w3.org/2005/xpath-functions#numeric-add)

numeric-divide fn:numeric-divide (http://www.w3.org/2005/xpath-functions#numeric-divide),
swrlb:divide (http://www.w3.org/2003/11/swrlb#divide)

numeric-integer-divide fn:numeric-integer-divide (http://www.w3.org/2005/xpath-functions#numeric-
integer-divide), swrlb:integerDivide
(http://www.w3.org/2003/11/swrlb#integerDivide)

numeric-multiply fn:numeric-multiply (http://www.w3.org/2005/xpath-functions#numeric-
multiply)

numeric-round-half-to-even fn:numeric-round-half-to-even (http://www.w3.org/2005/xpath-
functions#numeric-round-half-to-even), swrlb:roundHalfToEven
(http://www.w3.org/2003/11/swrlb#roundHalfToEven)

numeric-subtract fn:numeric-subtract (http://www.w3.org/2005/xpath-functions#numeric-
subtract), swrlb:subtract (http://www.w3.org/2003/11/swrlb#subtract)

numeric-unary-minus fn:numeric-unary-minus (http://www.w3.org/2005/xpath-functions#numeric-
unary-minus), swrlb:unaryMinus
(http://www.w3.org/2003/11/swrlb#unaryMinus)

numeric-unary-plus fn:numeric-unary-plus (http://www.w3.org/2005/xpath-functions#numeric-
unary-plus), swrlb:unaryPlus (http://www.w3.org/2003/11/swrlb#unaryPlus)

http://www.w3.org/2005/xpath-functions#max
http://jena.hpl.hp.com/ARQ/function#max
https://www.w3.org/TR/sparql11-query/#func-md5
http://www.dotnetrdf.org/leviathan#md5hash
http://www.w3.org/2005/xpath-functions#min
http://jena.hpl.hp.com/ARQ/function#min
https://www.w3.org/TR/sparql11-query/#func-minutes
http://www.w3.org/2005/xpath-functions#minutes-from-dateTime
http://www.w3.org/2005/xpath-functions#minutes-from-time
http://www.w3.org/2005/xpath-functions#minutes-from-duration
http://www.w3.org/2003/11/swrlb#mod
https://www.w3.org/TR/sparql11-query/#func-month
http://www.w3.org/2005/xpath-functions#month-from-dateTime
http://www.w3.org/2005/xpath-functions#month-from-date
http://www.w3.org/2005/xpath-functions#months-from-duration
http://www.w3.org/2003/11/swrlb#multiplyDayTimeDuration
http://www.w3.org/2003/11/swrlb#multiplyYearMonthDuration
http://jena.hpl.hp.com/ARQ/function#namespace
https://www.w3.org/TR/sparql11-query/#func-normalizeSpace
http://www.w3.org/2005/xpath-functions#normalize-space
http://www.w3.org/2003/11/swrlb#normalizeSpace
https://www.w3.org/TR/sparql11-query/#func-now
http://www.w3.org/2005/xpath-functions#numeric-add
http://www.w3.org/2005/xpath-functions#numeric-divide
http://www.w3.org/2003/11/swrlb#divide
http://www.w3.org/2005/xpath-functions#numeric-integer-divide
http://www.w3.org/2003/11/swrlb#integerDivide
http://www.w3.org/2005/xpath-functions#numeric-multiply
http://www.w3.org/2005/xpath-functions#numeric-round-half-to-even
http://www.w3.org/2003/11/swrlb#roundHalfToEven
http://www.w3.org/2005/xpath-functions#numeric-subtract
http://www.w3.org/2003/11/swrlb#subtract
http://www.w3.org/2005/xpath-functions#numeric-unary-minus
http://www.w3.org/2003/11/swrlb#unaryMinus
http://www.w3.org/2005/xpath-functions#numeric-unary-plus
http://www.w3.org/2003/11/swrlb#unaryPlus


/

pi math:pi (http://www.w3.org/2005/xpath-functions/math#pi), afn:pi
(http://jena.hpl.hp.com/ARQ/function#pi)

pow math:pow (http://www.w3.org/2005/xpath-functions/math#pow), swrlb:pow
(http://www.w3.org/2003/11/swrlb#pow), leviathan:pow
(http://www.dotnetrdf.org/leviathan#pow)

pythagoras leviathan:pythagoras (http://www.dotnetrdf.org/leviathan#pythagoras)

rand RAND (https://www.w3.org/TR/sparql11-query/#func-rand), leviathan:rnd
(http://www.dotnetrdf.org/leviathan#rnd)

reciprocal leviathan:reciprocal (http://www.dotnetrdf.org/leviathan#reciprocal)

regex Regex (https://www.w3.org/TR/sparql11-query/#func-regex), fn:matches
(http://www.w3.org/2005/xpath-functions#matches), swrlb:matches
(http://www.w3.org/2003/11/swrlb#matches)

replace REPLACE (https://www.w3.org/TR/sparql11-query/#func-replace), fn:replace
(http://www.w3.org/2005/xpath-functions#replace), swrlb:replace
(http://www.w3.org/2003/11/swrlb#replace)

root leviathan:root (http://www.dotnetrdf.org/leviathan#root)

round ROUND (https://www.w3.org/TR/sparql11-query/#func-round), fn:numeric-
round (http://www.w3.org/2005/xpath-functions#numeric-round), swrlb:round
(http://www.w3.org/2003/11/swrlb#round)

sameTerm sameTerm (https://www.w3.org/TR/sparql11-query/#func-sameTerm)

sec leviathan:sec (http://www.dotnetrdf.org/leviathan#sec)

sec-1 leviathan:sec-1 (http://www.dotnetrdf.org/leviathan#sec-1)

seconds SECONDS (https://www.w3.org/TR/sparql11-query/#func-seconds), fn:seconds-
from-dateTime (http://www.w3.org/2005/xpath-functions#seconds-from-
dateTime), fn:seconds-from-time (http://www.w3.org/2005/xpath-
functions#seconds-from-time), fn:seconds-from-duration
(http://www.w3.org/2005/xpath-functions#seconds-from-duration)

sha1 SHA1 (https://www.w3.org/TR/sparql11-query/#func-sha1)

sha256 SHA256 (https://www.w3.org/TR/sparql11-query/#func-sha256),
leviathan:sha256hash (http://www.dotnetrdf.org/leviathan#sha256hash)

sha384 SHA384 (https://www.w3.org/TR/sparql11-query/#func-sha384)

sha512 SHA512 (https://www.w3.org/TR/sparql11-query/#func-sha512)

sin math:sin (http://www.w3.org/2005/xpath-functions/math#sin), swrlb:sin
(http://www.w3.org/2003/11/swrlb#sin), leviathan:sin
(http://www.dotnetrdf.org/leviathan#sin)

sinh stardog:sinh

sq leviathan:sq (http://www.dotnetrdf.org/leviathan#sq)

sqrt math:sqrt (http://www.w3.org/2005/xpath-functions/math#sqrt), afn:sqrt
(http://jena.hpl.hp.com/ARQ/function#sqrt), leviathan:sqrt
(http://www.dotnetrdf.org/leviathan#sqrt)

str Str (https://www.w3.org/TR/sparql11-query/#func-str)

http://www.w3.org/2005/xpath-functions/math#pi
http://jena.hpl.hp.com/ARQ/function#pi
http://www.w3.org/2005/xpath-functions/math#pow
http://www.w3.org/2003/11/swrlb#pow
http://www.dotnetrdf.org/leviathan#pow
http://www.dotnetrdf.org/leviathan#pythagoras
https://www.w3.org/TR/sparql11-query/#func-rand
http://www.dotnetrdf.org/leviathan#rnd
http://www.dotnetrdf.org/leviathan#reciprocal
https://www.w3.org/TR/sparql11-query/#func-regex
http://www.w3.org/2005/xpath-functions#matches
http://www.w3.org/2003/11/swrlb#matches
https://www.w3.org/TR/sparql11-query/#func-replace
http://www.w3.org/2005/xpath-functions#replace
http://www.w3.org/2003/11/swrlb#replace
http://www.dotnetrdf.org/leviathan#root
https://www.w3.org/TR/sparql11-query/#func-round
http://www.w3.org/2005/xpath-functions#numeric-round
http://www.w3.org/2003/11/swrlb#round
https://www.w3.org/TR/sparql11-query/#func-sameTerm
http://www.dotnetrdf.org/leviathan#sec
http://www.dotnetrdf.org/leviathan#sec-1
https://www.w3.org/TR/sparql11-query/#func-seconds
http://www.w3.org/2005/xpath-functions#seconds-from-dateTime
http://www.w3.org/2005/xpath-functions#seconds-from-time
http://www.w3.org/2005/xpath-functions#seconds-from-duration
https://www.w3.org/TR/sparql11-query/#func-sha1
https://www.w3.org/TR/sparql11-query/#func-sha256
http://www.dotnetrdf.org/leviathan#sha256hash
https://www.w3.org/TR/sparql11-query/#func-sha384
https://www.w3.org/TR/sparql11-query/#func-sha512
http://www.w3.org/2005/xpath-functions/math#sin
http://www.w3.org/2003/11/swrlb#sin
http://www.dotnetrdf.org/leviathan#sin
http://www.dotnetrdf.org/leviathan#sq
http://www.w3.org/2005/xpath-functions/math#sqrt
http://jena.hpl.hp.com/ARQ/function#sqrt
http://www.dotnetrdf.org/leviathan#sqrt
https://www.w3.org/TR/sparql11-query/#func-str


/

stra�er STRAFTER (https://www.w3.org/TR/sparql11-query/#func-stra�er),
fn:substring-a�er (http://www.w3.org/2005/xpath-functions#substring-a�er),
swrlb:substringA�er (http://www.w3.org/2003/11/swrlb#substringA�er)

strbefore STRBEFORE (https://www.w3.org/TR/sparql11-query/#func-strbefore),
fn:substring-before (http://www.w3.org/2005/xpath-functions#substring-
before), swrlb:substringBefore
(http://www.w3.org/2003/11/swrlb#substringBefore)

strdt STRDT (https://www.w3.org/TR/sparql11-query/#func-strdt)

strends STRENDS (https://www.w3.org/TR/sparql11-query/#func-strends), fn:ends-with
(http://www.w3.org/2005/xpath-functions#ends-with), swrlb:endsWith
(http://www.w3.org/2003/11/swrlb#endsWith)

string xsd:string (http://www.w3.org/2001/XMLSchema#string)

stringEqualIgnoreCase swrlb:stringEqualIgnoreCase
(http://www.w3.org/2003/11/swrlb#stringEqualIgnoreCase)

strlang STRLANG (https://www.w3.org/TR/sparql11-query/#func-strlang)

strlen STRLEN (https://www.w3.org/TR/sparql11-query/#func-strlen), fn:string-length
(http://www.w3.org/2005/xpath-functions#string-length), swrlb:stringLength
(http://www.w3.org/2003/11/swrlb#stringLength)

strstarts STRSTARTS (https://www.w3.org/TR/sparql11-query/#func-strstarts), fn:starts-
with (http://www.w3.org/2005/xpath-functions#starts-with), swrlb:startsWith
(http://www.w3.org/2003/11/swrlb#startsWith)

struuid STRUUID (https://www.w3.org/TR/sparql11-query/#func-struuid)

substr SUBSTR (https://www.w3.org/TR/sparql11-query/#func-substr), fn:substring
(http://www.w3.org/2005/xpath-functions#substring), swrlb:substring
(http://www.w3.org/2003/11/swrlb#substring)

subtractDates - , swrlb:subtractDates (http://www.w3.org/2003/11/swrlb#subtractDates)

subtractDayTimeDurationFromDate - , swrlb:subtractDayTimeDurationFromDate
(http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromDate)

subtractDayTimeDurationFromDateTime - , swrlb:subtractDayTimeDurationFromDateTime
(http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromDateTime)

subtractDayTimeDurationFromTime - , swrlb:subtractDayTimeDurationFromTime
(http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromTime)

subtractDayTimeDurations - , swrlb:subtractDayTimeDurations
(http://www.w3.org/2003/11/swrlb#subtractDayTimeDurations)

subtractTimes - , swrlb:subtractTimes (http://www.w3.org/2003/11/swrlb#subtractTimes)

subtractYearMonthDurationFromDate - , swrlb:subtractYearMonthDurationFromDate
(http://www.w3.org/2003/11/swrlb#subtractYearMonthDurationFromDate)

subtractYearMonthDurationFromDateTime - , swrlb:subtractYearMonthDurationFromDateTime
(http://www.w3.org/2003/11/swrlb#subtractYearMonthDurationFromDateTime)

subtractYearMonthDurations - , swrlb:subtractYearMonthDurations
(http://www.w3.org/2003/11/swrlb#subtractYearMonthDurations)

tan math:tan (http://www.w3.org/2005/xpath-functions/math#tan), swrlb:tan
(http://www.w3.org/2003/11/swrlb#tan)

tanh stardog:tanh

https://www.w3.org/TR/sparql11-query/#func-strafter
http://www.w3.org/2005/xpath-functions#substring-after
http://www.w3.org/2003/11/swrlb#substringAfter
https://www.w3.org/TR/sparql11-query/#func-strbefore
http://www.w3.org/2005/xpath-functions#substring-before
http://www.w3.org/2003/11/swrlb#substringBefore
https://www.w3.org/TR/sparql11-query/#func-strdt
https://www.w3.org/TR/sparql11-query/#func-strends
http://www.w3.org/2005/xpath-functions#ends-with
http://www.w3.org/2003/11/swrlb#endsWith
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2003/11/swrlb#stringEqualIgnoreCase
https://www.w3.org/TR/sparql11-query/#func-strlang
https://www.w3.org/TR/sparql11-query/#func-strlen
http://www.w3.org/2005/xpath-functions#string-length
http://www.w3.org/2003/11/swrlb#stringLength
https://www.w3.org/TR/sparql11-query/#func-strstarts
http://www.w3.org/2005/xpath-functions#starts-with
http://www.w3.org/2003/11/swrlb#startsWith
https://www.w3.org/TR/sparql11-query/#func-struuid
https://www.w3.org/TR/sparql11-query/#func-substr
http://www.w3.org/2005/xpath-functions#substring
http://www.w3.org/2003/11/swrlb#substring
http://www.w3.org/2003/11/swrlb#subtractDates
http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromDate
http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromDateTime
http://www.w3.org/2003/11/swrlb#subtractDayTimeDurationFromTime
http://www.w3.org/2003/11/swrlb#subtractDayTimeDurations
http://www.w3.org/2003/11/swrlb#subtractTimes
http://www.w3.org/2003/11/swrlb#subtractYearMonthDurationFromDate
http://www.w3.org/2003/11/swrlb#subtractYearMonthDurationFromDateTime
http://www.w3.org/2003/11/swrlb#subtractYearMonthDurations
http://www.w3.org/2005/xpath-functions/math#tan
http://www.w3.org/2003/11/swrlb#tan


/

ten leviathan:ten (http://www.dotnetrdf.org/leviathan#ten)

time swrlb:time (http://www.w3.org/2003/11/swrlb#time)

timezone TIMEZONE (https://www.w3.org/TR/sparql11-query/#func-timezone),
fn:timezone-from-dateTime (http://www.w3.org/2005/xpath-
functions#timezone-from-dateTime), fn:timezone-from-date
(http://www.w3.org/2005/xpath-functions#timezone-from-date), fn:timezone-
from-time (http://www.w3.org/2005/xpath-functions#timezone-from-time)

toDegrees stardog:toDegrees , leviathan:radians-to-degrees
(http://www.dotnetrdf.org/leviathan#radians-to-degrees)

toRadians stardog:toRadians , leviathan:degrees-to-radians
(http://www.dotnetrdf.org/leviathan#degrees-to-radians)

translate TRANSLATE (https://www.w3.org/TR/sparql11-query/#func-translate),
fn:translate (http://www.w3.org/2005/xpath-functions#translate),
swrlb:translate (http://www.w3.org/2003/11/swrlb#translate)

tz TZ (https://www.w3.org/TR/sparql11-query/#func-tz)

ucase UCASE (https://www.w3.org/TR/sparql11-query/#func-ucase), fn:upper-case
(http://www.w3.org/2005/xpath-functions#upper-case), swrlb:upperCase
(http://www.w3.org/2003/11/swrlb#upperCase)

uuid UUID (https://www.w3.org/TR/sparql11-query/#func-uuid)

year YEAR (https://www.w3.org/TR/sparql11-query/#func-year), fn:year-from-
dateTime (http://www.w3.org/2005/xpath-functions#year-from-dateTime),
fn:year-from-date (http://www.w3.org/2005/xpath-functions#year-from-date),
fn:years-from-duration (http://www.w3.org/2005/xpath-functions#years-from-
duration)

yearMonthDuration swrlb:yearMonthDuration
(http://www.w3.org/2003/11/swrlb#yearMonthDuration)

Milestones

This timeline describes major features and other notable changes to Stardog starting at 1.0; it will be updated for each
notable new release. For a complete list of changes, including notable bug fixes, see the release notes (/docs/release-
notes/).

4.1 Multi-coordinator Cluster

Cluster stability & performance improvements

Query graph & revision history simultaneously

New, faster SPARQL parser

4.0 TinkerPop3 and property graphs

virtual graphs

RDF 1.1

Java 8

Geospatial query answering

http://www.dotnetrdf.org/leviathan#ten
http://www.w3.org/2003/11/swrlb#time
https://www.w3.org/TR/sparql11-query/#func-timezone
http://www.w3.org/2005/xpath-functions#timezone-from-dateTime
http://www.w3.org/2005/xpath-functions#timezone-from-date
http://www.w3.org/2005/xpath-functions#timezone-from-time
http://www.dotnetrdf.org/leviathan#radians-to-degrees
http://www.dotnetrdf.org/leviathan#degrees-to-radians
https://www.w3.org/TR/sparql11-query/#func-translate
http://www.w3.org/2005/xpath-functions#translate
http://www.w3.org/2003/11/swrlb#translate
https://www.w3.org/TR/sparql11-query/#func-tz
https://www.w3.org/TR/sparql11-query/#func-ucase
http://www.w3.org/2005/xpath-functions#upper-case
http://www.w3.org/2003/11/swrlb#upperCase
https://www.w3.org/TR/sparql11-query/#func-uuid
https://www.w3.org/TR/sparql11-query/#func-year
http://www.w3.org/2005/xpath-functions#year-from-dateTime
http://www.w3.org/2005/xpath-functions#year-from-date
http://www.w3.org/2005/xpath-functions#years-from-duration
http://www.w3.org/2003/11/swrlb#yearMonthDuration
https://www.stardog.com/docs/release-notes/


/

3.1 Named Graph security

BOSH-based cluster management tool

proper logshipping in the Cluster

3.0 Equality reasoning via hybrid materialization

Improved incremental write performance

HA Cluster production ready

Integrity constraint violation repair plans

Improved query performance

2.2.1 Stardog HA Cluster (beta)

2.2 Support for RDF versioning

Admin support for Web Console

2.1 Database repair, backup & restore utilities

Improved query scalability by flowing intermediate results o�-heap or onto disk; requires a JDK that
supports sun.misc.Unsafe

Performance (#Performance Benchmark Results): significant improvement in performance of bulk
loading and total scalability of a database

Generation of multiple proofs for inferences & inconsistencies; proofs for integrity constraint violations

Reduced memory footprint of queries while being executed

2.0 SPARQL 1.1 Update (#_using_stardog): the most requested feature ever!

Stardog Web Console (#_browsing): a Stardog Web app for managing Stardog Databases; includes
Linked Data Server, etc.

JMX monitoring (#Server Monitoring with Watchdog & JMX): includes graphical monitoring via Web
Console

HTTP & SNARL servers unified into a single server (default port 5820)

Database Archetypes (#_database_archetypes) for PROV, SKOS; extensible for user-defined ontologies,
schemas, etc.

Stardog Rules Syntax (#_stardog_rules_syntax): new syntax for user-defined rules

Performance improvements for SPARQL query evaluation

Hierarchical explanations (#_proof_trees) of inferences using proof trees

SL (#Reasoning Levels) reasoning profile

Client and server dependencies cleanly separated

Evaluation of non-recursive datalog queries to improve reasoning performance

1.2 Query management: slow query log, kill-able queries, etc.

new CLI

new transaction layer

SPARQL Service Description

new security layer

Query rewrite cache

Removed Stardog Shell



/

1.1.2 New optimizer for subqueries

1.1 SPARQL 1.1 Query

Transitive reasoning

User-defined rules in SWRL

new SWRL builtins and syntactic sugar for schema-queries

Improved performance of reasoning queries involving rdf:type

Improved performance of search indexing

Deprecated Stardog Shell

1.0.4 Convert ICVs to SPARQL queries in the CLI or Java API

Running as a Windows Service

Parametric queries in CLI

1.0.2 Stardog Community edition introduced

ICV in SNARL and HTTP

HTTP Admin protocol extensions

SPARQL 1.1 Graph Store Protocol

1.0.1 Self-hosting Stardog documentation

Prefix mappings per database

Access and audit logging

1.0 Execute DESCRIBE  queries against multiple resources

Database consistency checking from CLI

Inference explanations from CLI

Previous Versions of Docs

12. Table of Historical Docs

Stardog Version HTML PDF

5.3.6 ✓ (/docs/#) ✓ (/docs/stardog-manual-5.3.6.pdf)

4.2 ✓ (/docs/4.2/#) ✓ (/docs/stardog-manual-4.2.pdf)

4.1.3 ✓ (/docs/4.1.3/#) ✓ (/docs/stardog-manual-4.1.3.pdf)

4.1.2 ✓ (/docs/4.1.2/#) ✓ (/docs/stardog-manual-4.1.2.pdf)

4.1.1 ✓ (/docs/4.1.1/#) ✓ (/docs/stardog-manual-4.1.1.pdf)

4.1 ✓ (/docs/4.1#) ✓ (/docs/stardog-manual-4.1.pdf)

4.0.5 ✓ (/docs/4.0.5#) ✓ (/docs/stardog-manual-4.0.5.pdf)

4.0.3 ✓ (/docs/4.0.3#) ✓ (/docs/stardog-manual-4.0.3.pdf)

4.0.2 ✓ (/docs/4.0.2#) ✓ (/docs/stardog-manual-4.0.2.pdf)

https://www.stardog.com/docs/#
https://www.stardog.com/docs/stardog-manual-5.3.6.pdf
https://www.stardog.com/docs/4.2/#
https://www.stardog.com/docs/stardog-manual-4.2.pdf
https://www.stardog.com/docs/4.1.3/#
https://www.stardog.com/docs/stardog-manual-4.1.3.pdf
https://www.stardog.com/docs/4.1.2/#
https://www.stardog.com/docs/stardog-manual-4.1.2.pdf
https://www.stardog.com/docs/4.1.1/#
https://www.stardog.com/docs/stardog-manual-4.1.1.pdf
https://www.stardog.com/docs/4.1#
https://www.stardog.com/docs/stardog-manual-4.1.pdf
https://www.stardog.com/docs/4.0.5#
https://www.stardog.com/docs/stardog-manual-4.0.5.pdf
https://www.stardog.com/docs/4.0.3#
https://www.stardog.com/docs/stardog-manual-4.0.3.pdf
https://www.stardog.com/docs/4.0.2#
https://www.stardog.com/docs/stardog-manual-4.0.2.pdf


/

4.0.1 ✓ (/docs/4.0.1#) ✓ (/docs/stardog-manual-4.0.1.pdf)

4.0 ✓ (/docs/4.0#) ✓ (/docs/stardog-manual-4.0.pdf)

1. Robert Butler, Marko A. Rodriguez, Brian Sletten, Alin Dreghiciu, Rob Vesse, Stephane Fallah, John Goodwin, José Devezas, Chris
Halaschek-Wiener, Gavin Carothers, Brian Panulla, Ryan Kohl, Morton Swimmer, Quentin Reul, Paul Dlug, James Leigh, Alex
Tucker, Ron Zettlemoyer, Jim Rhyne, Andrea Westerinen, Huy Phan, Zach Whitley, Maurice Rabb, Grant Pax, Conrad Leonard,
John Shearer, Ryan Hohimer, and the crew at XSB.

2. If the same name is used for di�erent functions in di�erent namespaces then the precedence is given to the standard functions. It
is best practice to use the explicit namespace for such functions to avoid ambiguity.

3. The last SPARQL 1.1 feature that we didn’t support.
4. See the R2RML spec (http://www.w3.org/TR/r2rml/) for more information about R2RML.
5. User feedback about this limitation is welcomed.
6. Find another database that can do that!
7. In other words, if there is a conflict between this documentation and the output of the CLI tools' help  command, the CLI output

is correct.
8. We’re big fans of /opt/stardog/{$version} and setting STARDOG_HOME  to /var/stardog` but YMMV.
9. This is equally true, when using Stardog HA Cluster, of Zookeeper’s access to free disk space. Bad things happen to the Stardog

Cluster if Zookeeper cannot write to disk.
10. For more details about configuring these values, see https://github.com/Complexible/stardog-examples/blob/master/config/sta

rdog.properties (https://github.com/Complexible/stardog-examples/blob/master/config/stardog.properties).
11. However, there may be some delay since Stardog only periodically checks the query.timeout  value against internal query

evaluation timers.
12. A good general purpose discussion of these issues in context of J2EE is this beginner’s guide (http://vladmihalcea.com/2014/12/2

3/a-beginners-guide-to-transaction-isolation-levels-in-enterprise-java/).
13. As discussed in SPARQL Update, since Update queries are implicitly atomic transactional operations, which means you shouldn’t

issue an Update query within an open transaction.
14. The probability of recovering from a catastrophic transaction failure is inversely proportional to the number of subsequent write

attempts; hence, Stardog o�lines the database to prevent subsequent write attempts and to increase the likelihood of recovery.
15. Stardog also uses file handles and sockets, but we don’t discuss those here.
16. These are conservative values and are dataset specific. Your data may require less memory… or more!
17. For more details about configuring these values, see https://github.com/Complexible/stardog-examples/blob/master/config/sta

rdog.properties (https://github.com/Complexible/stardog-examples/blob/master/config/stardog.properties).
18. Blob Indexing and Text Enrichment with Semantics
19. "Client" here means the client of Stardog APIs.
20. "Because ZooKeeper requires a majority, it is best to use an odd number of machines. For example, with four machines

ZooKeeper can only handle the failure of a single machine; if two machines fail, the remaining two machines do not constitute a
majority. However, with five machines ZooKeeper can handle the failure of two machines." See Zk Admin (https://zookeeper.apac
he.org/doc/r3.1.2/zookeeperAdmin.html) for more.

21. Based on customer feedback we may relax these consistency guarantees in some future release. Please get in touch if you think
an eventually consistent approach is more appropriate for your use of Stardog.

22. This point is especially true of Cluster but may be relevant for some workloads on a single Stardog database, that is, non-Cluster
configuration, too.

23. You only pay for the reasoning that you use; no more and no less. Eager materialization is mostly a great strategy for hard disk
manufacturers.

24. Sometimes called a "TBox".
25. Find another database, any other database anywhere, that can do that! We’ll wait… 
26. Triggered using the --format tree  option of the reasoning explain  CLI command.
27. Quick refresher: the IF  clause defines the conditions to match in the data; if they match, then the contents of the THEN  clause

"fire", that is, they are inferred and, thus, available for other queries, rules, or axioms, etc.
28. Of course if you’ve tweaked reasoning.schema.graphs , then you should put the rules into the named graph(s) that are

specified in that configuration parameter.
29. Built-in URIs such as rdfs:subClassOf  or owl:TransitiveProperty  are not allowed in rules
30. This is e�ectively the only setting for Stardog prior to 3.0.
31. These are harmless and won’t otherwise a�ect query evaluation; they can also be added to the data, instead of to queries, if that

fits your use case better.
32. The standard inference semantics of OWL 2 do not adopt the unique name assumption because, in information integration

scenarios, things o�en have more than one name but that doesn’t mean they are di�erent things. For example, when several
databases or other data sources all contain some partial information about, say, an employee, but they each name or identify the
employee in di�erent ways. OWL 2 won’t assume these are di�erent employees just because there are several names.

33. Strictly speaking, this is a bit misleading. Stardog ICV uses both open and closed world semantics: since inferences can violate or
satisfy constraints, and Stardog uses open world semantics to calculate inferences, then the ICV process is compatible with open
world reasoning, to which it then applies a form of closed world validation, as described in this chapter.

34. This is a good example of open world and closed world reasoning interacting for the win.
35. In other words, embedded Stardog access is inherently insecure and should be used accordingly.
36. The Stardog client uses an X509TrustManager . The details of how a trust store is selected to initialize the trust manager are htt

p://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager (http://docs.oracle.co
m/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager).

37. See the javax.net.ssl.trustStorePassword  system property docs: http://docs.oracle.com/javase/6/docs/technotes/guide
s/security/jsse/JSSERefGuide.html#X509TrustManager (http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JS
SERefGuide.html#X509TrustManager).

38. The matching algorithm used is described— http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html-- (ht
tp://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html--) in the Apache docs about
BrowserCompatHostnameVerifier .

https://www.stardog.com/docs/4.0.1#
https://www.stardog.com/docs/stardog-manual-4.0.1.pdf
https://www.stardog.com/docs/4.0#
https://www.stardog.com/docs/stardog-manual-4.0.pdf
http://www.w3.org/TR/r2rml/
https://github.com/Complexible/stardog-examples/blob/master/config/stardog.properties
http://vladmihalcea.com/2014/12/23/a-beginners-guide-to-transaction-isolation-levels-in-enterprise-java/
https://github.com/Complexible/stardog-examples/blob/master/config/stardog.properties
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html--


/

⬆ (#) For comments, questions, or to report problems with this page, visit the Stardog Support Forum (https://community.stardog.com/).

©2012–2018 Stardog Union Some rights reserved (http://creativecommons.org/licenses/by-sa/3.0/).

 (http://stardog.com/)

39. You won’t be careful enough.
40. The relevant specs include the Stardog-specific specifications documented on this site, but also W3C (and other) specifications

of various languages, including SPARQL, RDF, RDFS, OWL 2, HTTP, Google Protocol Bu�ers, as well as others.
41. Strictly speaking, this is a Sesame parser deviation from the SPARQL 1.1 spec with which we happen to agree.

Version 5.3.6 

https://community.stardog.com/
http://creativecommons.org/licenses/by-sa/3.0/
http://stardog.com/

