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Abstract.  Traditionally the use of least squares to evaluate the fit and consistency of a platinum resistance thermometer 
calibration requires the use of several redundant calibration points each of which adds time and expense to the 
calibration process.  However the behavior of some secondary platinum resistance thermometers is sufficiently close to 
the ITS-90 reference function to allow a simplification to the deviation function, at least for the purpose of a quality 
check.   By using the first order deviation function the number of degrees of freedom available for a least squares fit is 
increased and the linear correlation between PRT resistance ratios may be explicitly written in equation form. 

 
INTRODUCTION 

Traceability in temperature is provided over a 
significant portion of the temperature scale through 
platinum resistance thermometers. As stated in the 
definition of the ITS-90, “an acceptable platinum 
resistance thermometer must be made from pure, 
strain-free platinum, and it must satisfy” one of two 
specified resistance ratio relations.  A platinum 
resistance thermometer (PRT) that does not satisfy all 
of these requirements cannot be called a Standard 
Platinum Resistance Thermometer (SPRT.)  However 
SPRTs are very delicate instruments and there are 
many situations in which a more rugged design is 
appropriate.  These rugged probes are often called 
secondary or industrial platinum resistance 
thermometers. 

Secondary platinum resistance thermometer 
calibrations can be time consuming and expensive, 
especially as market forces favor lower uncertainties 
and laboratory accreditation adds additional layers to 
the process. 

The quality check suggested in this paper strikes a 
balance between the competing requirements of cost 
and quality while improving the confidence of the 
metrologist in the uncertainties provided by his or 
another laboratory in the calibration of secondary 
platinum resistance thermometers. 

LINEAR RELATIONSHIPS BETWEEN 
RESISTANCE RATIOS  

The defining document of the ITS-90 also states 
that, “temperatures are determined in terms of the ratio 
of the resistance R(T90) at a temperature T90 and the 
resistance R(273.16K) at the triple point of water.”  
This ratio called W(T90) has been found to be linearly 
correlated between temperature fixed points in 
Standard Platinum Resistance Thermometers.  Like the 
resistance ratios of SPRTs, the W(T90) values of 
secondary platinum resistance thermometers are 
linearly correlated in that they satisfy the relation: 
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 The values ‘m’ and ‘b’ may be theoretically or 
empirically determined.   Empirical determination 
involves performing a linear regression on data 
collected for many different thermometers.  
Theoretically it involves manipulating the available 
ITS-90 equations.  Happily the results from both are 
consistent.  

Once the linear regression is performed, a simple 
relationship appears. 

1=+ bm       (2) 



Consequently (1) can be rewritten into the form: 

)1(1 12 −=− TT WmW       (3) 

This looks very much like the first order ITS-90 
deviation function: 

)1( 9090 −=∆ TT WaW       (4) 

And since Wr, T90 represents the ITS-90 reference 
function at the temperature T90 we can also write: 

.90,9090 TrTT WWW −=∆       (5) 

By using equations (4) and (5), equation (3) may be 
rewritten in terms of WT1, Wr, T1, WT2 and Wr, T2.  The 
resulting function gives a value for ‘m’ exclusively in 
terms of the reference function: 
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On the following plot the linear relationship 
between pairs of resistance ratios (WSn, WZn) for a 
number of thermometers is demonstrated. The plot of 
these thermometers satisfies equations (3) and (6). 

 

 

FIGURE 1.  A plot of (WSn, WZn) for 1477 approximations 
of the ITS-90 using 1007 different Secondary Platinum 
Resistance Thermometers 

Consistency Checks On PRT Calibrations 

The linear correlation in PRT resistance ratios 
suggests equation (4) as a reasonable simplification to 
the ITS-90 deviation function for performing 
calibration quality checks.   There are two main ways 
to use the simplified deviation function to check the 
consistency of calibration points above 0 °C.   These 
are least squares and linear prediction. 

Least Squares 

A simplified deviation function is not necessary to 
perform least squares.  However there is an advantage 
in the increased number of degrees of freedom.  Since 
the simplified function reduces the number of 
coefficients by one or two it has the equivalent effect 
(for evaluation purposes) of increasing the number of 
calibration points, but without increasing the cost of 
the calibration.  With more degrees of freedom the 
residuals become more useful and may give the 
metrologist more information about the quality of the 
calibration.   

To apply least squares to the simplified deviation 
function, solve the following equation to obtain the 
ITS-90 coefficient expressed in equation (4): 

∑

∑

−

−∆
= N

i
i

N

i
ii

W

WW
a

2)1(

)1(
  (7) 

The residuals may then be calculated and converted 
into temperature by dividing by the sensitivity at each 
corresponding temperature. 
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In the situation where calibration points are not 
consistent, the residuals will indicate in terms of 
temperature how large the inconsistency is. 

Linear Prediction 

On the other hand, residuals for linear prediction 
are calculated using: 
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Another, sometimes convenient, form of the 
equation for linear prediction residuals is:  
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When T1<T2, large residuals will result with small 
variations in T1.  However, more realistic values for R 
are obtained when the condition T1>T2 is met. 

Whatever the method used, the general idea is to 
make logical deductions from the residuals to 
determine which calibration points least fit the model. 
For example, if the first order least squares residuals at 
Sn and In both have the same large magnitude and sign 
and the Zn point is also large in magnitude but 
opposite in sign then the Zn point should be double 
checked.  With a larger number of data points, the 
decision making process is easier, however the 

calibration also becomes more time consuming and 
expensive. 

Empirical Data 

The tables below were generated from data 
collected by measuring platinum resistance 
thermometers in mini fixed point cells using a Hart 
Scientific model 1590 digital thermometer readout.  If 
a thermometer happened to be calibrated more than 
once, then only the most recent calibration data was 
admitted into the data set.  Mean values were 
computed along with the standard deviation of the 
mean.  The confidence interval chosen was 95% with 
the coverage factor computed using the Student’s T for 
N-1 degrees of freedom. 

Results for three popular models of secondary 
platinum resistance thermometers sold by Hart 
Scientific are presented in the tables below.  The 
model 5628 has a range of -200 °C to 660 °C and a 
nominal resistance at the triple point of water of 25 
    The model 5626 has a range of -200 °C to 660 °C 
and a nominal resistance at the triple point of water of 
100       The model 5614 has a range of -200°C to 
420°C and a nominal resistance at the triple point of 
water of 100    

 

TABLE 1. Average residuals from data fit to a first order deviation function using least squares.   
Model Number RIn RSn RZn N  

5628 -0.7 ±0.3 mK -0.7 ±0.2 mK 0.7 ±0.2 mK 229 
5626 -2.4 ±0.2 mK -1.8 ±0.1 mK 2.1 ±0.1 mK 411 
5614 -6.6 ±1.6 mK -8.1 ±2.1 mK 7.7 ±1.8 mK 15 
 

 

TABLE 2. Average residuals from data fit to a second order deviation function using least squares.   
Model Number RIn RSn RZn N  

5628 -0.2 ±0.1 mK 0.2 ±0.1 mK -0.1 ±0.0 mK 229 
5626 -0.3 ±0.1 mK 0.3 ±0.1 mK -0.1 ±0.0 mK 411 
5614 1.1 ±0.9 mK -1.1 ±0.9 mK 0.2 ±0.2 mK 15 
 

 

TABLE 3. Average residuals of data calculated using linear prediction.   
Model Number RIn (Calculated from 

WSn) 
RIn (Calculated from 

WZn) 
RSn (Calculated 

from WZn) 
N  

5628 -0.3 ±0.2 mK -1.0 ±0.3 mK -1.0 ± 0.3 mK 229 
5626 -1.2 ±0.1 mK -3.0 ±0.2 mK -3.2 ±0.2 mK 411 
5614 -1.2 ±1.3 mK -12.2 ±3.1 mK -9.3 ±2.2 mK 15 
 



DISCUSSION 

One trend in the results given in the tables is that 
model 5628 PRTs had the best fit in all of the schemes 
used, while the model 5614 was not fit as well by the 
linear models proposed.  For all of the probe models 
the Sn (232.928 °C) and In (156.599 °C) temperature 
fixed points were the most consistent with each other.  
In the least squares data their residuals were nearly 
equal and opposite in magnitude from the Zn (419.527 
°C) point.   

Residuals calculated from linear prediction were 
larger than in any of the other schemes.  Least squares 
used all of the available data to minimize the residuals. 
Linear prediction used only one resistance ratio at a 
temperature fixed point to calculate the resistance ratio 
at another temperature fixed point.  WZn was most 
frequently the least consistent resistance ratio. 

There are a number of possible factors that might 
have influenced the result at Zn. For example the 
designs of these thermometers are not strain-free and 
there may have been hysteresis with relaxation at the 
highest temperature (419.527 °C.) Yet these types of 
probes are not believed to exhibit hysteresis, generally 
speaking. 

All three platinum resistance thermometer models 
have sufficient immersion in the mini fixed point cells.  
To verify this, PRTs long enough to be sufficiently 
immersed in large fixed point cells (length >18”) were 
measured first in the large cells followed by 
measurements in the mini cells.   Results were 
compared and found to differ by only a few tenths of a 
mK. 

Model 5614 and 5626 PRTs have nominal 
resistances of 100   at the triple point of water 
compared to the 25   PRT (model 5628.)  The 100 
  PRTs have the largest residuals from the first order 
least squares fit.  This suggests that self heating may 
have contributed to the residuals.   

Normally only the nominal current of 1 mA is used 
when calibrating secondary probes in our laboratory.  
The zero power was calculated on one 5614 and one 
5626 in the mini fixed point cells in order to gain some 
insight into the self heating of the thermometers. The 
temperature differences between the zero power and 1 
mA measurements increased slightly with increasing 
temperatures and were about 5 mK in all three cells for 
the 5626 and about 8 mK in all three cells for the 
5614. The approximate contribution to the linear 

prediction residual believed to be due to self heating is 
expressed in equation (11) and the resulting self 
heating contribution based on the previously 
mentioned measurements are listed in Table 4. 
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TABLE 4. Self Heating Contribution to First Order 
Least Squares Residuals. 

Residual 5614 5626 
RSH (Sn, In) -2 mK -1 mK 
RSH (Zn, In) -5 mK -2 mK 
RSH (Zn, Sn) - 4 mK -2 mK 

 

It is not clear from Table 4 that self heating alone 
will completely explain the residuals for the model 
5614 PRTs.  To illustrate, the self heating for the 
general population of probes would have to be nearly 
twice the previously measured values.  However self 
heating effects do seem consistent with the residuals 
seen in the model 5626 PRTs. 

Another influence quantity that may be responsible 
for the seemingly inconsistent value observed at Zn for 
the model 5614 PRTs is electrical leakage.  Insulation 
resistance break down will be the most severe at high 
temperatures. All thermometers tested indicated at 
least 100 M  of insulation resistance at 0°C, 
nevertheless lower insulation resistances at 420°C may 
have contributed to the results.  

Finally, for some secondary platinum resistance 
thermometers a first order approximation may be 
limited in value above certain temperatures.  For all 
models of PRT described here a first order 
approximation fits well up to 232 °C.  On the other 
hand this approximation continues to be a good fit for 
the 5628 up through 660 °C. 

CONCLUSION 

The purpose of this paper has been to develop an 
independent quality check that gives additional support 
to claims of traceability by improving confidence in 
measurements made during the calibration of 
secondary platinum resistance thermometers.  The 
method was to develop a model that made it possible 
to infer that a pair of resistance ratios may be 
inconsistent. The simplification to the deviation 
function used in this procedure was not intended to 
reduce the number of recommended calibration points; 



on the contrary it becomes more powerful as the 
number of calibration points is increased.  However it 
does make possible a check for consistency when a 
minimum of two calibration points are used. 

In fact, an additional check of quality used in our 
laboratory includes taking more than the minimum 
number of temperature points to complete a 
calibration.  One way of using the extra measurements 
is to least squares fit all of the available data to the 
ITS-90 deviation function. The function will not pass 
perfectly through each calibration point, and residuals 
are evaluated as an indication of the mathematical fit 
of the calibration.  Additionally, when calibration 
points are properly spaced, the least squares method 
may have the benefit of averaging out some of the 
unusual behavior of secondary PRT’s, as well as the 
added benefit of reducing the propagated uncertainties. 

ACKNOWLEDGMENTS 

The author is pleased to thank Tom Wiandt for his 
encouragement to write this paper and the significant 
insight which he has contributed. Additionally Rashell 
Ainsworth and Hart Scientific have my gratitude for 
their support in my effort.   

REFERENCES 

1. Lucas, J. de, and Benyon, R., “The Use Of Correlation 
Between Fixed Points For The Improvement Of 
Confidence In The Calibration Of Platinum Resistance 
Thermometers” in TEMPMEKO-1999, edited by Jaco F. 
Dubbeldam and Martin J. de Groot, The 7th International 
Symposium On Temperature And Thermal 
Measurements Proceedings 1, Delft: NMi Van Swinden 
Laboratorium, 1999, pp. 292-297. 

1. Singh Y.P.,Maas H, Edler F., Zaidi Z. H., Metrologia  
31, 49-50(1994). 

3. Hill, K. D., Metrologia 32, 87-94 (1995). 

4. Ancsin, J., Metrologia 32, 295-300 (1996). 

5. Crovini L., Metrologia 31, 399-400 (1994). 

2. Nicholas, J. V., and White, D. R., Traceable 
Temperatures, West Sussex: John Wiley & Sons, 2001, 
pp. 83-87,221-233.  

 

 

 


