## Manual Supplement

| Manual Title: | 8845A/8846A Calibration | Supplement Issue: | 13 |
| :--- | :--- | :--- | :--- |
| Print Date: | January 2007 | Issue Date: | $4 / 15$ |
| Revision/Date: | $1,11 / 07$ | Page Count: | 9 |

This supplement contains information necessary to ensure the accuracy of the above manual. This manual is distributed as an electronic manual on the following CD-ROM:

| CD Title: | $8845 \mathrm{~A} / 8846 \mathrm{~A}$ |
| :--- | :--- |
| CD Rev. \& Date: | $6,4 / 2011$ |
| CD PN: | 2453193 |

## Change \#1, 45124

On pages 1-12 and 1-17, add the following prior to Maximum Crest Factor:
Crest Factor Error (applies to non sinusoid waveforms only)

## Change \#2

On page 3-30, add the following note below the text:
Note
Calibration steps dealing with 50/60 Hz Correction, Ratio, and 400 mA current range are only available in Meters with Outguard version 2.0 and later.
On pages 3-31 through 3-35, replace the entire Table with the following:

Table 3-20. 8845A/8846A Adjustment Steps

| Step | Modes | Value Range | Input Signal | Description | Series |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Open |  |  |  |  |  |
| 0 | ORES | 100000000 | open | OHM 100 M open terminals | Y |
| 1 | ORES | 1000000000 | open | OHM 1 G open terminals (8846A only) | Y |
| 2 | ZCAP | 1.00E-09 | open | CAP 1 nF open terminals (8846A only) | N |
| ACV Short |  |  |  |  |  |
| 3 | ZVAC | 100.0E-3 | 4-wire lo-thermal short | AC 100 mV | Y |
| 4 | ZVACS | 100.0E-3 | 4-wire lo-thermal short | AC 100 mV | Y |
| 5 | ZVAC | 1 | 4-wire lo-thermal short | AC 1 V | Y |
| 6 | ZVACS | 1 | 4-wire lo-thermal short | AC 1 V | Y |
| 7 | ZVAC | 10 | 4-wire lo-thermal short | AC 10 V | Y |
| 8 | ZVACS | 10 | 4-wire lo-thermal short | AC 10 V | Y |
| 9 | ZVAC | 100 | 4-wire lo-thermal short | AC 100 V | Y |
| 10 | ZVACS | 100 | 4-wire lo-thermal short | AC 100 V | Y |
| 11 | ZVAC | 1000 | 4-wire lo-thermal short | AC 1000 V | Y |
| 12 | ZVACS | 1000 | 4-wire lo-thermal short | AC 1000 V | N |
| DCV Short |  |  |  |  |  |
| 13 | ZVDC | 1000 | 4-wire lo-thermal short | DC 1000 V | Y |
| 14 | ZVDC | 100 | 4-wire lo-thermal short | DC 100 V | Y |
| 15 | ZVDC | 10 | 4-wire lo-thermal short | DC 10 V | Y |
| 16 | ZVDC | 1 | 4-wire lo-thermal short | DC 1 V | Y |
| 17 | ZVDC | 0.1 | 4-wire lo-thermal short | DC 100 mV | N |

50/60 Hz Correction Short

| 18 | DFVDC60 | $100.0 \mathrm{E}-3$ | Vdc to Lo short | DC 100 mV | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 19 | DFVDC60_1 | $100.0 \mathrm{E}-3$ | Vdc to Lo short | DC 100 mV | Y |
| 20 | DFVDC50 | $100.0 \mathrm{E}-3$ | Vdc to Lo short | DC 100 mV | Y |
| 21 | DFVDC50_1 | $100.0 \mathrm{E}-3$ | Vdc to Lo short | DC 100 mV | N |

## 4-W Ohm Short

| 22 | ZRES | 10000000 | 4-wire lo-thermal short | $4 \mathrm{~W} 10 \mathrm{M} \Omega$ | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 23 | ZRES | 1000000 | 4-wire lo-thermal short | $4 \mathrm{~W} 1 \mathrm{M} \Omega$ | Y |
| 24 | ZRES | 100000 | 4-wire lo-thermal short | $4 \mathrm{~W} 100 \mathrm{k} \Omega$ | Y |
| 25 | ZRES | 10000 | 4-wire lo-thermal short | $4 \mathrm{~W} 10 \mathrm{k} \Omega$ | Y |
| 26 | ZRES | 1000 | 4-wire lo-thermal short | $4 \mathrm{~W} 1 \mathrm{k} \Omega$ | Y |
| 27 | ZRES | 100 | 4-wire lo-thermal short | $4 \mathrm{~W} 100 \Omega$ | Y |
| 28 | ZRES | 10 | 4-wire lo-thermal short | $4 \mathrm{~W} 10 \Omega(8846 \mathrm{~A}$ only $)$ | N |

Ratio Short

| 29 | ZVDCREF | 10 | Vdc to Lo short | Ratio | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 30 | ZVDCREF | 1 | Vdc to Lo short | Ratio | Y |
| 31 | ZVDCREF | $100.0 \mathrm{E}-3$ | Vdc to Lo short | Ratio | N |

## Rear $\Omega$ Short

| 32 | ZRESR | 100000 | 4 -wire lo-thermal short | $4 \mathrm{~W} 100 \mathrm{k} \Omega$ Rear Input | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 33 | ZRESR | 10000 | 4-wire lo-thermal short | $4 \mathrm{~W} 10 \mathrm{k} \Omega$ Rear Input | Y |
| 34 | ZRESR | 1000 | 4-wire lo-thermal short | $4 \mathrm{~W} 1 \mathrm{k} \Omega$ Rear Input | Y |
| 35 | ZRESR | 100 | 4 -wire lo-thermal short | $4 \mathrm{~W} 100 \Omega$ Rear Input | Y |
| 36 | ZRESR | 10 | 4 -wire lo-thermal short | $4 \mathrm{~W} 10 \Omega$ Rear Input (8846A only) | N |

## Rear DCV Short

| 37 | ZVDCR | 1 | Vdc to Lo short | DC 1 V Rear Input | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 38 | ZVDCR | 0.1 | Vdc to Lo short | DC 100 mV Rear Input | N |

Rear Ratio Short

| 39 | ZVDCRREF | 1 | Vdc to Lo short | Rear Ratio | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 40 | ZVDCRREF | 0.1 | Vdc to Lo short | Rear Ratio | N |

## Current Short

| 41 | ZIDC | $400.0 \mathrm{E}-3$ | 400 mA to Lo short | DC 400 mA | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 42 | ZIDC | $100.0 \mathrm{E}-3$ | 400 mA to Lo short | DC 100 mA | Y |
| 43 | ZIDC | $1.0 \mathrm{E}-3$ | 400 mA to Lo short | DC 1 mA | Y |
| 44 | ZIDC | $10.0 \mathrm{E}-3$ | 400 mA to Lo short | DC 10 mA | Y |
| 45 | ZIDC | $100.0 \mathrm{E}-6$ | 400 mA to Lo short | DC $100 \mu \mathrm{~A}$ | Y |


| 46 | ZIAC | 0.0 | 400 mA to Lo short | AC $100 \mu \mathrm{~A}$ |  |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 47 | ZIACS | 0.0 | 400 mA to Lo short | AC $100 \mu \mathrm{~A}$ | Y |
| 48 | ZIAC | $1.0 \mathrm{E}-3$ | 400 mA to Lo short | AC 1 mA | Y |
| 49 | ZIACS | $1.0 \mathrm{E}-3$ | 400 mA to Lo short | AC 1 mA | Y |
| 50 | ZIAC | $10.0 \mathrm{E}-3$ | 400 mA to Lo short | AC 10 A | Y |
| 51 | ZIACS | $10.0 \mathrm{E}-3$ | 400 mA to Lo short | AC 10 mA | Y |
| 52 | ZIAC | $100.0 \mathrm{E}-3$ | 400 mA to Lo short | AC 100 mA | Y |
| 53 | ZIACS | $100.0 \mathrm{E}-3$ | 400 mA to Lo short | AC 100 mA | Y |
| 54 | ZIAC | $400.0 \mathrm{E}-3$ | 400 mA to Lo short | AC 400 mA | Y |
| 55 | ZIACS | $400.0 \mathrm{E}-3$ | 400 mA to Lo short | AC 400 mA | Y |

Hi I Short

| 56 | ZIDC | 10 | 10 A to Lo short | DC 10 A | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 57 | ZIDC | 1 | 10 A to Lo short | DC 1 A | Y |
| 58 | ZIAC | 1 | 10 A to Lo short | AC 1 A | Y |
| 59 | ZIACS | 1 | 10 A to Lo short | AC 1 A | Y |
| 60 | ZIAC | 10 | 10 A to Lo short | AC 10 A | Y |
| 61 | ZIACS | 10 | 10 A to Lo short | AC 10 A | N |

## AC Linearity

| 62 | ACLIN | 1.19 | $1.19 @ 1200 \mathrm{~Hz}$ | AC 1 V | N |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 63 | ACLIN | 0.8 | $0.8 @ 1200 \mathrm{~Hz}$ | AC 1 V | N |
| 64 | ACLIN | 0.4 | $0.4 @ 1200 \mathrm{~Hz}$ | AC 1 V | N |
| 65 | ACLIN | 0.005 | $0.05 @ 1200 \mathrm{~Hz}$ | AC 1 V | N |

## ACV Gain

| 66 | GVAC | 0.1 | $0.1 @ 1200 \mathrm{~Hz}$ | AC 100 mV | Y |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 67 | GVACS | 0.1 | $0.1 @ 1200 \mathrm{~Hz}$ | AC 100 mV | N |
| 68 | ACPOLE | 0.1 | $0.1 @ 50000 \mathrm{~Hz}$ | AC 100 mV | N |
| 69 | GVAC | 1 | $1 @ 1200 \mathrm{~Hz}$ | AC 1 V | Y |
| 70 | GVACS | 1 | $1 @ 1000 \mathrm{~Hz}$ | AC 1 V | N |
| 71 | FVAC | 1 | $1 @ 10 \mathrm{~Hz}$ | AC 1 V | N |
| 72 | ACPOLE | 1 | $1 @ 50000 \mathrm{~Hz}$ | AC 1 V | N |
| 73 | GVAC | 10 | $10 @ 1200 \mathrm{~Hz}$ | AC 10 V | Y |
| 74 | GVACS | 10 | $10 @ 1200 \mathrm{~Hz}$ | AC 10 V | N |
| 75 | ACPOLE | 10 | $10 @ 50000 \mathrm{~Hz}$ | AC 10 V | N |
| 76 | GVAC | 100 | $100 @ 1200 \mathrm{~Hz}$ | AC 100 V | Y |
| 77 | GVACS | 100 | $100 @ 1200 \mathrm{~Hz}$ | AC 100 V | N |


| 78 | ACPOLE | 100 | $100 @ 50000 \mathrm{~Hz}$ | AC 100 V | N |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 79 | GVAC | 1000 | $1000 @ 1200 \mathrm{~Hz}$ | AC $1000 \mathrm{~V}(750 \mathrm{~V}$ range 8845 A$)$ | Y |
| 80 | GVACS | 1000 | $1000 @ 1200 \mathrm{~Hz}$ | AC $1000 \mathrm{~V}(750 \mathrm{~V}$ range 8845 A$)$ | N |
| 81 | ACPOLE | 1000 | $750 @ 50000 \mathrm{~Hz}$ | AC $1000 \mathrm{~V}(750 \mathrm{~V}$ range 8845 A$)$ | N |

VDC Gain

| 82 | GVDC | 1000 | 1000 | DC 1000 V | N |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 83 | GVDC | -1000 | -1000 | DC 1000 V | DC 100 V |
| 84 | GVDC | 100 | 100 | DC 100 V | N |
| 85 | GVDC | -100 | -100 | DC 10 V | N |
| 86 | GVDC | 10 | -10 | DC 10 V | N |
| 87 | GVDC | -10 | 1 | DC 1 V | N |
| 88 | GVDC | GVDC | -1 | -1 | DC 1 V |
| 89 | GVDC | 0.1 | 0.1 | DC 100 mV | N |
| 90 | GVDC | -0.1 | -0.1 | N |  |
| 91 |  |  | N |  |  |

## Hi IDC Gain

| 92 | GIDC | 1 | 1 | DC 1 A | N |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 93 | GIDC | -1 | -1 | DC 1 A | N |
| 94 | GIDC | 10 | 10 | DC 10 A | N |
| 95 | GIDC | -10 | -10 | DC 10 A | N |

Hi IAC Gain

| 96 | GIAC | 10 | $10 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 10 A | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 97 | GIACS | 10 | $10 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 10 A | N |
| 98 | GIAC | 1 | $1 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 1 A | Y |
| 99 | GIACS | 1 | $1 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 1 A | N |

## Lo IAC Gain

| 100 | GIAC | $400.0 \mathrm{E}-3$ | $0.329 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 400 mA | Y |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 101 | GIACS | $400.0 \mathrm{E}-3$ | $0.329 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 400 mA | N |
| 102 | GIAC | $100.0 \mathrm{E}-3$ | $0.1 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 100 mA | Y |
| 103 | GIACS | $100.0 \mathrm{E}-3$ | $0.1 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 100 mA | N |
| 104 | GIAC | $10.0 \mathrm{E}-3$ | $0.01 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 10 mA | Y |
| 105 | GIACS | $10.0 \mathrm{E}-3$ | $0.01 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 10 mA | N |
| 106 | GIAC | $1.0 \mathrm{E}-3$ | $0.001 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 1 mA | Y |
| 107 | GIACS | $1.0 \mathrm{E}-3$ | $0.001 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC 1 mA | N |
| 108 | GIAC | $100.0 \mathrm{E}-6$ | $0.0001 \mathrm{~A} @ 1200 \mathrm{~Hz}$ | AC $100 \mu \mathrm{~A}$ | N |


| 109 | GIACS | 100.0E-6 | 0.0001 A @ 1200 Hz | AC $100 \mu \mathrm{~A}$ | N |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lo IDC Gain |  |  |  |  |  |
| 110 | GIDC | 100.0E-6 | 100.0E-6 | DC $100 \mu \mathrm{~A}$ | N |
| 111 | GIDC | -100.0E-6 | -100.0E-6 | DC $100 \mu \mathrm{~A}$ | N |
| 112 | GIDC | 1.0E-3 | 1.0E-3 | DC 1 mA | N |
| 113 | GIDC | -1.0E-3 | -1.0E-3 | DC 1 mA | N |
| 114 | GIDC | 10.0E-3 | 10.0E-3 | DC 10 mA | N |
| 115 | GIDC | -10.0E-3 | -10.0E-3 | DC 10 mA | N |
| 116 | GIDC | 100.0E-3 | 100.0E-3 | DC 100 mA | N |
| 117 | GIDC | -100.0E-3 | -100.0E-3 | DC 100 mA | N |
| 118 | GIDC | 400.0E-3 | 329.0E-3 | DC 400 mA | N |
| 119 | GIDC | 400.0E-3 | 329.0E-3 | DC 400 mA | N |
| $\Omega$ Gain |  |  |  |  |  |
| 120 | GRES | 100000000 | 100000000 | R $100 \mathrm{M} \Omega$ | N |
| 121 | GRES | 10000000 | 10000000 | 4W $10 \mathrm{M} \Omega$ | N |
| 122 | GRES | 1000000 | 1000000 | 4W $1 \mathrm{M} \Omega$ | N |
| 123 | GRES | 100000 | 100000 | 4W $100 \mathrm{k} \Omega$ | N |
| 124 | GRES | 10000 | 10000 | $4 \mathrm{~W} 10 \mathrm{k} \Omega$ | N |
| 125 | GRES | 1000 | 1000 | 4W $1 \mathrm{k} \Omega$ | N |
| 126 | GRES | 100 | 100 | 4W $100 \Omega$ | N |
| 127 | GRES | 10 | 10 | 4W $10 \Omega$ (8846A only) | N |

Misc Gain

| 128 | GRES | 1000000000 | 100000000 | R1 G $\Omega$ (8846A only) | N |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 129 | GCAP1 | $10.0 \mathrm{E}-9$ | $10.0 \mathrm{E}-9$ | C10NF (8846A only) | Y |
| 130 | GCAP2 | $10.0 \mathrm{E}-9$ | $10.0 \mathrm{E}-9$ | C10NF (8846A only) | N |

## Change \#3, 53736

Under the LIMITED WARRANTY AND LIMITATION OF LIABILITY replace the second sentence with the following:

The warranty period is three years limited and begins on the date of shipment.
On page 1-8, Table 1-3,
Change:


To:

| 884x-USB | USB to RS-232 Cable Adapter (included) |
| :--- | :--- |

On page 1-10, change the Warranty,
From: One year
To: Three years limited

On page 4-5, Table 4-1, add the following:

| W3 | CABLE, ADAPTER, USB STANDARD A to RS232 DB-9 FEMALE, 1.65M LENGTH | 2683906 | 1 |
| :--- | :--- | :--- | :--- |

## Change \#4

On page 3-11, change the 1-year Test Limits for 1000 V :
From:

| High | Low |
| :--- | :--- |
| 1.0009 kV | 999.1 V |
| 1.0009 kV | 999.1 V |
| 1.0009 kV | 999.1 V |

To:

| High | Low |
| :---: | :---: |
| 1000.825 V | 999.175 V |
| 1000.825 V | 999.175 V |
| 1000.825 V | 999.175 V |

## Change \#5, 57076, 57175

On page 1-10, following the Warranty add:
Specification Confidence Interval 99 \%

## Change \#6

On page 2-5, under the Current-Input Fuses section add the following Table:

## Current Input Fuse Table

| F1 | F1 - Fuse, 11 A, 1000 V , Fast blow or equivalent | 803293 |
| :---: | :--- | :--- |
| F2 | F2 - Fuse, $440 \mathrm{~mA}, 1000 \mathrm{~V}$, Fast blow or equivalent | 943121 |

On page 2-6, replace step 5 and Figure 2-2 with:
5. Remove the defective fuse and replace it with a fuse of an appropriate rating. See the Current Input Fuse Table.


Figure 2-2. Replacing the Current Input Fuses

## Change \#7

On page 3-23, change the 1-year Test Limits for $100.0 \mu \mathrm{~A}^{[1]},-100.0 \mu \mathrm{~A}^{[1])} 1 \mathrm{~A}^{[1]}$ and $-1 \mathrm{~A}^{[1])}$ :
From:

| Nominal <br> Input | High | Low |
| :--- | :--- | :--- |
| $100.0 \mu \mathrm{~A}^{[1]}$ | 100.075 | $99.935 \mu \mathrm{~A}$ |
| $-100.0 \mu \mathrm{~A}^{[1]}$ | -99.925 | $-100.065 \mu \mathrm{~A}$ |
| $1 \mathrm{~A}^{[1]}$ | 1.0007 A | 999.3 mA |
| $-1 \mathrm{~A}^{[1]}$ | -999.3 mA | -1.0007 A |

To:

| Nominal <br> Input | High | Low |
| :--- | :--- | :--- |
| $100.0 \mu \mathrm{~A}^{[1]}$ | 100.075 | $99.925 \mu \mathrm{~A}$ |
| $-100.0 \mu \mathrm{~A}^{[1]}$ | -99.925 | $-100.075 \mu \mathrm{~A}$ |
| $1 \mathrm{~A}^{[1]}$ | 1.0007 A | 0.9993 A |
| $-1 \mathrm{~A}^{[1]}$ | -0.9993 A | -1.0007 A |

## Change \#8, 64487

On page 1-4, in the Symbols table delete the CAT II and add:

| ① | Conforms to CAN/CSA-C22.2 No. 61010-1, second edition, including Amendment 1. |
| :---: | :--- |
| 家 | Conforms to relevant South Korean EMC Standards. |
| CAT I | Meter may be connected to voltage sources not associated with MAINS. |
| CAT II | Measurement Category II is applicable to test and measuring circuits connected directly to <br> utilization points (socket outlets and similar points) of the low-voltage MAINS installation. |
| CAT III | Measurement Category III is applicable to test and measuring circuits connected to the <br> distribution part of the building's low-voltage MAINS installation. |

## Change \#9, 65417, 65494

On page 1-4, under General Safety Summary delete the first paragraph and replace the CAT I and CAT II with:

CAT I Meter may be connected to voltage sources not associated with MAINS.
CAT II Measurement Category II is applicable to test and measuring circuits connected directly to utilization points (socket outlets and similar points) of the low-voltage MAINS installation.
CAT III Measurement Category III is applicable to test and measuring circuits connected to the distribution part of the building's low-voltage MAINS installation.

On page 1-5, replace the second bullet with the following and add

- Do not use the Product around explosive gas, vapor, or in damp or wet environments.
- Replace the Mains power cord if the insulation is damaged or if the insulation shows signs of wear.

On page 1-9, remove the Safety and EMC and add:
Safety....................................................
IEC 61010-1: Overvoltage 300 V CAT II, Measurement: 600 V CAT II/ 1000 V Cat I, Pollution Degree 2
Electromagnetic Environment IEC 61326-1: Controlled

Electromagnetic Compatibility $\qquad$ This meter has shown susceptibilities to radiated frequencies $>1 \mathrm{~V}$ from $1.8-1.9 \mathrm{GHz}$. Applies to use in Korea only Class A Equipment (Industrial Broadcasting \& Communication Equipment) ${ }^{[1]}$
[1] This product meets requirements for industrial (Class A) electromagnetic wave equipment and the seller or user should take notice of it. This equipment is intended for use in business environments and is not to be used in homes.

## Change \#10, 395

On pages 1-13 and 1-19, replace Additional Low Frequency Errors tables with:
Error is stated as \% of reading.

| Frequency | AC Filter |  |  |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{3} \mathbf{~ H Z}$ (slow) | $\mathbf{2 0} \mathbf{~ H Z}$ (medium) | $\mathbf{2 0 0} \mathbf{~ H Z}$ (fast) |
| $10-20 \mathrm{~Hz}$ | 0 | 0.25 | - |
| $20-40 \mathrm{~Hz}$ | 0 | 0.02 | - |
| $40-100 \mathrm{~Hz}$ | 0 | 0.01 | 1.25 |
| $100-200 \mathrm{~Hz}$ | 0 | 0 | 0.2 |
| $200 \mathrm{~Hz}-1 \mathrm{kHz}$ | 0 | 0 | 0.02 |
| $>1 \mathrm{kHz}$ | 0 | 0 | 0 |

## Change \#11, 131

On page 4-4, Table 4-1, remove the A1 rows.

