Manual Supplement

Manual Title:	5520A Service	Supplement Issue:	$\mathbf{8}$
Part Number:	802303	Issue Date:	$4 / 14$
Print Date:	April 1999	Page Count:	6
Revision/Date:	$1,12 / 02$		

This supplement contains information necessary to ensure the accuracy of the above manual. Enter the corrections in the manual if either one of the following conditions exist:

1. The revision letter stamped on the indicated PCA is equal to or higher than that given with each change.
2. No revision letter is indicated at the beginning of the change.

Change \#1

Replace page 1-9, 1-11. DC Current Specifications, with the following:

1-11. DC Current Specifications

Range	$\begin{aligned} & \text { Absolute Uncertainty, } \\ & \text { tcal } \pm 5^{\circ} \mathrm{C} \\ & \pm(\mathrm{ppm} \text { of output }+\mu \mathrm{A}) \\ & \hline \end{aligned}$		Resolution	Max Compliance Voltage V	Max Inductive Load mH
	90 days	1 year			
0 to 329.999 mA	$120+0.02$	$150+0.02$	1 nA	10	400
0 to 3.29999 mA	$80+0.05$	$100+0.05$	$0.01 \mu \mathrm{~A}$	10	
0 to 32.9999 mA	$80+0.25$	$100+0.25$	$0.1 \mu \mathrm{~A}$	7	
0 to 329.999 mA	$80+2.5$	$100+2.5$	$1 \mu \mathrm{~A}$	7	
0 to 1.09999 A	$160+40$	$200+40$	$10 \mu \mathrm{~A}$	6	
1.1 to 2.99999 A	$300+40$	$380+40$	$10 \mu \mathrm{~A}$	6	
0 to 10.9999 A (20 A Range)	$380+500$	$500+500$	$100 \mu \mathrm{~A}$	4	
11 to 20.5 A [1]	$800+750$ [2]	$1000+750$ [2]	$100 \mu \mathrm{~A}$	4	

[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents $>11 \mathrm{~A}$, see Figure 1-4. The current may be provided $60-\mathrm{T}-\mathrm{I}$ minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in Amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-17-23=20$ minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal selfheating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure $1-4$ is achieved only after the 5520A is outputting currents $<5 \mathrm{~A}$ for the "off" period first.
[2] Specifications apply within two minutes of selecting operate.

Range	Noise	
	Bandwidth $\mathbf{0 . 1 ~ \mathbf { ~ H z ~ t o ~ } \mathbf { 1 0 ~ H z }}$ p-p	Bandwidth $\mathbf{1 0 ~ H z ~ t o ~} \mathbf{1 0 ~ k H z}$ rms
0 to $329.999 \mu \mathrm{~A}$	2 nA	20 nA
0 to 3.29999 mA	20 nA	200 nA
0 to 32.9999 mA	200 nA	$2.0 \mu \mathrm{~A}$
0 to 329.999 mA	2000 nA	$20 \mu \mathrm{~A}$
0 to 2.99999 A	$20 \mu \mathrm{~A}$	1 mA
0 to 20.5 A	$200 \mu \mathrm{~A}$	10 mA

Replace page 1-14, 1-14. AC Current (Sine Wave) Specifications with the following: 1-14. AC Current (Sine Wave) Specifications

LCOMP off						
Range	Frequency	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}$ \pm (\% of output $+\mu \mathrm{A}$)		$\begin{aligned} & \text { Compliance } \\ & \text { adder } \\ & \pm(\mu \mathrm{A} / \mathrm{V}) \end{aligned}$	Max Distortion \& Noise 10 Hz to 100 kHz BW \pm (\% output	Max Inductive Load
		90 days	1 year		floor)	$\mu \mathrm{H}$
$\begin{aligned} & 29.00 \mu \mathrm{~A} \text { to } \\ & 329.99 \mu \mathrm{~A} \end{aligned}$	10 Hz to 20 Hz	$0.16+0.1$	$0.2+0.1$	0.05	$0.15+0.5 \mu \mathrm{~A}$	200
	20 Hz to 45 Hz	$0.12+0.1$	$0.15+0.1$	0.05	$0.1+0.5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.1+0.1$	$0.125+0.1$	0.05	$0.05+0.5 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.25+0.15$	$0.3+0.15$	1.5	$0.5+0.5 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$0.6+0.2$	$0.8+0.2$	1.5	$1.0+0.5 \mu \mathrm{~A}$	
	10 kHz to 30 kHz	$1.2+0.4$	$1.6+0.4$	10	$1.2+0.5 \mu \mathrm{~A}$	
$\begin{aligned} & \hline 0.33 \mathrm{~mA} \text { to } \\ & 3.2999 \mathrm{~mA} \end{aligned}$	10 Hz to 20 Hz	$0.16+0.15$	$0.2+0.15$	0.05	$0.15+1.5 \mu \mathrm{~A}$	200
	20 Hz to 45 Hz	$0.1+0.15$	$0.125+0.15$	0.05	$0.06+1.5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.08+0.15$	$0.1+0.15$	0.05	$0.02+1.5 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.16+0.2$	$0.2+0.2$	1.5	$0.5+1.5 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$0.4+0.3$	$0.5+0.3$	1.5	$1.0+1.5 \mu \mathrm{~A}$	
	10 kHz to 30 kHz	$0.8+0.6$	$1.0+0.6$	10	$1.2+0.5 \mu \mathrm{~A}$	
$\begin{aligned} & 3.3 \mathrm{~mA} \text { to } \\ & 32.999 \mathrm{~mA} \end{aligned}$	10 Hz to 20 Hz	$0.15+2$	$0.18+2$	0.05	$0.15+5 \mu \mathrm{~A}$	50
	20 Hz to 45 Hz	$0.075+2$	$0.09+2$	0.05	$0.05+5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.035+2$	$0.04+2$	0.05	$0.07+5 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.065+2$	$0.08+2$	1.5	$0.3+5 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$0.16+3$	$0.2+3$	1.5	$0.7+5 \mu \mathrm{~A}$	
	10 kHz to 30 kHz	$0.32+4$	$0.4+4$	10	$1.0+0.5 \mu \mathrm{~A}$	
$\begin{aligned} & \hline 33 \mathrm{~mA} \text { to } \\ & 329.99 \mathrm{~mA} \end{aligned}$	10 Hz to 20 Hz	$0.15+20$	$0.18+20$	0.05	$0.15+50 \mu \mathrm{~A}$	50
	20 Hz to 45 Hz	$0.075+20$	$0.09+20$	0.05	$0.05+50 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.035+20$	$0.04+20$	0.05	$0.02+50 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.08+50$	$0.10+50$	1.5	$0.03+50 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$0.16+100$	$0.2+100$	1.5	$0.1+50 \mu \mathrm{~A}$	
	10 kHz to 30 kHz	$0.32+200$	$0.4+200$	10	$0.6+50 \mu \mathrm{~A}$	
$\begin{aligned} & \hline 0.33 \mathrm{~A} \text { to } \\ & 1.09999 \mathrm{~A} \end{aligned}$	10 Hz to 45 Hz	$0.15+100$	$0.18+100$		0.2 + $500 \mu \mathrm{~A}$	2.5
	45 Hz to 1 kHz	$0.036+100$	$0.05+100$		$0.07+500 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.5+1000$	$0.6+1000$	[2]	$1+500 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$2.0+5000$	$2.5+5000$	[3]	$2+500 \mu \mathrm{~A}$	
$\begin{aligned} & 1.1 \mathrm{~A} \text { to } \\ & 2.99999 \mathrm{~A} \end{aligned}$	10 Hz to 45 Hz	$0.15+100$	$0.18+100$		$0.2+500 \mu \mathrm{~A}$	2.5
	45 Hz to 1 kHz	$0.05+100$	$0.06+100$		$0.07+500 \mu \mathrm{~A}$	
	1 kHz to 5 kHz	$0.5+1000$	$0.6+1000$	[2]	$1+500 \mu \mathrm{~A}$	
	5 kHz to 10 kHz	$2.0+5000$	$2.5+5000$	[3]	$2+500 \mu \mathrm{~A}$	
$\begin{aligned} & \hline 3 \mathrm{~A} \text { to } \\ & 10.9999 \mathrm{~A} \end{aligned}$	45 Hz to 100 Hz	$0.05+2000$	$0.06+2000$		$0.2+3 \mathrm{~mA}$	1
	100 Hz to 1 kHz	$0.08+2000$	$0.10+2000$		$0.1+3 \mathrm{~mA}$	
	1 kHz to 5 kHz	$2.5+2000$	$3.0+2000$		$0.8+3 \mathrm{~mA}$	
$\begin{aligned} & \text { 11A to } \\ & 20.5 \mathrm{~A}[1] \end{aligned}$	45 Hz to 100 Hz	$0.1+5000$	$0.12+5000$		$0.2+3 \mathrm{~mA}$	1
	100 Hz to 1 kHz	$0.13+5000$	$0.15+5000$		$0.1+3 \mathrm{~mA}$	
	1 kHz to 5 kHz	$2.5+5000$	$3.0+5000$		$0.8+3 \mathrm{~mA}$	

[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents $>11 \mathrm{~A}$, see Figure 1-4. The current may be provided 60-T-I minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in Amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-17-23=20$ minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal selfheating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure $1-4$ is achieved only after the 5520A is outputting currents $<5 \mathrm{~A}$ for the "off" period first.
[2] For compliance voltages greater than 1 V , add $1 \mathrm{~mA} / \mathrm{V}$ to the floor specification from 1 kHz to 5 kHz .
[3] For compliance voltages greater than 1 V , add $5 \mathrm{~mA} / \mathrm{V}$ to the floor specification from 5 kHz to 10 kHz .

Replace page 1-15, 1-14. AC Current (Sine Wave) Specifications, with the following: AC Current (Sine Wave) Specifications (cont)

LCOMP on					
Range	Frequency	```Absolute Uncertainty, tcal }\pm \circ \pm(% of output + \muA)```		Max Distortion \& Noise, 10 Hz to 100 kHz BW \pm (\% output + $\mu \mathrm{A})$	Max Inductive Load $\mu \mathrm{H}$
		90 days	1 year		
$\begin{aligned} & 29.00 \mu \mathrm{~A} \text { to } \\ & 329.99 \mu \mathrm{~A} \end{aligned}$	10 Hz to 100 Hz	$0.2+0.2$	$0.25+0.2$	$0.1+1.0$	400
	100 Hz to 1 kHz	$0.5+0.5$	$0.6+0.5$	$0.05+1.0$	
0.33 mA to 3.2999 mA	10 Hz to 100 Hz	$0.2+0.3$	$0.25+0.3$	$0.15+1.5$	
	100 Hz to 1 kHz	$0.5+0.8$	$0.6+0.8$	$0.06+1.5$	
3.3 mA to$32.999 \mathrm{~mA}$	10 Hz to 100 Hz	$0.07+4$	$0.08+4$	$0.15+5$	
	100 Hz to 1 kHz	$0.18+10$	$0.2+10$	$0.05+5$	
33 mA to$329.99 \mathrm{~mA}$	10 Hz to 100 Hz	$0.07+40$	$0.08+40$	$0.15+50$	
	100 Hz to 1 kHz	$0.18+100$	$0.2+100$	$0.05+50$	
$\begin{aligned} & 0.33 \text { A to } \\ & 2.99999 \text { A } \end{aligned}$	10 Hz to 100 Hz	$0.1+200$	$0.12+200$	$0.2+500$	
	100 to 440 Hz	$0.25+1000$	$0.3+1000$	$0.25+500$	
3 A to 20.5 A [1]	10 Hz to 100 Hz	$0.1+2000$ [2]	$0.12+2000$ [2]	$0.1+0$	400 [4]
	100 Hz to 1 kHz	$0.8+5000$ [3]	$1.0+5000$ [3]	$0.5+0$	

[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents > 11 A, see Figure 1-4. The current may be provided $60-\mathrm{T}-\mathrm{I}$ minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in Amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-17-23=20$ minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1-4 is achieved only after the 5520A is outputting currents < 5A for the "off" period first.
[2] For currents $>11 \mathrm{~A}$, Floor specification is $4000 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $2000 \mu \mathrm{~A}$.
[3] For currents $>11 \mathrm{~A}$, Floor specification is $1000 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $5000 \mu \mathrm{~A}$.
[4] Subject to compliance voltages limits.

Range	Resolution $\mu \mathbf{A}$	Max Compliance Voltage V rms [1]
0.029 mA to 0.32999 mA	0.01	7
0.33 mA to 3.29999 mA	0.01	7
3.3 mA to 32.9999 mA	0.1	5
33 mA to 329.999 mA	1	5
0.33 A to 2.99999 A	10	4
3 A to 20.5 A	100	3
[1] Subject to specification adder for compliance voltages greater than $1 \mathrm{~V} \mathrm{rms}$.		

Change \#2

On page 4-7, under Testing the Front Panel, replace the description of the DISPLAY self test with:

- DISPLAY - Checks all segments of the two displays.

When testing the output display (DISPLAY MEAS), three choices are available that write test patterns to the output display: ALL ON, ALL OFF, and CURSOR TEST. To exit the self test, press RESET. In V3.6 Main software, pressing PREV MENU, STBY or OPR will also cause reset.

Change \#3

On page 5-4, Table 5, replace the Fluke stock number for $\mathrm{A} 1, \mathrm{~A} 3, \mathrm{~A} 6, \mathrm{~A} 8$, and A 12 with the following:

A1	*PCB, KEYBOARD	761049	1
A3	*PCA, SUB-ASSY, MOTHERBOARD	626884	1
A6	*PCA, DDS	1577331	1
A8	*PCA, SUB-ASSY, VOLTAGE	626926	1
A12	*PCA, SUB-ASSY, FILTER	626942	1

Change \#4

On page 3-27, Table 3-18, delete the entire section following: Entry points for CAL_START FACTORY Modifier.

Change \#5, 39294
On page 1-18, under Temperature Calibration (RTD) Specifications, under RTD Type,
Change: Pt 395100Ω
To: \quad Pt 385100Ω

Change \#6

On page 6-29, section 6-46 delete the last paragraph and add step 4.
4. Compare result to tolerance columns.

On page 6-31, replace Table 6-20 with the following:

Table 6-20. DC Voltage Verification at 50Ω

Calibrator Mainframe output	Agilent 3458A Reading	Tolerance (V DC)	
		-0.040 mV	0.040 mV
0 mV		2.4438 mV	2.5362 mV
2.49 mV		-2.5362 mV	-2.4438 mV
-2.49 mV		9.835 mV	9.965 mV
9.9 mV		-9.965 mV	-9.835 mV
-9.9 mV		24.798 mV	25.002 mV
24.9 mV		-25.002 mV	-24.798 mV
-24.9 mV		-109.585 mV	110.215 mV
109.9 mV		-110.215 mV	-109.585 mV
-109.9 mV		-500.29 mV	-497.71 mV
499 mV		2.1845 V	2.1955 V
-499 mV		-2.1955 V	-2.1845 V
2.19 V		6.5825 V	6.6155 V
-2.19 V		-6.6155 V	-6.5825 V
6.599 V			
-6.599 V			

Change \#7

On page 6-53, Table 6-37, replace the Tolerance section with the following:

Tolerance
$2.2 \eta \mathrm{~S}$
$4.25 \eta \mathrm{~S}$
$4.25 \eta \mathrm{~S}$
$27.0 \eta \mathrm{~S}$

Change \#8

On page 6-97, Table 6-53, change the last line in the first column:
From: 500 MHz
To: $\quad 300 \mathrm{MHz}$

Change \#9

On page 3-55, add section 3-35,

3-35. Thermocouple Measurement Accuracy

The Thermocouple Measurement Accuracy test checks the internal temperature reference. To perform this test, measure a lag bath temperature within $\pm 2{ }^{\circ} \mathrm{C}$ of the 5520A. Set the 5520 A to Internal Reference, J thermocouple type. Make connections with J-type thermocouple wire as shown in Figure 3-5. Table 3-35 shows the test points.

Table 3-35. Thermocouple Measurement Accuracy Test

Nominal Value $\left({ }^{\circ} \mathrm{C}\right)$	5500 A Reads $\left({ }^{\circ} \mathrm{C}\right)$	Deviation ${ }^{\circ} \mathrm{C}$	90 -Day Spec. $\left({ }^{\circ} \mathrm{C}\right)$
Lag bath temperature			0.1

Change \#10

On page 5-7, Table 5-2, change the following:

MP1	FRONT PANEL, MODIFIED	1593149	1

Change \#11

On page 6-47, Table 6-33, in the bottom row, replace E with:
E Compute and enter Error relative to 10 MHz (\%): 100 * (sqrt(Column C entry) - sqrt(Column D entry)) / sqrt(Column D entry).

