Manual Supplement

Manual Title:	5502A Operators	Supplement Issue:	$\mathbf{5}$
Print Date:	September 2012	Issue Date:	$3 / 21$
Revision/Date		Page Count:	19
$:$			

This supplement contains information necessary to ensure the accuracy of the above manual. This manual is distributed as an electronic manual on the following CD-ROM:

CD Title: 5502A
CD Rev. \& Date: 11/2012
CD PN: 4155227

Change \#1, 66379, 561, 562, 564, 610

On pages 1-9 through 1-28, replace the entire Specifications section with: General Specifications

The following tables list the 5502A specifications. All specifications are valid after allowing a warm-up period of 30 minutes, or twice the time the 5502A has been turned off. (For example, if the 5502A has been turned off for 5 minutes, the warm-up period is 10 minutes.)

All specifications apply for the temperature and time period indicated. For temperatures outside of tcal $\pm 5^{\circ} \mathrm{C}$ (tcal is the ambient temperature when the 5502A was calibrated), the temperature coefficient as stated in the General Specifications must be applied.
The specifications also assume the Calibrator is zeroed every 7 days or whenever the ambient temperature changes more than $5{ }^{\circ} \mathrm{C}$. The tightest ohms specifications are maintained with a zero cal every 12 hours within $\pm 1^{\circ} \mathrm{C}$ of use.
Also see additional specifications later in this chapter for information on extended specifications for ac voltage and current.

Warmup Time .. Twice the time since last warmed up, to a maximum of 30 minutes.	
Settling Time	Less than 5 seconds for all functions and ranges except as noted.
Standard Interfaces .. IEEE-488 (GPIB), RS-232	
Temperature	
Operating	$0^{\circ} \mathrm{C}$ to $50{ }^{\circ} \mathrm{C}$
Calibration (tcal).	$15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
Storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; The DC current ranges 0 to 1.09999 A and 1.1 A to 2.99999 A are sensitive to storage temperatures above $50^{\circ} \mathrm{C}$. If the 5502 A is stored above $50{ }^{\circ} \mathrm{C}$ for greater than 30 minutes, these ranges must be re-calibrated. Otherwise, the 90 day and 1 year uncertainties of these ranges double.
Temperature Coefficient	Temperature coefficient for temperatures outside of tcal $\pm 5^{\circ} \mathrm{C}$ is 10% of the stated specification per ${ }^{\circ} \mathrm{C}$.
Relative Humidity	
Operating	$<80 \%$ to $30{ }^{\circ} \mathrm{C},<70 \%$ to $40{ }^{\circ} \mathrm{C},<40 \%$ to $50^{\circ} \mathrm{C}$
Storage	<95\%, non-condensing. After long periods of storage at high humidity, a drying-out period (with power on) of at least one week may be required.

Altitude	
Operating	$3050 \mathrm{~m}(10000 \mathrm{ft})$ maximum at $\leq 120 \mathrm{~V}$ line voltage operation
	$2,000 \mathrm{~m}(6500 \mathrm{ft})$ maximum at $>120 \mathrm{~V}$ line voltage operation
Non-operatin	$12200 \mathrm{~m}(40000 \mathrm{ft})$ maximum
Safety	IEC 61010-1: Overvoltage CAT II, Pollution Degree 2

Output Terminal Electrical Overload Protection Provides reverse-power protection, immediate output disconnection, and/or fuse protection on the output terminals for all functions. This protection is for applied external voltages up to $\pm 300 \mathrm{~V}$ peak.
Analog Low Isolation... 20 V normal operation, 400 V peak transient
Electromagnetic Compatibility
International .. IEC 61326-1: Controlled Electromagnetic Environment; IEC 61326-2-1 CISPR 11: Group 1, Class A
Group 1: Equipment has intentionally generated and/or uses conductively-coupled radio frequency energy that is necessary for the internal function of the equipment itself. Class A: Equipment is suitable for use in all establishments other than domestic and those directly connected to a low-voltage power supply network that supplies buildings used for domestic purposes. There may be potential difficulties in ensuring electromagnetic compatibility in other environments due to conducted and radiated disturbances.
Caution: This equipment is not intended for use in residential environments and may not provide adequate protection to radio reception in such environments.

Emissions that exceed the levels required by CISPR 11 can occur when the equipment is connected to a test object.
The equipment may not meet the immunity requirements of this standard when test leads and/or test probes are connected.

If used in areas with electromagnetic fields of $1 \mathrm{~V} / \mathrm{m}$ to $3 \mathrm{~V} / \mathrm{m}$ from 0.08 GHz to 1 GHz , resistance outputs have a floor adder of 0.508Ω. Performance not specified above $3 \mathrm{~V} / \mathrm{m}$. This instrument may be susceptible to electro-static discharge (ESD) to the binding posts. Good static awareness practices should be followed when handling this and other pieces of electronic equipment. Additionally, this instrument may be susceptible to electrical fast transients on the mains terminals. If any disturbances in operation are observed, it is recommended that the rear-panel chassis ground terminal
be connected to a known good earth ground with a low-inductance ground strap. Note that a mains power outlet, while providing a suitable ground for protection against electric shock hazard, may not provide an adequate ground to properly drain away conducted rf disturbances and may, in fact, be the source of the disturbance. This instrument was certified for EMC performance with data I/O cables not in excess of 3 m .
Line Power...

Line Voltage (selectable): $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$
Line Frequency: 47 Hz to 63 Hz
Line Voltage Variation: $\pm 10 \%$ about line voltage setting. For optimal performance at full dual outputs (e.g. $1000 \mathrm{~V}, 20 \mathrm{~A}$) choose a line voltage setting that is $\pm 7.5 \%$ from nominal.
Power Consumption
. 600 VA
Dimensions (HxWxL) ...
$17.8 \mathrm{~cm} \times 43.2 \mathrm{~cm} \times 47.3 \mathrm{~cm}$ ($7 \mathrm{in} \times 17 \mathrm{in} \times 18.6 \mathrm{in}$) Standard rack width and rack increment, plus 1.5 cm (0.6 in) for feet on bottom of unit.
Weight (without options) \qquad 22 kg (49 lb)
Absolute Uncertainty Definition
The 5502A specifications include stability, temperature coefficient, linearity, line and load regulation, and the traceability of the external standards used for calibration. You do not need to add anything to determine the total specification of the 5502A for the temperature range indicated.
Specification Confidence Level 99 \%

Detailed Specifications

DC Voltage

Range	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}$ $\pm(\%$ of output $+\mu \mathbf{V}$)		Stability	Resolution ($\mu \mathrm{V}$)	Max Burden ${ }^{[1]}$
	90 Day	1 Year	$\pm($ ppm of output $+\mu \mathrm{V}$)		
0 to 329.9999 mV	$0.005+3$	$0.006+3$	$5+1$	0.1	65Ω
0 to 3.299999 V	$0.004+5$	$0.005+5$	$4+3$	1	10 mA
0 to 32.99999 V	$0.004+50$	$0.005+50$	$4+30$	10	10 mA
30 to 329.9999 V	$0.0045+500$	$0.0055+500$	$4.5+300$	100	5 mA
100 to 1020.000 V	$0.0045+1500$	$0.0055+1500$	$4.5+900$	1000	5 mA
Auxiliary Output (dual output mode only) ${ }^{[2]}$					
0 to 329.999 mV	$0.03+350$	$0.04+350$	$30+100$	1	5 mA
0.33 to 3.29999 V	$0.03+350$	$0.04+350$	$30+100$	10	5 mA
3.3 to 7 V	$0.03+350$	$0.04+350$	$30+100$	100	5 mA
TC Simulate and Measure in Linear $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ modes ${ }^{[3]}$					
0 to 329.9999 mV	$0.005+3$	$0.006+3$	$5+1$	0.1	10Ω
[1] Remote sens $<1 \Omega$. TC sim [2] Two channels [3] TC simulating	is not provided. Out ion has an output in dc voltage output a d measuring are no	resistance is $<5 \mathrm{~m}$ dance of $10 \Omega \pm 1 \Omega$ provided. pecified for operation	Ω for outputs $\geq 0.33 \mathrm{~V}$. The Ω. in electromagnetic fields a	AUX output has an bove $0.4 \mathrm{~V} / \mathrm{m}$.	utput resistance of

Range	Noise	
	Bandwidth 0.1 Hz to 10 Hz p-p $\pm(\mathrm{ppm}$ of output + floor in $\mu \mathrm{V}$)	Bandwidth 10 Hz to 10 kHz rms
0 to 329.9999 mV	$0+1$	$6 \mu \mathrm{~V}$
0 to 3.299999 V	$0+10$	$60 \mu \mathrm{~V}$
0 to 32.99999 V	$0+100$	$600 \mu \mathrm{~V}$
30 to 329.9999 V	$10+1000$	20 mV
100 to 1020.000 V	$10+5000$	20 mV
Auxiliary Output (dual output mode only) ${ }^{\text {[1] }}$		
0 to 329.999 mV	$0+5 \mu \mathrm{~V}$	$20 \mu \mathrm{~V}$
0.33 to 3.29999 V	$0+20 \mu \mathrm{~V}$	$200 \mu \mathrm{~V}$
3.3 to 7 V	$0+100 \mu \mathrm{~V}$	$1000 \mu \mathrm{~V}$
[1] Two channels of dc voltage output are provided.		

DC Current

Range	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}$ $\pm(\%$ of output $+\mu \mathrm{A})$		Resolution	Max Compliance Voltage V	Max Inductive Load mH
	90 Day	1 Year			
0 to $329.999 \mu \mathrm{~A}$	$0.012+0.02$	$0.015+0.02$	1 nA	10	400
0 to 3.29999 mA	$0.010+0.05$	$0.013+0.05$	$0.01 \mu \mathrm{~A}$	10	
0 to 32.9999 mA	$0.008+0.25$	$0.010+0.25$	$0.1 \mu \mathrm{~A}$	7	
0 to 329.999 mA	$0.008+3.3$	$0.010+2.5$	$1 \mu \mathrm{~A}$	7	
0 to 1.09999 A	$0.023+44$	$0.038+44$	$10 \mu \mathrm{~A}$	6	
1.1 to 2.99999 A	$0.030+44$	$0.038+44$	$10 \mu \mathrm{~A}$	6	
0 to 10.9999 A (20 A Range)	$0.038+500$	$0.060+500$	$100 \mu \mathrm{~A}$	4	
11 to 20.5 A ${ }^{\text {[1] }}$	$0.080+750{ }^{[2]}$	$0.10+750^{[2]}$	$100 \mu \mathrm{~A}$	4	

[1] Duty Cycle: Currents <11 A may be provided continuously. For currents >11 A, see Figure 1. The current may be provided Formula $60-\mathrm{T}$-I minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in amperes. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-23-17=20$ minutes each hour. When the 5502A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1 is achieved only after the 5502A is outputting currents $<5 \mathrm{~A}$ for the "off" period first.
[2] Floor specification is $1500 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $750 \mu \mathrm{~A}$.

Range	Noise	
	Bandwidth 0.1 Hz to $\mathbf{1 0} \mathbf{~ H z ~ p - p ~}$	Bandwidth $\mathbf{1 0 ~ H z}$ to $\mathbf{1 0 ~ k H z ~ r m s ~}$
0 to $329.999 \mu \mathrm{~A}$	2 nA	20 nA
0 to 3.29999 mA	20 nA	200 nA
0 to 32.9999 mA	200 nA	$2.0 \mu \mathrm{~A}$
0 to 329.999 mA	2000 nA	$20 \mu \mathrm{~A}$
0 to 2.99999 A	$20 \mu \mathrm{~A}$	1 mA
0 to 20.5 A	$200 \mu \mathrm{~A}$	10 mA

Figure 1. Allowable Duration of Current >11 A

Resistance

Range ${ }^{[1]}$	Absolute Uncertainty, tcal $\pm 5{ }^{\circ} \mathrm{C} \pm\left(\%\right.$ of output + floor) ${ }^{[2]}$				Resolution (Ω)	Allowable Current ${ }^{[3]}$ (A)
	\% of output		Floor (Ω) Time and temp since ohms zero cal			
	90 Day	1 Year	$12 \mathrm{hrs} \pm 1^{\circ} \mathrm{C}$	7 days $\pm 5^{\circ} \mathrm{C}$		
0 to 10.999Ω	0.009	0.012	0.001	0.01	0.001	4 mA to 125 mA
11 to 32.999Ω	0.009	0.012	0.0015	0.015	0.001	4 mA to 125 mA
$\begin{aligned} & \hline 33 \text { to } \\ & 109.999 \Omega \end{aligned}$	0.007	0.009	0.0014	0.015	0.001	3 mA to 70 mA
$\begin{aligned} & 110 \text { to } \\ & 329.999 \Omega \end{aligned}$	0.007	0.009	0.002	0.02	0.001	1 mA to 40 mA
$\begin{aligned} & 330 \text { to } \\ & 1.09999 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0.007	0.009	0.002	0.02	0.01	1 mA to 13.5 mA
$\begin{aligned} & 1.1 \text { to } \\ & 3.29999 \mathrm{k} \Omega \end{aligned}$	0.007	0.009	0.02	0.2	0.01	$100 \mu \mathrm{~A}$ to 4.5 mA
$\begin{aligned} & 3.3 \text { to } \\ & 10.9999 \mathrm{k} \Omega \end{aligned}$	0.007	0.009	0.02	0.1	0.1	$100 \mu \mathrm{~A}$ to 1.35 mA
$\begin{aligned} & 11 \text { to } \\ & 32.9999 \mathrm{k} \Omega \end{aligned}$	0.007	0.009	0.2	1	0.1	$10 \mu \mathrm{~A}$ to 0.45 mA
$\begin{aligned} & 33 \text { to } \\ & 109.999 \mathrm{k} \Omega \end{aligned}$	0.008	0.011	0.2	1	1	$10 \mu \mathrm{~A}$ to 0.135 mA
$\begin{aligned} & 110 \text { to } \\ & 329.999 \mathrm{k} \Omega \end{aligned}$	0.009	0.012	2	10	1	$1 \mu \mathrm{~A}$ to $0.045 \mu \mathrm{~A}$
$\begin{aligned} & 330 \mathrm{k} \Omega \text { to } \\ & 1.09999 \mathrm{M} \Omega \end{aligned}$	0.011	0.015	2	10	10	$1 \mu \mathrm{~A}$ to $0.0135 \mu \mathrm{~A}$
$\begin{aligned} & 1.1 \text { to } \\ & 3.29999 \mathrm{M} \Omega \end{aligned}$	0.011	0.015	30	150	10	250 nA to $4.5 \mu \mathrm{~A}$
$\begin{aligned} & 3.3 \text { to } \\ & 10.9999 \mathrm{M} \Omega \end{aligned}$	0.045	0.06	50	250	100	250 nA to $1.35 \mu \mathrm{~A}$
$\begin{aligned} & 11 \text { to } \\ & 32.9999 \mathrm{M} \Omega \end{aligned}$	0.075	0.1	2500	2500	100	25 nA to 450 nA
$\begin{aligned} & 33 \text { to } \\ & 109.999 \mathrm{M} \Omega \end{aligned}$	0.4	0.5	3000	3000	1000	25 nA to 135 nA
$\begin{aligned} & 110 \text { to } \\ & 329.999 \mathrm{M} \Omega \end{aligned}$	0.4	0.5	100000	100000	1000	2.5 nA to 45 nA
$\begin{aligned} & 330 \text { to } \\ & 1100.00 \mathrm{M} \Omega \\ & \hline \end{aligned}$	1.2	1.5	500000	500000	10000	1 nA to 13 nA
[1] Continuously variable from 0Ω to 1.1 G .						
[3] Do not exceed the largest current for each range. For currents lower than shown, the floor adder increases by Floor ${ }_{(\text {new })}=$ Floor $_{(\text {(odd })} X$ $I_{\text {min }} / l_{\text {actual }}$. For example, a $50 \mu \mathrm{~A}$ stimulus measuring 100Ω has a floor specification of: $0.0014 \Omega \times 3 \mathrm{~mA} / 50 \mu \mathrm{~A}=0.084 \Omega$, assuming an ohms zero calibration within 12 hours.	[2] Applies for 4-WIRE compensation only. For 2-WIRE and 2-WIRE COMP, add $5 \mu \mathrm{~V}$ per amp of stimulus current to the floor specification. For example, in 2-WIRE mode, at $1 \mathrm{k} \Omega$ the floor specification within 12 hours of an ohms zero cal for a measurement current of 1 mA is: $0.002 \Omega+5 \mu \mathrm{~V} / 1 \mathrm{~mA}=(0.002+0.005) \Omega=0.007 \Omega$.					

AC Voltage (Sine Wave)

Range	Frequency	Absolute Uncertainty, tcal$\begin{gathered} \pm 5^{\circ} \mathrm{C} \pm \\ \text { (\% of output }+\mu \mathrm{V}) \\ \hline \end{gathered}$		Resolution	Max Burden	Max Distortion and Noise 10 Hz to 5 MHz Bandwidth $\pm(\%$ of output + floor)
		90 Day	1 Year			
$\begin{aligned} & 1.0 \text { to } \\ & 32.999 \mathrm{mV} \end{aligned}$	10 Hz to 45 Hz	$0.120+20$	$0.150+20$	$1 \mu \mathrm{~V}$	65Ω	$0.15+90 \mu \mathrm{~V}$
	45 Hz to 10 kHz	$0.080+20$	$0.100+20$			$0.035+90 \mu \mathrm{~V}$
	10 kHz to 20 kHz	$0.120+20$	$0.150+20$			$0.06+90 \mu \mathrm{~V}$
	20 kHz to 50 kHz	$0.160+20$	$0.200+20$			$0.15+90 \mu \mathrm{~V}$
	50 kHz to 100 kHz	$0.300+33$	$0.350+33$			$0.25+90 \mu \mathrm{~V}$
	100 kHz to 500 kHz	$0.750+60$	$1.000+60$			$0.3+90 \mu \mathrm{~V}{ }^{[1]}$
$\begin{aligned} & 33 \mathrm{mV} \text { to } \\ & 329.999 \mathrm{mV} \end{aligned}$	10 Hz to 45 Hz	$0.042+20$	$0.050+20$	$1 \mu \mathrm{~V}$	65Ω	$0.15+90 \mu \mathrm{~V}$
	45 Hz to 10 kHz	$0.029+20$	$0.030+20$			$0.035+90 \mu \mathrm{~V}$
	10 kHz to 20 kHz	$0.066+20$	$0.070+20$			$0.06+90 \mu \mathrm{~V}$
	20 kHz to 50 kHz	$0.086+40$	$0.100+40$			$0.15+90 \mu \mathrm{~V}$
	50 kHz to 100 kHz	$0.173+170$	$0.230+170$			$0.2+90 \mu \mathrm{~V}$
	100 kHz to 500 kHz	$0.400+330$	$0.500+330$			$0.2+90 \mu \mathrm{~V}{ }^{[1]}$
$\begin{aligned} & 0.33 \mathrm{~V} \text { to } \\ & 3.29999 \mathrm{~V} \end{aligned}$	10 Hz to 45 Hz	$0.042+60$	$0.050+60$	$10 \mu \mathrm{~V}$	10 mA	$0.15+200 \mu \mathrm{~V}$
	45 Hz to 10 kHz	$0.028+60$	$0.030+60$			$0.035+200 \mu \mathrm{~V}$
	10 kHz to 20 kHz	$0.059+60$	$0.070+60$			$0.06+200 \mu \mathrm{~V}$
	20 kHz to 50 kHz	$0.083+60$	$0.100+60$			$0.15+200 \mu \mathrm{~V}$
	50 kHz to 100 kHz	$0.181+200$	$0.230+200$			$0.2+200 \mu \mathrm{~V}$
	100 kHz to 500 kHz	$0.417+900$	$0.500+900$			$0.2+200 \mu \mathrm{~V}^{[1]}$
$\begin{aligned} & 3.3 \mathrm{~V} \text { to } \\ & 32.9999 \mathrm{~V} \end{aligned}$	10 Hz to 45 Hz	$0.042+800$	$0.050+800$	$100 \mu \mathrm{~V}$	10 mA	$0.15+2 \mathrm{mV}$
	45 Hz to 10 kHz	$0.025+600$	$0.030+600$			$0.035+2 \mathrm{mV}$
	10 kHz to 20 kHz	$0.064+600$	$0.070+600$			$0.08+2 \mathrm{mV}$
	20 kHz to 50 kHz	$0.086+600$	$0.100+600$			$0.2+2 \mathrm{mV}$
	50 kHz to 100 kHz	$0.192+2000$	$0.230+2000$			$0.5+2 \mathrm{mV}$
$\begin{aligned} & 33 \mathrm{~V} \text { to } \\ & 329.999 \mathrm{~V} \end{aligned}$	45 Hz to 1 kHz	$0.039+3000$	$0.050+3000$	1 mV	5 mA , except 20 mA for 45 Hz to 65 Hz	$0.15+10 \mathrm{mV}$
	1 kHz to 10 kHz	$0.064+9000$	$0.080+9000$			$0.05+10 \mathrm{mV}$
	10 kHz to 20 kHz	$0.079+9000$	$0.090+9000$			$0.6+10 \mathrm{mV}$
	20 kHz to 50 kHz	$0.096+9000$	$0.120+9000$			$0.8+10 \mathrm{mV}$
	50 kHz to 100 kHz	$0.192+80000$	$0.240+80000$			$1+10 \mathrm{mV}$
$\begin{aligned} & 330 \mathrm{~V} \text { to } \\ & 1020 \mathrm{~V} \end{aligned}$	45 Hz to 1 kHz	$0.042+20000$	$0.050+20000$	10 mV	2 mA , except 6 mA for 45 to 65 Hz	$0.15+30 \mathrm{mV}$
	1 kHz to 5 kHz	$0.064+20000$	$0.080+20000$			$0.07+30 \mathrm{mV}$
	5 kHz to 10 kHz	$0.075+20000$	$0.090+20000$			$0.07+30 \mathrm{mV}$

[1] Max Distortion for 100 kHz to 200 kHz . For 200 kHz to 500 kHz , the maximum distortion is 0.9% of output + floor as shown. Note

Remote sensing is not provided. Output resistance is $<5 \mathrm{~m} \Omega$ for outputs $\geq 0.33 \mathrm{~V}$. The AUX output resistance is $<1 \Omega$. The maximum load capacitance is 500 pF , subject to the maximum burden current limits.

AUX (Auxiliary Output) [dual output mode only]										
Range	Frequency ${ }^{[1]}$	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C} \pm(\%$ of output $+\mu \mathrm{V}$)		Resolution	Max Burden	Max Distortion and Noise 10 Hz to 5 MHz Bandwidth $\pm(\%$ of output + floor)				
		90 Day	1 Year							
$\begin{aligned} & 1.0 \text { to } \\ & 329.999 \mathrm{mV} \end{aligned}$	10 to 20 Hz	$0.15+370$	$0.20+370$	$1 \mu \mathrm{~V}$	5 mA	$0.20+200 \mu \mathrm{~V}$				
	20 to 45 Hz	$0.08+370$	$0.10+370$			$0.06+200 \mu \mathrm{~V}$				
	45 to 1 kHz	$0.08+370$	$0.10+370$			$0.08+200 \mu \mathrm{~V}$				
	1 to 5 kHz	$0.15+450$	$0.20+450$			$0.30+200 \mu \mathrm{~V}$				
	5 to 10 kHz	$0.30+450$	$0.40+450$			$0.60+200 \mu \mathrm{~V}$				
	10 to 30 kHz	$4.00+900$	$5.00+900$			$1.00+200 \mu \mathrm{~V}$				
$\begin{aligned} & 0.33 \text { to } \\ & 3.29999 \mathrm{~V} \end{aligned}$	10 to 20 Hz	$0.15+450$	$0.20+450$	$10 \mu \mathrm{~V}$	5 mA	$0.20+200 \mu \mathrm{~V}$				
	20 to 45 Hz	$0.08+450$	$0.10+450$			$0.06+200 \mu \mathrm{~V}$				
	45 to 1 kHz	$0.07+450$	$0.09+450$			$0.08+200 \mu \mathrm{~V}$				
	1 to 5 kHz	$0.15+1400$	$0.20+1400$			$0.30+200 \mu \mathrm{~V}$				
	5 to 10 kHz	$0.30+1400$	$0.40+1400$			$0.60+200 \mu \mathrm{~V}$				
	10 to 30 kHz	$4.00+2800$	$5.00+2800$			$1.00+200 \mu \mathrm{~V}$				
3.3 to 5 V	10 to 20 Hz	$0.15+450$	$0.20+450$	$100 \mu \mathrm{~V}$	5 mA	$0.20+200 \mu \mathrm{~V}$				
	20 to 45 Hz	$0.08+450$	$0.10+450$			$0.06+200 \mu \mathrm{~V}$				
	45 to 1 kHz	$0.07+450$	$0.09+450$			$0.08+200 \mu \mathrm{~V}$				
	1 to 5 kHz	$0.15+1400$	$0.20+1400$			$0.30+200 \mu \mathrm{~V}$				
	5 to 10 kHz	$0.30+1400$	$0.40+1400$			$0.80+200 \mu \mathrm{~V}$				
[1] There are two channels of voltage output. The maximum frequency of the dual output is 30 kHz . Note Remote sensing is not provided. Output resistance is $<5 \mathrm{~m} \Omega$ for outputs $\geq 0.33 \mathrm{~V}$. The AUX output resistance is $<1 \Omega$. The maximum load capacitance is 500 pF , subject to the maximum burden current limits.										

AC Current (Sine Wave)

Range	Frequency	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C} \pm$ (\% of output + $\mu \mathrm{A}$)		Compliance adder $\pm(\mu \mathrm{A} / \mathrm{V})$	Max Distortion and Noise 10 Hz to 100 kHz BW $\pm(\%$ of output + floor)	Max Inductive Load $\mu \mathrm{H}$
		90 Day	1 Year			
LCOMP Off						
$\begin{gathered} 29 \text { to } \\ 329.99 \mu \mathrm{~A} \end{gathered}$	10 to 20 Hz	$0.16+0.1$	$0.2+0.1$	0.05	$0.15+0.5 \mu \mathrm{~A}$	200
	20 to 45 Hz	$0.12+0.1$	$0.15+0.1$	0.05	$0.10+0.5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.1+0.1$	$0.125+0.1$	0.05	$0.05+0.5 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.25+0.15$	$0.3+0.15$	1.5	$0.50+0.5 \mu \mathrm{~A}$	
	5 to 10 kHz	$0.6+0.2$	$0.8+0.2$	1.5	$1.00+0.5 \mu \mathrm{~A}$	
	10 to 30 kHz	$1.2+0.4$	$1.6+0.4$	10	$1.20+0.5 \mu \mathrm{~A}$	
$\begin{gathered} 0.33 \text { to } \\ 3.29999 \mathrm{~mA} \end{gathered}$	10 to 20 Hz	$0.16+0.15$	$0.2+0.15$	0.05	$0.15+1.5 \mu \mathrm{~A}$	200
	20 to 45 Hz	$0.1+0.15$	$0.125+0.15$	0.05	$0.06+1.5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.08+0.15$	$0.1+0.15$	0.05	$0.02+1.5 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.16+0.2$	$0.2+0.2$	1.5	$0.50+1.5 \mu \mathrm{~A}$	
	5 to 10 kHz	$0.4+0.3$	$0.5+0.3$	1.5	$1.00+1.5 \mu \mathrm{~A}$	
	10 to 30 kHz	$0.8+0.6$	$1.0+0.6$	10	$1.20+0.5 \mu \mathrm{~A}$	
$\begin{gathered} 3.3 \text { to } \\ 32.9999 \mathrm{~mA} \end{gathered}$	10 to 20 Hz	$0.15+2$	$0.18+2$	0.05	$0.15+5 \mu \mathrm{~A}$	50
	20 to 45 Hz	$0.075+2$	$0.09+2$	0.05	$0.05+5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.035+2$	$0.04+2$	0.05	$0.07+5 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.065+2$	$0.08+2$	1.5	$0.30+5 \mu \mathrm{~A}$	
	5 to 10 kHz	$0.16+3$	$0.2+3$	1.5	$0.70+5 \mu \mathrm{~A}$	
	10 to 30 kHz	$0.32+4$	$0.4+4$	10	$1.00+0.5 \mu \mathrm{~A}$	
$\begin{gathered} 33 \mathrm{to} \\ 329.999 \mathrm{~mA} \end{gathered}$	10 to 20 Hz	$0.15+20$	$0.18+20$	0.05	$0.15+50 \mu \mathrm{~A}$	50
	20 to 45 Hz	$0.075+20$	$0.09+20$	0.05	$0.05+50 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.035+20$	$0.04+20$	0.05	$0.02+50 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.08+50$	$0.10+50$	1.5	$0.03+50 \mu \mathrm{~A}$	
	5 to 10 kHz	$0.16+100$	$0.2+100$	1.5	$0.10+50 \mu \mathrm{~A}$	
	10 to 30 kHz	$0.32+200$	$0.4+200$	10	$0.60+50 \mu \mathrm{~A}$	
$\begin{gathered} 0.33 \text { to } \\ 1.09999 \mathrm{~A} \end{gathered}$	10 to 45 Hz	$0.15+100$	$0.18+100$		$0.20+500 \mu \mathrm{~A}$	2.5
	45 Hz to 1 kHz	$0.036+100$	$0.05+100$		$0.07+500 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.5+1000$	$0.6+1000$	[2]	$1.00+500 \mu \mathrm{~A}$	
	5 to 10 kHz	$2.0+5000$	$2.5+5000$	[3]	$2.00+500 \mu \mathrm{~A}$	
$\begin{gathered} 1.1 \mathrm{to} \\ 2.99999 \mathrm{~A} \end{gathered}$	10 to 45 Hz	$0.15+100$	$0.18+100$		$0.20+500 \mu \mathrm{~A}$	2.5
	45 Hz to 1 kHz	$0.05+100$	$0.06+100$		$0.07+500 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.5+1000$	$0.6+1000$	[2]	$1.00+500 \mu \mathrm{~A}$	
	5 to 10 kHz	$2.0+5000$	$2.5+5000$	[3]	$2.00+500 \mu \mathrm{~A}$	
3 to 10.9999 A	45 to 100 Hz	$0.05+2000$	$0.06+2000$		$0.2+3 \mathrm{~mA}$	1
	100 Hz to 1 kHz	$0.08+2000$	$0.10+2000$		$0.1+3 \mathrm{~mA}$	
	1 kHz to 5 kHz	$2.5+2000$	$3.0+2000$		$0.8+3 \mathrm{~mA}$	
11 to $20.5 \mathrm{~A}^{[1]}$	45 to 100 Hz	$0.1+5000$	$0.12+5000$		$0.2+3 \mathrm{~mA}$	1
	100 Hz to 1 kHz	$0.13+5000$	$0.15+5000$		$0.1+3 \mathrm{~mA}$	
	1 to 5 kHz	$2.5+5000$	$3.0+5000$		$0.8+3 \mathrm{~mA}$	

[1] Duty Cycle: Currents <11 A may be provided continuously. For currents $>11 \mathrm{~A}$, see Figure 1. The current may be provided $60-\mathrm{T}$-I minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-17-23=20$ minutes each hour. When the 5502A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1 is achieved only after the 5502A is outputting currents <5 A for the "off" period first.
[2] For compliance voltages greater than 1 V , add $1 \mathrm{~mA} / \mathrm{V}$ to the floor specification from 1 to 5 kHz .
[3] For compliance voltages greater than 1 V , add $5 \mathrm{~mA} / \mathrm{V}$ to the floor specification from 5 to 10 kHz .

AC Current (Sine Wave) (cont.)

Range	Frequency	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C} \pm(\%$ of output $+\mu \mathrm{A})$		Max Distortion and Noise 10 Hz to 100 kHz BW \pm (\% of output + floor)	Max Inductive Load
		90 Day	1 Year		
LCOMP On					
29 to $329.99 \mu \mathrm{~A}$	10 to 100 Hz	$0.20+0.2$	$0.25+0.2$	$0.1+1.0 \mu \mathrm{~A}$	$400 \mu \mathrm{H}$
	100 Hz to 1 kHz	$0.50+0.5$	$0.60+0.5$	$0.05+1.0 \mu \mathrm{~A}$	
$\begin{gathered} 330 \mu \mathrm{~A} \text { to } \\ 3.29999 \mathrm{~mA} \end{gathered}$	10 to 100 Hz	$0.20+0.3$	$0.25+0.3$	$0.15+1.5 \mu \mathrm{~A}$	
	100 Hz to 1 kHz	$0.50+0.8$	$0.60+0.8$	$0.06+1.5 \mu \mathrm{~A}$	
$\begin{gathered} 3.3 \mathrm{to} \\ 32.9999 \mathrm{~mA} \end{gathered}$	10 to 100 Hz	$0.07+4$	$0.08+4$	$0.15+5 \mu \mathrm{~A}$	
	100 Hz to 1 kHz	$0.18+10$	$0.20+10$	$0.05+5 \mu \mathrm{~A}$	
33 to 329.999 mA	10 to 100 Hz	$0.07+40$	$0.08+40$	$0.15+50 \mu \mathrm{~A}$	
	100 Hz to 1 kHz	$0.18+100$	$0.20+100$	$0.05+50 \mu \mathrm{~A}$	
330 mA to 2.99999 A	10 to 100 Hz	$0.10+200$	$0.12+200$	$0.2+500 \mu \mathrm{~A}$	
	100 to 440 Hz	$0.25+1000$	$0.30+1000$	$0.25+500 \mu \mathrm{~A}$	
3.3 A to $20.5 \mathrm{~A}^{\text {[1] }}$	45 to 100 Hz	$0.10+2000{ }^{[2]}$	$0.12+2000^{[2]}$	$0.1+0 \mu \mathrm{~A}$	$400 \mu \mathrm{H}^{[4]}$
	100 to 440 Hz	$0.80+5000{ }^{[3]}$	$1.00+5000{ }^{[3]}$	$0.5+0 \mu \mathrm{~A}$	

[1] Duty Cycle: Currents <11 A may be provided continuously. For currents $>11 \mathrm{~A}$, see Figure 1. The current may be provided $60-\mathrm{T}$-I minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-17-23=20$ minutes each hour. When the 5502A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1 is achieved only after the 5502A is outputting currents $<5 \mathrm{~A}$ for the "off" period first.
[2] For currents $>11 \mathrm{~A}$, Floor specification is $4000 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $2000 \mu \mathrm{~A}$.
[3] For currents $>11 \mathrm{~A}$, Floor specification is $10000 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $5000 \mu \mathrm{~A}$.
[4] Subject to compliance voltages limits.

Range	Resolution $\mu \mathbf{A}$	Max Compliance Voltage \mathbf{V} rms ${ }^{[1]}$
29 to $329.99 \mu \mathrm{~A}$	0.01	7
0.33 to 3.29999 mA	0.01	7
3.3 to 32.9999 mA	0.1	5
33 to 329.999 mA	1	5
0.33 to 2.99999 A	10	4
3 to 20.5 A	100	3
$[1] \quad$ Subject to specification adder for compliance voltages greater than $1 \mathrm{~V} \mathrm{rms}$.		

Capacitance

Range	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}$ $\pm\left(\%\right.$ of output + floor) ${ }^{[1][2][3]}$		Resolution	Allowed Frequency or Charge-Discharge Rate		
	90 Day	1 Year		Min and Max to Meet Specification	Typical Max for <0.5 \% Error	Typical Max for <1 \% Error
$\begin{aligned} & 220.0 \text { to } \\ & 399.9 \mathrm{pF} \end{aligned}$	$0.38+0.01 \mathrm{nF}$	$0.5+0.01 \mathrm{nF}$	0.1 pF	10 Hz to 10 kHz	20 kHz	40 kHz
0.4 to 1.0999 nF	$0.38+0.01 \mathrm{nF}$	$0.5+0.01 \mathrm{nF}$	0.1 pF	10 Hz to 10 kHz	30 kHz	50 kHz
1.1 to 3.2999 nF	$0.38+0.01 \mathrm{nF}$	$0.5+0.01 \mathrm{nF}$	0.1 pF	10 Hz to 3 kHz	30 kHz	50 kHz
3.3 to 10.999 nF	$0.19+0.01 \mathrm{nF}$	$0.25+0.01 \mathrm{nF}$	1 pF	10 Hz to 1 kHz	20 kHz	25 kHz
11 to 32.999 nF	$0.19+0.1 \mathrm{nF}$	$0.25+0.1 \mathrm{nF}$	1 pF	10 Hz to 1 kHz	8 kHz	10 kHz
33 to 109.99 nF	$0.19+0.1 \mathrm{nF}$	$0.25+0.1 \mathrm{nF}$	10 pF	10 Hz to 1 kHz	4 kHz	6 kHz
110 to 329.99 nF	$0.19+0.3 \mathrm{nF}$	$0.25+0.3 \mathrm{nF}$	10 pF	10 Hz to 1 kHz	2.5 kHz	3.5 kHz
$\begin{gathered} 0.33 \text { to } \\ 1.0999 \mu \mathrm{~F} \end{gathered}$	$0.19+1 \mathrm{nF}$	$0.25+1 \mathrm{nF}$	100 pF	10 to 600 Hz	1.5 kHz	2 kHz
1.1 to $3.2999 \mu \mathrm{~F}$	$0.19+3 \mathrm{nF}$	$0.25+3 \mathrm{nF}$	100 pF	10 to 300 Hz	800 Hz	1 kHz
3.3 to $10.999 \mu \mathrm{~F}$	$0.19+10 \mathrm{nF}$	$0.25+10 \mathrm{nF}$	1 nF	10 to 150 Hz	450 Hz	650 Hz
11 to $32.999 \mu \mathrm{~F}$	$0.30+30 \mathrm{nF}$	$0.40+30 \mathrm{nF}$	1 nF	10 to 120 Hz	250 Hz	350 Hz
33 to $109.99 \mu \mathrm{~F}$	$0.34+100 \mathrm{nF}$	$0.45+100 \mathrm{nF}$	10 nF	10 to 80 Hz	150 Hz	200 Hz
110 to $329.99 \mu \mathrm{~F}$	$0.34+300 \mathrm{nF}$	$0.45+300 \mathrm{nF}$	10 nF	0 to 50 Hz	80 Hz	120 Hz
$\begin{gathered} 0.33 \mathrm{to} \\ 1.0999 \mathrm{mF} \end{gathered}$	$0.34+1 \mu \mathrm{~F}$	$0.45+1 \mu \mathrm{~F}$	100 nF	0 to 20 Hz	45 Hz	65 Hz
1.1 to 3.2999 mF	$0.34+3 \mu \mathrm{~F}$	$0.45+3 \mu \mathrm{~F}$	100 nF	0 to 6 Hz	30 Hz	40 Hz
3.3 to 10.999 mF	$0.34+10 \mu \mathrm{~F}$	$0.45+10 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	0 to 2 Hz	15 Hz	20 Hz
11 to 32.999 mF	$0.7+30 \mu \mathrm{~F}$	$0.75+30 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	0 to 0.6 Hz	7.5 Hz	10 Hz
33 to 110.00 mF	$1.0+100 \mu \mathrm{~F}$	$1.1+100 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	0 to 0.2 Hz	3 Hz	5 Hz

[1] The output is continuously variable from 220 pF to 110 mF .
[2] Specifications apply to both dc charge/discharge capacitance meters and ac RCL meters. The maximum allowable peak voltage is 3 V . The maximum allowable peak current is 150 mA , with an rms limitation of 30 mA below $1.1 \mu \mathrm{~F}$ and 100 mA for $1.1 \mu \mathrm{~F}$ and above.
[3] The maximum lead resistance for no additional error in 2-wire COMP mode is 10Ω.

Temperature Calibration (Thermocouple)

Temperature Calibration (RTD)

Phase

1-Year Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C},\left(\Delta \Phi^{\circ}\right)$					
Frequency (Hz)					
10 to 65 Hz	65 to 500 Hz	500 Hz to 1 kHz	1 to 5 kHz	5 to 10 kHz	10 to 30 kHz
$0.15{ }^{\circ}$	$0.9{ }^{\circ}$	2°	6°	10°	15°
Note See Power and Dual Output Limit Specifications for applicable outputs.					

Phase (Φ) Watts	Phase (Φ) VARs	PF	Power Uncertainty Adder due to Phase Error					
			10 to 65 Hz	65 to 500 Hz	500 Hz to 1 kHz	1 to 5 kHz	5 to 10 kHz	10 to 30 kHz
0°	90°	1.0	0.00 \%	0.01 \%	0.06 \%	0.55 \%	1.52 \%	3.41 \%
5°	85°	0.996	0.02 \%	0.15 \%	0.37 \%	1.46 \%	3.04 \%	5.67 \%
10°	80°	0.985	0.05 \%	0.29 \%	0.68 \%	2.39 \%	4.58 \%	7.97 \%
15°	75°	0.966	0.07 \%	0.43 \%	1.00 \%	3.35 \%	6.17 \%	10.34 \%
20°	70°	0.940	0.10 \%	0.58 \%	1.33 \%	4.35 \%	7.84 \%	12.83 \%
25°	65°	0.906	0.12 \%	0.74 \%	1.69 \%	5.42 \%	9.62 \%	15.48 \%
30°	60°	0.866	0.15 \%	0.92 \%	2.08 \%	6.58 \%	11.54 \%	18.35 \%
35°	55°	0.819	0.18 \%	1.11 \%	2.50 \%	7.87 \%	13.68 \%	21.53 \%
40°	50°	0.766	0.22 \%	1.33 \%	2.99 \%	9.32 \%	16.09 \%	25.12 \%
45°	45°	0.707	0.26 \%	1.58 \%	3.55 \%	11.00 \%	18.88 \%	29.29 \%
50°	40°	0.643	0.31 \%	1.88 \%	4.22 \%	13.01 \%	22.21 \%	34.25 \%
55°	35°	0.574	0.37 \%	2.26 \%	5.05 \%	15.48 \%	26.32 \%	40.37 \%
60°	30°	0.500	0.45 \%	2.73 \%	6.11 \%	18.65 \%	31.60 \%	48.24 \%
65°	25°	0.423	0.56 \%	3.38 \%	7.55 \%	22.96 \%	38.76 \%	58.91 \%
70°	20°	0.342	0.72 \%	4.33 \%	9.65 \%	29.27 \%	49.23 \%	74.52 \%
75°	15°	0.259	0.98 \%	5.87 \%	13.09 \%	39.56 \%	66.33 \%	100.00 \%
80°	10°	0.174	1.49 \%	8.92 \%	19.85 \%	59.83 \%	100.00 \%	-
85°	5°	0.087	2.99 \%	17.97 \%	39.95 \%	-	-	-
90°	0°	0.000	-	-	-	-	-	-

To calculate exact ac watts power adders due to phase uncertainty for values not shown, use the subsequent formula:

$$
\operatorname{Adder}(\%)=100\left(1-\frac{\operatorname{Cos}(\Phi+\Delta \Phi)}{\operatorname{Cos}(\Phi)}\right)
$$

For example: For a PF of $9205(\Phi=23)$ and a phase uncertainty of $\Delta \Phi=0.15$, the ac watts power adder is:

$$
\operatorname{Adder}(\%)=100\left(1-\frac{\operatorname{Cos}(23+.15)}{\operatorname{Cos}(23)}\right)=0.11 \%
$$

AC and DC Power Specifications

Power is simulated through the controlled simultaneous outputs of voltage and current from the Calibrator. While the amplitude and frequency ranges of the outputs are broad, there are certain combinations of voltage and current where the specifications are valid. In general these are for all dc voltages and currents, and AC voltages of 30 mV to 1020 V , ac currents from 33 mA to 20.5 A , for frequencies from 10 Hz to 30 kHz . Operation outside of these areas, within the overall calibrator capabilities, is possible, but it is not specified. The table and figure below illustrate the specified areas where power and dual output are possible.

Specification Limits for Power and Dual Output Operation

Figure 2. Permissible Combinations of AC Voltage and AC Current for Power and Dual Output

Calculate the Uncertainty Specifications of Power and Dual Output Settings

Overall uncertainty for power output in watts (or VARs) is based on the root sum square (rss) of the individual uncertainties in percent for the selected voltage, current, and, if AC power, the phase parameters:

Watts uncertainty

$$
U_{\text {power }}=\sqrt{U^{2}{ }_{\text {Voltage }}+U_{\text {Current }}^{2}+U_{\text {Phase }}^{2}}
$$

VARs uncertainty

$$
U_{\mathrm{VARs}}=\sqrt{U^{2}{ }_{\mathrm{Voltage}}+U^{2}{ }_{\mathrm{Current}}+U^{2}{ }_{\text {Phase }}}
$$

Dual Output uncertainty

$$
U_{\text {Dual }}=\sqrt{U^{2} \text { Voltage }+U^{2} \text { AuxVoltage }+U^{2} \text { Phase }}
$$

Because there are an infinite number of combinations, you must calculate the actual ac power uncertainty for your selected parameters. The results of this method of calculation are shown in the subsequent example. These examples are at various selected calibrator settings (with 1-year specifications):

Examples of Specified Power Uncertainties at Various Output Settings:

Selected Output Settings						Absolute Uncertainty as specified for tcal $\pm 5^{\circ} \mathrm{C}, \pm(\%$ of output setting)			Power Absolute Uncerainty \pm (\% of Watts ${ }^{[1]}$
Voltage Setting (Volts)	Current Setting (Amps)	$\left\lvert\, \begin{gathered} \text { Frequency } \\ \mathrm{Hz} \end{gathered}\right.$		Phase Setting (Degrees)	Selected Power (Watts)	$\mathbf{U V o l t a g e}$	$\mathbf{U}_{\text {Current }}$	$\mathbf{U P h a s e}$	UPower $^{\text {Pr }}$
+10.000	+0.500.000	DC			5	0.00550 \%	0.04680 \%		0.047 \%
15.000	+2.0000	DC			30	0.00533 \%	0.03220 \%		0.033 \%
100.000	+20.000	DC			2000	0.00600 \%	0.10375 \%		0.104 \%
1000.00	20.000	DC			20000	0.00565 \%	0.10375 \%		0.104 \%
120.000	1.00000	60	1	0.0	120	0.05250 \%	0.06000 \%	0.000 \%	0.080 \%
120.000	1.00000	60	0.766	40.0	91.92	0.05250 \%	0.06000 \%	0.220 \%	0.234 \%
240.000	1.00000	50	1	0.0	240	0.05125 \%	0.06000 \%	0.000 \%	0.079 \%
240.000	1.00000	50	0.766	40.0	183.84	0.05125 \%	0.06000 \%	0.220 \%	0.234 \%
1000.00	20	55	1	0.0	20000	0.05200 \%	0.14500 \%	0.000 \%	0.154 \%
1000.00	20	55	0.766	40.0	15320	0.05200 \%	0.14500 \%	0.220 \%	0.269 \%
1000.00	20	55	-0.906	-25.0	18120	0.05200 \%	0.14500 \%	0.122 \%	0.196 \%
100	0.30	30000	1	0.0	30.0	0.12900 \%	0.4667 \%	3.407 \%	3.442 \%
100	0.30	30000	0.766	40.0	22.98	0.12900 \%	0.4667 \%	25.128 \%	25.133 \%
[1]	Add 0.02% unless a settling time of 30 seconds is allowed for output currents $>10 \mathrm{~A}$ or for currents on the highest two current ranges within 30 seconds of an output current $>10 \mathrm{~A}$.								

Calculate Power Uncertainty

Overall uncertainty for power output in watts (or VARs) is based on the root sum square (RSS) of the individual uncertainties in percent for the selected voltage, current, and phase parameters:

Watts uncertainty $\quad U_{\text {Power }}=\sqrt{U^{2}{ }_{\text {Voltage }}+U^{2}{ }_{\text {Current }}+U^{2}{ }_{\text {Phase }}}$

VARs uncertainty

$$
U_{\mathrm{VARs}}=\sqrt{U^{2} \mathrm{Voltage}+U_{\mathrm{Current}}^{2}+U_{\text {Phase }}^{2}}
$$

Because there are an infinite number of combinations, you must calculate the actual ac power uncertainty for your selected parameters. The method of calculation is best shown in the subsequent examples (with 1-year specifications):

Example 1 Output: $100 \mathrm{~V}, 1 \mathrm{~A}, 60 \mathrm{~Hz}$, Power Factor = $1.0(\Phi=0)$.
Voltage Uncertainty Uncertainty for 100 V at 60 Hz is $0.050 \%+3 \mathrm{mV}$, totaling: $100 \mathrm{~V} \times .0 .0005=50 \mathrm{mV}$ added to $3 \mathrm{mV}=53 \mathrm{mV}$. Expressed in percent: $53 \mathrm{mV} / 100 \mathrm{~V} \times 100=\underline{0.053} \%$ (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A at 60 Hz is $0.05 \%+100 \mu \mathrm{~A}$, totaling: $1 \mathrm{~A} \times 0.0005=500 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.6 \mathrm{~mA}$. Expressed in percent: $0.6 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.06 \%}$ (see "AC Current (Sine Waves) Specifications").
Phase Uncertainty (Watts) Adder for PF $=1(\Phi=0)$ at 60 Hz is $\underline{0 \%}$ (see "Phase Specifications").

Total Power Uncertainty $=\mathrm{U}_{\text {power }}=\sqrt{0.053^{2}+0.06^{2}+0^{2}}=0.080 \%$
Example 2 Output: 100 V, $1 \mathrm{~A}, 400 \mathrm{~Hz}$, Power Factor $=0.5(\Phi=60)$
Voltage Uncertainty Uncertainty for 100 V at 400 Hz is $0.050 \%+3 \mathrm{mV}$, totaling: $100 \mathrm{~V} \times .0 .0005=50 \mathrm{mV}$ added to $3 \mathrm{mV}=53 \mathrm{mV}$. Expressed in percent: $53 \mathrm{mV} / 100 \mathrm{~V} \times 100=\underline{0.053 \%}$ (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A at 400 Hz is $0.05 \%+100 \mu \mathrm{~A}$, totaling: $1 \mathrm{~A} \times 0.0005=500 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.6 \mathrm{~mA}$. Expressed in percent: $0.6 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.06 \%}$ (see "AC Current (Sine Waves) Specifications").

Phase Uncertainty (Watts) Adder for PF $=0.5(\Phi=60)$ at 400 Hz is $\underline{2.73} \%$ (see "Phase Specifications").
Total Power Uncertainty $=\mathrm{U}_{\text {power }}=\sqrt{0.053^{2}+0.06^{2}+2.73^{2}}=2.73 \%$
VARs When the Power Factor approaches 0.0, the Watts output uncertainty becomes unrealistic because the dominant characteristic is the VARs (volts-amps-reactive) output. In these cases, calculate the Total VARs Output Uncertainty, as shown in example 3:
Example 3 Output: $100 \mathrm{~V}, 1 \mathrm{~A}, 60 \mathrm{~Hz}$, Power Factor $=0.174(\Phi=80)$
Voltage Uncertainty Uncertainty for 100 V at 60 Hz is $0.050 \%+3 \mathrm{mV}$, totaling: $100 \mathrm{~V} \times .0 .0005=50 \mathrm{mV}$ added to $3 \mathrm{mV}=53 \mathrm{mV}$. Expressed in percent: $53 \mathrm{mV} / 100 \mathrm{~V} \times 100=\underline{0.053} \%$ (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A at 60 Hz is $0.05 \%+100 \mu \mathrm{~A}$, totaling: $1 \mathrm{~A} \times 0.0005=500 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.6 \mathrm{~mA}$. Expressed in percent: $0.6 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.06 \%}$ (see "AC Current (Sine Waves) Specifications").
Phase Uncertainty (VARs) Adder for $\Phi=80$ at 60 Hz is 0.05% (see "Phase Specifications").
Total VARS Uncertainty $=$ UVARs $=\sqrt{0.053^{2}+0.06^{2}+0.05^{2}}=0.094 \%$

Additional Specifications

The subsequent paragraphs provide additional specifications for the 5502A Calibrator ac voltage and ac current functions. These specifications are valid after allowing a warm-up period of 30 minutes, or twice the time the 5502A has been turned off. All extended range specifications are based on performing the internal zero-cal function at weekly intervals, or when the ambient temperature changes by more than $5^{\circ} \mathrm{C}$.

Frequency

Frequency Range	Resolution	1-Year Absolute Uncertainty, tcal $\pm \mathbf{5}^{\circ} \mathbf{C} \pm(\mathbf{p p m}+\mathbf{m H z})$	Jitter
0.01 to 119.99 Hz	0.01 Hz	$25+1$	$2 \mu \mathrm{~s}$
120.0 to 1199.9 Hz	0.1 Hz	$25+1$	$2 \mu \mathrm{~s}$
1.2 to 11.999 kHz	1 Hz	$25+1$	$2 \mu \mathrm{~s}$
12 to 119.99 kHz	10 Hz	$25+15$	140 ns
120.0 to 1199.9 kHz	100 Hz	$25+15$	140 ns
1.2 to 2.000 MHz	1 kHz	$25+15$	140 ns

Harmonics ($2^{\text {nd }}$ to $50^{\text {th }}$)

$\left.\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { Fundamental } \\ \text { Frequency }{ }^{[1]}\end{array} & \begin{array}{c}\text { Voltages NORMAL } \\ \text { Terminals }\end{array} & \text { Currents } & \begin{array}{c}\text { Voltages AUX } \\ \text { Terminals }\end{array} & \begin{array}{c}\text { Amplitude } \\ \text { Uncertainty }\end{array} \\ \hline 10 \text { to } 45 \mathrm{~Hz} & 33 \mathrm{mV} \text { to } 32.9999 \mathrm{~V} & 3.3 \mathrm{~mA} \text { to } 2.99999 \mathrm{~A} & 10 \mathrm{mV} \text { to } 5 \mathrm{~V} & \\ \hline 45 \text { to } 65 \mathrm{~Hz} & 33 \mathrm{mV} \text { to } 1020 \mathrm{~V} & 3.3 \mathrm{~mA} \mathrm{to} 20.5 \mathrm{~A} & 10 \mathrm{mV} \mathrm{to} 5 \mathrm{~V} \\ \hline 65 \text { to } 500 \mathrm{~Hz} & 33 \mathrm{mV} \text { to } 1020 \mathrm{~V} & 33 \mathrm{~mA} \text { to } 20.5 \mathrm{~A} & 100 \mathrm{mV} \mathrm{to} 5 \mathrm{~V} \\ \hline 500 \mathrm{~Hz} \text { to } 5 \mathrm{kHz} & 330 \mathrm{mV} \text { to } 1020 \mathrm{~V} & 33 \mathrm{~mA} \text { to } 20.5 \mathrm{~A} & 100 \mathrm{mV} \text { to } 5 \mathrm{~V} \\ \text { output as of the } \\ \text { equivalent single } \\ \text { output, but twice } \\ \text { the floor adder. }\end{array}\right\}$

Phase Uncertainty

Phase uncertainty for harmonic outputs is 1 degree or the phase uncertainty shown in "Phase Specifications" for the particular output, whichever is greater. For example, the phase uncertainty of a 400 Hz fundamental output and 10 kHz harmonic output is 10° (from "Phase Specifications"). Another example, the phase uncertainty of a 50 Hz fundamental output and a 400 Hz harmonic output is 1 degree.

Example of determining Amplitude Uncertainty in a Dual Output Harmonic Mode

What are the amplitude uncertainties for the following dual outputs?

NORMAL (Fundamental) Output:	
$100 \mathrm{~V}, 100 \mathrm{~Hz}$.	. From "AC Voltage (Sine Wave) 90 Day Specifications" the single output specification for $100 \mathrm{~V}, 100 \mathrm{~Hz}$, is $0.039 \%+3 \mathrm{mV}$. For the dual output in this example, the specification is $0.039 \%+6 \mathrm{mV}$ as the 0.039% is the same, and the floor is twice the value (2 x 3 mV).
AUX (50th Harmonic) Output:	
$100 \mathrm{mV}, 5 \mathrm{kHz}$.From "AC Voltage (Sine Wave) 90 Day Specifications" the auxiliary output specification for $100 \mathrm{mV}, 5 \mathrm{kHz}$, is $0.15 \%+450 \mu \mathrm{~V}$. For the dual output in this example, the specification is $0.15 \%+900 \mu \mathrm{~V}$ as the 0.15% is the same, and the floor is twice the value ($2 \times 450 \mu \mathrm{~V}$).

AC Voltage (Sine Wave) Extended Bandwidth

Range	Frequency	1-Year Absolute Uncertainty tcal $\pm 5^{\circ} \mathrm{C}$	Max Voltage Resolution
Normal Channel (Single Output Mode)			
1.0 to 33 mV	0.01 to 9.99 Hz	$\pm(5.0$ \% of output +0.5 \% of range)	Two digits, e.g., 25 mV
34 to 330 mV			Three digits
0.4 to 33 V			Two digits
0.3 to 3.3 V	500.1 kHz to 1 MHz	-10 dB at 1 MHz , typical	Two digits
	1.001 to 2 MHz	-31 dB at 2 MHz , typical	
Auxiliary Output (Dual Output Mode)			
10 to 330 mV	0.01 to 9.99 Hz	$\pm(5.0 \%$ of output +0.5 \% of range)	Three digits
0.4 to 5 V			Two digits

AC Voltage (Non-Sine Wave)

Triangle Wave \& Truncated Sine Range, p-p ${ }^{[1]}$	Frequency	```1-Year Absolute Uncertainty, tcal }\pm5\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ , \pm(% of output + % of range) [2]```	Max Voltage Resolution
Normal Channel (Single Output Mode)			
2.9 to 92.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$	
93 to 929.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$	
0.93 to 9.29999 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$	
9.3 to 93 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$	
Auxiliary Output (Dual Output Mode)			
29 to 929.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range

	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$5.0+0.5$	
0.93 to 9.29999 V	0.01 to 10 Hz	$5.0+0.5$	Six digits on each range
	10 to 45 Hz	$0.25+0.5$	
	45 Hz to 1 kHz	$0.25+0.25$	$5.0+0.5$

[1] To convert p-p to rms for triangle wave, multiply the p-p value by 0.2886751 . To convert $p-\mathrm{p}$ to rms for truncated sine wave, multiply the p-p value by 0.2165063 .
[2] Uncertainty is stated in p-p. Amplitude is verified using an rms-responding DMM.
[3] Uncertainty for Truncated Sine outputs is typical over this frequency band.

AC Voltage (Non-Sine Wave) (cont.)

Square Wave Range (p-p) ${ }^{[1]}$	Frequency	1-Year Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}, \pm\left(\%\right.$ of output $+\%$ of range) ${ }^{[2]}$	Max Voltage Resolution
Normal Channel (Single Output Mode)			
2.9 to 65.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to 100 kHz	$5.0+0.5$	
66 to 659.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to 100 kHz	$5.0+0.5$	
0.66 to 6.59999 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to 100 kHz	$5.0+0.5$	
6.6 to 66.0000 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to 100 kHz	$5.0+0.5$	
Auxiliary Output (Dual Output Mode)			
29 to 659.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to $10 \mathrm{kHz}{ }^{\text {[3] }}$	$5.0+0.5$	
0.66 to 6.59999 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to $10 \mathrm{kHz}{ }^{\text {[3] }}$	$5.0+0.5$	
[1] To convert p-p to rms for square wave, multiply the $p-p$ value by 0.5 . [2] Uncertainty is stated in p-p. Amplitude is verified using an rms-responding DMM. [3] Limited to 1 kHz for Auxiliary outputs $\geq 6.6 \mathrm{~V}$ p-p.			

Range ${ }^{[1]}$ (Normal Channel)	Offset Range ${ }^{[2]}$	Max Peak Signal	1-Year Absolute Uncertainty, tcal $\pm 5^{\circ}{ }^{\circ}{ }^{[3]} \pm(\%$ of dc output + floor)
Sine Waves (rms)			
3.3 to 32.999 mV	0 to 50 mV	80 mV	$0.1+33 \mu \mathrm{~V}$
33 to 329.999 mV	0 to 500 mV	800 mV	$0.1+330 \mu \mathrm{~V}$
0.33 to 3.29999 V	0 to 5 V	8 V	$0.1+3300 \mu \mathrm{~V}$
3.3 to 32.9999 V	0 to 50 V	55 V	$0.1+33 \mathrm{mV}$
Triangle Waves and Truncated Sine Waves (p-p)			
9.3 to 92.999 mV	0 to 50 mV	80 mV	$0.1+93 \mu \mathrm{~V}$
93 to 929.999 mV	0 to 500 mV	800 mV	$0.1+930 \mu \mathrm{~V}$
0.93 to 9.29999 V	0 to 5 V	8 V	$0.1+9300 \mu \mathrm{~V}$
9.3 to 93.0000 V	0 to 50 V	55 V	$0.1+93 \mathrm{mV}$
Square Waves (p-p)			
6.6 to 65.999 mV	0 to 50 mV	80 mV	$0.1+66 \mu \mathrm{~V}$
66 to 659.999 mV	0 to 500 mV	800 mV	$0.1+660 \mu \mathrm{~V}$
0.66 to 6.59999 V	0 to 5 V	8 V	$0.1+6600 \mu \mathrm{~V}$
6.6 to 66.0000 V	0 to 50 V	55 V	$0.1+66 \mathrm{mV}$
[2] The maximum offset value is determined by the difference between the peak value of the selected voltage output and the allowable maximum peak signal. For example, a 10 V p-p square wave output has a peak value of 5 V , allowing a maximum offset up to $\pm 50 \mathrm{~V}$ to not exceed the 55 V maximum peak signal. The maximum offset values shown above are for the minimum outputs in each range.			
3] For frequencies 0.01 to 10 Hz , and 500 kHz to 2 MHz , the offset uncertainty is 5% of output, $\pm 1 \%$ of the offset range.			

AC Voltage, Square Wave Characteristics

Risetime @ $\mathbf{1} \mathbf{k H z}$ Typical	Settling Time @ $\mathbf{1} \mathbf{k H z}$ Typical	Overshoot @ $\mathbf{1} \mathbf{~ k H z}$ Typical	Duty Cycle Range	Duty Cycle Uncertainty
$<1 \mu \mathrm{~s}$	$<10 \mu \mathrm{~s}$ to 1% of final value	$<2 \%$	1% to $99 \%<3.3 \mathrm{~V} \mathrm{p-p}$. $0,01 \mathrm{~Hz}$ to 100 kHz	$\pm(0.02 \%$ of period $+100 \mathrm{~ns}), 50 \%$ duty cycle $\pm(0.05 \%$ of period $+100 \mathrm{~ns})$, other duty cycles from 10% to 90%

AC Voltage, Triangle Wave Characteristics (typical)

Linearity to $\mathbf{1 ~ k H z}$	Aberrations
0.3% of $p-p$ value, from 10% to 90% point	$<1 \%$ of $p-p$ value, with amplitude $>50 \%$ of range

AC Current (Non-Sine Wave)

Triangle Wave \& Truncated Sine Wave Range p-p	Frequency	1-Year Absolute Uncertainty tcal $\pm 5^{\circ} \mathrm{C}$ $\pm(\%$ of output + \% of range)	Max Current Resolution
0.047 to 0.92999 mA ${ }^{[1]}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
0.93 to 9.29999 mA ${ }^{[1]}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	

AC Current (Non-Sine Wave) (cont.)

Square Wave Range p-p	Frequency	1-Year Absolute Uncertainty tcal $\pm 5^{\circ} \mathrm{C}$ $\pm(\%$ of output + \% of range)	Max Current Resolution
0.047 to 0.65999 mA ${ }^{[1]}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
0.66 to $6.59999 \mathrm{~mA}^{[1]}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
[1] Frequency limited to 1 kHz with LCOMP on.			

AC Current, Square Wave Characteristics (typical)

Range	LCOMP	Risetime	Settling Time	Overshoot
I <6 A @ 400 Hz	off	$25 \mu \mathrm{~s}$	$40 \mu \mathrm{~s}$ to 1% of final value	$<10 \%$ for <1 V Compliance

AC Current, Triangle Wave Characteristics (typical)

Linearity to $\mathbf{4 0 0 ~ H z}$	Aberrations
0.3% of $p-p$ value, from 10% to 90% point	$<1 \%$ of $p-p$ value, with amplitude $>50 \%$ of range

Change \#2, 572

On page 7-3, under Performance Test, replace the $5^{\text {th }}$ row with:

3.299999 V	1.000000 V	0.999955 V	1.000045 V

On page 7-10, in Table Error! Reference source not found.. Verification Tests for DC Current (AUX), replace the $6^{\text {th }}$ and $7^{\text {th }}$ rows with:

20.5000 A	10.9000 A	10.89536 A	10.90454 A
20.5000 A	-10.9000 A	-10.90464 A	-10.89536 A

