Simba SQL Server ODBC Driver

Installation and Configuration Guide

Simba Technologies Inc.

Version 1.3.13
September 27, 2017
About This Guide

Purpose

The *Simba SQL Server ODBC Driver Installation and Configuration Guide* explains how to install and configure the Simba SQL Server ODBC Driver. The guide also provides details related to features of the driver.

Audience

The guide is intended for end users of the Simba SQL Server ODBC Driver, as well as administrators and developers integrating the driver.

Knowledge Prerequisites

To use the Simba SQL Server ODBC Driver, the following knowledge is helpful:

- Familiarity with the platform on which you are using the Simba SQL Server ODBC Driver
- Ability to use the data source to which the Simba SQL Server ODBC Driver is connecting
- An understanding of the role of ODBC technologies and driver managers in connecting to a data source
- Experience creating and configuring ODBC connections
- Exposure to SQL

Document Conventions

Italics are used when referring to book and document titles.

Bold is used in procedures for graphical user interface elements that a user clicks and text that a user types.

Monospace font indicates commands, source code, or contents of text files.

✍ Note:

A text box with a pencil icon indicates a short note appended to a paragraph.
Installation and Configuration Guide

⚠ Important:
A text box with an exclamation mark indicates an important comment related to the preceding paragraph.
Table of Contents

About the Simba SQL Server ODBC Driver .. 7
Windows Driver .. 8
 Windows System Requirements ... 8
 Installing the Driver on Windows .. 8
 Creating a Data Source Name on Windows ... 9
 Configuring Logging Options on Windows ... 11
 Verifying the Driver Version Number on Windows ... 15
macOS Driver .. 16
 macOS System Requirements .. 16
 Installing the Driver on macOS ... 16
 Verifying the Driver Version Number on macOS .. 17
Linux Driver .. 18
 Linux System Requirements .. 18
 Installing the Driver Using the Tarball Package ... 18
Configuring the ODBC Driver Manager on Non-Windows Machines 20
 Specifying ODBC Driver Managers on Non-Windows Machines 20
 Specifying the Locations of the Driver Configuration Files 21
Configuring ODBC Connections on a Non-Windows Machine 23
 Creating a Data Source Name on a Non-Windows Machine 23
 Configuring a DSN-less Connection on a Non-Windows Machine 26
 Configuring Authentication on a Non-Windows Machine 28
 Configuring TLS Verification on a Non-Windows Machine 29
 Configuring Logging Options on a Non-Windows Machine 30
 Testing the Connection on a Non-Windows Machine 33
Using a Connection String .. 35
 DSN Connection String Example .. 35
 DSN-less Connection String Examples ... 35
Features .. 38
 Data Types .. 38
 Security and Authentication ... 40
Driver Configuration Options .. 42
 Configuration Options Appearing in the User Interface 42
Installation and Configuration Guide

Configuration Options Having Only Key Names ..49
Third-Party Trademarks ..53
Third-Party Licenses ..54
About the Simba SQL Server ODBC Driver

The Simba SQL Server ODBC Driver enables Business Intelligence (BI), analytics, and reporting on data that is stored in Microsoft SQL Server databases. The driver complies with the ODBC 3.80 data standard and adds important functionality such as Unicode, as well as 32- and 64-bit support for high-performance computing environments on all platforms.

ODBC is one of the most established and widely supported APIs for connecting to and working with databases. At the heart of the technology is the ODBC driver, which connects an application to the database. For more information about ODBC, see the Data Access Standards Glossary: http://www.simba.com/resources/data-access-standards-library. For complete information about the ODBC specification, see the ODBC API Reference: http://msdn.microsoft.com/en-us/library/windows/desktop/ms714562(v=vs.85).aspx.

The Simba SQL Server ODBC Driver is available for Microsoft® Windows®, Linux, and macOS platforms.

The Installation and Configuration Guide is suitable for users who are looking to access data residing within SQL Server from their desktop environment. Application developers might also find the information helpful. Refer to your application for details on connecting via ODBC.

Note:

For information about how to use the driver in various BI tools, see the Simba ODBC Drivers Quick Start Guide for Windows: http://cdn.simba.com/docs/ODBC_QuickstartGuide/content/quick_start/intro.htm.
Windows System Requirements

The Simba SQL Server ODBC Driver has been tested with SQL Server 2005 to 2014.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- One of the following operating systems:
 - Windows 7, 8.1, or 10
 - Windows Server 2008 or later
- 100 MB of available disk space
- Visual C++ Redistributable for Visual Studio 2013 installed (with the same bitness as the driver that you are installing).

To install the driver, you must have Administrator privileges on the machine.

Installing the Driver on Windows

On 64-bit Windows operating systems, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application:

- SimbaSQLServerODBC32.msi for 32-bit applications
- SimbaSQLServerODBC64.msi for 64-bit applications

You can install both versions of the driver on the same machine.

To install the Simba SQL Server ODBC Driver on Windows:

1. Depending on the bitness of your client application, double-click to run SimbaSQLServerODBC32.msi or SimbaSQLServerODBC64.msi.
2. Click Next.
3. Select the check box to accept the terms of the License Agreement if you agree, and then click Next.
4. To change the installation location, click Change, then browse to the desired folder, and then click OK. To accept the installation location, click Next.
5. Click Install.
6. When the installation completes, click **Finish**.

7. If you received a license file through email, then copy the license file into the `\lib` subfolder of the installation folder you selected above. You must have Administrator privileges when changing the contents of this folder.

Creating a Data Source Name on Windows

Typically, after installing the Simba SQL Server ODBC Driver, you need to create a Data Source Name (DSN).

Alternatively, for information about DSN-less connections, see *Using a Connection String* on page 35.

To create a Data Source Name on Windows:

1. Open the ODBC Administrator:
 - If you are using Windows 7 or earlier, click **Start > All Programs > Simba SQL Server ODBC Driver 1.3 > ODBC Administrator**.
 - Or, if you are using Windows 8 or later, on the Start screen, type **ODBC administrator**, and then click the **ODBC Administrator** search result.

 ![Note:](image)

 Make sure to select the ODBC Data Source Administrator that has the same bitness as the client application that you are using to connect to SQL Server.

2. In the ODBC Data Source Administrator, click the **Drivers** tab, and then scroll down as needed to confirm that the Simba SQL Server ODBC Driver appears in the alphabetical list of ODBC drivers that are installed on your system.

3. Choose one:
 - To create a DSN that only the user currently logged into Windows can use, click the **User DSN** tab.
 - Or, to create a DSN that all users who log into Windows can use, click the **System DSN** tab.

 ![Note:](image)

 It is recommended that you create a System DSN instead of a User DSN. Some applications load the data using a different user account, and might not be able to detect User DSNs that are created under another user account.

4. Click **Add**.
5. In the Create New Data Source dialog box, select **Simba SQL Server ODBC Driver** and then click **Finish**. The Simba SQL Server ODBC Driver DSN Setup dialog box opens.

6. In the **Data Source Name** field, type a name for your DSN.

7. Optionally, in the **Description** field, type relevant details about the DSN.

8. In the **Server** field, type the name or IP address of the host where your SQL Server instance is running.

 Note:

 You can specify the name of the SQL Server instance by using the syntax `[ServerInfo][Instance]`, where `[ServerInfo]` is the IP address or host name of the server and `[Instance]` is the name of the instance.

9. In the **Port** field, type the number of the TCP port that the server uses to listen for client connections.

 Note:

 The default port used by SQL Server is 1433.

10. In the **Database** field, type the name of the database that you want to access.

11. To use TLS to encrypt all communication with the SQL Server instance before sending it over the network, select the **Encrypt** check box and then do one of the following:

 - To enable one-way authentication so that the driver verifies the server certificate using a CA certificate, in the **CA Certificate** field, type the full path and file name of the CA certificate that you want to use.

 - Or, to trust the server certificate instead of verifying it, select the **Trust Server Certificate** check box.

12. Choose your authentication method:

 - To authenticate the connection using user login, type your credentials for accessing the server in the **User** and **Password** fields.

 - Or, to authenticate the connection using Kerberos, select the **Use Trusted Connection** check box. Optionally, in the **Server SPN** field, type the service principal name of your SQL Server instance. If you leave the field empty, then the driver uses **MSSQLSvc/[HostName]:[Port]** as the service principal name, where `[HostName]` is the IP address or host name of the server and `[Port]` is the number of the port that you are connecting to.

13. To return certain SQL Server-specific data types as ODBC data types instead of SQL Server data types, select the **Return SQL Server-Specific Types as ODBC Types** check box. For a complete list of the data types that this setting applies to, see **Return SQL Server-Specific Types as ODBC Types** on page 47.
14. To include temporary tables in the results when calling SQLTables, select the Enable Table Types check box.

15. To configure logging behavior for the driver, click Logging Options. For more information, see Configuring Logging Options on Windows on page 11.

16. To test the connection, click Test. Review the results as needed, and then click OK.

Note: If the connection fails, then confirm that the settings in the Simba SQL Server ODBC Driver DSN Setup dialog box are correct. Contact your SQL Server administrator as needed.

17. To save your settings and close the Simba SQL Server ODBC Driver DSN Setup dialog box, click OK.

18. To close the ODBC Data Source Administrator, click OK.

Configuring Logging Options on Windows

To help troubleshoot issues, you can enable logging in the driver or in the wire protocol component. In addition to these forms of logging supported by the Simba SQL Server ODBC Driver, the ODBC Data Source Administrator provides tracing functionality.

Important: Only enable logging or tracing long enough to capture an issue. Logging or tracing decreases performance and can consume a large quantity of disk space.

Driver Logging

Use driver logging to track the activity in the Simba SQL Server ODBC Driver. You can specify the amount of detail included in the log files. The table below lists the logging levels that are available, in order from least verbose to most verbose.

<table>
<thead>
<tr>
<th>Logging Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Disables all logging.</td>
</tr>
<tr>
<td>FATAL</td>
<td>Logs severe error events that lead the driver to abort.</td>
</tr>
<tr>
<td>ERROR</td>
<td>Logs error events that might allow the driver to continue running.</td>
</tr>
<tr>
<td>Logging Level</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>WARNING</td>
<td>Logs events that might result in an error if action is not taken.</td>
</tr>
<tr>
<td>INFO</td>
<td>Logs general information that describes the progress of the driver.</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Logs detailed information that is useful for debugging the driver.</td>
</tr>
<tr>
<td>TRACE</td>
<td>Logs all driver activity.</td>
</tr>
</tbody>
</table>

To enable driver logging on Windows:

1. To access logging options, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, and then click **Logging Options**.
2. In the **Log Level** drop-down list, select the desired level of information to include in log files.
3. In the **Log Path** field, type the full path to the folder where you want to save log files.
4. If requested by Technical Support, type the name of the component for which to log messages in the **Log Namespace** field. Otherwise, do not type a value in the field.
5. In the **Max Number Files** field, type the maximum number of log files to keep.

Note:

After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

6. In the **Max File Size** field, type the maximum size of each log file in megabytes (MB).

Note:

After the maximum file size is reached, the driver creates a new file and continues logging.

7. Click **OK**.
8. Restart your ODBC application to make sure that the new settings take effect.

The Simba SQL Server ODBC Driver produces a log file named `SqlServerODBC.log` at the location you specify using the Log Path field.
If you enable the `UseLogPrefix` connection property, the driver prefixes the log file name with the user name associated with the connection and the process ID of the application through which the connection is made. For more information, see `UseLogPrefix` on page 51.

To disable driver logging on Windows:

1. To access logging options, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, and then click **Logging Options**.
2. In the **Log Level** drop-down list, select **LOG_OFF**.
3. Click **OK**.

Wire Protocol Component Logging

Use wire protocol component logging to track the data activity between the driver and the SQL Server instance. You can specify the amount of detail to include in the log files. The table below lists the logging levels that are available, in order from least verbose to most verbose.

<table>
<thead>
<tr>
<th>Logging Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disables all logging.</td>
</tr>
<tr>
<td>1</td>
<td>Logs error events that might allow the wire protocol component to continue running. 1 is the default logging level.</td>
</tr>
<tr>
<td>2</td>
<td>Logs general information that describes the progress of the wire protocol component.</td>
</tr>
<tr>
<td>3</td>
<td>Logs detailed information that is useful for debugging the wire protocol component.</td>
</tr>
<tr>
<td>4</td>
<td>Logs all activity in the wire protocol component.</td>
</tr>
</tbody>
</table>

Wire protocol component logging is configured through the TDSTRACE environment variable.

To enable wire protocol component logging on Windows:

1. Open the System Information dialog box:
 - If you are using Windows 7 or earlier, click **Start**, then right-click **Computer**, and then click **Properties**.
• Or, if you are using Windows 8 or later, on the Start screen, right-click This PC and then click Properties.

2. Click Advanced System Settings.
3. In the System Properties dialog box, click the Advanced tab and then click Environment Variables.
4. Choose one:
 • If the TDSTRACE variable already exists in the System Variables list, select it and then click Edit.
 • Or, if the TDSTRACE variable does not appear in the System Variables list, click New and then in the Variable Name field type TDSTRACE.
5. In the Variable Value field, type \[LoggingLevel\]:[LogFilePath], where [LoggingLevel] is the logging level indicating the amount of detail to include in the log file and [LogFilePath] is the full path of the log file.

 For example, the value 3:C:\Logs\MyWireLog.log configures the wire protocol component to log debugging information in a file named MyWireLog.log located in the C:\Logs folder.
6. To save your changes and close the Edit System Variable dialog box, click OK.
7. Click OK to close the Environment Variables dialog box, and then click OK to close the System Properties dialog box.

To disable wire protocol component logging on Windows:

1. Open the System Information dialog box:
 • If you are using Windows 7 or earlier, click Start , then right-click Computer, and then click Properties.
 • Or, if you are using Windows 8 or later, on the Start screen, right-click This PC and then click Properties.
2. Click Advanced System Settings.
3. In the System Properties dialog box, click the Advanced tab and then click Environment Variables.
4. Select TDSTRACE from the System Variables list and then click Edit.
5. In the Variable Value field, replace the existing value with 0.
6. To save your changes and close the Edit System Variable dialog box, click OK.
7. Click OK to close the Environment Variables dialog box, and then click OK to close the System Properties dialog box.

ODBC Tracing

You can use the ODBC Data Source Administrator to trace connection activity in the ODBC layer.
To start tracing using the ODBC Data Source Administrator:

1. In the ODBC Data Source Administrator, click the Tracing tab.
2. In the Log File Path area, click Browse. In the Select ODBC Log File dialog box, browse to the location where you want to save the log file, then type a descriptive file name in the File name field, and then click Save.
3. On the Tracing tab, click Start Tracing Now.

To stop ODBC Data Source Administrator tracing:

- In the ODBC Data Source Administrator, on the Tracing tab, click Stop Tracing Now.

For more information about tracing using the ODBC Data Source Administrator, see "How to Generate an ODBC Trace with ODBC Data Source Administrator" on the Microsoft Support website: http://support.microsoft.com/kb/274551.

Verifying the Driver Version Number on Windows

If you need to verify the version of the Simba SQL Server ODBC Driver that is installed on your Windows machine, you can find the version number in the ODBC Data Source Administrator.

To verify the driver version number on Windows:

1. Open the ODBC Administrator:
 - If you are using Windows 7 or earlier, click Start > All Programs > Simba SQL Server ODBC Driver 1.3 > ODBC Administrator.
 - Or, if you are using Windows 8 or later, on the Start screen, type ODBC administrator, and then click the ODBC Administrator search result.

 ![Note:]
 Make sure to select the ODBC Data Source Administrator that has the same bitness as the client application that you are using to connect to SQL Server.

2. Click the Drivers tab and then find the Simba SQL Server ODBC Driver in the list of ODBC drivers that are installed on your system. The version number is displayed in the Version column.
macOS Driver

macOS System Requirements

The Simba SQL Server ODBC Driver has been tested with SQL Server 2005 to 2014.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- macOS version 10.9, 10.10, or 10.11
- 150 MB of available disk space
- iODBC 3.52.7 or later

Installing the Driver on macOS

The Simba SQL Server ODBC Driver is available for macOS as a .dmg file named SimbaSQLServerODBC.dmg. The driver supports both 32- and 64-bit client applications.

To install the Simba SQL Server ODBC Driver on macOS:

1. Double-click SimbaSQLServerODBC.dmg to mount the disk image.
2. Double-click SimbaSQLServerODBC.dmg to mount the disk image.
3. In the installer, click Continue.
4. On the Software License Agreement screen, click Continue, and when the prompt appears, click Agree if you agree to the terms of the License Agreement.
5. Optionally, to change the installation location, click Change Install Location, then select the desired location, and then click Continue.

☞ Note:

By default, the driver files are installed in the /Library/simba/sqlserver directory.

6. To accept the installation location and begin the installation, click Install.
7. When the installation completes, click Close.
8. If you received a license file through email, then copy the license file into the /lib subfolder in the driver installation directory. You must have root privileges when changing the contents of this folder.

 For example, if you installed the driver to the default location, you would copy the license file into the /Library/simba/sqlserver/lib folder.
Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see Configuring the ODBC Driver Manager on Non-Windows Machines on page 20.

Verifying the Driver Version Number on macOS

If you need to verify the version of the Simba SQL Server ODBC Driver that is installed on your macOS machine, you can query the version number through the Terminal.

To verify the driver version number on macOS:

> At the Terminal, run the following command:

```
pkgutil --info com.simba.sqlserverodbc
```

The command returns information about the Simba SQL Server ODBC Driver that is installed on your machine, including the version number.
Linux System Requirements

The Simba SQL Server ODBC Driver has been tested with SQL Server 2005 to 2014.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- One of the following distributions:
 - Red Hat® Enterprise Linux® (RHEL) 6 or 7
 - CentOS 6 or 7
 - SUSE Linux Enterprise Server (SLES) 11 or 12
 - Debian 7 or 8
 - Ubuntu 14.04 or 16.04
- 150 MB of available disk space
- One of the following ODBC driver managers installed:
 - iODBC 3.52.7 or later
 - unixODBC 2.3.0 or later

To install the driver, you must have root access on the machine.

Installing the Driver Using the Tarball Package

The Simba SQL Server ODBC Driver is available as a tarball package named SimbaSQL_ServerODBC-[Version].[Release]-Linux.tar.gz, where [Version] is the version number of the driver and [Release] is the release number for this version of the driver. The package contains both the 32-bit and 64-bit versions of the driver.

On 64-bit editions of Linux, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application. You can install both versions of the driver on the same machine.

To install the Simba SQL Server ODBC Driver using the tarball package:

1. Log in as the root user, and then navigate to the folder containing the tarball package.
2. Run the following command to extract the package and install the driver:
```bash
tar --directory=/opt -zxvf [TarballName]
```

Where `[TarballName]` is the name of the tarball package containing the driver.

The Simba SQL Server ODBC Driver files are installed in the `opt/simba/sqlserver` directory.

3. If you received a license file through email, then copy the license file into the `opt/simba/sqlserver/lib/32` or `opt/simba/sqlserver/lib/64` folder, depending on the version of the driver that you installed. You must have root privileges when changing the contents of this folder.

Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see Configuring the ODBC Driver Manager on Non-Windows Machines on page 20.
Configuring the ODBC Driver Manager on Non-Windows Machines

To make sure that the ODBC driver manager on your machine is configured to work with the Simba SQL Server ODBC Driver, do the following:

- Set the library path environment variable to make sure that your machine uses the correct ODBC driver manager. For more information, see Specifying ODBC Driver Managers on Non-Windows Machines on page 20.
- If the driver configuration files are not stored in the default locations expected by the ODBC driver manager, then set environment variables to make sure that the driver manager locates and uses those files. For more information, see Specifying the Locations of the Driver Configuration Files on page 21.

After configuring the ODBC driver manager, you can configure a connection and access your data store through the driver. For more information, see Configuring ODBC Connections on a Non-Windows Machine on page 23.

Specifying ODBC Driver Managers on Non-Windows Machines

You need to make sure that your machine uses the correct ODBC driver manager to load the driver. To do this, set the library path environment variable.

macOS

If you are using a macOS machine, then set the DYLD_LIBRARY_PATH environment variable to include the paths to the ODBC driver manager libraries. For example, if the libraries are installed in /usr/local/lib, then run the following command to set DYLD_LIBRARY_PATH for the current user session:

```bash
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/usr/local/lib
```

For information about setting an environment variable permanently, refer to the macOS shell documentation.

Linux

If you are using a Linux machine, then set the LD_LIBRARY_PATH environment variable to include the paths to the ODBC driver manager libraries. For example, if the libraries are installed in /usr/local/lib, then run the following command to set LD_LIBRARY_PATH for the current user session:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

For information about setting an environment variable permanently, refer to the Linux shell documentation.

Specifying the Locations of the Driver Configuration Files

By default, ODBC driver managers are configured to use hidden versions of the odbc.ini and odbcinst.ini configuration files (named .odbc.ini and .odbcinst.ini) located in the home directory, as well as the simba.sqlserverodbc.ini file in the lib subfolder of the driver installation directory. If you store these configuration files elsewhere, then you must set the environment variables described below so that the driver manager can locate the files.

If you are using iODBC, do the following:

- Set ODBCINI to the full path and file name of the odbc.ini file.
- Set ODBCINSTINI to the full path and file name of the odbcinst.ini file.
- Set SIMBASQLSERVERINI to the full path and file name of the simba.sqlserverodbc.ini file.

If you are using unixODBC, do the following:

- Set ODBCINI to the full path and file name of the odbc.ini file.
- Set ODBCSYSINI to the full path of the directory that contains the odbcinst.ini file.
- Set SIMBASQLSERVERINI to the full path and file name of the simba.sqlserverodbc.ini file.

For example, if your odbc.ini and odbcinst.ini files are located in /usr/local/odbc and your simba.sqlserverodbc.ini file is located in /etc, then set the environment variables as follows:

For iODBC:

```bash
export ODBCINI=/usr/local/odbc/odbc.ini
export ODBCINSTINI=/usr/local/odbc/odbcinst.ini
export SIMBASQLSERVERINI=/etc/simba.sqlserverodbc.ini
```

For unixODBC:

```bash
export ODBCINI=/usr/local/odbc/odbc.ini
export ODBCSYSINI=/usr/local/odbc
```
export SIMBASQLSERVERINI=/etc/simba.sqlserverodbc.ini

To locate the simba.sqlserverodbc.ini file, the driver uses the following search order:

1. If the SIMBASQLSERVERINI environment variable is defined, then the driver searches for the file specified by the environment variable.
2. The driver searches the directory that contains the driver library files for a file named simba.sqlserverodbc.ini.
3. The driver searches the current working directory of the application for a file named simba.sqlserverodbc.ini.
4. The driver searches the home directory for a hidden file named .simba.sqlserverodbc.ini (prefixed with a period).
5. The driver searches the /etc directory for a file named simba.sqlserverodbc.ini.
Configuring ODBC Connections on a Non-Windows Machine

The following sections describe how to configure ODBC connections when using the Simba SQL Server ODBC Driver on non-Windows platforms:

- Creating a Data Source Name on a Non-Windows Machine on page 23
- Configuring a DSN-less Connection on a Non-Windows Machine on page 26
- Configuring Authentication on a Non-Windows Machine on page 28
- Configuring TLS Verification on a Non-Windows Machine on page 29
- Configuring Logging Options on a Non-Windows Machine on page 30
- Testing the Connection on a Non-Windows Machine on page 33

Creating a Data Source Name on a Non-Windows Machine

When connecting to your data store using a DSN, you only need to configure the odbc.ini file. Set the properties in the odbc.ini file to create a DSN that specifies the connection information for your data store. For information about configuring a DSN-less connection instead, see Configuring a DSN-less Connection on a Non-Windows Machine on page 26.

If your machine is already configured to use an existing odbc.ini file, then update that file by adding the settings described below. Otherwise, copy the odbc.ini file from the Setup subfolder in the driver installation directory to the home directory, and then update the file as described below.

To create a Data Source Name on a non-Windows machine:

1. In a text editor, open the odbc.ini configuration file.

 ![Note:]

 If you are using a hidden copy of the odbc.ini file, you can remove the period (.) from the start of the file name to make the file visible while you are editing it.

2. In the [ODBC Data Sources] section, add a new entry by typing a name for the DSN, an equal sign (=), and then the name of the driver.

 For example, on a macOS machine:
As another example, for a 32-bit driver on a Linux machine:

```
[ODBC Data Sources]
Sample DSN=Simba SQL Server ODBC Driver 32-bit
```

3. Create a section that has the same name as your DSN, and then specify configuration options as key-value pairs in the section:
 a. Set the Driver property to the full path of the driver library file that matches the bitness of the application.

 For example, on a macOS machine:

   ```
   Driver=/Library/simba/sqlserver/lib/libsqlserverodbc_c_sbu.dylib
   ```

 As another example, for a 32-bit driver on a Linux machine:

   ```
   Driver=/opt/simba/sqlserver/lib/32/libsqlserverodbc_sb32.so
   ```

 b. Set the Server property to the IP address or host name of the server, and then set the Port property to the number of the TCP port that the server uses to listen for client connections.

 For example:

   ```
   Server=192.168.222.160
   Port=1500
   ```

 c. Configure authentication by specifying the authentication mechanism and your credentials. For more information, see Configuring Authentication on a Non-Windows Machine on page 28.

 d. Optionally, encrypt your connection with TLS and configure whether the driver verifies the identity of the server. For more information, see Configuring TLS Verification on a Non-Windows Machine on page 29.

 e. Optionally, set additional key-value pairs as needed to specify other optional connection settings. For detailed information about all the configuration options supported by the Simba SQL Server ODBC Driver, see Driver Configuration Options on page 42.

4. Save the odbc.ini configuration file.
Note:

If you are storing this file in its default location in the home directory, then prefix the file name with a period (.) so that the file becomes hidden. If you are storing this file in another location, then save it as a non-hidden file (without the prefix), and make sure that the ODBCINI environment variable specifies the location. For more information, see Specifying the Locations of the Driver Configuration Files on page 21.

For example, the following is an odbc.ini configuration file for macOS containing a DSN that connects to SQL Server using a user account:

```
[ODBC Data Sources]
Sample DSN=Simba SQL Server ODBC Driver
[Sample DSN]
Driver=/Library/simba/sqlserver/lib/libsqlserverodbc_sbu.dylib
Server=192.168.222.160
Port=1500
Trusted_Connection=no
UID=simba
PWD=simba123
```

As another example, the following is an odbc.ini configuration file for a 32-bit driver on a Linux machine, containing a DSN that connects to SQL Server using a user account:

```
[ODBC Data Sources]
Sample DSN=Simba SQL Server ODBC Driver 32-bit
[Sample DSN]
Driver=/opt/simba/sqlserver/lib/32/libsqlserverodbc_sb32.so
Server=192.168.222.160
Port=1500
Trusted_Connection=no
UID=simba
PWD=simba123
```

You can now use the DSN in an application to connect to the data store.
Configuring a DSN-less Connection on a Non-Windows Machine

To connect to your data store through a DSN-less connection, you need to define the driver in the `odbcinst.ini` file and then provide a DSN-less connection string in your application.

If your machine is already configured to use an existing `odbcinst.ini` file, then update that file by adding the settings described below. Otherwise, copy the `odbcinst.ini` file from the Setup subfolder in the driver installation directory to the home directory, and then update the file as described below.

To define a driver on a non-Windows machine:

1. In a text editor, open the `odbcinst.ini` configuration file.

 ![Note:](#) If you are using a hidden copy of the `odbcinst.ini` file, you can remove the period (.) from the start of the file name to make the file visible while you are editing it.

2. In the `[ODBC Drivers]` section, add a new entry by typing a name for the driver, an equal sign (=), and then `Installed`.

 For example:

   ```ini
   [ODBC Drivers]
   Simba SQL Server ODBC Driver=Installed
   ```

3. Create a section that has the same name as the driver (as specified in the previous step), and then specify the following configuration options as key-value pairs in the section:

 a. Set the `Driver` property to the full path of the driver library file that matches the bitness of the application.

 For example, on a macOS machine:

   ```ini
   Driver=/Library/simba/sqlserver/lib/lsqserverodbcc_sbu.dylib
   ```

 As another example, for a 32-bit driver on a Linux machine:

   ```ini
   Driver=/opt/simba/sqlserver/lib/32/libsqlserverodbc_sb32.so
   ```
b. Optionally, set the **Description** property to a description of the driver.

For example:

```
Description=Simba SQL Server ODBC Driver
```

4. Save the **odbcinst.ini** configuration file.

Note:

If you are storing this file in its default location in the home directory, then prefix the file name with a period (.) so that the file becomes hidden. If you are storing this file in another location, then save it as a non-hidden file (without the prefix), and make sure that the ODBCINSTINI or ODBC_SYSINI environment variable specifies the location. For more information, see [Specifying the Locations of the Driver Configuration Files](#) on page 21.

For example, the following is an **odbcinst.ini** configuration file for macOS:

```
[ODBC Drivers]
Simba SQL Server ODBC Driver=Installed
[Simba SQL Server ODBC Driver]
Description=Simba SQL Server ODBC Driver
Driver=/Library/simba/sqlserver/lib/libsqlserverodbc_sbu.dylib
```

As another example, the following is an **odbcinst.ini** configuration file for both the 32- and 64-bit drivers on Linux:

```
[ODBC Drivers]
Simba SQL Server ODBC Driver 32-bit=Installed
Simba SQL Server ODBC Driver 64-bit=Installed
[Simba SQL Server ODBC Driver 32-bit]
Description=Simba SQL Server ODBC Driver (32-bit)
Driver=/opt/simba/sqlserver/lib/32/libsqlserverodbc_sb32.so
[Simba SQL Server ODBC Driver 64-bit]
Description=Simba SQL Server ODBC Driver (64-bit)
Driver=/opt/simba/sqlserver/lib/64/libsqlserverodbc_sb64.so
```

You can now connect to your data store by providing your application with a connection string where the **Driver** property is set to the driver name specified in the **odbcinst.ini** file, and all the other necessary connection properties are also set. For more information, see "DSN-less Connection String Examples" in Using a Connection String on page 35.
For instructions about configuring specific connection features, see the following:

- Configuring Authentication on a Non-Windows Machine on page 28
- Configuring TLS Verification on a Non-Windows Machine on page 29

For detailed information about all the connection properties that the driver supports, see Driver Configuration Options on page 42.

Configuring Authentication on a Non-Windows Machine

Connections to SQL Server require authentication. When using the driver on a non-Windows machine, you can authenticate the connection using your SQL Server user account or the Kerberos protocol. Additionally, the macOS driver also supports authentication through the NTLM protocol.

You can set the connection properties described below in a connection string or in a DSN (in the odbc.ini file). Settings in the connection string take precedence over settings in the DSN.

Using a User Account

You can authenticate the connection by providing your user name and password for accessing the SQL Server instance.

To configure authentication using a user account:

1. Set the Trusted_Connection property to no.
2. Set the UID property to an appropriate user name for accessing the server.
3. Set the PWD property to the password corresponding to the user name that you provided above.

Using Kerberos

You can authenticate the connection by using the Kerberos protocol.

To configure authentication using Kerberos:

1. Set the Trusted_Connection property to yes.
2. Set the ServerSPN property to the service principal name of the SQL Server instance.
Note:
If you do not set the ServerSPN property, the driver uses MSSQLSvc/[HostName]:[Port] as the service principal name, where [HostName] is the IP address or host name of the server and [Port] is the number of the port that you are connecting to.

Using NTLM
If you are using the driver on a macOS machine, you can authenticate the connection by using the NTLM protocol.

To configure authentication using NTLM:
1. Set the Trusted_Connection property to NTLM.
2. Set the UID property to an appropriate user name for accessing the server.
3. Set the PWD property to the password corresponding to the user name that you provided above.

Configuring TLS Verification on a Non-Windows Machine
If you are connecting to a SQL Server instance that has Transport Layer Security (TLS) enabled, then you can use TLS to encrypt your connection. When connecting to a server using TLS, the driver can be configured to verify the identity of the server. See Security and Authentication on page 40 for more details on TLS.

You can set the connection properties described below in a connection string or in a DSN (in the odbc.ini file). Settings in the connection string take precedence over settings in the DSN.

Configuring One-way TLS Verification
You can configure the driver to verify the identity of the server.

To configure one-way TLS verification on a non-Windows machine:
1. To encrypt your connection using TLS, set the Encrypt property to yes.
2. To enable one-way authentication so that the driver verifies the identity of the server, set the TrustServerCertificate property to no.
3. To specify the CA certificate that you want to use to verify the server certificate, set the CACertificate property to the full path and file name of the CA certificate.
Configuring a TLS Connection without Identity Verification

You can configure the driver to use TLS encryption without verifying the identity of the server.

To configure a TLS connection without verification on a non-Windows machine:

1. To encrypt your connection using TLS, set the Encrypt property to yes.
2. To trust the server certificate instead of verifying it, set the TrustServerCertificate property to yes.

Configuring Logging Options on a Non-Windows Machine

To help troubleshoot issues, you can enable logging in the driver or in the wire protocol component.

Important:

Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.

Logging is configured through driver-wide settings in the simba.sqlserverodbc.ini file, which apply to all connections that use the driver.

Driver Logging

Use driver logging to track the activity in the Simba SQL Server ODBC Driver.

To enable logging on a non-Windows machine:

1. Open the simba.sqlserverodbc.ini configuration file in a text editor.
2. To specify the level of information to include in log files, set the LogLevel property to one of the following numbers:

<table>
<thead>
<tr>
<th>LogLevel Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disables all logging.</td>
</tr>
<tr>
<td>1</td>
<td>Logs severe error events that lead the driver to abort.</td>
</tr>
</tbody>
</table>
LogLevel Value

<table>
<thead>
<tr>
<th>LogLevel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Logs error events that might allow the driver to continue running.</td>
</tr>
<tr>
<td>3</td>
<td>Logs events that might result in an error if action is not taken.</td>
</tr>
<tr>
<td>4</td>
<td>Logs general information that describes the progress of the driver.</td>
</tr>
<tr>
<td>5</td>
<td>Logs detailed information that is useful for debugging the driver.</td>
</tr>
<tr>
<td>6</td>
<td>Logs all driver activity.</td>
</tr>
</tbody>
</table>

3. Set the LogPath key to the full path to the folder where you want to save log files. For example:

4. Set the LogFileCount key to the maximum number of log files to keep.

Note:
After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

5. Set the LogFileSize key to the maximum size of each log file in megabytes (MB).

Note:
After the maximum file size is reached, the driver creates a new file and continues logging.

6. Optionally, to prefix the log file name with the user name and process ID associated with the connection, set the UseLogPrefix property to 1.

7. Save the simba.sqlserverodbc.ini configuration file.

8. Restart your ODBC application to make sure that the new settings take effect.

The Simba SQL Server ODBC Driver produces a log file named SqlServerODBC.log at the location you specify using the LogPath key.

If you set the UseLogPrefix property to 1, then each file name is prefixed with [UserName]_[ProcessID]_, where [UserName] is the user name associated with the connection and [ProcessID] is the process ID of the application through which the connection is made.
To disable logging on a non-Windows machine:

1. Open the `simba.sqlserverodbc.ini` configuration file in a text editor.
2. Set the `LogLevel` key to 0.
3. Save the `simba.sqlserverodbc.ini` configuration file.
4. Restart your ODBC application to make sure that the new settings take effect.

Wire Protocol Component Logging

Use wire protocol component logging to track the data activity between the driver and the SQL Server instance.

To enable wire protocol component logging on a non-Windows machine:

1. Open the `simba.sqlserverodbc.ini` configuration file in a text editor.
2. Set the `TDSTRACE` key to `[LoggingLevel]:[LogFilePath]`, where `[LoggingLevel]` is the logging level indicating the amount of detail to include in the log file and `[LogFilePath]` is the full path of the log file.

 The following logging levels are supported:

<table>
<thead>
<tr>
<th>Logging Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disables all logging.</td>
</tr>
<tr>
<td>1</td>
<td>Logs error events that might allow the wire protocol component to continue running. 1 is the default logging level.</td>
</tr>
<tr>
<td>2</td>
<td>Logs general information that describes the progress of the wire protocol component.</td>
</tr>
<tr>
<td>3</td>
<td>Logs detailed information that is useful for debugging the wire protocol component.</td>
</tr>
<tr>
<td>4</td>
<td>Logs all activity in the wire protocol component.</td>
</tr>
</tbody>
</table>

 For example, the following setting configures the wire protocol component to log debugging information in a file named `MyWireLog.log` located in the `C:\Logs` folder:

   ```
   TDSTRACE=3:/localhome/employee/Documents/MyWireLog.log
   ```
3. Save the simba.sqlserverodbc.ini configuration file.
4. Restart your ODBC application to make sure that the new settings take effect.

To disable wire protocol component logging on a non-Windows machine:

1. Open the simba.sqlserverodbc.ini configuration file in a text editor.
2. Set the TDSTRACE key to 0.
3. Save the simba.sqlserverodbc.ini configuration file.
4. Restart your ODBC application to make sure that the new settings take effect.

Testing the Connection on a Non-Windows Machine

To test the connection, you can use an ODBC-enabled client application. For a basic connection test, you can also use the test utilities that are packaged with your driver manager installation. For example, the iODBC driver manager includes simple utilities called iodbctest and iodbctestw. Similarly, the unixODBC driver manager includes simple utilities called isql and iusql.

Using the iODBC Driver Manager

You can use the iodbctest and iodbctestw utilities to establish a test connection with your driver. Use iodbctest to test how your driver works with an ANSI application, or use iodbctestw to test how your driver works with a Unicode application.

Note:

There are 32-bit and 64-bit installations of the iODBC driver manager available. If you have only one or the other installed, then the appropriate version of iodbctest (or iodbctestw) is available. However, if you have both 32- and 64-bit versions installed, then you need to make sure that you are running the version from the correct installation directory.

For more information about using the iODBC driver manager, see http://www.iodbc.org.

To test your connection using the iODBC driver manager:

1. Run iodbctest or iodbctestw.
2. Optionally, if you do not remember the DSN, then type a question mark (?) to see a list of available DSNs.
3. Type the connection string for connecting to your data store, and then press ENTER. For more information, see Using a Connection String on page 35.

If the connection is successful, then the SQL> prompt appears.
Using the unixODBC Driver Manager

You can use the isql and iusql utilities to establish a test connection with your driver and your DSN. isql and iusql can only be used to test connections that use a DSN. Use isql to test how your driver works with an ANSI application, or use iusql to test how your driver works with a Unicode application.

Note:

There are 32-bit and 64-bit installations of the unixODBC driver manager available. If you have only one or the other installed, then the appropriate version of isql (or iusql) is available. However, if you have both 32- and 64-bit versions installed, then you need to make sure that you are running the version from the correct installation directory.

For more information about using the unixODBC driver manager, see http://www.unixodbc.org.

To test your connection using the unixODBC driver manager:

- Run isql or iusql by using the corresponding syntax:

  ```
  isql [DataSourceName]
  iusql [DataSourceName]
  ```

 `[DataSourceName]` is the DSN that you are using for the connection.

If the connection is successful, then the `SQL>` prompt appears.

Note:

For information about the available options, run isql or iusql without providing a DSN.
Using a Connection String

For some applications, you might need to use a connection string to connect to your data source. For detailed information about how to use a connection string in an ODBC application, refer to the documentation for the application that you are using.

The connection strings in the following sections are examples showing the minimum set of connection attributes that you must specify to successfully connect to the data source. Depending on the configuration of the data source and the type of connection you are working with, you might need to specify additional connection attributes. For detailed information about all the attributes that you can use in the connection string, see Driver Configuration Options on page 42.

DSN Connection String Example

The following is an example of a connection string for a connection that uses a DSN:

```
DSN=[DataSourceName]
```

`[DataSourceName]` is the DSN that you are using for the connection.

You can set additional configuration options by appending key-value pairs to the connection string. Configuration options that are passed in using a connection string take precedence over configuration options that are set in the DSN.

DSN-less Connection String Examples

Some applications provide support for connecting to a data source using a driver without a DSN. To connect to a data source without using a DSN, use a connection string instead.

The placeholders in the example are defined as follows, in alphabetical order:

- `[PortNumber]` is the number of the TCP port that the SQL Server instance uses to listen for client connections.
- `[ServerInfo]` is the IP address or host name of the SQL Server instance to which you are connecting.
- `[ServiceName]` is the Kerberos service principal name of the SQL Server instance.
- `[SQLServerDatabase]` is the name of the database that you want to access.
- `[YourPassword]` is the password corresponding to your user name.
• *[YourUserName]* is the user name that you use to access the SQL Server instance.

Connecting to a SQL Server Instance Using User Login

The following is an example of a DSN-less connection string for a connection to a SQL Server instance that requires user login:

```
Driver=Simba SQL Server ODBC Driver;Server=[ServerInfo];
Port=[PortNumber];Database=[SQLServerDatabase];
UID=[YourUserName];PWD=[YourPassword];
```

For example:

```
Driver=Simba SQL Server ODBC Driver;
Server=192.168.222.160;Port=1500;Database=TestDB;
UID=simba;PWD=simba;
```

Connecting to a SQL Server Instance Using Kerberos Authentication

The following is an example of a DSN-less connection string for a connection to a SQL Server instance that requires authentication through Kerberos:

```
Driver=Simba SQL Server ODBC Driver;Server=[ServerInfo];
Port=[PortNumber];Database=[SQLServerDatabase];
Integrated Security=SSPI;ServerSPN=[ServiceName];
```

For example:

```
Driver=Simba SQL Server ODBC Driver;
Server=192.168.222.160;Port=1500;Database=TestDB;
Integrated Security=SSPI;ServerSPN=sqls;
```

Connecting to a SQL Server Instance Using NTLM Authentication

Note:

NTLM authentication is available only in the macOS version of the driver.

The following is an example of a DSN-less connection string for a connection to a SQL Server instance that requires authentication through the NTLM protocol:

```
Driver=Simba SQL Server ODBC Driver;Server=[ServerInfo];
Port=[PortNumber];Database=[SQLServerDatabase];
```
Integrated Security=NTLM;UID=[YourUserName];
PWD=[YourPassword];

For example:

Driver=Simba SQL Server ODBC Driver;
Server=192.168.222.160;Port=1500;Database=TestDB;
Integrated Security=NTLM;UID=simba;PWD=simba;
Features

For more information on the features of the Simba SQL Server ODBC Driver, see the following:

- Data Types on page 38
- Security and Authentication on page 40

Data Types

The Simba SQL Server ODBC Driver supports many common data formats, converting between SQL Server data types and SQL data types.

The table below lists the supported data type mappings.

<table>
<thead>
<tr>
<th>SQL Server Type</th>
<th>SQL Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigInt</td>
<td>SQL_BIGINT</td>
</tr>
<tr>
<td>BigInt Identity</td>
<td>SQL_BIGINT</td>
</tr>
<tr>
<td>Binary</td>
<td>SQL_BINARY</td>
</tr>
<tr>
<td>Bit</td>
<td>SQL_BIT</td>
</tr>
<tr>
<td>Char</td>
<td>SQL_CHAR</td>
</tr>
<tr>
<td>Date</td>
<td>SQL_TYPE_DATE</td>
</tr>
<tr>
<td>DateTime</td>
<td>SQL_TYPE_TIMESTAMP</td>
</tr>
<tr>
<td>DateTime2</td>
<td>SQL_TYPE_TIMESTAMP</td>
</tr>
<tr>
<td>DateTimeOffset</td>
<td>SQL_SS_TIMESTAMPOFFSET</td>
</tr>
<tr>
<td>Decimal</td>
<td>SQL_DECIMAL</td>
</tr>
<tr>
<td>Decimal() Identity</td>
<td>SQL_DECIMAL</td>
</tr>
<tr>
<td>Float</td>
<td>SQL_FLOAT</td>
</tr>
<tr>
<td>SQL Server Type</td>
<td>SQL Type</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>GUID</td>
<td>SQL_GUID</td>
</tr>
<tr>
<td>Image</td>
<td>SQL_LONGVARBINARY</td>
</tr>
<tr>
<td>Int</td>
<td>SQL_INTEGER</td>
</tr>
<tr>
<td>Int Identity</td>
<td>SQL_INTEGER</td>
</tr>
<tr>
<td>Money</td>
<td>SQL_DECIMAL</td>
</tr>
<tr>
<td>NChar</td>
<td>SQL_WCHAR</td>
</tr>
<tr>
<td>NText</td>
<td>SQL_WLONGVARCHAR</td>
</tr>
<tr>
<td>Numeric</td>
<td>SQL_NUMERIC</td>
</tr>
<tr>
<td>Numeric() Identity</td>
<td>SQL_NUMERIC</td>
</tr>
<tr>
<td>NVChar</td>
<td>SQL_WVARCHAR</td>
</tr>
<tr>
<td>NVChar(Max)</td>
<td>SQL_WVARCHAR</td>
</tr>
<tr>
<td>Real</td>
<td>SQL_REAL</td>
</tr>
<tr>
<td>RowVersion</td>
<td>SQL_BINARY</td>
</tr>
</tbody>
</table>

Note:
Before SQL Server 2008, this data type was called Timestamp.
In addition, certain SQL Server data types are exposed via custom type identifiers, as in the native SQL Server driver:

- Geometry, Geography, and HierarchyID use custom type -151.
- XML uses custom type -152.

Security and Authentication

To protect data from unauthorized access, SQL Server data stores require connections to be authenticated with user credentials and sometimes the TLS protocol. The Simba SQL Server ODBC Driver provides full support for these authentication protocols.

The driver provides mechanisms that enable you to authenticate your connection using the Kerberos protocol or your SQL Server user name and password. Additionally, the macOS driver supports authentication using the NTLM protocol. For detailed configuration instructions, see Creating a Data Source Name on Windows on page 9 or Configuring Authentication on a Non-Windows Machine on page 28.
Additionally, the driver supports TLS connections with or without one-way authentication using TLS. If the server has a TLS-enabled socket, then you can configure the driver to connect to it. The driver supports TLS 1.0 to 1.2. It will automatically detect the highest version the server supports and use that when negotiating the connection.

It is recommended that you enable TLS whenever you connect to a server that is configured to support it. TLS encryption protects data and credentials when they are transferred over the network, and provides stronger security than authentication alone. For detailed configuration instructions, see Creating a Data Source Name on Windows on page 9 or Configuring TLS Verification on a Non-Windows Machine on page 29.
Driver Configuration Options

Driver Configuration Options lists the configuration options available in the Simba SQL Server ODBC Driver alphabetically by field or button label. Options having only key names, that is, not appearing in the user interface of the driver, are listed alphabetically by key name.

When creating or configuring a connection from a Windows machine, the fields and buttons described below are available in the Simba SQL Server ODBC Driver DSN Setup dialog box.

When using a connection string or configuring a connection from a Linux or macOS machine, use the key names provided below.

Configuration Options Appearing in the User Interface

The following configuration options are accessible via the Windows user interface for the Simba SQL Server ODBC Driver, or via the key name when using a connection string or configuring a connection from a Linux or macOS machine:

- CA Certificate on page 43
- Database on page 43
- Enable Table Types on page 43
- Encrypt on page 44
- Log Level on page 44
- Log Path on page 45
- Max File Size on page 45
- Max Number Files on page 46
- Password on page 46
- Port on page 47
- Return SQL Server-Specific Types as ODBC Types on page 47
- Server on page 47
- Server SPN on page 48
- Trust Server Certificate on page 48
- Use Trusted Connection on page 49
- User on page 49
CA Certificate

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACertificate</td>
<td>cacerts.pem</td>
<td>Yes, if the Encrypt option is enabled and the Trust Server Certificate option is disabled.</td>
</tr>
</tbody>
</table>

Description

The full path and file name of the CA certificate that you want to use to verify the server certificate when TLS encryption is enabled.

For information about how to trust the server certificate instead of verifying it, see Trust Server Certificate on page 48.

Database

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The name of the SQL Server database that you want to access.

Enable Table Types

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnableTableTypes</td>
<td>Clear (no)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver includes temporary tables in the results when calling SQLTables.

- **Enabled** (yes, true, or 1): The driver includes temporary tables.
- **Disabled** (no, false, or 0): The driver does not include temporary tables.
Encrypt

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypt</td>
<td>Clear (no)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver uses TLS to encrypt communication with the SQL Server instance before sending it over the network. The driver supports TLS 1.0 to 1.2. It will automatically detect the highest version the server supports and use that when negotiating the connection.

- Enabled (yes, true, or 1): The driver encrypts all communication with the SQL Server instance.
- Enabled (yes, true, or 1): The driver does not encrypt communication with the SQL Server instance.

For information about configuring identity verification between the driver and the server, see CA Certificate on page 43 and Trust Server Certificate on page 48.

Log Level

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogLevel</td>
<td>OFF (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

Use this property to enable or disable logging in the driver and to specify the amount of detail included in log files.

Important:

- Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.
- This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the simba.sqlserverodbc.ini file.

Set the property to one of the following values:
• OFF (0): Disable all logging.
• FATAL (1): Logs severe error events that lead the driver to abort.
• ERROR (2): Logs error events that might allow the driver to continue running.
• WARNING (3): Logs events that might result in an error if action is not taken.
• INFO (4): Logs general information that describes the progress of the driver.
• DEBUG (5): Logs detailed information that is useful for debugging the driver.
• TRACE (6): Logs all driver activity.

When logging is enabled, the driver produces a log file named SqlServerODBC.log in the location specified in the Log Path (LogPath) property.

If you enable the UseLogPrefix connection property, the driver prefixes the log file name with the user name associated with the connection and the process ID of the application through which the connection is made. For more information, see UseLogPrefix on page 51.

Log Path

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogPath</td>
<td>None</td>
<td>Yes, if logging is enabled.</td>
</tr>
</tbody>
</table>

Description

The full path to the folder where the driver saves log files when logging is enabled.

⚠️ Important:

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the simba.sqlserverodbc.ini file.

Max File Size

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogFileSize</td>
<td>20</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

The maximum size of each log file in megabytes (MB). After the maximum file size is reached, the driver creates a new file and continues logging.

❗ Important:

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the simba.sqlserverodbc.ini file.

Max Number Files

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogFileCount</td>
<td>50</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The maximum number of log files to keep. After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

❗ Important:

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the simba.sqlserverodbc.ini file.

Password

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWD</td>
<td>None</td>
<td>Yes, if authenticating through user login or the NTLM protocol.</td>
</tr>
</tbody>
</table>

Description

The password corresponding to the user name that you provided in the User field (the UID key).
Port

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>1433</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Description

The TCP port that the SQL Server instance uses to listen for client connections.

Return SQL Server-Specific Types as ODBC Types

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReturnSpecificType</td>
<td>Clear (no)</td>
<td>No</td>
</tr>
<tr>
<td>AsOdbcType</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver returns the SQL Server-specific data types that are listed in the table below as ODBC data types, or as than as SQL Server data types.

- Enabled (yes, true, or 1): The driver returns the data types listed below as ODBC data types.
- Disabled (no, false, or 0): The driver returns the data types listed below as SQL Server data types.

<table>
<thead>
<tr>
<th>SQL Server Type</th>
<th>Returned ODBC Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS_SQL_SS_TIME</td>
<td>SQL_TYPE_TIME</td>
</tr>
<tr>
<td>TDS_SQL_SS_DATETIMEOFFSET</td>
<td>SQL_WVARCHAR</td>
</tr>
</tbody>
</table>

Server

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>None</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Description
The host name or IP address of the SQL Server instance.

Server SPN

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServerSPN</td>
<td>MSSQLSvc/[HostName]:[Port], where [HostName] is the server name or IP address specified in the Server option and [Port] is the port number specified in the Port option.</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
The service principal name of the SQL Server instance.

Trust Server Certificate

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TrustServerCertificate</td>
<td>Clear (no)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
This option specifies whether the driver trusts the server certificate when connecting to the server using TLS.

- **Enabled** *(yes, true, or 1)*: The driver trusts the server certificate.
- **Disabled** *(no, false, or 0)*: The driver does not trust the server certificate, and instead uses a CA certificate to verify the server certificate.

For information about how to specify a CA certificate, see [CA Certificate](#) on page 43.
Use Trusted Connection

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trusted_Connection OR Integrated Security</td>
<td>Clear (no or none)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies the protocol that the driver uses to authenticate connections to the SQL Server instance.

- **Enabled** *(Trusted_Connection is set to yes, true, or 1; or Integrated Security is set to SSPI)*: The driver uses the Kerberos protocol to authenticate connections.
- **Disabled** *(Trusted_Connection is set to no, false, or 0; or Integrated Security is not set)*: The driver uses user login to authenticate connections.

When using the macOS version of the driver, you can set the Trusted_Connection key or the Integrated Security key to NTLM to authenticate connections using the NTLM protocol.

User

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>None</td>
<td>Yes, if authenticating through user login or the NTLM protocol.</td>
</tr>
</tbody>
</table>

Description

The user name that you use to access the SQL Server instance.

Configuration Options Having Only Key Names

The following configuration options do not appear in the Windows user interface for the Simba SQL Server ODBC Driver. They are accessible only when you use a connection string or configure a connection on macOS or Linux.
Additionally, the TDSTRACE option is available only as an environment variable.

- **TDSTRACE** on page 50

Driver

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>Simba SQL Server ODBC Driver when installed on Windows, or the absolute path of the driver shared object file when installed on a non-Windows machine.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Description

On Windows, the name of the installed driver *(Simba SQL Server ODBC Driver)*.

On other platforms, the name of the installed driver as specified in *odbcinst.ini*, or the absolute path of the driver shared object file.

LongColumnLength

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LongColumnLength</td>
<td>8000</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The maximum size of BLOB and CLOB columns.

TDSTRACE

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDSTRACE</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

Use this property to enable or disable logging in the wire protocol component and to specify the amount of detail included in log files.

⚠️ Important:

- Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.
- This option is not supported in DSNs or connection strings. To configure wire protocol logging for the Windows driver, you must set TDSTRACE as an environment variable. To configure wire protocol logging for a non-Windows driver, you must set TDSTRACE in the simba.sqlserverodbc.ini file.

Set the property to \[LoggingLevel\]: \[LogFilePath\], where \[LoggingLevel\] is the logging level indicating the amount of detail to include in the log file and \[LogFilePath\] is the fill path of the log file.

The logging levels are supported:

- 0: Disable all logging.
- 1: Logs error events that might allow the wire protocol component to continue running.
- 2: Logs general information that describes the progress of the wire protocol component.
- 3: Logs detailed information that is useful for debugging the wire protocol component.
- 4: Logs all activity in the wire protocol component.

For example, setting TDSTRACE to 3:C:\Logs\MyWireLog.log configures the wire protocol component to log debugging information in a file named MyWireLog.log located in the C:\Logs folder.

UseLogPrefix

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseLogPrefix</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

This option specifies whether the driver includes a prefix in the names of log files so that the files can be distinguished by user and application.

- **1**: The driver prefixes log file names with the user name and process ID associated with the connection that is being logged. For example, if you are connecting as a user named "jdoe" and using the driver in an application with process ID 7836, the generated log file would be named `jdoe_7836_SqlServerODBC.log`.
- **0**: The driver does not include the prefix in log file names.
Third-Party Trademarks

Debian is a trademark or registered trademark of Software in the Public Interest, Inc. or its subsidiaries in Canada, United States and/or other countries.

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or other countries.

Mac, macOS, Mac OS, and OS X are trademarks or registered trademarks of Apple, Inc. or its subsidiaries in Canada, United States and/or other countries.

Microsoft SQL Server, SQL Server, Microsoft, MSDN, Windows, Windows Server, Windows Vista, and the Windows start button are trademarks or registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other countries.

SUSE is a trademark or registered trademark of SUSE LLC or its subsidiaries in Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.
Third-Party Licenses

The licenses for the third-party libraries that are included in this product are listed below.

CityHash License

Copyright (c) 2011 Google, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

CityHash, by Geoff Pike and Jyrki Alakuijala

http://code.google.com/p/cityhash/

dtoa License

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire notice is included in all copies of any software which is or includes a copy or modification of this software and in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

Expat License

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

Libntlm License

Libntlm is licensed under the [GNU Lesser General Public License](http://www.gnu.org/licenses/lgpl.html) version 2.1 or (at your option) any later version.

OpenSSL License

Copyright (c) 1998-2016 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
 conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
 of conditions and the following disclaimer in the documentation and/or other
 materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display
 the following acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 endorse or promote products derived from this software without prior written
 permission. For written permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may
 "OpenSSL" appear in their names without prior written permission of the
 OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following
 acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"

The word 'cryptographic' can be left out if the routines from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]

Stringencoders License

Copyright 2005, 2006, 2007

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of the modp.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php