Copyright © 2017 Simba Technologies Inc. All Rights Reserved.

Information in this document is subject to change without notice. Companies, names and data used in examples herein are fictitious unless otherwise noted. No part of this publication, or the software it describes, may be reproduced, transmitted, transcribed, stored in a retrieval system, decompiled, disassembled, reverse-engineered, or translated into any language in any form by any means for any purpose without the express written permission of Simba Technologies Inc.

Trademarks

Simba, the Simba logo, SimbaEngine, and Simba Technologies are registered trademarks of Simba Technologies Inc. in Canada, United States and/or other countries. All other trademarks and/or servicemarks are the property of their respective owners.

Contact Us

Simba Technologies Inc.
938 West 8th Avenue
Vancouver, BC Canada
V5Z 1E5
Tel: +1 (604) 633-0008
Fax: +1 (604) 633-0004
www.simba.com
About This Guide

Purpose

The Simba Hive ODBC Driver with SQL Connector Installation and Configuration Guide explains how to install and configure the Simba Hive ODBC Driver with SQL Connector. The guide also provides details related to features of the driver.

Audience

The guide is intended for end users of the Simba Hive ODBC Driver, as well as administrators and developers integrating the driver.

Knowledge Prerequisites

To use the Simba Hive ODBC Driver, the following knowledge is helpful:

- Familiarity with the platform on which you are using the Simba Hive ODBC Driver
- Ability to use the data source to which the Simba Hive ODBC Driver is connecting
- An understanding of the role of ODBC technologies and driver managers in connecting to a data source
- Experience creating and configuring ODBC connections
- Exposure to SQL

Document Conventions

Italics are used when referring to book and document titles.

Bold is used in procedures for graphical user interface elements that a user clicks and text that a user types.

Monospace font indicates commands, source code, or contents of text files.

✏️ Note:

A text box with a pencil icon indicates a short note appended to a paragraph.
Important:
A text box with an exclamation mark indicates an important comment related to the preceding paragraph.
Table of Contents

About the Simba Hive ODBC Driver ... 7

Windows Driver ... 8
 Windows System Requirements ... 8
 Installing the Driver on Windows ... 8
 Creating a Data Source Name on Windows ... 9
 Configuring a DSN-less Connection on Windows 12
 Configuring Authentication on Windows .. 14
 Configuring Advanced Options on Windows .. 18
 Configuring HTTP Options on Windows .. 20
 Configuring SSL Verification on Windows ... 21
 Configuring Server-Side Properties on Windows 22
 Configuring Logging Options on Windows ... 24
 Configuring Kerberos Authentication for Windows 26
 Verifying the Driver Version Number on Windows 30

macOS Driver .. 31
 macOS System Requirements .. 31
 Installing the Driver on macOS ... 31
 Verifying the Driver Version Number on macOS 32

Linux Driver ... 33
 Linux System Requirements .. 33
 Installing the Driver Using the RPM File ... 33
 Installing the Driver Using the Tarball Package 35
 Installing the Driver on Debian .. 36
 Verifying the Driver Version Number on Linux 37

AIX Driver ... 38
 AIX System Requirements .. 38
 Installing the Driver on AIX .. 38
 Verifying the Driver Version Number on AIX 39

Solaris Driver .. 40
 Solaris System Requirements ... 40
 Installing the Driver on Solaris .. 40
 Verifying the Driver Version Number on Solaris 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring the ODBC Driver Manager on Non-Windows Machines</td>
<td>42</td>
</tr>
<tr>
<td>Specifying ODBC Driver Managers on Non-Windows Machines</td>
<td>42</td>
</tr>
<tr>
<td>Specifying the Locations of the Driver Configuration Files</td>
<td>43</td>
</tr>
<tr>
<td>Configuring ODBC Connections on a Non-Windows Machine</td>
<td>45</td>
</tr>
<tr>
<td>Creating a Data Source Name on a Non-Windows Machine</td>
<td>45</td>
</tr>
<tr>
<td>Configuring a DSN-less Connection on a Non-Windows Machine</td>
<td>48</td>
</tr>
<tr>
<td>Configuring Service Discovery Mode on a Non-Windows Machine</td>
<td>50</td>
</tr>
<tr>
<td>Configuring Authentication on a Non-Windows Machine</td>
<td>51</td>
</tr>
<tr>
<td>Configuring SSL Verification on a Non-Windows Machine</td>
<td>54</td>
</tr>
<tr>
<td>Configuring Server-Side Properties on a Non-Windows Machine</td>
<td>55</td>
</tr>
<tr>
<td>Configuring Logging Options on a Non-Windows Machine</td>
<td>56</td>
</tr>
<tr>
<td>Setting Driver-Wide Configuration Options on a Non-Windows Machine</td>
<td>58</td>
</tr>
<tr>
<td>Testing the Connection on a Non-Windows Machine</td>
<td>59</td>
</tr>
<tr>
<td>Authentication Mechanisms</td>
<td>61</td>
</tr>
<tr>
<td>Using a Connection String</td>
<td>63</td>
</tr>
<tr>
<td>DSN Connection String Example</td>
<td>63</td>
</tr>
<tr>
<td>DSN-less Connection String Examples</td>
<td>63</td>
</tr>
<tr>
<td>Features</td>
<td>67</td>
</tr>
<tr>
<td>SQL Connector for HiveQL</td>
<td>67</td>
</tr>
<tr>
<td>Data Types</td>
<td>68</td>
</tr>
<tr>
<td>Catalog and Schema Support</td>
<td>69</td>
</tr>
<tr>
<td>hive_system Table</td>
<td>69</td>
</tr>
<tr>
<td>Server-Side Properties</td>
<td>70</td>
</tr>
<tr>
<td>Get Tables With Query</td>
<td>70</td>
</tr>
<tr>
<td>Active Directory</td>
<td>70</td>
</tr>
<tr>
<td>Write-back</td>
<td>71</td>
</tr>
<tr>
<td>Dynamic Service Discovery using ZooKeeper</td>
<td>71</td>
</tr>
<tr>
<td>Security and Authentication</td>
<td>71</td>
</tr>
<tr>
<td>Driver Configuration Options</td>
<td>73</td>
</tr>
<tr>
<td>Configuration Options Appearing in the User Interface</td>
<td>73</td>
</tr>
<tr>
<td>Configuration Options Having Only Key Names</td>
<td>96</td>
</tr>
<tr>
<td>Third-Party Trademarks</td>
<td>101</td>
</tr>
<tr>
<td>Third-Party Licenses</td>
<td>102</td>
</tr>
</tbody>
</table>
About the Simba Hive ODBC Driver

The Simba Hive ODBC Driver is used for direct SQL and HiveQL access to Apache Hadoop / Hive distributions, enabling Business Intelligence (BI), analytics, and reporting on Hadoop / Hive-based data. The driver efficiently transforms an application’s SQL query into the equivalent form in HiveQL, which is a subset of SQL-92. If an application is Hive-aware, then the driver is configurable to pass the query through to the database for processing. The driver interrogates Hive to obtain schema information to present to a SQL-based application. Queries, including joins, are translated from SQL to HiveQL. For more information about the differences between HiveQL and SQL, see SQL Connector for HiveQL on page 67.

The Simba Hive ODBC Driver complies with the ODBC 3.80 data standard and adds important functionality such as Unicode and 32- and 64-bit support for high-performance computing environments.

ODBC is one of the most established and widely supported APIs for connecting to and working with databases. At the heart of the technology is the ODBC driver, which connects an application to the database. For more information about ODBC, see the Data Access Standards Glossary: http://www.simba.com/resources/data-access-standards-library. For complete information about the ODBC specification, see the ODBC API Reference: http://msdn.microsoft.com/en-us/library/windows/desktop/ms714562(v=vs.85).aspx.

The Simba Hive ODBC Driver is available for Microsoft® Windows®, Linux, Solaris, AIX, and macOS platforms.

The Installation and Configuration Guide is suitable for users who are looking to access data residing within Hive from their desktop environment. Application developers might also find the information helpful. Refer to your application for details on connecting via ODBC.

Note:

For basic configuration instructions that allow you to quickly set up the Windows driver so that you can evaluate and use it, see the Simba ODBC Drivers Quick Start Guide for Windows. The Quick Start Guide also explains how to use the driver in various applications.
Windows System Requirements

The Simba Hive ODBC Driver supports Apache Hive versions 0.11 through 1.2.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- One of the following operating systems:
 - Windows 7, 8.1, or 10
 - Windows Server 2008 or later
- 100 MB of available disk space
- Visual C++ Redistributable for Visual Studio 2013 installed (with the same bitness as the driver that you are installing).

To install the driver, you must have Administrator privileges on the machine.

Installing the Driver on Windows

On 64-bit Windows operating systems, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application:

- SimbaHiveODBC32.msi for 32-bit applications
- SimbaHiveODBC64.msi for 64-bit applications

You can install both versions of the driver on the same machine.

To install the Simba Hive ODBC Driver on Windows:

1. Depending on the bitness of your client application, double-click to run SimbaHiveODBC32.msi or SimbaHiveODBC64.msi.
2. Click Next.
3. Select the check box to accept the terms of the License Agreement if you agree, and then click Next.
4. To change the installation location, click Change, then browse to the desired folder, and then click OK. To accept the installation location, click Next.
5. Click Install.
6. When the installation completes, click **Finish**.

7. If you received a license file through email, then copy the license file into the `\lib` subfolder of the installation folder you selected above. You must have Administrator privileges when changing the contents of this folder.

Creating a Data Source Name on Windows

Typically, after installing the Simba Hive ODBC Driver, you need to create a Data Source Name (DSN). A DSN is a data structure that stores connection information so that it can be used by the driver to connect to Hive.

Alternatively, you can specify connection settings in a connection string or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

The following instructions describe how to create a DSN. For information about specifying settings in a connection string, see Using a Connection String on page 63. For information about driver-wide settings, see Configuring a DSN-less Connection on Windows on page 12.

To create a Data Source Name on Windows:

1. Open the ODBC Administrator:
 - If you are using Windows 7 or earlier, click **Start** > **All Programs** > **Simba Hive ODBC Driver 2.1** > **ODBC Administrator**.
 - Or, if you are using Windows 8 or later, on the Start screen, type **ODBC administrator**, and then click the **ODBC Administrator** search result.

 Note:

 Make sure to select the ODBC Data Source Administrator that has the same bitness as the client application that you are using to connect to Hive.

2. In the ODBC Data Source Administrator, click the **Drivers** tab, and then scroll down as needed to confirm that the Simba Hive ODBC Driver appears in the alphabetical list of ODBC drivers that are installed on your system.

3. Choose one:
 - To create a DSN that only the user currently logged into Windows can use, click the **User DSN** tab.
 - Or, to create a DSN that all users who log into Windows can use, click the **System DSN** tab.
Note:
It is recommended that you create a System DSN instead of a User DSN. Some applications load the data using a different user account, and might not be able to detect User DSNs that are created under another user account.

4. Click **Add**.
5. In the Create New Data Source dialog box, select **Simba Hive ODBC Driver** and then click **Finish**. The Simba Hive ODBC Driver DSN Setup dialog box opens.
6. In the **Data Source Name** field, type a name for your DSN.
7. Optionally, in the **Description** field, type relevant details about the DSN.
8. In the **Hive Server Type** drop-down list, select **Hive Server 1** or **Hive Server 2**.

Note:
If you are connecting through Apache ZooKeeper, then **Hive Server 1** is not supported.

9. Choose one:
 - To connect to Hive without using the Apache ZooKeeper service, in the **Service Discovery Mode** drop-down list, select **No Service Discovery**.
 - Or, to enable the driver to discover Hive Server 2 services via the ZooKeeper service, in the **Service Discovery Mode** drop-down list, select **ZooKeeper**.

10. Choose one:
 - If you selected **No Service Discovery** above, then in the **Host(s)** field, type the IP address or host name of the Hive server.
 - Or, if you selected **ZooKeeper** above, then in the **Host(s)** field, type a comma-separated list of ZooKeeper servers. Use the following format, where [ZK_Host] is the IP address or host name of the ZooKeeper server and [ZK_Port] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

 \[[ZK_Host1]:[ZK_Port1],[ZK_Host2]:[ZK_Port2]\]

11. In the **Port** field, if you selected **No Service Discovery** above, then type the number of the TCP port that the Hive server uses to listen for client connections. Otherwise, do not type a value in the field.
12. In the **Database** field, type the name of the database schema to use when a schema is not explicitly specified in a query.
13. In the **ZooKeeper Namespace** field, if you selected **ZooKeeper** above, then type the namespace on ZooKeeper under which Hive Server 2 znodes are added. Otherwise, do not type a value in the field.

14. In the Authentication area, configure authentication as needed. For more information, see Configuring Authentication on Windows on page 14.

Note:

Hive Server 1 does not support authentication. Most default configurations of Hive Server 2 require User Name authentication. To verify the authentication mechanism that you need to use for your connection, check the configuration of your Hadoop / Hive distribution. For more information, see Authentication Mechanisms on page 61.

15. Optionally, if the operations against Hive are to be done on behalf of a user that is different than the authenticated user for the connection, type the name of the user to be delegated in the **Delegation UID** field.

Note:

This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

16. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

Note:

For information about how to determine which Thrift transport protocols your Hive server supports, see Authentication Mechanisms on page 61.

17. If the Thrift Transport option is set to HTTP, then to configure HTTP options such as custom headers, click **HTTP Options**. For more information, see Configuring HTTP Options on Windows on page 20.

18. To configure client-server verification over SSL, click **SSL Options**. For more information, see Configuring SSL Verification on Windows on page 21.

19. To configure advanced driver options, click **Advanced Options**. For more information, see Configuring Advanced Options on Windows on page 18.
20. To configure server-side properties, click Advanced Options and then click Server Side Properties. For more information, see Configuring Server-Side Properties on Windows on page 22.

21. To configure logging behavior for the driver, click Logging Options. For more information, see Configuring Logging Options on Windows on page 24.

22. To test the connection, click Test. Review the results as needed, and then click OK.

![Note:]

If the connection fails, then confirm that the settings in the Simba Hive ODBC Driver DSN Setup dialog box are correct. Contact your Hive server administrator as needed.

23. To save your settings and close the Simba Hive ODBC Driver DSN Setup dialog box, click OK.

24. To close the ODBC Data Source Administrator, click OK.

Configuring a DSN-less Connection on Windows

Some client applications provide support for connecting to a data source using a driver without a Data Source Name (DSN). To configure a DSN-less connection, you can use a connection string or the Simba Hive ODBC Driver Configuration tool that is installed with the Simba Hive ODBC Driver. Settings in a connection string apply only when you connect to Hive using that particular string, while settings in the driver configuration tool apply to every connection that uses the Simba Hive ODBC Driver.

The following section explains how to use the driver configuration tool. For information about using connection strings, see Using a Connection String on page 63.

![Note:]

Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

To configure a DSN-less connection using the driver configuration tool:

1. Choose one:
 - If you are using Windows 7 or earlier, click Start > All Programs > Simba Hive ODBC Driver 2.1 > Driver Configuration.
 - Or, if you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, and then click Simba Hive ODBC Driver 2.1 > Driver Configuration.
2. If you are prompted for administrator permission to make modifications to the machine, click OK.

Note: Make sure to select the Driver Configuration Tool that has the same bitness as the client application that you are using to connect to Hive.

3. In the Hive Server Type drop-down list, select Hive Server 1 or Hive Server 2.

Note: If you are connecting through Apache ZooKeeper, then Hive Server 1 is not supported.

4. Choose one:
 - To connect to Hive without using the Apache ZooKeeper service, in the Service Discovery Mode drop-down list, select No Service Discovery.
 - Or, to enable the driver to discover Hive Server 2 services via the ZooKeeper service, in the Service Discovery Mode drop-down list, select ZooKeeper.

5. In the ZooKeeper Namespace field, if you selected ZooKeeper above, then type the namespace on ZooKeeper under which Hive Server 2 znodes are added. Otherwise, do not type a value in the field.

6. In the Authentication area, configure authentication as needed. For more information, see Configuring Authentication on Windows on page 14.

Note: Hive Server 1 does not support authentication. Most default configurations of Hive Server 2 require User Name authentication. To verify the authentication mechanism that you need to use for your connection, check the configuration of your Hadoop / Hive distribution. For more information, see Authentication Mechanisms on page 61.

7. Optionally, if the operations against Hive are to be done on behalf of a user that is different than the authenticated user for the connection, then in the Delegation UID field, type the name of the user to be delegated.
8. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

Note:
This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

9. If the Thrift Transport option is set to HTTP, then to configure HTTP options such as custom headers, click **HTTP Options**. For more information, see Configuring HTTP Options on Windows on page 20.

10. To configure client-server verification over SSL, click **SSL Options**. For more information, see Configuring SSL Verification on Windows on page 21.

11. To configure advanced options, click **Advanced Options**. For more information, see Configuring Advanced Options on Windows on page 18.

12. To configure server-side properties, click **Advanced Options** and then click **Server Side Properties**. For more information, see Configuring Server-Side Properties on Windows on page 22.

13. To save your settings and close the Simba Hive ODBC Driver Configuration tool, click **OK**.

Configuring Authentication on Windows

Some Hive Server 2 instances are configured to require authentication for access. To connect to a Hive server, you must configure the Simba Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials.

For information about how to determine the type of authentication your Hive server requires, see Authentication Mechanisms on page 61.

You can specify authentication settings in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

Using No Authentication

When connecting to a Hive server of type Hive Server 1, you must use No Authentication. When you use No Authentication, Binary is the only Thrift transport protocol that is supported.
To configure a connection without authentication:

1. Choose one:
 - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
 - Or, to access authentication options for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool.

2. In the Mechanism drop-down list, select No Authentication.

3. If the Hive server is configured to use SSL, then click SSL Options to configure SSL for the connection. For more information, see Configuring SSL Verification on Windows on page 21.

4. To save your settings and close the dialog box, click OK.

Using Kerberos

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. When you use Kerberos authentication, the Binary transport protocol is not supported.

If the Use Only SSPI advanced option is disabled, then Kerberos must be installed and configured before you can use this authentication mechanism. For information about configuring Kerberos on your machine, see Configuring Kerberos Authentication for Windows on page 26. For information about setting the Use Only SSPI advanced option, see Configuring Advanced Options on Windows on page 18.

To configure Kerberos authentication:

1. Choose one:
 - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
 - Or, to access authentication options for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool.

2. In the Mechanism drop-down list, select Kerberos.

3. Choose one:
 - To use the default realm defined in your Kerberos setup, leave the Realm field empty.
 - Or, if your Kerberos setup does not define a default realm or if the realm of your Hive Server 2 host is not the default, then, in the Realm field, type the Kerberos realm of the Hive Server 2.

4. In the Host FQDN field, type the fully qualified domain name of the Hive Server 2 host.
5. To allow the driver to pass your credentials directly to the server for use in authentication, select **Delegate Kerberos Credentials**.

6. In the **Service Name** field, type the service name of the Hive server.

7. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

 Important:

 When using this authentication mechanism, the Binary transport protocol is not supported.

8. If the Hive server is configured to use SSL, then click **SSL Options** to configure SSL for the connection. For more information, see Configuring SSL Verification on Windows on page 21.

9. To save your settings and close the dialog box, click **OK**.

Using User Name

This authentication mechanism requires a user name but not a password. The user name labels the session, facilitating database tracking.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. Most default configurations of Hive Server 2 require User Name authentication. When you use User Name authentication, SSL is not supported and SASL is the only Thrift transport protocol available.

To configure User Name authentication:

1. Choose one:
 - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click **Configure**.
 - Or, to access authentication options for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool.

2. In the **Mechanism** drop-down list, select **User Name**.

3. In the **User Name** field, type an appropriate user name for accessing the Hive server.

4. To save your settings and close the dialog box, click **OK**.
Using User Name And Password

This authentication mechanism requires a user name and a password.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions.

To configure User Name And Password authentication:

1. Choose one:
 - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
 - Or, to access authentication options for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool.

2. In the Mechanism drop-down list, select User Name And Password.

3. In the User Name field, type an appropriate user name for accessing the Hive server.

4. In the Password field, type the password corresponding to the user name you typed above.

5. To save the password, select the Save Password (Encrypted) check box.

 ! Important:

 The password is obscured, that is, not saved in plain text. However, it is still possible for the encrypted password to be copied and used.

6. In the Thrift Transport drop-down list, select the transport protocol to use in the Thrift layer.

7. If the Hive server is configured to use SSL, then click SSL Options to configure SSL for the connection. For more information, see Configuring SSL Verification on Windows on page 21.

8. To save your settings and close the dialog box, click OK.

Using Windows Azure HDInsight Service

This authentication mechanism is available only for Hive Server 2 on HDInsight distributions. When you use this authentication mechanism, you must enable SSL and HTTP is the only Thrift transport protocol available.
To configure a connection to a Hive server on Windows Azure HDInsight Service:

1. Choose one:
 - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
 - Or, to access authentication options for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool.
2. In the Mechanism drop-down list, select Windows Azure HDInsight Service.
3. In the User Name field, type an appropriate user name for accessing the Hive server.
4. In the Password field, type the password corresponding to the user name you typed above.
5. Click HTTP Options, and in the HTTP Path field, type the partial URL corresponding to the Hive server. Click OK to save your HTTP settings and close the dialog box.

Note: If necessary, you can create custom HTTP headers. For more information, see Configuring HTTP Options on Windows on page 20.

6. Click SSL Options and configure SSL settings as needed. For more information, see Configuring SSL Verification on Windows on page 21.
7. Click OK to save your SSL configuration and close the dialog box, and then click OK to save your authentication settings and close the dialog box.

Configuring Advanced Options on Windows

You can configure advanced options to modify the behavior of the driver.

The following instructions describe how to configure advanced options in a DSN and in the driver configuration tool. You can specify the connection settings described below in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

To configure advanced options on Windows:

1. Choose one:
 - To access advanced options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click Advanced Options.
1. Or, to access advanced options for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool, and then click **Advanced Options**.

2. To disable the SQL Connector feature, select the **Use Native Query** check box.

3. To defer query execution to SQLExecute, select the **Fast SQLPrepare** check box.

4. To allow driver-wide configurations to take precedence over connection and DSN settings, select the **Driver Config Take Precedence** check box.

5. To use the asynchronous version of the API call against Hive for executing a query, select the **Use Async Exec** check box.

 Note:

 This option is applicable only when connecting to a Hive cluster running Hive 0.12.0 or later.

6. To retrieve table names from the database by using the SHOW TABLES query, select the **Get Tables With Query** check box.

 Note:

 This option is applicable only when connecting to Hive Server 2.

7. To enable the driver to return SQL_WVARCHAR instead of SQL_VARCHAR for STRING and VARCHAR columns, and SQL_WCHAR instead of SQL_CHAR for CHAR columns, select the **Unicode SQL Character Types** check box.

8. To enable the driver to return the hive_system table for catalog function calls such as SQLTables and SQLColumns, select the **Show System Table** check box.

9. To have the driver automatically attempt to reconnect to the server if communications are lost, select **Enable Auto Reconnect**.

10. To specify which mechanism the driver uses by default to handle Kerberos authentication, do one of the following:

 - To use the SSPI plugin by default, select the **Use Only SSPI** check box.
 - To use MIT Kerberos by default and only use the SSPI plugin if the GSSAPI library is not available, clear the **Use Only SSPI** check box.

11. To enable the driver to automatically open a new session when the existing session is no longer valid, select the **Invalid Session Auto Recover** check box.

 Note:

 This option is applicable only when connecting to Hive Server 2.

12. In the **Rows Fetched Per Block** field, type the number of rows to be fetched per block.
13. In the **Default String Column Length** field, type the maximum data length for STRING columns.
14. In the **Binary Column Length** field, type the maximum data length for BINARY columns.
15. In the **Decimal Column Scale** field, type the maximum number of digits to the right of the decimal point for numeric data types.
16. In the **Async Exec Poll Interval (ms)** field, type the time in milliseconds between each poll for the query execution status.

Note: This option is applicable only to HDInsight clusters.

17. In the **Socket Timeout** field, type the number of seconds that an operation can remain idle before it is closed.

Note: This option is applicable only when asynchronous query execution is being used against Hive Server 2 instances.

18. To save your settings and close the Advanced Options dialog box, click **OK**.

Configuring HTTP Options on Windows

You can configure options such as custom headers when using the HTTP transport protocol in the Thrift layer. For information about how to determine if your Hive server supports the HTTP transport protocol, see **Authentication Mechanisms** on page 61.

The following instructions describe how to configure HTTP options in a DSN and in the driver configuration tool. You can specify the connection settings described below in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

To configure HTTP options on Windows:

1. Choose one:
 - If you are configuring HTTP for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, and then make sure that the Thrift Transport option is set to **HTTP**.
 - Or, if you are configuring HTTP for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool and then make sure that the Thrift Transport option is set to **HTTP**.
2. To access HTTP options, click **HTTP Options**.

![Note:]

The HTTP options are available only when the Thrift Transport option is set to HTTP.

3. In the **HTTP Path** field, type the partial URL corresponding to the Hive server.
4. To create a custom HTTP header, click **Add**, then type appropriate values in the **Key** and **Value** fields, and then click **OK**.
5. To edit a custom HTTP header, select the header from the list, then click **Edit**, then update the **Key** and **Value** fields as needed, and then click **OK**.
6. To delete a custom HTTP header, select the header from the list, and then click **Remove**. In the confirmation dialog box, click **Yes**.
7. To save your settings and close the HTTP Options dialog box, click **OK**.

Configuring SSL Verification on Windows

If you are connecting to a Hive server that has Secure Sockets Layer (SSL) enabled, you can configure the driver to connect to an SSL-enabled socket. When using SSL to connect to a server, the driver supports identity verification between the client (the driver itself) and the server.

The following instructions describe how to configure SSL in a DSN and in the driver configuration tool. You can specify the connection settings described below in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

To configure SSL verification on Windows:

1. Choose one:
 - To access SSL options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, and then click **SSL Options**.
 - Or, to access advanced options for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool, and then click **SSL Options**.
2. Select the **Enable SSL** check box.
3. To allow self-signed certificates from the server, select the **Allow Self-signed Server Certificate** check box.
4. To allow the common name of a CA-issued SSL certificate to not match the host name of the Hive server, select the **Allow Common Name Host Name Mismatch** check box.

www.simba.com
5. To specify the CA certificates that you want to use to verify the server, do one of the following:
 - To verify the server using the trusted CA certificates from a specific .pem file, specify the full path to the file in the **Trusted Certificates** field and clear the **Use System Trust Store** check box.
 - Or, to use the trusted CA certificates .pem file that is installed with the driver, leave the **Trusted Certificates** field empty, and clear the **Use System Trust Store** check box.
 - Or, to use the Windows Trust Store, select the **Use System Trust Store** check box.

! Important:
- If you are using the Windows Trust Store, make sure to import the trusted CA certificates into the Trust Store.
- If the trusted CA supports certificate revocation, select the **Check Certificate Revocation** check box.

6. To configure two-way SSL verification, select the **Two Way SSL** check box and then do the following:
 a. In the **Client Certificate File** field, specify the full path of the PEM file containing the client's certificate.
 b. In the **Client Private Key File** field, specify the full path of the file containing the client's private key.
 c. If the private key file is protected with a password, type the password in the **Client Private Key Password** field. To save the password, select the **Save Password (Encrypted)** check box.

! Important:
The password is obscured, that is, not saved in plain text. However, it is still possible for the encrypted password to be copied and used.

7. To save your settings and close the SSL Options dialog box, click **OK**.

Configuring Server-Side Properties on Windows

You can use the driver to apply configuration properties to the Hive server.

The following instructions describe how to configure server-side properties in a DSN and in the driver configuration tool. You can specify the connection settings described below in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.
To configure server-side properties on Windows:

1. Choose one:
 - To configure server-side properties for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, then click **Advanced Options**, and then click **Server Side Properties**.
 - Or, to configure server-side properties for a DSN-less connection, open the Simba Hive ODBC Driver Configuration tool, then click **Advanced Options**, and then click **Server Side Properties**.

2. To create a server-side property, click **Add**, then type appropriate values in the **Key** and **Value** fields, and then click **OK**. For example, to set the value of the `mapreduce.job.queuename` property to `myQueue`, type `mapreduce.job.queuename` in the **Key** field and then type `myQueue` in the **Value** field.

 ![Note:
 For a list of all Hadoop and Hive server-side properties that your implementation supports, type `set -v` at the Hive CLI command line or Beeline. You can also execute the `set -v` query after connecting using the driver.](image)

3. To edit a server-side property, select the property from the list, then click **Edit**, then update the **Key** and **Value** fields as needed, and then click **OK**.

4. To delete a server-side property, select the property from the list, and then click **Remove**. In the confirmation dialog box, click **Yes**.

5. To change the method that the driver uses to apply server-side properties, do one of the following:
 - To configure the driver to apply each server-side property by executing a query when opening a session to the Hive server, select the **Apply Server Side Properties With Queries** check box.
 - Or, to configure the driver to use a more efficient method for applying server-side properties that does not involve additional network round-tripping, clear the **Apply Server Side Properties With Queries** check box.

 ![Note:
 The more efficient method is not available for Hive Server 1, and it might not be compatible with some Hive Server 2 builds. If the server-side properties do not take effect when the check box is clear, then select the check box.](image)

6. To configure the driver to convert server-side property key names to all lower-case characters, select the **Convert Key Name To Lower Case** check box.

7. To save your settings and close the Server Side Properties dialog box, click **OK**.
Configuring Logging Options on Windows

To help troubleshoot issues, you can enable logging. In addition to functionality provided in the Simba Hive ODBC Driver, the ODBC Data Source Administrator provides tracing functionality.

⚠ Important:

Only enable logging or tracing long enough to capture an issue. Logging or tracing decreases performance and can consume a large quantity of disk space.

The settings for logging apply to every connection that uses the Simba Hive ODBC Driver, so make sure to disable the feature after you are done using it.

To enable driver logging on Windows:

1. To access logging options, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click Logging Options.
2. From the Log Level drop-down list, select the logging level corresponding to the amount of information that you want to include in log files:

<table>
<thead>
<tr>
<th>Logging Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Disables all logging.</td>
</tr>
<tr>
<td>FATAL</td>
<td>Logs severe error events that lead the driver to abort.</td>
</tr>
<tr>
<td>ERROR</td>
<td>Logs error events that might allow the driver to continue running.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Logs events that might result in an error if action is not taken.</td>
</tr>
<tr>
<td>INFO</td>
<td>Logs general information that describes the progress of the driver.</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Logs detailed information that is useful for debugging the driver.</td>
</tr>
<tr>
<td>TRACE</td>
<td>Logs all driver activity.</td>
</tr>
</tbody>
</table>

3. In the Log Path field, specify the full path to the folder where you want to save log files.
4. If requested by Technical Support, type the name of the component for which to log messages in the Log Namespace field. Otherwise, do not type a value in the field.

5. In the Max Number Files field, type the maximum number of log files to keep.

Note:
After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

6. In the Max File Size field, type the maximum size of each log file in megabytes (MB).

Note:
After the maximum file size is reached, the driver creates a new file and continues logging.

7. Click OK.

8. Restart your ODBC application to make sure that the new settings take effect.

The Simba Hive ODBC Driver produces two log files at the location you specify in the Log Path field, where [DriverName] is the name of the driver:

- A [DriverName].log file that logs driver activity that is not specific to a connection.
- A [DriverName]_connection_[Number].log for each connection made to the database, where [Number] is a number that identifies each log file. This file logs driver activity that is specific to the connection.

If you enable the UseLogPrefix connection property, the driver prefixes the log file name with the user name associated with the connection and the process ID of the application through which the connection is made. For more information, see UseLogPrefix on page 100.

To disable driver logging on Windows:

1. Open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click Logging Options.
2. From the Log Level drop-down list, select LOG_OFF.
3. Click OK.
4. Restart your ODBC application to make sure that the new settings take effect.
Configuring Kerberos Authentication for Windows

Active Directory
The Simba Hive ODBC Driver supports Active Directory Kerberos on Windows. There are two prerequisites for using Active Directory Kerberos on Windows:

- MIT Kerberos is not installed on the client Windows machine.
- The MIT Kerberos Hadoop realm has been configured to trust the Active Directory realm so that users in the Active Directory realm can access services in the MIT Kerberos Hadoop realm.

MIT Kerberos

Downloading and Installing MIT Kerberos for Windows 4.0.1
For information about Kerberos and download links for the installer, see the MIT Kerberos website: http://web.mit.edu/kerberos/.

To download and install MIT Kerberos for Windows 4.0.1:
1. Download the appropriate Kerberos installer:
 - For a 64-bit machine, use the following download link from the MIT Kerberos website: http://web.mit.edu/kerberos/dist/kfw/4.0/kfw-4.0.1-amd64.msi.
 - For a 32-bit machine, use the following download link from the MIT Kerberos website: http://web.mit.edu/kerberos/dist/kfw/4.0/kfw-4.0.1-i386.msi.

 ![Note:](image)
 The 64-bit installer includes both 32-bit and 64-bit libraries. The 32-bit installer includes 32-bit libraries only.

2. To run the installer, double-click the .msi file that you downloaded above.
3. Follow the instructions in the installer to complete the installation process.
4. When the installation completes, click Finish.

Setting Up the Kerberos Configuration File
Settings for Kerberos are specified through a configuration file. You can set up the configuration file as an .ini file in the default location, which is the C:\ProgramData\MIT\Kerberos5 directory, or as a .conf file in a custom location.
Normally, the C:\ProgramData\MIT\Kerberos5 directory is hidden. For information about viewing and using this hidden directory, refer to Microsoft Windows documentation.

Note:
For more information on configuring Kerberos, refer to the MIT Kerberos documentation.

To set up the Kerberos configuration file in the default location:

1. Obtain a krb5.conf configuration file. You can obtain this file from your Kerberos administrator, or from the /etc/krb5.conf folder on the machine that is hosting the Hive Server 2 instance.
2. Rename the configuration file from krb5.conf to krb5.ini.
3. Copy the krb5.ini file to the C:\ProgramData\MIT\Kerberos5 directory and overwrite the empty sample file.

To set up the Kerberos configuration file in a custom location:

1. Obtain a krb5.conf configuration file. You can obtain this file from your Kerberos administrator, or from the /etc/krb5.conf folder on the machine that is hosting the Hive Server 2 instance.
2. Place the krb5.conf file in an accessible directory and make note of the full path name.
3. Open the System window:
 - If you are using Windows 7 or earlier, click Start 📌, then right-click Computer, and then click Properties.
 - Or, if you are using Windows 8 or later, right-click This PC on the Start screen, and then click Properties.
4. Click Advanced System Settings.
5. In the System Properties dialog box, click the Advanced tab and then click Environment Variables.
6. In the Environment Variables dialog box, under the System Variables list, click New.
7. In the New System Variable dialog box, in the Variable Name field, type KRB5_CONFIG.
8. In the Variable Value field, type the full path to the krb5.conf file.
9. Click OK to save the new variable.
10. Make sure that the variable is listed in the System Variables list.
11. Click OK to close the Environment Variables dialog box, and then click OK to close the System Properties dialog box.
Setting Up the Kerberos Credential Cache File

Kerberos uses a credential cache to store and manage credentials.

To set up the Kerberos credential cache file:

1. Create a directory where you want to save the Kerberos credential cache file. For example, create a directory named `C:\temp`.
2. Open the System window:
 - If you are using Windows 7 or earlier, click `Start`, then right-click `Computer`, and then click `Properties`.
 - Or, if you are using Windows 8 or later, right-click `This PC` on the Start screen, and then click `Properties`.
3. Click `Advanced System Settings`.
4. In the System Properties dialog box, click the `Advanced` tab and then click `Environment Variables`.
5. In the Environment Variables dialog box, under the System Variables list, click `New`.
6. In the New System Variable dialog box, in the `Variable Name` field, type `KRB5CCNAME`.
7. In the `Variable Value` field, type the path to the folder you created above, and then append the file name `krb5cache`. For example, if you created the folder `C:\temp`, then type `C:\temp\krb5cache`.

![Note:

krb5cache is a file (not a directory) that is managed by the Kerberos software, and it should not be created by the user. If you receive a permission error when you first use Kerberos, make sure that the krb5cache file does not already exist as a file or a directory.

8. Click `OK` to save the new variable.
9. Make sure that the variable appears in the System Variables list.
10. Click `OK` to close the Environment Variables dialog box, and then click `OK` to close the System Properties dialog box.
11. To make sure that Kerberos uses the new settings, restart your machine.

Obtaining a Ticket for a Kerberos Principal

A principal refers to a user or service that can authenticate to Kerberos. To authenticate to Kerberos, a principal must obtain a ticket by using a password or a keytab file. You can specify a keytab file to use, or use the default keytab file of your Kerberos configuration.
To obtain a ticket for a Kerberos principal using a password:

1. Open MIT Kerberos Ticket Manager.
2. In MIT Kerberos Ticket Manager, click Get Ticket.
3. In the Get Ticket dialog box, type your principal name and password, and then click OK.

 If the authentication succeeds, then your ticket information appears in MIT Kerberos Ticket Manager.

To obtain a ticket for a Kerberos principal using a keytab file:

1. Open a command prompt:
 - If you are using Windows 7 or earlier, click Start ☰, then click All Programs, then click Accessories, and then click Command Prompt.
 - If you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, then find the Windows System program group, and then click Command Prompt.
2. In the Command Prompt, type a command using the following syntax:

kinit -k -t [KeytabPath] [Principal]

 [KeytabPath] is the full path to the keytab file. For example: C:\mykeytabs\myUser.keytab.
 [Principal] is the Kerberos user principal to use for authentication. For example: myUser@EXAMPLE.COM.
3. If the cache location KRB5CCNAME is not set or used, then use the -c option of the kinit command to specify the location of the credential cache. In the command, the -c argument must appear last. For example:

kinit -k -t C:\mykeytabs\myUser.keytab myUser@EXAMPLE.COM -c C:\ProgramData\MIT\krbcache

 Krbcache is the Kerberos cache file, not a directory.

To obtain a ticket for a Kerberos principal using the default keytab file:

Note:

For information about configuring a default keytab file for your Kerberos configuration, refer to the MIT Kerberos documentation.

1. Open a command prompt:
 - If you are using Windows 7 or earlier, click Start ☰, then click All Programs, then click Accessories, and then click Command Prompt.
If you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, then find the Windows System program group, and then click **Command Prompt**.

2. In the Command Prompt, type a command using the following syntax:

```
kinit -k [principal]
```

[principal] is the Kerberos user principal to use for authentication. For example: MyUser@EXAMPLE.COM.

3. If the cache location KRB5CCNAME is not set or used, then use the `-c` option of the `kinit` command to specify the location of the credential cache. In the command, the `-c` argument must appear last. For example:

```
kinit -k -t C:\mykeytabs\myUser.keytab
myUser@EXAMPLE.COM -c C:\ProgramData\MIT\krbcache
```

Krbcache is the Kerberos cache file, not a directory.

Verifying the Driver Version Number on Windows

If you need to verify the version of the Simba Hive ODBC Driver that is installed on your Windows machine, you can find the version number in the ODBC Data Source Administrator.

To verify the driver version number on Windows:

1. Open the ODBC Administrator:
 - If you are using Windows 7 or earlier, click Start 🌎 > All Programs > Simba Hive ODBC Driver 2.1 > ODBC Administrator.
 - Or, if you are using Windows 8 or later, on the Start screen, type **ODBC administrator**, and then click the **ODBC Administrator** search result.

 Note:

 Make sure to select the ODBC Data Source Administrator that has the same bitness as the client application that you are using to connect to Hive.

2. Click the **Drivers** tab and then find the Simba Hive ODBC Driver in the list of ODBC drivers that are installed on your system. The version number is displayed in the **Version** column.
macOS System Requirements

The Simba Hive ODBC Driver supports Apache Hive versions 0.11 through 1.2.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- macOS version 10.9, 10.10, or 10.11
- 100 MB of available disk space
- iODBC 3.52.7 or later

Installing the Driver on macOS

The Simba Hive ODBC Driver is available for macOS as a .dmg file named SimbaHiveODBC.dmg. The driver supports both 32- and 64-bit client applications.

To install the Simba Hive ODBC Driver on macOS:

1. Double-click SimbaHiveODBC.dmg to mount the disk image.
2. Double-click SimbaHiveODBC.pkg to run the installer.
3. In the installer, click Continue.
4. On the Software License Agreement screen, click Continue, and when the prompt appears, click Agree if you agree to the terms of the License Agreement.
5. Optionally, to change the installation location, click Change Install Location, then select the desired location, and then click Continue.

Note:

By default, the driver files are installed in the /Library/simba/hive directory.

6. To accept the installation location and begin the installation, click Install.
7. When the installation completes, click Close.
8. If you received a license file through email, then copy the license file into the /lib subfolder in the driver installation directory. You must have root privileges when changing the contents of this folder.

For example, if you installed the driver to the default location, you would copy the license file into the /Library/simba/hive/lib folder.
Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see Configuring the ODBC Driver Manager on Non-Windows Machines on page 42.

Verifying the Driver Version Number on macOS

If you need to verify the version of the Simba Hive ODBC Driver that is installed on your macOS machine, you can query the version number through the Terminal.

To verify the driver version number on macOS:

1. At the Terminal, run the following command:

   ```bash
   pkgutil --info simba.hiveodbc
   
   ``"

The command returns information about the Simba Hive ODBC Driver that is installed on your machine, including the version number.
Linux Driver

For most Linux distributions, you can install the driver using the RPM file or the tarball package. If you are installing the driver on a Debian machine, you must use the Debian package.

Linux System Requirements

The Simba Hive ODBC Driver supports Apache Hive versions 0.11 through 1.2.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- One of the following distributions:
  - Red Hat® Enterprise Linux® (RHEL) 6 or 7
  - CentOS 6 or 7
  - SUSE Linux Enterprise Server (SLES) 11 or 12
  - Debian 6 or 7
  - Ubuntu 14.04
- 150 MB of available disk space
- One of the following ODBC driver managers installed:
  - iODBC 3.52.7 or later
  - unixODBC 2.2.14 or later
- All of the following libsasl libraries installed:
  - cyrus-sasl-2.1.22-7 or later
  - cyrus-sasl-gssapi-2.1.22-7 or later
  - cyrus-sasl-plain-2.1.22-7 or later

**Note:**

If the package manager in your Linux distribution cannot resolve the dependencies automatically when installing the driver, then download and manually install the packages.

To install the driver, you must have root access on the machine.

Installing the Driver Using the RPM File

On 64-bit editions of Linux, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit
drivers. Make sure to install and use the version of the driver that matches the bitness of the client application:

- `SimbaHiveODBC-32bit-[Version]-[Release].[LinuxDistro].i686.rpm` for the 32-bit driver
- `SimbaHiveODBC-[Version]-[Release].[LinuxDistro].x86_64.rpm` for the 64-bit driver

You can install both versions of the driver on the same machine.

The placeholders in the file names are defined as follows:

- `[Version]` is the version number of the driver.
- `[Release]` is the release number for this version of the driver.
- `[LinuxDistro]` is one of the following values indicating which Linux distribution the installer is optimized for:

<table>
<thead>
<tr>
<th>Value</th>
<th>Platform for Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>el5</td>
<td>CentOS 5</td>
</tr>
<tr>
<td></td>
<td>RHEL 5</td>
</tr>
<tr>
<td>el6</td>
<td>CentOS 6</td>
</tr>
<tr>
<td></td>
<td>RHEL 6</td>
</tr>
<tr>
<td>None</td>
<td>SLES 11 or 12</td>
</tr>
</tbody>
</table>

Make sure to install the driver using the RPM that is optimized for your Linux distribution. Otherwise, you may encounter errors when using the driver.

**To install the Simba Hive ODBC Driver using the RPM File:**

1. Log in as the root user, and then navigate to the folder containing the RPM package for the driver.
2. Depending on the Linux distribution that you are using, run one of the following commands from the command line, where `[RPMFileName]` is the file name of the RPM package:
   - If you are using Red Hat Enterprise Linux or CentOS, run the following command:
     ```
yum --nogpgcheck localinstall [RPMFileName]
     ```
   - Or, if you are using SUSE Linux Enterprise Server, run the following
command:

zypper install [RPMFileName]

The Simba Hive ODBC Driver files are installed in the /opt/simba/hive directory.

Note:
If the package manager in your Linux distribution cannot resolve the libsasl dependencies automatically when installing the driver, then download and manually install the packages.

3. If you received a license file through email, then copy the license file into the /opt/simba/hive/lib/32 or /opt/simba/hive/lib/64 folder, depending on the version of the driver that you installed. You must have root privileges when changing the contents of this folder.

Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see Configuring the ODBC Driver Manager on Non-Windows Machines on page 42.

Installing the Driver Using the Tarball Package

The Simba Hive ODBC Driver is available as a tarball package named SimbaHiveODBC-[Version].[Release]-Linux.tar.gz, where [Version] is the version number of the driver and [Release] is the release number for this version of the driver. The package contains both the 32-bit and 64-bit versions of the driver.

On 64-bit editions of Linux, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application. You can install both versions of the driver on the same machine.

To install the Simba Hive ODBC Driver using the tarball package:

1. Log in as the root user, and then navigate to the folder containing the tarball package.
2. Run the following command to extract the package and install the driver:

   ```
 tar --directory=/opt -zxvf [TarballName]
   ```

   Where [TarballName] is the name of the tarball package containing the driver.
The Simba Hive ODBC Driver files are installed in the `opt/simba/hive` directory.

3. If you received a license file through email, then copy the license file into the `opt/simba/hive/lib/32` or `opt/simba/hive/lib/64` folder, depending on the version of the driver that you installed. You must have root privileges when changing the contents of this folder.

Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see Configuring the ODBC Driver Manager on Non-Windows Machines on page 42.

**Installing the Driver on Debian**

To install the driver on a Debian machine, use the Debian package instead of the RPM file or tarball package.

On 64-bit editions of Debian, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application:

- `SimbaHiveODBC-32bit-[Version]-[Release]_i386.deb` for the 32-bit driver
- `SimbaHiveODBC-[Version]-[Release]_amd64.deb` for the 64-bit driver

`[Version]` is the version number of the driver, and `[Release]` is the release number for this version of the driver.

You can install both versions of the driver on the same machine.

**To install the Simba Hive ODBC Driver on Debian:**

1. Log in as the root user, and then navigate to the folder containing the Debian package for the driver.
3. Follow the instructions in the installer to complete the installation process.

The Simba Hive ODBC Driver files are installed in the `/opt/simba/hive` directory.
4. If you received a license file via email, then copy the license file into the 
/opt/simba/hive/lib/32 or /opt/simba/hiveodbc/lib/64 folder, 
depending on the version of the driver that you installed. You must have root 
privileges when changing the contents of this folder.

Next, configure the environment variables on your machine to make sure that the 
ODBC driver manager can work with the driver. For more information, see Configuring 
the ODBC Driver Manager on Non-Windows Machines on page 42.

Verifying the Driver Version Number on Linux

If you need to verify the version of the Simba Hive ODBC Driver that is installed on 
your Linux machine, you can query the version number through the command-line 
interface if the driver was installed using an RPM file or Debian package.

**To verify the driver version number on Linux:**

- Depending on your package manager, at the command prompt, run one of the 
  following commands:
  
  - `yum list | grep SimbaHiveODBC`
  - `rpm -qa | grep SimbaHiveODBC`
  - `dpkg -l | grep SimbaHiveODBC`

The command returns information about the Simba Hive ODBC Driver that is installed 
on your machine, including the version number.
AIX System Requirements

The Simba Hive ODBC Driver supports Apache Hive versions 0.11 through 1.2.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- IBM AIX 5.3, 6.1, or 7.1
- 150 MB of available disk space
- One of the following ODBC driver managers installed:
  - iODBC 3.52.7 or later
  - unixODBC 2.3.0 or later

To install the driver, you must have root access on the machine.

Installing the Driver on AIX

On 64-bit editions of AIX, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application:

- SimbaHiveODBC-32bit-[Version]-[Release].ppc.rpm for the 32-bit driver
- SimbaHiveODBC-[Version]-[Release].ppc.rpm for the 64-bit driver

[Version] is the version number of the driver, and [Release] is the release number for this version of the driver.

You can install both versions of the driver on the same machine.

To install the Simba Hive ODBC Driver on AIX:

1. Log in as the root user, and then navigate to the folder containing the RPM package for the driver.
2. Run the following command from the command line, where [RPMFileName] is the file name of the RPM package:

   ```shell
 rpm --install [RPMFileName]
   ```
The Simba Hive ODBC Driver files are installed in the /opt/simba/hive directory.

3. If you received a license file via email, then copy the license file into the /opt/simba/hive/lib/32 or /opt/simba/hive/lib/64 folder, depending on the version of the driver that you installed. You must have root privileges when changing the contents of this folder.

Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see Configuring the ODBC Driver Manager on Non-Windows Machines on page 42.

**Verifying the Driver Version Number on AIX**

If you need to verify the version of the Simba Hive ODBC Driver that is installed on your AIX machine, you can query the version number through the command-line interface.

**To verify the driver version number on AIX:**

> At the command prompt, run the following command:

```
rpm -qa | grep SimbaHiveODBC
```

The command returns information about the Simba Hive ODBC Driver that is installed on your machine, including the version number.
Solaris System Requirements

The Simba Hive ODBC Driver supports Apache Hive versions 0.11 through 1.2.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- Solaris 10 or later (sparc and sparc64 editions are supported)
- 150 MB of available disk space
- One of the following ODBC driver managers installed:
  - iODBC 3.52.7 or later
  - unixODBC 2.3.0 or later

To install the driver, you must have root access on the machine.

Installing the Driver on Solaris

The Simba Hive ODBC Driver is available for Solaris as a tarball package named Simba Hive ODBC Driver_Solaris-_gcc_[Version].[Release]_Solaris.tar.gz, where [Version] is the version number of the driver and [Release] is the release number for this version of the driver. The package contains both the 32-bit and 64-bit versions of the driver.

On sparc64 editions of Solaris, you can execute both sparc and sparc64 applications. However, sparc64 applications must use 64-bit drivers, and sparc applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application. You can install both versions of the driver on the same machine.

To install the Simba Hive ODBC Driver on Solaris:

1. Log in as the root user, and then navigate to the folder containing the tarball package.
2. Run the following command to extract the package and install the driver:

   ```
 tar --directory=/opt -zxvf [TarballName]
   ```

   Where [TarballName] is the name of the tarball package containing the driver.
The Simba Hive ODBC Driver files are installed in the /opt/simba/hive directory.

3. If you received a license file via email, then copy the license file into the /opt/simba/hive/lib/32 or /opt/simba/hive/lib/64 folder, depending on the version of the driver that you installed. You must have root privileges when changing the contents of this folder.

Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see Configuring the ODBC Driver Manager on Non-Windows Machines on page 42.

**Verifying the Driver Version Number on Solaris**

If you need to verify the version of the Simba Hive ODBC Driver that is installed on your Solaris machine, you can query the version number through the command-line interface.

**To verify the driver version number on Solaris:**

> At the command prompt, run the following command:

```
rpm -qa | grep SimbaHiveODBC
```

The command returns information about the Simba Hive ODBC Driver that is installed on your machine, including the version number.
Configuring the ODBC Driver Manager on Non-Windows Machines

To make sure that the ODBC driver manager on your machine is configured to work with the Simba Hive ODBC Driver, do the following:

- Set the library path environment variable to make sure that your machine uses the correct ODBC driver manager. For more information, see Specifying ODBC Driver Managers on Non-Windows Machines on page 42.
- If the driver configuration files are not stored in the default locations expected by the ODBC driver manager, then set environment variables to make sure that the driver manager locates and uses those files. For more information, see Specifying the Locations of the Driver Configuration Files on page 43.

After configuring the ODBC driver manager, you can configure a connection and access your data store through the driver. For more information, see Configuring ODBC Connections on a Non-Windows Machine on page 45.

Specifying ODBC Driver Managers on Non-Windows Machines

You need to make sure that your machine uses the correct ODBC driver manager to load the driver. To do this, set the library path environment variable.

**macOS**

If you are using a macOS machine, then set the DYLD_LIBRARY_PATH environment variable to include the paths to the ODBC driver manager libraries. For example, if the libraries are installed in /usr/local/lib, then run the following command to set DYLD_LIBRARY_PATH for the current user session:

```
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/usr/local/lib
```

For information about setting an environment variable permanently, refer to the macOS shell documentation.

**Linux or AIX**

If you are using a Linux or AIX machine, then set the LD_LIBRARY_PATH environment variable to include the paths to the ODBC driver manager libraries. For example, if the libraries are installed in /usr/local/lib, then run the following command to set LD_LIBRARY_PATH for the current user session:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

For information about setting an environment variable permanently, refer to the Linux or AIX shell documentation.

**Solaris**

If you are using a Solaris machine, then set the LD_LIBRARY_PATH environment variable to include the paths to the ODBC driver manager libraries and the third-party libraries that are installed with the driver. For example, if the driver manager libraries are installed in /usr/local/lib and the 32-bit driver is installed in /opt/simba/hive, then run the following command to set LD_LIBRARY_PATH for the current user session:

```
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib:/opt/simba/hive/lib/32
```

For information about setting an environment variable permanently, refer to the Solaris shell documentation.

**Specifying the Locations of the Driver Configuration Files**

By default, ODBC driver managers are configured to use hidden versions of the odbc.ini and odbcinst.ini configuration files (named .odbc.ini and .odbcinst.ini) located in the home directory, as well as the simba.hiveodbc.ini file in the lib subfolder of the driver installation directory. If you store these configuration files elsewhere, then you must set the environment variables described below so that the driver manager can locate the files.

If you are using iODBC, do the following:

- Set ODBCINI to the full path and file name of the odbc.ini file.
- Set ODBCINSTINI to the full path and file name of the odbcinst.ini file.
- Set SIMBAHIVEINI to the full path and file name of the simba.hiveodbc.ini file.

If you are using unixODBC, do the following:

- Set ODBCINI to the full path and file name of the odbc.ini file.
- Set ODBCXSYSINI to the full path of the directory that contains the odbcinst.ini file.
Set SIMBAHIVEINI to the full path and file name of the simba.hiveodbc.ini file.

For example, if your odbc.ini and odbcinst.ini files are located in /usr/local/odbc and your simba.hiveodbc.ini file is located in /etc, then set the environment variables as follows:

For iODBC:

```
export ODBCINI=/usr/local/odbc/odbc.ini
export ODBCINSTINI=/usr/local/odbc/odbcinst.ini
export SIMBAHIVEINI=/etc/simba.hiveodbc.ini
```

For unixODBC:

```
export ODBCINI=/usr/local/odbc/odbc.ini
export ODBCINSTINI=/usr/local/odbc
export SIMBAHIVEINI=/etc/simba.hiveodbc.ini
```

To locate the simba.hiveodbc.ini file, the driver uses the following search order:

1. If the SIMBAHIVEINI environment variable is defined, then the driver searches for the file specified by the environment variable.
2. The driver searches the directory that contains the driver library files for a file named simba.hiveodbc.ini.
3. The driver searches the current working directory of the application for a file named simba.hiveodbc.ini.
4. The driver searches the home directory for a hidden file named .simba.hiveodbc.ini (prefixed with a period).
5. The driver searches the /etc directory for a file named simba.hiveodbc.ini.
Configuring ODBC Connections on a Non-Windows Machine

The following sections describe how to configure ODBC connections when using the Simba Hive ODBC Driver on non-Windows platforms:

- Creating a Data Source Name on a Non-Windows Machine on page 45
- Configuring a DSN-less Connection on a Non-Windows Machine on page 48
- Configuring Service Discovery Mode on a Non-Windows Machine on page 50
- Configuring Authentication on a Non-Windows Machine on page 51
- Configuring SSL Verification on a Non-Windows Machine on page 54
- Configuring Server-Side Properties on a Non-Windows Machine on page 55
- Configuring Logging Options on a Non-Windows Machine on page 56
- Setting Driver-Wide Configuration Options on a Non-Windows Machine on page 58
- Testing the Connection on a Non-Windows Machine on page 59

Creating a Data Source Name on a Non-Windows Machine

Typically, after installing the Simba Hive ODBC Driver, you need to create a Data Source Name (DSN). A DSN is a data structure that stores connection information so that it can be used by the driver to connect to Hive.

You can specify connection settings in a DSN (in the odbc.ini file), in a connection string, or as driver-wide settings (in the simba.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

The following instructions describe how to create a DSN by specifying connection settings in the odbc.ini file. If your machine is already configured to use an existing odbc.ini file, then update that file by adding the settings described below. Otherwise, copy the odbc.ini file from the Setup subfolder in the driver installation directory to the home directory, and then update the file as described below.

For information about specifying settings in a connection string, see Configuring a DSN-less Connection on a Non-Windows Machine on page 48 and Using a Connection String on page 63. For information about driver-wide settings, see Setting Driver-Wide Configuration Options on a Non-Windows Machine on page 58.
To create a Data Source Name on a non-Windows machine:

1. In a text editor, open the `odbc.ini` configuration file.

   **Note:** If you are using a hidden copy of the `odbc.ini` file, you can remove the period (.) from the start of the file name to make the file visible while you are editing it.

2. In the `[ODBC Data Sources]` section, add a new entry by typing a name for the DSN, an equal sign (=), and then the name of the driver.

   For example, on a macOS machine:
   
   ```
 [ODBC Data Sources]
 Sample DSN=Simba Hive ODBC Driver
   ```
   
   As another example, for a 32-bit driver on a Linux/AIX/Solaris/Debian machine:
   
   ```
 [ODBC Data Sources]
 Sample DSN=Simba Hive ODBC Driver 32-bit
   ```

3. Create a section that has the same name as your DSN, and then specify configuration options as key-value pairs in the section:

   a. Set the `Driver` property to the full path of the driver library file that matches the bitness of the application.

      For example, on a macOS machine:
      
      ```
 Driver=/Library/simba/hive/lib/libhiveodbc_sbu.dylib
      ```
      
      As another example, for a 32-bit driver on a Linux/AIX/Solaris/Debian machine:
      
      ```
 Driver=/opt/simba/hive/lib/32/libhiveodbc_sb32.so
      ```

   b. Set the `HiveServerType` property to one of the following values:

      - If you are running Shark 0.8.1 or earlier, set the property to 1.
      - If you are running Shark 0.9,Hive 1.1 or later, then set the property to 3.

      For example:
      
      ```
 HiveServerType=1
      ```

   c. Do one of the following:
To connect directly to the Hive server, set the Host property to the IP address or host name of the server, and then set the Port property to the number of the TCP port that the server uses to listen for client connections.

For example:

```
Host=192.168.222.160
Port=10000
```

Or, to discover Hive Server 2 services through the ZooKeeper service, enable Service Discovery Mode and specify the connection information of the ZooKeeper ensemble. For more information, see Configuring Service Discovery Mode on a Non-Windows Machine on page 50.

d. If authentication is required to access the server, then specify the authentication mechanism and your credentials. For more information, see Configuring Authentication on a Non-Windows Machine on page 51.

e. If you want to connect to the server through SSL, then enable SSL and specify the certificate information. For more information, see Configuring SSL Verification on a Non-Windows Machine on page 54.

f. If you want to configure server-side properties, then set them as key-value pairs using a special syntax. For more information, see Configuring Server-Side Properties on a Non-Windows Machine on page 55.

g. Optionally, set additional key-value pairs as needed to specify other optional connection settings. For detailed information about all the configuration options supported by the Simba Hive ODBC Driver, see Driver Configuration Options on page 73.

4. Save the odbc.ini configuration file.

⚠️ Note:

If you are storing this file in its default location in the home directory, then prefix the file name with a period (.) so that the file becomes hidden. If you are storing this file in another location, then save it as a non-hidden file (without the prefix), and make sure that the ODBCINI environment variable specifies the location. For more information, see Specifying the Locations of the Driver Configuration Files on page 43.

For example, the following is an odbc.ini configuration file for macOS containing a DSN that connects to a Hive Thrift Server instance and authenticates the connection using a user name and password:

```
[ODBC Data Sources]
Sample DSN=Simba Hive ODBC Driver
```
As another example, the following is an odbc.ini configuration file for a 32-bit driver on a Linux/AIX/Solaris/Debian machine, containing a DSN that connects to a Hive Server instance directly:

```
[ODBC Data Sources]
Sample DSN=Simba Hive ODBC Driver 32-bit
[Sample DSN]
Driver=/opt/simba/hive/lib/32/libhiveodbc_sb32.so
HiveServerType=2
Host=192.168.222.160
Port=10000
```

You can now use the DSN in an application to connect to the data store.

**Configuring a DSN-less Connection on a Non-Windows Machine**

To connect to your data store through a DSN-less connection, you need to define the driver in the odbcinst.ini file and then provide a DSN-less connection string in your application.

If your machine is already configured to use an existing odbcinst.ini file, then update that file by adding the settings described below. Otherwise, copy the odbcinst.ini file from the Setup subfolder in the driver installation directory to the home directory, and then update the file as described below.

**To define a driver on a non-Windows machine:**

1. In a text editor, open the odbcinst.ini configuration file.

   📝 **Note:**

   If you are using a hidden copy of the odbcinst.ini file, you can remove the period (.) from the start of the file name to make the file visible while you are editing it.

2. In the [ODBC Drivers] section, add a new entry by typing a name for the driver, an equal sign (=), and then Installed.
For example:

```
[ODBC Drivers]
Simba Hive ODBC Driver=Installed
```

3. Create a section that has the same name as the driver (as specified in the previous step), and then specify the following configuration options as key-value pairs in the section:

a. Set the `Driver` property to the full path of the driver library file that matches the bitness of the application.

   For example, on a macOS machine:

   ```
 Driver=/Library/simba/hive/lib/libhiveodbc_sbu.dylib
   ```

   As another example, for a 32-bit driver on a Linux/AIX/Solaris/Debian machine:

   ```
 Driver=/opt/simba/hive/lib/32/libhiveodbc_sb32.so
   ```

b. Optionally, set the `Description` property to a description of the driver.

   For example:

   ```
 Description=Simba Hive ODBC Driver
   ```

4. Save the `odbcinst.ini` configuration file.

**Note:**

If you are storing this file in its default location in the home directory, then prefix the file name with a period (.) so that the file becomes hidden. If you are storing this file in another location, then save it as a non-hidden file (without the prefix), and make sure that the ODBCINSTINI or ODBC SYSINI environment variable specifies the location. For more information, see Specifying the Locations of the Driver Configuration Files on page 43.

For example, the following is an `odbcinst.ini` configuration file for macOS:

```
[ODBC Drivers]
Simba Hive ODBC Driver=Installed
[Simba Hive ODBC Driver]
Description=Simba Hive ODBC Driver
Driver=/Library/simba/hive/lib/libhiveodbc_sbu.dylib
```

As another example, the following is an `odbcinst.ini` configuration file for both the 32- and 64-bit drivers on Linux/AIX/Solaris/Debian:
You can now connect to your data store by providing your application with a connection string where the Driver property is set to the driver name specified in the odbcinst.ini file, and all the other necessary connection properties are also set. For more information, see "DSN-less Connection String Examples" in Using a Connection String on page 63.

For instructions about configuring specific connection features, see the following:

- Configuring Service Discovery Mode on a Non-Windows Machine on page 50
- Configuring Authentication on a Non-Windows Machine on page 51
- Configuring SSL Verification on a Non-Windows Machine on page 54
- Configuring Server-Side Properties on a Non-Windows Machine on page 55

For detailed information about all the connection properties that the driver supports, see Driver Configuration Options on page 73.

### Configuring Service Discovery Mode on a Non-Windows Machine

You can configure the Simba Hive ODBC Driver to discover Hive Server 2 services through ZooKeeper.

You can set the connection properties described below in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the simba.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

**To enable Service Discovery Mode on a non-Windows machine:**

1. Set the ServiceDiscoveryMode connection attribute to 1.
2. Set the ZKNamespace connection attribute to specify the namespace on ZooKeeper under which Hive Server 2 znodes are added.
3. Set the Host connection attribute to specify the ZooKeeper ensemble as a comma-separated list of ZooKeeper servers. For example, type the following, where [ZK_Host] is the IP address or host name of the ZooKeeper server and [ZK_Port] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

\[\text{[ZK_Host1]}:[\text{ZK_Port1}},\text{[ZK_Host2]}:[\text{ZK_Port2}]\]

**Important:** When ServiceDiscoveryMode is set to 1, connections to Hive Server 1 are not supported and the Port connection attribute is not applicable.

### Configuring Authentication on a Non-Windows Machine

Some Hive Server 2 instances are configured to require authentication for access. To connect to a Hive server, you must configure the Simba Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials.

For information about how to determine the type of authentication your Hive server requires, see Authentication Mechanisms on page 61.

You can set the connection properties for authentication in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the simba.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

Depending on the authentication mechanism you use, there might be additional connection attributes that you must define. For more information about the attributes involved in configuring authentication, see Driver Configuration Options on page 73.

### Using No Authentication

When connecting to a Hive server of type Hive Server 1, you must use No Authentication. When you use No Authentication, Binary is the only Thrift transport protocol that is supported.
To configure a connection without authentication:

1. Set the AuthMech connection attribute to 0.
2. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see Configuring SSL Verification on a Non-Windows Machine on page 54.

Using Kerberos

Kerberos must be installed and configured before you can use this authentication mechanism. For more information, refer to the MIT Kerberos Documentation: http://web.mit.edu/kerberos/krb5-latest/doc/.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. When you use Kerberos authentication, the Binary transport protocol is not supported.

To configure Kerberos authentication:

1. Set the AuthMech connection attribute to 1.
2. Choose one:
   - To use the default realm defined in your Kerberos setup, do not set the KrbRealm attribute.
   - Or, if your Kerberos setup does not define a default realm or if the realm of your Hive server is not the default, then set the appropriate realm using the KrbRealm attribute.
3. Set the KrbHostFQDN attribute to the fully qualified domain name of the Hive Server 2 host.
4. Set the KrbServiceName attribute to the service name of the Hive.
5. To allow the driver to pass your credentials directly to the server for use in authentication, set DelegateKrbCreds to 1.
6. Set the ThriftTransport connection attribute to the transport protocol to use in the Thrift layer.

Note:

To use the Hive server host name as the fully qualified domain name for Kerberos authentication, set KrbHostFQDN to _HOST.

Important:

When using this authentication mechanism, Binary (ThriftTransport=0) is not supported.
7. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see Configuring SSL Verification on a Non-Windows Machine on page 54.

**Using User Name**

This authentication mechanism requires a user name but does not require a password. The user name labels the session, facilitating database tracking.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. Most default configurations of Hive Server 2 require User Name authentication. When you use User Name authentication, SSL is not supported and SASL is the only Thrift transport protocol available.

**To configure User Name authentication:**

1. Set the `AuthMech` connection attribute to 2.
2. Set the `UID` attribute to an appropriate user name for accessing the Hive server.

**Using User Name And Password**

This authentication mechanism requires a user name and a password.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions.

**To configure User Name And Password authentication:**

1. Set the `AuthMech` connection attribute to 3.
2. Set the `UID` attribute to an appropriate user name for accessing the Hive server.
3. Set the `PWD` attribute to the password corresponding to the user name you provided above.
4. Set the `ThriftTransport` connection attribute to the transport protocol to use in the Thrift layer.
5. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see Configuring SSL Verification on a Non-Windows Machine on page 54.

**Using Windows Azure HDInsight Service**

This authentication mechanism is available only for Hive Server 2 on HDInsight distributions. When you use this authentication mechanism, you must enable SSL, and HTTP is the only Thrift transport protocol available.
To configure a connection to a Hive server on Windows Azure HDInsight Service:

1. Set the `AuthMech` connection attribute to 6.
2. Set the `HTTPPath` attribute to the partial URL corresponding to the Hive server.
3. Set the `UID` attribute to an appropriate user name for accessing the Hive server.
4. Set the `PWD` attribute to the password corresponding to the user name you typed above.
5. If necessary, you can create custom HTTP headers. For more information, see http.header on page 99.
6. Configure SSL settings as needed. For more information, see Configuring SSL Verification on a Non-Windows Machine on page 54.

Configuring SSL Verification on a Non-Windows Machine

If you are connecting to a Hive server that has Secure Sockets Layer (SSL) enabled, you can configure the driver to connect to an SSL-enabled socket. When using SSL to connect to a server, the driver supports identity verification between the client (the driver itself) and the server.

You can set the connection properties described below in a connection string, in a DSN (in the `odbc.ini` file), or as a driver-wide setting (in the `simba.hiveodbc.ini` file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

To configure SSL verification on a non-Windows machine:

1. To enable SSL connections, set the `SSL` attribute to 1.
2. To allow self-signed certificates from the server, set the `AllowSelfSignedServerCert` attribute to 1.
3. To allow the common name of a CA-issued SSL certificate to not match the host name of the Hive server, set the `AllowHostNameCNMismatch` attribute to 1.
4. Choose one:
   - To configure the driver to load SSL certificates from a specific .pem file when verifying the server, set the `TrustedCerts` attribute to the full path of the .pem file.
   - Or, to use the trusted CA certificates .pem file that is installed with the driver, do not specify a value for the `TrustedCerts` attribute.
5. To configure two-way SSL verification, set the `TwoWaySSL` attribute to 1 and then do the following:
a. Set the ClientCert attribute to the full path of the .pem file containing the client's certificate.

b. Set the ClientPrivateKey attribute to the full path of the file containing the client's private key.

c. If the private key file is protected with a password, set the ClientPrivateKeyPassword attribute to the password.

Configuring Server-Side Properties on a Non-Windows Machine

You can use the driver to apply configuration properties to the Hive server.

You can set the connection properties described below in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the simba.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

To configure server-side properties on a non-Windows machine:

1. To set a server-side property, use the syntax SSP_[SSPKey]=[SSPValue], where [SSPKey] is the name of the server-side property and [SSPValue] is the value to specify for that property. For example, to set the mapreduce.job.queuename property to myQueue, type the following:

   ```
 SSP_mapreduce.job.queuename=myQueue
   ```

   Note:
   - When setting a server-side property in a connection string, it is recommended that you enclose the value in braces ({ }) to make sure that special characters can be properly escaped.
   - For a list of all Hadoop and Hive server-side properties that your implementation supports, type `set -v` at the Hive CLI command line or Beeline. You can also execute the `set -v` query after connecting using the driver.

2. To change the method that the driver uses to apply server-side properties, do one of the following:

   - To configure the driver to apply each server-side property by executing a query when opening a session to the Hive server, set the ApplySSPWithQueries property to 1.
- Or, to configure the driver to use a more efficient method for applying server-side properties that does not involve additional network round-tripping, set the `ApplySSPWithQueries` property to 0.

**Note:**
The more efficient method is not available for Hive Server 1, and it might not be compatible with some Hive Server builds. If the server-side properties do not take effect when the `ApplySSPWithQueries` property is set to 0, then set it to 1.

3. To disable the driver's default behavior of converting server-side property key names to all lower-case characters, set the `LCaseSspKeyName` property to 0.

## Configuring Logging Options on a Non-Windows Machine

To help troubleshoot issues, you can enable logging in the driver.

**Important:**
Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.

Logging is configured through driver-wide settings in the `simba.hiveodbc.ini` file, which apply to all connections that use the driver.

**To enable logging on a non-Windows machine:**

1. Open the `simba.hiveodbc.ini` configuration file in a text editor.
2. To specify the level of information to include in log files, set the `LogLevel` property to one of the following numbers:

<table>
<thead>
<tr>
<th>LogLevel Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disables all logging.</td>
</tr>
<tr>
<td>1</td>
<td>Logs severe error events that lead the driver to abort.</td>
</tr>
<tr>
<td>2</td>
<td>Logs error events that might allow the driver to continue running.</td>
</tr>
</tbody>
</table>

---

www.simba.com
<table>
<thead>
<tr>
<th>LogLevel Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Logs events that might result in an error if action is not taken.</td>
</tr>
<tr>
<td>4</td>
<td>Logs general information that describes the progress of the driver.</td>
</tr>
<tr>
<td>5</td>
<td>Logs detailed information that is useful for debugging the driver.</td>
</tr>
<tr>
<td>6</td>
<td>Logs all driver activity.</td>
</tr>
</tbody>
</table>

3. Set the LogPath key to the full path to the folder where you want to save log files.

4. Set theLogFileCount key to the maximum number of log files to keep.

† Note:

After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

5. Set theLogFileSize key to the maximum size of each log file in megabytes (MB).

† Note:

After the maximum file size is reached, the driver creates a new file and continues logging.

6. Optionally, to prefix the log file name with the user name and process ID associated with the connection, set the UseLogPrefix property to 1.

7. Save the simba.hiveodbc.ini configuration file.

8. Restart your ODBC application to make sure that the new settings take effect.

The Simba Hive ODBC Driver produces two log files at the location you specify using the LogPath key, where [DriverName] is the name of the driver:

- A [DriverName].log file that logs driver activity that is not specific to a connection.
- A [DriverName]_connection_[Number].log for each connection made to the database, where [Number] is a number that identifies each log file. This file logs driver activity that is specific to the connection.

If you set the UseLogPrefix property to 1, then each file name is prefixed with [UserName]_[ProcessID]_, where [UserName] is the user name associated with
the connection and 
\[ \text{ProcessID} \] is the process ID of the application through which the connection is made.

**To disable logging on a non-Windows machine:**

1. Open the simba.hiveodbc.ini configuration file in a text editor.
2. Set the LogLevel key to 0.
3. Save the simba.hiveodbc.ini configuration file.
4. Restart your ODBC application to make sure that the new settings take effect.

**Setting Driver-Wide Configuration Options on a Non-Windows Machine**

When you specify connection settings in a DSN or connection string, those settings apply only when you connect to Hive using that particular DSN or string. As an alternative, you can specify settings that apply to every connection that uses the Simba Hive ODBC Driver by configuring them in the simba.hiveodbc.ini file.

> **Note:**

Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

**To set driver-wide configuration options on a non-Windows machine:**

1. In a text editor, open the simba.hiveodbc.ini configuration file.
2. In the [Driver] section, specify configuration options as key-value pairs. Start a new line for each key-value pair.

   For example, to enable User Name authentication using "simba" as the user name, type the following:

   ```
 AuthMech=2
 UID=simba
   ```

   For detailed information about all the configuration options supported by the driver, see Driver Configuration Options on page 73.
3. Save the simba.hiveodbc.ini configuration file.
Testing the Connection on a Non-Windows Machine

To test the connection, you can use an ODBC-enabled client application. For a basic connection test, you can also use the test utilities that are packaged with your driver manager installation. For example, the iODBC driver manager includes simple utilities called iodbctest and iodbctestw. Similarly, the unixODBC driver manager includes simple utilities called isql and iusql.

Using the iODBC Driver Manager

You can use the iodbctest and iodbctestw utilities to establish a test connection with your driver. Use iodbctest to test how your driver works with an ANSI application, or use iodbctestw to test how your driver works with a Unicode application.

Nota:

There are 32-bit and 64-bit installations of the iODBC driver manager available. If you have only one or the other installed, then the appropriate version of iodbctest (or iodbctestw) is available. However, if you have both 32- and 64-bit versions installed, then you need to make sure that you are running the version from the correct installation directory.

For more information about using the iODBC driver manager, see http://www.iodbc.org.

To test your connection using the iODBC driver manager:

1. Run iodbctest or iodbctestw.
2. Optionally, if you do not remember the DSN, then type a question mark (?) to see a list of available DSNs.
3. Type the connection string for connecting to your data store, and then press ENTER. For more information, see .

If the connection is successful, then the SQL> prompt appears.

Using the unixODBC Driver Manager

You can use the isql and iusql utilities to establish a test connection with your driver and your DSN. isql and iusql can only be used to test connections that use a DSN. Use isql to test how your driver works with an ANSI application, or use iusql to test how your driver works with a Unicode application.
Note:

There are 32-bit and 64-bit installations of the unixODBC driver manager available. If you have only one or the other installed, then the appropriate version of isql (or iusql) is available. However, if you have both 32- and 64-bit versions installed, then you need to make sure that you are running the version from the correct installation directory.

For more information about using the unixODBC driver manager, see http://www.unixodbc.org.

To test your connection using the unixODBC driver manager:

- Run isql or iusql by using the corresponding syntax:
  - isql [DataSourceName]
  - iusql [DataSourceName]

  [DataSourceName] is the DSN that you are using for the connection.

If the connection is successful, then the SQL> prompt appears.

Note:

For information about the available options, run isql or iusql without providing a DSN.
Authentication Mechanisms

To connect to a Hive server, you must configure the Simba Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials. To determine the authentication settings that your Hive server requires, check the server configuration and then refer to the corresponding section below.

**Hive Server 1**

You must use No Authentication as the authentication mechanism. Hive Server 1 instances do not support authentication.

**Hive Server 2 on an HDInsight Distribution**

If you are connecting to HDInsight Service running on Windows Azure, then you must use the Windows Azure HDInsight Service mechanism.

**Hive Server 2 on a non-HDInsight Distribution**

*Note:*

Most default configurations of Hive Server 2 on non-HDInsight distributions require User Name authentication.

Configuring authentication for a connection to a Hive Server 2 instance on a non-HDInsight Distribution involves setting the authentication mechanism, the Thrift transport protocol, and SSL support. To determine the settings that you need to use, check the following three properties in the `hive-site.xml` file in the Hive server that you are connecting to:

- `hive.server2.authentication`
- `hive.server2.transport.mode`
- `hive.server2.use.SSL`

Use the following table to determine the authentication mechanism that you need to configure, based on the `hive.server2.authentication` value in the `hive-site.xml` file:
Use the following table to determine the Thrift transport protocol that you need to configure, based on the `hive.server2.authentication` and `hive.server2.transport.mode` values in the `hive-site.xml` file:

<table>
<thead>
<tr>
<th><code>hive.server2.authentication</code></th>
<th><code>hive.server2.transport.mode</code></th>
<th>Thrift Transport Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOSASL</td>
<td>binary</td>
<td>Binary</td>
</tr>
<tr>
<td>KERBEROS</td>
<td>binary or http</td>
<td>SASL or HTTP</td>
</tr>
<tr>
<td>NONE</td>
<td>binary or http</td>
<td>SASL or HTTP</td>
</tr>
<tr>
<td>LDAP</td>
<td>binary or http</td>
<td>SASL or HTTP</td>
</tr>
</tbody>
</table>

To determine whether SSL should be enabled or disabled for your connection, check the `hive.server2.use.SSL` value in the `hive-site.xml` file. If the value is true, then you must enable and configure SSL in your connection. If the value is false, then you must disable SSL in your connection.

For detailed instructions on how to configure authentication when using the Windows driver, see Configuring Authentication on Windows on page 14.

For detailed instructions on how to configure authentication when using a non-Windows driver, see Configuring Authentication on a Non-Windows Machine on page 51.
Using a Connection String

For some applications, you might need to use a connection string to connect to your data source. For detailed information about how to use a connection string in an ODBC application, refer to the documentation for the application that you are using.

The connection strings in the following sections are examples showing the minimum set of connection attributes that you must specify to successfully connect to the data source. Depending on the configuration of the data source and the type of connection you are working with, you might need to specify additional connection attributes. For detailed information about all the attributes that you can use in the connection string, see Driver Configuration Options on page 73.

DSN Connection String Example

The following is an example of a connection string for a connection that uses a DSN:

```
DSN=[DataSourceName]
```

`[DataSourceName]` is the DSN that you are using for the connection.

You can set additional configuration options by appending key-value pairs to the connection string. Configuration options that are passed in using a connection string take precedence over configuration options that are set in the DSN.

DSN-less Connection String Examples

Some applications provide support for connecting to a data source using a driver without a DSN. To connect to a data source without using a DSN, use a connection string instead.

The placeholders in the examples are defined as follows, in alphabetical order:

- `[DomainName]` is the fully qualified domain name of the Hive server host.
- `[Namespace]` is the namespace on ZooKeeper under which Hive Server 2 znodes are added.
- `[PortNumber]` is the number of the TCP port that the Hive server uses to listen for client connections.
- `[Realm]` is the Kerberos realm of the Hive server host.
- `[Server]` is the IP address or host name of the Hive server to which you are connecting.
- `[ServerURL]` is the partial URL corresponding to the Hive server.
- *[ServiceName]* is the Kerberos service principal name of the Hive server.
- *[YourPassword]* is the password corresponding to your user name.
- *[YourUserName]* is the user name that you use to access the Hive server.

**Connecting to a Hive Server 1 Instance**

The following is the format of a DSN-less connection string that connects to a Hive Server 1 instance:

```
Driver=Simba Hive ODBC Driver;HiveServerType=1;
Host=[Server];Port=[PortNumber];
```

For example:

```
Driver=Simba Hive ODBC Driver;HiveServerType=1;
Host=192.168.222.160;Port=10000;
```

**Connecting to a Standard Hive Server 2 Instance**

The following is the format of a DSN-less connection string for a standard connection to a Hive Server 2 instance. By default, the driver is configured to connect to a Hive Server 2 instance that requires User Name authentication, and the driver uses **anonymous** as the user name.

```
Driver=Simba Hive ODBC Driver;Host=[Server];
Port=[PortNumber];
```

For example:

```
Driver=Simba Hive ODBC Driver;Host=192.168.222.160;
Port=10000;
```

**Connecting using Dynamic Service Discovery**

The following is the format of a DSN-less connection string that discovers Hive Server 2 services via the ZooKeeper service.

```
Driver=Simba Hive ODBC Driver;ServiceDiscoveryMode=1;
Host=[Server1]:[PortNumber1], [Server2]:[PortNumber2],
[Server3]:[PortNumber3];ZKNamespace=[Namespace];
```

For example:

```
Driver=Simba Hive ODBC Driver;ServiceDiscoveryMode=1;
Host=192.168.222.160:10000, 192.168.222.165:10000,
```
Connecting to a Hive Server 2 Instance Without Authentication

The following is the format of a DSN-less connection string that for a Hive Server 2 instance that does not require authentication.

Driver=Simba Hive ODBC Driver;Host=[Server];Port=[PortNumber];AuthMech=0;

For example:

Driver=Simba Hive ODBC Driver;Host=192.168.222.160;Port=10000;AuthMech=0;

Connecting to a Hive Server that Requires Kerberos Authentication

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance requiring Kerberos authentication:

Driver=Simba Hive ODBC Driver;Host=[Server];Port=[PortNumber];AuthMech=1;KrbRealm=[Realm];KrbHostFQDN=[DomainName];KrbServiceName=[ServiceName];

For example:

Driver=Simba Hive ODBC Driver;Host=192.168.222.160;Port=10000;AuthMech=1;KrbRealm=SIMBA;KrbHostFQDN=localhost.localdomain;KrbServiceName=hive;

Connecting to a Hive Server that Requires User Name And Password Authentication (LDAP)

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance requiring User Name And Password authentication:

Driver=Simba Hive ODBC Driver;Host=[Server];Port=[PortNumber];AuthMech=3;UID=[YourUserName];PWD=[YourPassword];

For example:

Driver=Simba Hive ODBC Driver;Host=192.168.222.160;Port=10000;AuthMech=3;UID=simba;PWD=simba;
Connecting to a Hive Server on Windows Azure HDInsight Service

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance running on Windows Azure HDInsight Service:

Driver=Simba Hive ODBC Driver;Host=[Server];
Port=[PortNumber];AuthMech=6;SSL=1;UID=[YourUserName];
PWD=[YourPassword];HTTPPath=[ServerURL];

For example:

Driver=Simba Hive ODBC Driver;Host=192.168.222.160;
Port=10000;AuthMech=6;SSL=1;UID=simba;PWD=simba;
HTTPPath=gateway/sandbox/hive;
Features

For more information on the features of the Simba Hive ODBC Driver, see the following:

- SQL Connector for HiveQL on page 67
- Data Types on page 68
- Catalog and Schema Support on page 69
- hive_system Table on page 69
- Server-Side Properties on page 70
- Get Tables With Query on page 70
- Active Directory on page 70
- Write-back on page 71
- Dynamic Service Discovery using ZooKeeper on page 71
- Security and Authentication on page 71

SQL Connector for HiveQL

The native query language supported by Hive is HiveQL. For simple queries, HiveQL is a subset of SQL-92. However, the syntax is different enough that most applications do not work with native HiveQL.

To bridge the difference between SQL and HiveQL, the SQL Connector feature translates standard SQL-92 queries into equivalent HiveQL queries. The SQL Connector performs syntactical translations and structural transformations. For example:

- **Quoted Identifiers**: The double quotes ("") that SQL uses to quote identifiers are translated into back quotes (\`) to match HiveQL syntax. The SQL Connector needs to handle this translation because even when a driver reports the back quote as the quote character, some applications still generate double-quoted identifiers.

- **Table Aliases**: Support is provided for the AS keyword between a table reference and its alias, which HiveQL normally does not support.

- **JOIN, INNER JOIN, and CROSS JOIN**: SQL JOIN, INNER JOIN, and CROSS JOIN syntax is translated to HiveQL JOIN syntax.

- **TOP N/LIMIT**: SQL TOP N queries are transformed to HiveQL LIMIT queries.
Data Types

The Simba Hive ODBC Driver supports many common data formats, converting between Hive data types and SQL data types.

The following table lists the supported data type mappings.

<table>
<thead>
<tr>
<th>Hive Type</th>
<th>SQL Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIGINT</td>
<td>SQL_BIGINT</td>
</tr>
<tr>
<td>BINARY</td>
<td>SQL_VARBINARY</td>
</tr>
<tr>
<td>BOOLEAN</td>
<td>SQL_BIT</td>
</tr>
<tr>
<td>CHAR(n)</td>
<td>SQL_CHAR</td>
</tr>
<tr>
<td>DATE</td>
<td>SQL_TYPE_DATE</td>
</tr>
<tr>
<td>DECIMAL</td>
<td>SQL_DECIMAL</td>
</tr>
<tr>
<td>DECIMAL(p,s)</td>
<td>SQL_DECIMAL</td>
</tr>
<tr>
<td>DOUBLE</td>
<td>SQL_DOUBLE</td>
</tr>
<tr>
<td>FLOAT</td>
<td>SQL_REAL</td>
</tr>
<tr>
<td>INT</td>
<td>SQL_INTEGER</td>
</tr>
<tr>
<td>SMALLINT</td>
<td>SQL_SMALLINT</td>
</tr>
</tbody>
</table>

Note: SQL_WCHAR is returned instead if the Unicode SQL Character Types configuration option (the `UseUnicodeSqlCharacterTypes` key) is enabled.
<table>
<thead>
<tr>
<th>Hive Type</th>
<th>SQL Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRING</td>
<td>SQL_VARCHAR</td>
</tr>
</tbody>
</table>

**Note:**

SQL_WVARCHAR is returned instead if the Unicode SQL Character Types configuration option (the UseUnicodeSqlCharacterTypes key) is enabled.

<table>
<thead>
<tr>
<th>Hive Type</th>
<th>SQL Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMESTAMP</td>
<td>SQL_TYPE_TIMESTAMP</td>
</tr>
<tr>
<td>TINYINT</td>
<td>SQL_TINYINT</td>
</tr>
<tr>
<td>VARCHAR(n)</td>
<td>SQL_VARCHAR</td>
</tr>
</tbody>
</table>

**Note:**

The aggregate types (ARRAY, MAP, and STRUCT) are not supported. Columns of aggregate types are treated as STRING columns.

The interval types (YEAR TO MONTH and DAY TIME) are supported only in query expressions and predicates. Interval types are not supported as column data types in tables.

**Catalog and Schema Support**

The Simba Hive ODBC Driver supports both catalogs and schemas to make it easy for the driver to work with various ODBC applications. Since Hive only organizes tables into schemas/databases, the driver provides a synthetic catalog named HIVE under which all of the schemas/databases are organized. The driver also maps the ODBC schema to the Hive schema/database.

**hive_system Table**

A pseudo-table called hive_system can be used to query for Hive cluster system environment information. The pseudo-table is under the pseudo-schema called hive_system. The table has two STRING type columns, envkey and envvalue. Standard SQL can be executed against the hive_system table. For example:

```
SELECT * FROM HIVE.hive_system.hive_system WHERE envkey LIKE '%hive%'
```
The above query returns all of the Hive system environment entries whose key contains the word "hive". A special query, `set -v`, is executed to fetch system environment information. Some versions of Hive do not support this query. For versions of Hive that do not support querying system environment information, the driver returns an empty result set.

**Server-Side Properties**

The Simba Hive ODBC Driver allows you to set server-side properties via a DSN. Server-side properties specified in a DSN affect only the connection that is established using the DSN.

You can also specify server-side properties for connections that do not use a DSN. To do this, use the Simba Hive ODBC Driver Configuration tool that is installed with the Windows version of the driver, or set the appropriate configuration options in your connection string or the `simba.hiveodbc.ini` file. Properties specified in the driver configuration tool or the `simba.hiveodbc.ini` file apply to all connections that use the Simba Hive ODBC Driver.

For more information about setting server-side properties when using the Windows driver, see Configuring Server-Side Properties on Windows on page 22. For information about setting server-side properties when using the driver on a non-Windows platform, see Configuring Server-Side Properties on a Non-Windows Machine on page 55.

**Get Tables With Query**

The Get Tables With Query configuration option allows you to choose whether to use the SHOW TABLES query or the GetTables API call to retrieve table names from a database.

Hive Server 2 has a limit on the number of tables that can be in a database when handling the GetTables API call. When the number of tables in a database is above the limit, the API call will return a stack overflow error or a timeout error. The exact limit and the error that appears depends on the JVM settings.

As a workaround for this issue, enable the Get Tables with Query configuration option or the `GetTablesWithQuery` key to use the query instead of the API call.

**Active Directory**

The Simba Hive ODBC Driver supports Active Directory Kerberos on Windows. There are two prerequisites for using Active Directory Kerberos on Windows:
- MIT Kerberos is not installed on the client Windows machine.
- The MIT Kerberos Hadoop realm has been configured to trust the Active Directory realm so that users in the Active Directory realm can access services in the MIT Kerberos Hadoop realm.

**Write-back**

The Simba Hive ODBC Driver supports translation for the following syntax when connecting to a Hive Server 2 instance that is running Hive 0.14 or later:

- INSERT
- UPDATE
- DELETE
- CREATE
- DROP

If the statement contains non-standard SQL-92 syntax, then the driver is unable to translate the statement to SQL and instead falls back to using HiveQL.

**Dynamic Service Discovery using ZooKeeper**

The Simba Hive ODBC Driver can be configured to discover Hive Server 2 services via the ZooKeeper service.

For information about configuring this feature in the Windows driver, see Creating a Data Source Name on Windows on page 9 or Configuring a DSN-less Connection on Windows on page 12. For information about configuring this feature when using the driver on a non-Windows platform, see Configuring Service Discovery Mode on a Non-Windows Machine on page 50.

**Security and Authentication**

To protect data from unauthorized access, some Hive data stores require connections to be authenticated with user credentials or the SSL protocol. The Simba Hive ODBC Driver provides full support for these authentication protocols.

---

**Note:**

In this documentation, "SSL" refers to both TLS (Transport Layer Security) and SSL (Secure Sockets Layer). The driver supports TLS 1.0, 1.1, and 1.2. The SSL version used for the connection is the highest version that is supported by both the driver and the server.
The driver provides mechanisms that enable you to authenticate your connection using the Kerberos protocol, your Hive user name only, or your Hive user name and password. You can also authenticate a connection to an HDInsight distribution on Windows Azure. You must use the authentication mechanism that matches the security requirements of the Hive server. For information about determining the appropriate authentication mechanism to use based on the Hive server configuration, see Authentication Mechanisms on page 61. For detailed driver configuration instructions, see Configuring Authentication on Windows on page 14 or Configuring Authentication on a Non-Windows Machine on page 51.

Additionally, the driver supports the following types of SSL connections:

- No identity verification
- One-way authentication
- Two-way authentication

It is recommended that you enable SSL whenever you connect to a server that is configured to support it. SSL encryption protects data and credentials when they are transferred over the network, and provides stronger security than authentication alone. For detailed configuration instructions, see Configuring SSL Verification on Windows on page 21 or Configuring SSL Verification on a Non-Windows Machine on page 54.
Driver Configuration Options

Driver Configuration Options lists the configuration options available in the Simba Hive ODBC Driver alphabetically by field or button label. Options having only key names, that is, not appearing in the user interface of the driver, are listed alphabetically by key name.

When creating or configuring a connection from a Windows machine, the fields and buttons are available in the Simba Hive ODBC Driver Configuration tool and the following dialog boxes:

- Simba Hive ODBC Driver DSN Setup
- Advanced Options
- Server Side Properties
- SSL Options
- HTTP Properties

When using a connection string or configuring a connection from a Linux/macOS/AIX/Solaris machine, use the key names provided.

Note:

If you are using the driver on a non-Windows machine, you can set driver configuration properties in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the simba.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

Configuration Options Appearing in the User Interface

The following configuration options are accessible via the Windows user interface for the Simba Hive ODBC Driver, or via the key name when using a connection string or configuring a connection from a Linux/macOS/AIX/Solaris/Debian machine:

- Allow Common Name Host Name Mismatch on page 75
- Allow Self-Signed Server Certificate on page 75
- Apply Properties with Queries on
- Max File Size on page 86
- Max Number Files on page 87
- Mechanism on page 87
- Password on page 88
- Port on page 88
- Async Exec Poll Interval on page 76
- Binary Column Length on page 77
- Client Certificate File on page 77
- Client Private Key File on page 77
- Client Private Key Password on page 78
- Convert Key Name to Lower Case on page 78
- Database on page 78
- Decimal Column Scale on page 79
- Default String Column Length on page 79
- Delegate Kerberos Credentials on page 79
- Delegation UID on page 80
- Driver Config Take Precedence on page 80
- Enable Auto Reconnect on page 81
- Enable SSL on page 81
- Fast SQLPrepare on page 81
- Get Tables With Query on page 82
- Hive Server Type on page 82
- Host(s) on page 83
- Host FQDN on page 83
- HTTP Path on page 84
- Invalid Session Auto Recover on page 84
- Log Level on page 85
- Log Path on page 86
- Realm on page 88
- Rows Fetched Per Block on page 89
- Save Password (Encrypted) on page 89
- Service Discovery Mode on page 90
- Service Name on page 90
- Show System Table on page 90
- Socket Timeout on page 91
- Thrift Transport on page 91
- Trusted Certificates on page 92
- Two Way SSL on page 92
- Unicode SQL Character Types on page 93
- Use Async Exec on page 93
- Use Native Query on page 94
- Use Only SSPI on page 94
- UseSystem Trust Store on page 95
- User Name on page 96
- ZooKeeper Namespace on page 96
Allow Common Name Host Name Mismatch

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllowHostNameCNMismatch</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
This option specifies whether a CA-issued SSL certificate name must match the host name of the Hive server.

⚠️ Note:
The key for this option used to be CAIssuedCertNamesMismatch, and will still be recognized by the driver under that key. If both keys are defined, AllowHostNameCNMismatch will take precedence.

- Enabled (1): The driver allows a CA-issued SSL certificate name to not match the host name of the Hive server.
- Disabled (0): The CA-issued SSL certificate name must match the host name of the Hive server.

⚠️ Note:
This setting is applicable only when SSL is enabled.

Allow Self-Signed Server Certificate

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllowSelfSignedServerCert</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
This option specifies whether the driver allows self-signed certificates from the server.

- Enabled (1): The driver authenticates the Hive server even if the server is using a self-signed certificate.
- Disabled (0): The driver does not allow self-signed certificates from the server.
Apply Properties with Queries

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApplySSPWithQueries</td>
<td>Selected (1)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies how the driver applies server-side properties.

- **Enabled (1):** The driver applies each server-side property by executing a `set SSPKey=SSPValue` query when opening a session to the Hive server.
- **Disabled (0):** The driver uses a more efficient method for applying server-side properties that does not involve additional network round-tripping. However, some Hive Server 2 builds are not compatible with the more efficient method.

>Note:

When connecting to a Hive Server 1 instance, this option is always enabled.

Async Exec Poll Interval

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsyncExecPollInterval</td>
<td>100</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The time in milliseconds between each poll for the query execution status.

"Asynchronous execution" refers to the fact that the RPC call used to execute a query against Hive is asynchronous. It does not mean that ODBC asynchronous operations are supported.

>Note:

This option is applicable only to HDInsight clusters.
Binary Column Length

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>BinaryColumnLength</td>
<td>32767</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
The maximum data length for BINARY columns.
By default, the columns metadata for Hive does not specify a maximum data length for BINARY columns.

Client Certificate File

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientCert</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
The full path to the .pem file containing the client's SSL certificate.

Note:
This setting is applicable only when two-way SSL is enabled.

Client Private Key File

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientPrivateKey</td>
<td>None</td>
<td>Yes, if two-way SSL verification is enabled.</td>
</tr>
</tbody>
</table>

Description
The full path to the .pem file containing the client's SSL private key.
If the private key file is protected with a password, then provide the password using the driver configuration option Client Private Key Password on page 78.
Note:
This setting is applicable only when two-way SSL is enabled.

Client Private Key Password

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientPrivateKeyPassword</td>
<td>None</td>
<td>Yes, if two-way SSL verification is enabled and the client's private key file is protected with a password.</td>
</tr>
</tbody>
</table>

Description
The password of the private key file that is specified in the Client Private Key File field (ClientPrivateKey).

Convert Key Name to Lower Case

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCaseSspKeyName</td>
<td>Selected (1)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
This option specifies whether the driver converts server-side property key names to all lower-case characters.

- Enabled (1): The driver converts server-side property key names to all lower-case characters.
- Disabled (0): The driver does not modify the server-side property key names.

Database

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema</td>
<td>default</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

The name of the database schema to use when a schema is not explicitly specified in a query. You can still issue queries on other schemas by explicitly specifying the schema in the query.

📝 Note:
To inspect your databases and determine the appropriate schema to use, at the Hive command prompt, type `show databases`.

### Decimal Column Scale

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DecimalColumnScale</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The maximum number of digits to the right of the decimal point for numeric data types.

### Default String Column Length

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default StringColumnLength</td>
<td>255</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The maximum number of characters that can be contained in STRING columns.

By default, the columns metadata for Hive does not specify a maximum length for STRING columns.

### Delegate Kerberos Credentials

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DelegateKrbCreds</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

This option specifies whether your Kerberos credentials are forwarded to the server and used for authentication.

📝 Note:
This option is only applicable when Authentication Mechanism is set to Kerberos (AuthMech=1).

Delegation UID

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DelegationUID</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

If a value is specified for this setting, the driver delegates all operations against Hive to the specified user, rather than to the authenticated user for the connection.

📝 Note:
This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

Driver Config Take Precedence

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DriverConfigTakePrecedence</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether driver-wide configuration settings take precedence over connection and DSN settings.

- Enabled (1): Driver-wide configurations take precedence over connection and DSN settings.
- Disabled (0): Connection and DSN settings take precedence instead.
Enable Auto Reconnect

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoReconnect</td>
<td>Selected (1)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver attempts to automatically reconnect to the server when a communication link error occurs.

- **Enabled (1):** The driver attempts to reconnect.
- **Disabled (0):** The driver does not attempt to reconnect.

Enable SSL

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the client uses an SSL encrypted connection to communicate with the Hive server.

- **Enabled (1):** The client communicates with the Hive server using SSL.
- **Disabled (0):** SSL is disabled.

SSL is configured independently of authentication. When authentication and SSL are both enabled, the driver performs the specified authentication method over an SSL connection.

**Note:**

This option is applicable only when connecting to a Hive server that supports SSL.

Fast SQLPrepare

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastSQLPrepare</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

This option specifies whether the driver defers query execution to SQLExecute.

- **Enabled (1)**: The driver defers query execution to SQLExecute.
- **Disabled (0)**: The driver does not defer query execution to SQLExecute.

⚠️ **Note:**
When using Native Query mode, the driver executes the HiveQL query to retrieve the result set metadata for SQLPrepare. As a result, SQLPrepare might be slow. If the result set metadata is not required after calling SQLPrepare, then enable Fast SQLPrepare.

Get Tables With Query

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetTablesWithQuery</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver uses the SHOW TABLES query or the GetTables Thrift API call to retrieve table names from the database.

- **Enabled (1)**: The driver uses the SHOW TABLES query to retrieve table names.
- **Disabled (0)**: The driver uses the GetTables Thrift API call to retrieve table names.

⚠️ **Note:**
This option is applicable only when connecting to a Hive Server 2 instance.

Hive Server Type

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiveServerType</td>
<td>Hive Server 2 (2)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies the type of Hive server.
**Note:**
The Shark Server 2 option is provided only for backwards compatibility with previous applications. If the driver will connect to Shark 0.9, or Spark 1.1 or later, then set Hive Thrift Server (3).

- Hive Server 1 (1): The driver connects to a Hive Server 1 instance.
- Hive Server 2 (2): The driver connects to a Hive Server 2 instance.

**Note:**
If Service Discovery Mode is enabled, then connections to Hive Server 1 are not supported.

### Host(s)

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>None</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Description**

If Service Discovery Mode is disabled, specify the IP address or host name of the Hive server.

If Service Discovery Mode is enabled, specify a comma-separated list of ZooKeeper servers in the following format, where [ZK_Host] is the IP address or host name of the ZooKeeper server and [ZK_Port] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

```
[ZK_Host1]:[ZK_Port1],[ZK_Host2]:[ZK_Port2]
```

### Host FQDN

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>KrbHostFQDN</td>
<td>_HOST</td>
<td>Yes, if the authentication mechanism is Kerberos.</td>
</tr>
</tbody>
</table>

**Description**
The fully qualified domain name of the Hive Server 2 host.
When the value of Host FQDN is _HOST, the driver uses the Hive server host name as the fully qualified domain name for Kerberos authentication. If Service Discovery Mode is disabled, then the driver uses the value specified in the Host connection attribute. If Service Discovery Mode is enabled, then the driver uses the Hive Server 2 host name returned by ZooKeeper.

**HTTP Path**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPPath</td>
<td>/hive2 if using Windows Azure HDInsight Service (6). / if using non-Windows Azure HDInsight Service with Thrift Transport set to HTTP (2).</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The partial URL corresponding to the Hive server.

The driver forms the HTTP address to connect to by appending the HTTP Path value to the host and port specified in the DSN or connection string. For example, to connect to the HTTP address `http://localhost:10002/gateway/sandbox/hive/version`, you would set HTTP Path to `/gateway/sandbox/hive/version`.

**Note:**

By default, Hive servers use `cliservice` as the partial URL.

**Invalid Session Auto Recover**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>InvalidSessionAutoRecover</td>
<td>Selected (1)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the driver automatically opens a new session when the existing session is no longer valid.
• Enabled (1): The driver automatically opens a new session when the existing session is no longer valid.
• Disabled (0): The driver does not automatically open new sessions.

Note:
This option is applicable only when connecting to Hive Server 2.

Log Level

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogLevel</td>
<td>OFF (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
Use this property to enable or disable logging in the driver and to specify the amount of detail included in log files.

Important:
- Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.
- This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the simba.hiveodbc.ini file.

Set the property to one of the following values:
- OFF (0): Disable all logging.
- FATAL (1): Logs severe error events that lead the driver to abort.
- ERROR (2): Logs error events that might allow the driver to continue running.
- WARNING (3): Logs events that might result in an error if action is not taken.
- INFO (4): Logs general information that describes the progress of the driver.
- DEBUG (5): Logs detailed information that is useful for debugging the driver.
- TRACE (6): Logs all driver activity.

When logging is enabled, the driver produces two log files at the location you specify in the Log Path (LogPath) property, where [DriverName] is the name of the driver:
- A [DriverName].log file that logs driver activity that is not specific to a connection.
A \[DriverName\]_connection_[Number].log for each connection made to the database, where [Number] is a number that identifies each log file. This file logs driver activity that is specific to the connection.

**Log Path**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogPath</td>
<td>None</td>
<td>Yes, if logging is enabled.</td>
</tr>
</tbody>
</table>

**Description**

The full path to the folder where the driver saves log files when logging is enabled.

\[Important:\]

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the simba.hiveodbc.ini file.

**Max File Size**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogFileSize</td>
<td>20</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The maximum size of each log file in megabytes (MB). After the maximum file size is reached, the driver creates a new file and continues logging.

\[Important:\]

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the simba.hiveodbc.ini file.
Max Number Files

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogFileCount</td>
<td>50</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The maximum number of log files to keep. After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

Important:

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the `simba.hiveodbc.ini` file.

Mechanism

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthMech</td>
<td>No Authentication (0) if you are connecting to Hive Server 1. User Name (2) if you are connecting to Hive Server 2.</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The authentication mechanism to use.

Select one of the following settings, or set the key to the corresponding number:

- No Authentication (0)
- Kerberos (1)
- User Name (2)
- User Name And Password (3)
- Windows Azure HDInsight Service (6)
Password

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWD</td>
<td>None</td>
<td>Yes, if the authentication mechanism is User Name And Password (3) or Windows Azure HDInsight Service (6).</td>
</tr>
</tbody>
</table>

Description

The password corresponding to the user name that you provided in the User Name field (the UID key).

Port

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
</table>
| Port | • non-HDInsight clusters: 10000  
      • Windows Azure HDInsight Service: 443 | Yes, if Service Discovery Mode is disabled. |

Description

The TCP port that the Hive server uses to listen for client connections.

Realm

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>KrbRealm</td>
<td>Depends on your Kerberos configuration.</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The realm of the Hive Server 2 host.
If your Kerberos configuration already defines the realm of the Hive Server 2 host as the default realm, then you do not need to configure this option.

**Rows Fetched Per Block**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>RowsFetchedPerBlock</td>
<td>10000</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The maximum number of rows that a query returns at a time.

Valid values for this setting include any positive 32-bit integer. However, testing has shown that performance gains are marginal beyond the default value of 10000 rows.

**Save Password (Encrypted)**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Selected</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the password is saved in the registry.

- **Enabled**: The password is saved in the registry.
- **Disabled**: The password is not saved in the registry.

This option is available only in the Windows driver. It appears in the Simba Hive ODBC Driver DSN Setup dialog box and the SSL Options dialog box.

**Important:**

The password is obscured (not saved in plain text). However, it is still possible for the encrypted password to be copied and used.
Service Discovery Mode

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServiceDiscoveryMode</td>
<td>No Service Discovery(0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver uses the ZooKeeper service.

- Enabled (1): The driver discovers Hive Server 2 services via the ZooKeeper service.
- Disabled (0): The driver connects to Hive without using the ZooKeeper service.

Service Name

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>KrbServiceName</td>
<td>None</td>
<td>Yes, if the authentication mechanism is Kerberos.</td>
</tr>
</tbody>
</table>

Description

The Kerberos service principal name of the Hive server.

Show System Table

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShowSystemTable</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver returns the hive_system table for catalog function calls such as SQLTables and SQLColumns.

- Enabled (1): The driver returns the hive_system table for catalog function calls such as SQLTables and SQLColumns.
- Disabled (0): The driver does not return the hive_system table for catalog function calls.
Socket Timeout

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>SocketTimeout</td>
<td>60</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The number of seconds that an operation can remain idle before it is closed.

>Note:

This option is applicable only when asynchronous query execution is being used against Hive Server 2 instances.

Thrift Transport

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThriftTransport</td>
<td>Binary (0) if you are connecting to Hive Server 1. SASL (1) if you are connecting to Hive Server 2.</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The transport protocol to use in the Thrift layer.

Select one of the following settings, or set the key to the number corresponding to the desired setting:

- Binary (0)
- SASL (1)
- HTTP (2)

>Note:

For information about how to determine which Thrift transport protocols your Hive server supports, see Authentication Mechanisms on page 61.
Trusted Certificates

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TrustedCerts</td>
<td>The <code>cacerts.pem</code> file in the <code>\lib</code> subfolder within the driver's installation directory. The exact file path varies depending on the version of the driver that is installed. For example, the path for the Windows driver is different from the path for the macOS driver.</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The full path of the `.pem` file containing trusted CA certificates, for verifying the server when using SSL.

If this option is not set, then the driver defaults to using the trusted CA certificates `.pem` file installed by the driver.

⚠️ Important:

If you are connecting from a Windows machine and the Use System Trust Store option is enabled, then the driver uses the certificates from the Windows system trust store instead of your specified `.pem` file. For more information, see UseSystem Trust Store on page 95.

Two Way SSL

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwoWaySSL</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether two-way SSL is enabled.
- **Enabled (1):** The client and the Hive server verify each other using SSL. See also the driver configuration options [Client Certificate File](#) on page 77, [Client Private Key File](#) on page 77, and [Client Private Key Password](#) on page 78.
- **Disabled (0):** The server does not verify the client. Depending on whether one-way SSL is enabled, the client might verify the server. For more information, see [Enable SSL](#) on page 81.

**Note:**
This option is applicable only when connecting to a Hive server that supports SSL. You must enable SSL before Two Way SSL can be configured. For more information, see [Enable SSL](#) on page 81.

### Unicode SQL Character Types

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseUnicodeSqlCharacterTypes</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies the SQL types to be returned for string data types.

- **Enabled (1):** The driver returns SQL_WVARCHAR for STRING and VARCHAR columns, and returns SQL_WCHAR for CHAR columns.
- **Disabled (0):** The driver returns SQL_VARCHAR for STRING and VARCHAR columns, and returns SQL_CHAR for CHAR columns.
- **Enabled (1):** The driver returns SQL_WVARCHAR for ARRAY, MAP, STRING, STRUCT, and VARCHAR columns.
- **Disabled (0):** The driver returns SQL_VARCHAR for ARRAY, MAP, STRING, STRUCT, and VARCHAR columns.

### Use Async Exec

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnableAsyncExec</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether to execute queries synchronously or asynchronously.
- Enabled (1): The driver uses an asynchronous version of the API call against Hive for executing a query.
- Disabled (0): The driver executes queries synchronously.

Due to a problem in Hive 0.12.0 (see https://issues.apache.org/jira/browse/HIVE-5230), Hive returns generic error messages for errors that occur during query execution. To see the actual error message relevant to the problem, turn off asynchronous query execution and execute the query again.

**Note:**
This option only takes effect when connecting to a Hive cluster running Hive 0.12.0 or higher.

### Use Native Query

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseNativeQuery</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the driver uses native HiveQL queries, or converts them into an equivalent form in HiveQL.

- Enabled (1): The driver does not transform the queries emitted by an application, and executes HiveQL queries directly.
- Disabled (0): The driver transforms the queries emitted by an application and converts them into an equivalent form in HiveQL.

**Note:**
If the application is Hive-aware and already emits HiveQL, then enable this option to avoid the extra overhead of query transformation.

### Use Only SSPI

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseOnlySSPI</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

This option specifies how the driver handles Kerberos authentication: either with the SSPI plugin or with MIT Kerberos.

- **Enabled (1):** The driver handles Kerberos authentication by using the SSPI plugin instead of MIT Kerberos by default.
- **Disabled (0):** The driver uses MIT Kerberos to handle Kerberos authentication, and only uses the SSPI plugin if the GSSAPI library is not available.

⚠️ Important:
This option is available only in the Windows driver.

UseSystem Trust Store

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseSystemTrustStore</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether to use a CA certificate from the system trust store, or from a specified PEM file.

- **Enabled (1):** The driver verifies the connection using a certificate in the system trust store.
- **Disabled (0):** The driver verifies the connection using a specified PEM file.

✏️ Note:
This option is only available on Windows.
User Name

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>For User Name (2) authentication only, the default value is anonymous</td>
<td>Yes, if the authentication mechanism is User Name And Password (3) or Windows Azure HDInsight Service (6). No, if the authentication mechanism is User Name (2).</td>
</tr>
</tbody>
</table>

Description
The user name that you use to access Hive Server 2.

ZooKeeper Namespace

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZKNamespace</td>
<td>None</td>
<td>Yes, if Service Discovery Mode is enabled.</td>
</tr>
</tbody>
</table>

Description
The namespace on ZooKeeper under which Hive Server 2 znodes are added.

Configuration Options Having Only Key Names

The following configuration options do not appear in the Windows user interface for the Simba Hive ODBC Driver. They are accessible only when you use a connection string or configure a connection from a Linux/macOS/AIX/Solaris machine:

- ADUserNameCase on page 97
- DelegationUserIdCase on page 97
- Driver on page 98
- ForceSynchronousExec on page 98
- http.header. on page 99
- SSP on page 99
- UseLogPrefix on page 100

### ADUserNameCase

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADUserNameCase</td>
<td>Unchanged</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option controls whether the driver changes the user name part of an AD Kerberos UPN to all upper-case or all lower-case. The following values are supported:

- **Upper**: Change the user name to all upper-case.
- **Lower**: Change the user name to all lower-case.
- **Unchanged**: Do not modify the user name.

**Note:**

This option is applicable only when using Active Directory Kerberos from a Windows client machine to authenticate.

### DelegationUserIDCase

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DelegationUserIDCase</td>
<td>Unchanged</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the driver changes the Delegation UID (or `DelegationUID`) value to all upper-case or all lower-case. The following values are supported:

- **Upper**: Change the delegated user name to all upper-case.
- **Lower**: Change the delegated user name to all lower-case.
- **Unchanged**: Do not modify the delegated user name.

For more information about delegating a user name, see Delegation UID on page 80.
Driver

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>Simba Hive ODBC Driver when installed on Windows, or the absolute path of the driver shared object file when installed on a non-Windows machine.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Description

On Windows, the name of the installed driver (Simba Hive ODBC Driver).

On other platforms, the name of the installed driver as specified in odbcinst.ini, or the absolute path of the driver shared object file.

ForceSynchronousExec

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForceSynchronousExec</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

When this option is enabled (1), the driver is forced to execute queries synchronously when connected to an HDInsight cluster.

When this option is disabled (0), the driver is able to execute queries asynchronously when connected to an HDInsight cluster.

⚠️ Note:

This option is applicable only to HDInsight clusters.
http.header.

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>http.header</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

Set a custom HTTP header by using the following syntax, where `[HeaderKey]` is the name of the header to set and `[HeaderValue]` is the value to assign to the header:

```
http.header.[HeaderKey]=[HeaderValue]
```

For example:

```
http.header.AUTHENTICATED_USER=john
```

After the driver applies the header, the `http.header.` prefix is removed from the DSN entry, leaving an entry of `[HeaderKey]=[HeaderValue]`

The example above would create the following custom HTTP header:

```
AUTHENTICATED_USER: john
```

**Note:**

The `http.header.` prefix is case-sensitive. This option is applicable only when you are using HTTP as the Thrift transport protocol. For more information, see Thrift Transport on page 91.

SSP_

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP_</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

Set a server-side property by using the following syntax, where `[SSPKey]` is the name of the server-side property and `[SSPValue]` is the value for that property:

```
SSP_[SSPKey]=[SSPValue]
```
For example:

```
SSP_mapred.queue.names=myQueue
```

After the driver applies the server-side property, the SSP_prefix is removed from the DSN entry, leaving an entry of [SSPKey]=[SSPValue].

**Note:**
- The SSP_prefix must be upper case.
- When setting a server-side property in a connection string, it is recommended that you enclose the value in braces ({ }) to make sure that special characters can be properly escaped.

**UseLogPrefix**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseLogPrefix</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the driver includes a prefix in the names of log files so that the files can be distinguished by user and application.

- **1:** The driver prefixes log file names with the user name and process ID associated with the connection that is being logged. For example, if you are connecting as a user named "jdoe" and using the driver in an application with process ID 7836, the generated log files would be named `jdoe_7836_SimbaHiveODBCDriver.log` and `jdoe_7836_SimbaHiveODBCDriver_connection_[Number].log`, where [Number] is a number that identifies each connection-specific log file.
- **0:** The driver does not include the prefix in log file names.
Third-Party Trademarks

Debian is a trademark or registered trademark of Software in the Public Interest, Inc. or its subsidiaries in Canada, United States and/or other countries.

IBM and AIX are trademarks or registered trademarks of IBM Corporation or its subsidiaries in Canada, United States, and/or other countries.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or other countries.

Mac, macOS, Mac OS, and OS X are trademarks or registered trademarks of Apple, Inc. or its subsidiaries in Canada, United States and/or other countries.

Microsoft, MSDN, Windows, Windows Azure, Windows Server, Windows Vista, and the Windows start button are trademarks or registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other countries.

Solaris is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

SUSE is a trademark or registered trademark of SUSE LLC or its subsidiaries in Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in Canada, United States and/or other countries.

Apache Hive, Apache, and Hive are trademarks or registered trademarks of The Apache Software Foundation or its subsidiaries in Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.
Third-Party Licenses

The licenses for the third-party libraries that are included in this product are listed below.

**Boost Software License - Version 1.0 - August 17th, 2003**

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

**cURL License**

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2015, Daniel Stenberg, daniel@haxx.se.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

**Cyrus SASL License**

Copyright (c) 1994-2012 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The name "Carnegie Mellon University" must not be used to endorse or promote products derived from this software without prior written permission. For permission or any other legal details, please contact

   Office of Technology Transfer
   Carnegie Mellon University
   5000 Forbes Avenue
   Pittsburgh, PA 15213-3890
   (412) 268-4387, fax: (412) 268-7395
   tech-transfer@andrew.cmu.edu

4. Redistributions of any form whatsoever must retain the following acknowledgment:

   "This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/)."

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

**dtoa License**

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire notice is included in all copies of any software which is or includes a copy or modification of this software and in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUENT MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

Expat License

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

**OpenSSL License**

Copyright (c) 1998-2016 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
   conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
   of conditions and the following disclaimer in the documentation and/or other
   materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display
   the following acknowledgment:

   "This product includes software developed by the OpenSSL Project for use in the
   OpenSSL Toolkit. (http://www.openssl.org/"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
   endorse or promote products derived from this software without prior written
   permission. For written permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may
   "OpenSSL" appear in their names without prior written permission of the
   OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are heared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, Ihash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

   "This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"

   The word 'cryptographic' can be left out if the rouines from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement:

   "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]

RapidJSON License

Tencent is pleased to support the open source community by making RapidJSON available.

Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.

If you have downloaded a copy of the RapidJSON binary from Tencent, please note that the RapidJSON binary is licensed under the MIT License.
If you have downloaded a copy of the RapidJSON source code from Tencent, please note that RapidJSON source code is licensed under the MIT License, except for the third-party components listed below which are subject to different license terms. Your integration of RapidJSON into your own projects may require compliance with the MIT License, as well as the other licenses applicable to the third-party components included within RapidJSON.

A copy of the MIT License is included in this file.

Other dependencies and licenses:

Open Source SoftwareLicensed Under the BSD License:

The msinttypes r29
Copyright (c) 2006-2013 Alexander Chemeris
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Open Source SoftwareLicensed Under the JSON License:

json.org
Copyright (c) 2002 JSON.org
All Rights Reserved.

JSON_checker
Copyright (c) 2002 JSON.org
All Rights Reserved.

Terms of the JSON License:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

The Software shall be used for Good, not Evil.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Terms of the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Stringencoders License

Copyright 2005, 2006, 2007

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the modp.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php
**zlib License**

Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly    Mark Adler
jloup@gzip.org      madler@alumni.caltech.edu

**Apache License, Version 2.0**

The following notice is included in compliance with the Apache License, Version 2.0 and is applicable to all software licensed under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004

[http://www.apache.org/licenses/](http://www.apache.org/licenses/)

**TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION**

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare
Derivative Works of, publicly display, publicly perform, sublicense, and distribute
the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license
to make, have made, use, offer to sell, sell, import, and otherwise transfer the
Work, where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and in
Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a
copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that
You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to
any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then
any Derivative Works that You distribute must include a readable copy of
the attribution notices contained within such NOTICE file, excluding those
notices that do not pertain to any part of the Derivative Works, in at least
one of the following places: within a NOTICE text file distributed as part of
the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated
by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes
only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the
License.
You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of Your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

This product includes software that is licensed under the Apache License, Version 2.0 (listed below):

**Apache Hive**
Copyright © 2008-2015 The Apache Software Foundation

**Apache ZooKeeper**
Copyright © 2010 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.