
Fantom: A Crowdsourced Social Chatbot using an
Evolving Dialog Graph

Patrik Jonell1, Mattias Bystedt1, Fethiye Irmak Doğan2, Per Fallgren1, Jonas Ivarsson1,
Marketa Slukova1, Ulme Wennberg1, José Lopes1, Johan Boye1, and Gabriel Skantze1

1Department of Speech, Music and Hearing, KTH Royal Institute of Technology
2Department of Robotics, Perception and Learning, KTH Royal Institute of Technology

{pjjonell,mbystedt,fidogan,perfall,joniva,slukova,ulme,jdlopes,jboye,skantze}@kth.se

Abstract

In this paper we present Fantom, a social chatbot competing in the Amazon Alexa
Prize 20181. The system uses a dialog graph for retrieving an approximation of the
current dialog context in order to find suitable response candidates in this context.
The graph is gradually built using user utterances from actual interactions, and
system responses suggested by crowd workers. To this end, we developed an
automatic system for finding dialog contexts that were often visited but lacked
system responses in order to automatically post tasks on Amazon Mechanical Turk.
Workers could see a brief excerpt of past conversation history and were asked to
suggest a good response, based on a description of the system’s persona and a set of
rules that would help foster more engaging conversations. Our main contributions
are 1) describing the use of a graph-based approach for context modeling, 2)
techniques used in order to make the crowd workers author good content, and 3)
discussion of learning outcomes from the Alexa Prize challenge.

1 Introduction

This paper presents Fantom, a social chatbot that has taken part in the second installment of the Alexa
Prize, an Amazon-funded student challenge created with the purpose of advancing conversational
Artificial Intelligence [1]. The goal of the competition is to implement an artificial agent capable of
maintaining an entertaining, coherent, and possibly human-like conversation for a sustained period
of time. If a participating bot is capable of engaging in 20-minute-long conversations (of sufficient
quality), it is rewarded with a $1M prize, which is an indication of the complexity of the task.

The main problem in designing conversational chatbots is that two of the major design goals,
coherence and scalability, are counteracting forces. It is perfectly possible to construct a system able
to converse coherently on a specific topic, by letting an expert hand-code facts and domain-specific
rules on how to interpret user utterances, and how the system can best reply to them. This approach
can give good results, but the access to experts is a bottleneck, and the approach is therefore not
very scalable to a multitude of domains. On the other side of the scalability spectrum, sequence-
to-sequence models based on recurrent neural networks have proven to be successful in machine
translation [2], and might seem like an obvious candidate to try also on the dialog problem. Using
this approach, a recurrent neural network is trained on a large corpus of dialogs, so that it can input a
user utterance as a sequence of words, and output a sequence of words which constitutes the system
reply to the user utterance in that particular context. However, existing approaches based on this
technique have not proven successful, partly due to lack of appropriate data. Generated answers using

1https://developer.amazon.com/alexaprize

1st Proceedings of Alexa Prize (Alexa Prize 2018).

https://developer.amazon.com/alexaprize

this technique are often very bland since they are likely to occur in variety of different contexts (e.g.
say “I don't know” no matter what the user says) [3].

When designing Fantom, we have used crowdsourcing to attain a middle ground between the purely
data-driven approach and the one-expert-codes-all approach. The main research question we wanted
to address when taking part in the competition was the following:To what extent can dialog authoring
be made into a collective process using a crowd of non-experts?The use of crowd-sourcing removes
the bottleneck of the single expert without sacri�cing control of the data collection process. We
therefore hypothesize that this approach will be able to, with proper con�guration, yield conversational
data of high quality. Obviously, there are still major challenges to consider: ensuring coherence of
the resulting dialogs, automating the generation of crowd worker tasks, based on real interaction data,
and incorporating the answers into the system's dialog model.

The Fantom system uses a graph-based dialog model: An acyclic directed dialog graph is used for
representing possible coherent dialogs between user and system. Each node represents an utterance
(or rather, a class of synonymous utterances), either from the system or from the user. An edge from
node X to node Y means that any utterance in Y is an appropriate answer to any utterance in X.
The dialog graph is partly built up using data from real conversations (for user nodes), and partly
by letting crowd workers author appropriate system responses to user utterances (for system nodes).
At runtime, Fantom retrieves an approximation of the current dialog context by matching the user's
utterance with an appropriate node X in the graph, and selects an answer among the nodes connected
to X.

To populate the graph with system utterances, we developed an automatic system for identifying user
nodes that were frequently visited at runtime, but which lacked system responses. To create responses,
crowd worker tasks (so called HITs) were automatically posted on Amazon Mechanical Turk, but only
containing user utterances that were approved to be used for crowdsourcing by Amazon. Workers
would see a brief excerpt of past conversation history and were asked to continue the dialog producing
an engaging system response. In order to create coherent and engaging utterances, the crowd workers
were strongly directed by instructions, including a description of the system's intended persona.

The Fantom system has proven to work on a large scale. During a period of 3 months, Fantom
interacted with approximately 75,000 unique Amazon customers in roughly 100,000 conversations,
resulting in a dialog graph with 46,000 user nodes and 6,500 system nodes suggested by crowd
workers.

2 Related Work

There are several important distinctions to make when it comes to modern dialog systems. One such
distinction is if the system is task-oriented or chat-oriented. A large portion of dialog system research
has been devoted to systems that help users to perform some speci�c task, like retrieving information,
booking trips, controlling devices, etc. In this strand of research, the focus has often been to solve
the task as quickly as possible. Indeed, one evaluation criteria for such task-oriented systems is how
many dialog turns they take, on average, to accommodate the user's need and solve the task (where
fewer turns are better). In contrast, chat-oriented dialog systems aim to amuse and entertain, and the
goal here is rather to maintain the user's interest and have as long dialogs as possible. Evaluation
methods are by necessity subjective, e.g. how much users like the system on a scale 1-5, or how
large the proportion of coherent and/or engaging answers was (where a human expert decides what is
coherent and engaging). A major challenge when designing chat-oriented system is to handle the
open-ended nature of the interaction; the user can say virtually anything at any time without leaving
the domain of discourse. Such research efforts can be seen by for example 2017 year's Alexa Prize
�nalists [4, 5, 6].

Another important distinction to make is whether the system is data-driven or hand-coded. Most
chatbots of today are trained using example interactions. The interactions used for training can, for
example, be collected from Twitter [7], movie subtitles [8], or the user responses in conversations
between humans and an already existing bot, e.g. Cleverbot [9], and Microsoft Tay. However,
existing approaches based on these data sets have not resulted in systems capable of holding engaging
interactions with a user for any length of time. One reason for this is that the dialog data they are
based on was not especially targeted towards engaging human-computer interaction with a coherent

2

persona. They might also risk saying extremely inappropriate content, such as the Microsoft Tay bot
did when twitter users learned that they could in�uence what the bot said [10].

Hand-coded systems often use rules to steer the conversations. They have the advantage of an expert
being in charge of what the system says, and thus avoids the issues with incoherent or offensive replies.
However, hand-coding is extremely time-consuming and does not scale well with an open-domain
chat system. These rules can either be manually hand crafted or derived from example interactions.
ChatScript [11] or online APIs, such as Dialog�ow2, Lex3, Luis4 or Wit.ai5 can be used to build
rule-based chatbot systems.

A third distinction that can be made is whether a system is generative or selective when outputting
answers to the user. A generative model will automatically generate the system utterance on a
letter-by-letter or word-by-word level often using variations of recurrent neural networks, such as
LSTMs [12, 13]. These systems have however been reported to produce overly general and vague
utterances [3, 14], despite the recent efforts to use objective functions that try, for instance, to
maximize the amount of mutual information between adjacent pairs of turns [15]. However, this does
not per seguarantee an increase in the quality of the dialogue. Another limitation that generative
dialogue models tried to solve was the capacity to generate responses based on previous context of the
dialogue. Serban et al. proposed to use a latent variable in the decoder, which combined information
from the previous turn with the history of the dialogue [16]. A selective system on the other hand
selects a full utterance, or a template, from a bank of utterances and provides it to the user. The
advantage of using a selective approach is that the utterances presented to the user are guaranteed
to be syntactically well-formed. The disadvantage on the other hand is the decreased �exibility of
what the system can output. Initial approaches using this principle used similarity of RNN-based
embeddings between the context and the response to retrieve the best answer [17]. In contrast to these
word sequence representations, Zhou et al. proposed an utterance sequence representation to map the
relationship between utterances [18]. Sequential Matching Networks [19] were also proposed for the
same purpose. However, the evaluation of these models is often limited to datasets which can hardly
be considered conversational (e.g. the Ubuntu Dialogue Corpus [17])

A compromise between using a data-driven and a hand-coded approach, which we have adopted to
build Fantom, is to use crowdsourcing. This allows for collecting large amounts of data, while at the
same time having control over how the data is collected. One of the �rst examples of crowdsourcing
for dialog generation is Orkin et al. [20]. Similarly, Breazeal et al. proposed a data-driven approach
to dialog generation for a social robot by crowdsourcing dialog and action data from an online
multi-player game [21]. There has been work on collection of text-based corpora, for example
Filatova investigated irony and sarcasm by creating a corpus based on Amazon reviews [22], and
more recently, Ben Krause et al. collected a dialog dataset using crowd workers in order to train their
generative RNN network. They asked the crowd workers to self-author complete dialogs [14]. Leite
et al. presented a graph based approach using crowd workers when letting participants interact with a
robotic head [23]. The use of crowd-workers to build dialogues has also been done for task-oriented
dialogues [24].

In order to avoid issues with utterances in dialog datasets being incoherent or contradictory, one can
condition it using a persona. Work has been done to condition a conversation model with a given
persona [25] or pro�le information from the sender/receiver of a message [26]. Huang et al. let crowd
workers chat one-on-one, giving each one a list of personality traits to adhere to [27]. In this case, the
dialogs produced were symmetrical with respect to the roles the both users had, while in our case, the
role of the chatbot is different compared to the role of the human, thus requiring an asymmetrical
dialog dataset.

2https://dialog�ow.com/
3https://aws.amazon.com/lex/
4https://www.luis.ai/
5https://wit.ai/

3

Figure 1: Two user nodes with corresponding system utterances in the dialog graph.

3 System overview

3.1 Dialog Graph Overview

The basic idea when designing and constructing the Fantom dialog system was to use crowdsourcing
to produce coherent and entertaining system utterances. We therefore required a dialog manage-
ment method capable of incorporating contributions from many authors, most of them without any
knowledge about dialog systems or computer science in general. The dialog graph structure used by
Fantom is such a method: The graph contains nodes representing an utterance (or rather, a class of
synonymous utterances), either from the system ("system nodes") or from the user ("user nodes"). An
edge from node X to node Y means that any utterance in Y is an appropriate answer to any utterance
in X. An edge can therefore only connect a system node to a user node or vice versa; there is never an
edge between two system nodes or two user nodes. A path through the graph thus represents a dialog
between user and system. A path ending in a user node can now easily be extended by adding a new
system response to the last user utterance, using a graphical interface showing the preceding dialog to
the crowd worker (see Figure 3). In this way, many workers can contribute and independently extend
the graph, and each path in the graph will represent a coherent dialog with (hopefully) interesting
system utterances. The graph is also extended with user nodes retrieved from real interactions with
the system.

More speci�cally, the graph can be described as a collection of trees, each rooted in a user node (see
Figure 1). Each tree is typically a topic of its own, and the root node is context-independent (e.g. it
can serve as a starting utterance in a conversation). At runtime (chat time), the initial user utterance
is matched towards all such root nodes. If the utterance matches a user node X with a high enough
similarity score, the system's reply is chosen from the system nodes connected to X. The next user
utterance is then matched with all the children of that system node. If the user utterance does not
match with a high enough similarity score, it is again matched with all root nodes (as the user might
have changed topic). If the utterance does not match any node with high similarity score, various
fallback strategies are employed (see Sect. 3.3.2). One of the main challenges is to correctly and
reliably match user utterances to nodes in the graph. For more details regarding the matching, please
see Section 4.

3.2 System Components

As can be seen in Figure 2, Fantom consists of two main systems: An online system, which the
user interacts with, and an of�ine system, which runs independently of the online system in order to
automatically improve the dialog graph, using crowdsourcing and graph maintenance tools.

4

Figure 2: An illustration of the general system architecture.

3.2.1 Online System

The online system is responsible for handling the dialog with the user. When a user utterance enters
the system it goes through several steps described below.

Feature Extraction Our system extracts several features from the current user utterance in com-
bination with the previous dialog history. For a detailed description of the extracted features, see
Section 3.4.

Response Module SelectorThe Response Module Selector is responsible for selecting all of the
modules that could generate a valid response candidate. For example, while the user is considered
to be in the introduction phase, the response module selector would add the introduction response
module to the pool of potential response module candidates, and request that it attempts to produce
an answer.

Response ModulesThe system relies on 7 different response modules. All modules selected by the
Response Module Selector make an attempt at producing a system response. In some cases there will
be no output from a response module (such as the safety �lter, if it does not detect any inappropriate
content). However, the graph search response module always returns an answer, together with a
similarity score which is used by the ranker to determine if the response from graph search is usable
or not. The response modules are individually covered in more detail in Sections 3.3.

Ranker The ranker is responsible for selecting a response from the candidates selected by the
response module selector. The system uses a rule-based ranking system to select a response. The
safety�lter, introduction phase, and common interaction response modules were always chosen �rst
(in stated order) if they had produced a response. Besides yielding a textual response, the graph search
response module also produced a similarity score for the given response. Using this similarity score
two lower thresholds (where a higher score corresponds to a better match) for the graph search answer
were empirically found. The �rst threshold (0.83) was approximately the point where the graph
search responses were on average more incoherent than not and thus deemed unusable. The second
threshold (0.89) corresponded to the point where the Evi response module on average produced a
better response than the graph search. Therefore the ranker would choose the Evi response if there
is one available and the similarity score would be below 0.89 otherwise the graph search response
would be used as long as the similarity score is above 0.83. Lastly if no other module had been
selected, the fallback module was used.

5

Dialog context managerThe selected response, and all the data for the current turn, is saved in the
dialog context manager and can be accessed from subsequent turns. For example the feature extractor
accesses previous user and system utterances when it does coreference resolution which is provided
by the dialog context manager.

3.2.2 Of�ine System

Conversation DatabaseEach time anyone interacts with the system, the turn is persisted in the
conversation database. Information about what the user said, what the system responded, features
extracted etc. was saved to the conversation table.

Dialog Graph The dialog graph is a database where all of the relevant dialogs for the system are
stored and accessed by other parts of the system. See Section 4 for an in-depth description of the
dialog graph.

Crowdsourcing The system automatically analyzes user conversations and the dialog graph to �nd
where the dialog graph is lacking system responses with respect to how often that part of the graph is
visited by users. Given a list of such prioritized nodes in the graph, the system automatically creates
and sends out tasks on Amazon Mechanical Turk for workers to author new system nodes. These
utterances are then inserted into the graph as valid responses for a given user utterance and a given
history context. Only utterances approved for crowdsourcing by Amazon were posted to Amazon
Mechanical Turk. For a detailed description of the crowdsourcing system see Section 4.1.

Graph Maintenance ToolsA set of tools were developed for maintenance of the graph. These tools
were for example a merging tool, for merging semantically similar nodes (see Section 4.2.4), or an
inactivation tool for inactivating nodes that are incoherent, unengaging or inappropriate.

Graph Search Model Each night the graph search model is rebuilt and transmitted to the graph
search response module. The difference between the graph search model and the dialog graph is that
the graph search model is a �le meant to be read into memory by the graph search response module.
It does not contain all the nodes from the dialog graph, as for example nodes with less than two user
visits, i.e. the amount of times any of the utterances belonging to that node had been uttered, are
excluded. The graph search model contains pre-calculated features for every node it stores.

Conversation and Graph Explorer ToolsTo facilitate browsing of conversation data two tools were
implemented. Firstly, a conversation viewer, which was used to browse individual conversations
users had with the system. The tool could sort, search and fetch data from a certain time period based
a number of values e.g. ratings, number of turns and feedback. Secondly, a web interface visualizing
the dialog graph was used in order to get a better overview of the data quality and with ease follow
dialog paths in the dialog graph. This interface gave a quick impression of which nodes were visited
the most and what kind of replies most users gave to a given system node.

Overnight Model Rebuilding Each night the dialog graph is rebuilt and a sequence of processes are
run, these are in order:

� Update list of utterances approved by Amazon

� Populate the dialog graph with conversations from the past day

� Merge semantically equivalent sentences and synonyms

� Populate relevant nodes in the dialog graph with yes/no nodes after each system utterance
has been analyzed using the yes/no question classi�er. (see Sect. 3.4)

� Retrain LDA model (see Sect. 3.4)

� Find named entities in the graph

� Fetch named entity information from external sources (such as Wikipedia)

3.3 Response Modules

Below a description of all response modules is given. See Table 5 in Section 7 for example of
interactions showcasing their usage.

6

3.3.1 Graph Search

The “Graph search” response module matches the user utterance to the best candidate in the graph,
using the similarity score function described in Section 4.3. It does so by comparing a set of features
derived from the user utterance against the same set of features pre-computed for each node in the
graph. If there is no previous dialog context, the utterance is only matched against the root nodes
in the graph. On subsequent turns, the system will �rst try to match against any children of the
previously selected node, before trying to match to all root nodes again. In other words, �rst the
contextually dependent nodes are being searched, in case the user is replying to the last system
utterance, and then, the contextually independent nodes are being searched, in case the user said
something that does not require the current contextual history (for example if the user is switching
topic).

3.3.2 Fallbacks

A fallback module was set in place to handle situations where the ranking strategy deemed responses
of the other modules inadequate. Depending on what the user said and the features of the current
turn, the fallback module returns a different response. As a �rst step, it checks for any potential
named entities in the conversation. Depending on the type of the named entity, the system responds
in a certain manner. For instance, if the user input contains a <person> tag, a response such as
Tell me more about <person>!or I need to read up on <person>, cause I don't know who that is.
was returned. Similar responses are generated for other named entities, such as <organization> or
<movies-tv>.

If the user input does not contain any named entities, the fallback module instead makes use of the
topical information, based on the assumption that the user will appreciate a bot that at the very least
retains some context of what was said, rather than returning a completely generic response. Therefore
lists of fallback responses for the topics with highest frequency, e.g. movies, music, sports, celebrities,
were created.

For the general, and less frequent topics, the last resort is to return a generic fallback without any
contextual information. To avoid repeating fallbacks, the probability of selecting a given fallback was
based on how many times it had already been used, where a higher number would result in a lower
probability. Furthermore, simple acknowledgments (e.g.okay, cool) were added to the beginning
of the fallbacks, with the intention of giving the user a sense that they had been understood. The
functionality of linked nodes, described in Section 4.2.2, was also used in order to position the user
in a node in the graph that carried the same semantics and intents as the produced fallback. This was
done in order to use the system responses already existing in the graph. Finally, simple rules were
added to handle follow-ups to certain types of common question/answer pairs and for user utterances
containing the words where, who, what, why, when. For example, if a yes/no question such asDo
you love music?was asked by the system, and a yes response was detected, the bot could return
simple answers such asI love music too. Examples of fallbacks are shown in Table 1.

User input Fallback Response Fallback Type

I can't get enough of Tom Cruise. Cool. So, are you a fan of Tom Cruise? Named entity
My best friend's name is James Smith. Okay. Tell me more about James Smith! Named entity
How I met your mother is probably my favorite tv-show I see. So do you like watching TV? Topic
Okay my favorite book is The Hobbit Cool. So do you like reading books? Topic
No I'm not into DC Comics Okay. Is it ok if you suggest a new topic? Generic
I don't like that song Oh. Can we talk about something else? Generic

Table 1: Examples of fallbacks given user input. The data is not from real user interactions.

3.3.3 Evi

Amazon's Evi, which is a question-answering API, was used in order to handle fact questions, or
questions regarding recent events and news. Some tweaking and �ltering had to be implemented
to make sure that the bot generated adequate responses. Evi had a tendency to return de�nitions
of certain common words. As an example, if a user asked for a joke in a certain phrasing Evi
generated"As a noun, 'joke' is usually de�ned as a humorous anecdote or. . . ". Because of this, all
responses were �ltered out following a similar pattern. In a similar manner profanity was �ltered out
to make sure no bad words would slip through. Additionally, as also seen in [6], some sentences were
rephrased before sending them to Evi, which tended to lead to better responses.

7

3.3.4 Safety Filter

A rigid set of rules was developed for detecting inappropriate content and replies to de�ect from those
subjects. For instance, if a bad word was detected in the user utterance a response such as"Let's talk
about something else, for example sports, music or movies."was selected. Similarly, when a user
asked for advice the system responded with something along the lines of"I'm afraid I'm not allowed
to give advice. Let's talk about something else.".

3.3.5 Introduction Phase

An introduction phase was introduced in order to lead the user smoothly into a conversation with the
bot, and also to pick up the name of the user. This module was only initialized the �rst time a user
interacted with the bot.

3.3.6 Common Interactions

In order to increase customer experience a number of mini modules were added that were triggered by
certain user utterances. It was for instance relatively common that the user tried to activate a regular
Alexa skill, such as playing a certain song, or reading an audiobook. When these utterances were
detected the bot replied that this functionality is not available in the current mode and instructions for
how to stop were provided. Similarly detection for when the user wanted to stop the conversation
was added, as the default stop intent didn't cover enough varieties.

3.3.7 Repeat Generator

A detector for when the user had communicated misunderstanding or requested that the chatbot
should repeat itself was implemented. It took the last system utterance and appended “I said” to the
beginning of the sentence.

3.4 Feature Extraction

A feature extraction module was used to provide the response modules with relevant features. This
module took a speci�cation of functions to be run in order to be able to extract a feature. Below we
present how the various feature extractors were implemented.

True CasingTrue casing was used to recover correct casing, using the library named truecaser6.

Coreference ResolutionSpaCy was used [28] to perform coreference resolution. The system �rst
looks for any coreferences in the previous and current user utterances when they are concatenated. If
it does not �nd any coreferences, it tries to resolve them for the last system response concatenated
with the current user utterance.

Named EntitiesA dictionary of named entities was used to identify relevant entities in the user's
utterance and to generate a key value pair for the tag and corresponding entity.

Lemmatization, Tokenization and Part-of-speechSpaCy is used in order to extract these features.

SentimentEach utterance's sentiment was extracted using VaderSentiment [29]. This extractor gave
a compound sentiment score in the interval[� 1:0; 1:0], where -1 indicates strong negative polarity, 0
indicates a neutral polarity and 1 indicates strong positive polarity.

POS ScoreEach part-of-speech (POS) is associated with a weight which has been found empirically.
These weights denote the importance of each POS when matching their similarity.

Word EmbeddingsFastText [30] is used for extracting word embeddings.

POS VectorsThis scales the word embeddings with the weights from the POS score for each token
based on its POS.

Latent Dirichlet Allocation Latent Dirichlet Allocation (LDA) is a model generally used for topic
modeling [31, 32]. Since the LDA makes an assumption about each document's composition
of different topics, it is useful for modeling dialogs which might also include different topics
in a conversation. Moreover, LDA is based on Dirichlet Parameters which are called alpha and

6https://github.com/nreimers/truecaser

8

beta parameters and decide on document-topic and topic-word proportions respectively. “Cleaned”
utterances from the dialog graph, i.e. having new lines, punctuation and stop words removed, were
used to train the LDA. The LDA model has two Dirichlet distribution parameters called� and� which
determines document-topic and topic-word distributions respectively. Our model was initialized for 5
topics, with� = 0 :5 and� = 0 :1. Those are the default values for the model but they also yielded
best results in terms of word distributions over topics when performing informal subjective human
evaluations. We made use of C++ implementation of Phan et al. [33].

Topic Classi�er A topic classi�cation API provided by Amazon was used in order to extract the
most likely topic from an incoming utterance.

Yes/No Question Classi�erThe Stanford CoreNLP module was used to identify closed-ended
questions. This module was developed by Manning et al. [34]. The tool was modi�ed so that it oculd
distinguish between open-ended and closed-ended questions. Moreover, we also added differentiation
of clari�cation statements such as `Pardon me?', `Excuse me?' since the module sometimes classi�es
them as close-ended questions.

3.5 Implementation

The large majority of the implementation for Fantom is written in Python 3.6, where most of the code
resides in a utility package named fantom_util for easy portability of the system. Amazon has also
provided a framework named Cobot, which is a dialog manager framework which is deployed on
AWS7. The cobot framework handles much of the dialog manager boilerplate code, such as calling
different feature extractors or response modules, but also handles and persists the current dialog state
into a document database.

4 Dialog Graph

4.1 Crowdsourcing

In order to populate the graph with system responses, a module was implemented that automatically
created crowdsourcing tasks, where the workers were asked to continue the dialog based on a given
dialog history (see Figure 3). The worker was asked to both validate the previous dialog, and to
author an appropriate response. To guide the worker, a brief system persona was shown on the right.
For a more detailed description of the persona, see Section 4.1.2.

The dialog history was created by traversing the graph backwards from the point that needed
improvement and by picking a random anonymized utterance from each node, up to 6 utterances
back. The system created both regular tasks and "tag tasks" (see Section 4.2.1), in which the worker
was asked to continue the conversation using tags (such as named entities) they could drag-and-drop,
which would then resolve to an attribute relating to the previous tag. As can be seen in Figure 4, this
allowed the worker to construct responses with variable content. New tasks were generated on an
hourly basis.

4.1.1 Data Quality Assurance

Several methods were employed in order to ensure high quality of the responses the workers authored.
First, each worker was instructed to validate the dialog history, and to mark any utterances deemed
to be incoherent. Failing to do so resulted in failing the task. If other workers would mark a dialog
incoherent where a worker had failed to report it as incoherent, that would result in a failed task. This
was a strategy for 1) automatically �nding bad utterances and bad workers, and 2) letting workers
know that their work will be evaluated by other workers. The system made sure that a worker would
never receive a dialog history which they have contributed to themselves. Another measure in order
to increase data quality was to prepare an introduction video with an instructor explaining how to
use the system and a few training tasks in order to show some examples of good and bad dialogs.
Completing this training was a requirement in order to work on the tasks. Since the system would
interact with American end-users, it was important that cultural references would be as similar as
possible. Thus, workers were required to be from the U.S. The worker was required to have had
completed at least 5000 tasks on Amazon Mechanical Turk and had an approval rating higher than

7https://aws.amazon.com/

9

97%. Additionally, in order to be quali�ed to do the tagging task, which also was slightly better paid,
the worker needed to have completed at least 20 of the original tasks. The workers were paid 20 cents
per regular task and 30 cents per tagged node task.

Figure 3: Interface used for authoring content in the graph

Figure 4: Crowdsourcing interface for tag nodes.

4.1.2 Persona

The persona was carefully crafted so that the crowd workers would form a coherent personality in
their responses to the user. In order to make the workers read the persona attributes, a small random
subset of the attributes was shown to the workers while they worked on the task. Two examples of
the persona provided to the crowdworker can be seen to the right in Figure 4. The persona text used
a yellow background color in order to draw attention. This was found to yield a higher degree of
answers in line with the persona after doing some initial experimentation with the user interface and
inspecting random responses from the workers. All of the attributes built up one personality, thus
there were no two sentences that contradicted each other. Showing a small subset of the attributes was
a compromise between losing the attention of the crowd worker due to showing too much information
but still getting the persona through.

10

4.2 Scaling the Graph

To avoid scalability issues, given the constant growth of the dialog graph, a number of tools and
concepts were implemented, these are described below.

4.2.1 Tags for Named Entities

In order for the system to be able to handle variable content, such as named entities, tags were
introduced. Topics such as movies or music are heavily based around talking about speci�c entities
and creating a separate node for each entity in the graph meant an undesirable branching factor
and would also result in an unrealistic amount of crowdsourcing tasks. A simple example of this
mechanism is illustrated below

System Utterance: What's your favorite movie?
User Utterance: I like <movie>.

System Utterance: I thought that<movie-actor> was excellent in that.
Do you have a favorite actor or actress?

A database was created to store all the information about named entities, and their related attributes,
such as in the example above,<movie-actor> is a related attribute of<movie>. Wikidata8 was
used in order to download information about the named entities and various internet sources were
scraped for collections of popular entities.

To avoid ambiguities among named entities with the same name, which belong to different categories
and where the category is clear from the context, the system only looked for categories of tags that
it could �nd among the next expected user utterances. In asking the user for a favorite movie, the
system would identifyHarry Potter and the Goblet of Fireas both a book and a movie, but only the
movie would be correct.

As the intention for the bot was not to be omniscient, it was acceptable that it did not possess the
information about all existing named entities. Instead, it was intended to learn more over time.

New named entities in the graph were detected during the overnight process, and new tag nodes
were created. For example, if a node was found, where several of the children contained mentions of
movies, a node would be added with the movie tag to that parent node. New named entities were also
collected and the resulting data was merged into the graph search model.

4.2.2 Linked Nodes

Two nodes in the graph can be manually linked if they share the same semantic representation, but
are located in different branches of the graph. This functionality was introduced as it was noticed that
similar conversations started to appear in different branches of the graph. If two nodes X and Y are
linked, then all children of X are considered children of Y and vice versa, leading to a more richly
populated graph, and a wider range of response options.

4.2.3 Root Node Classi�er

In the graph structure, it is crucial to be able to distinguish between utterances that can be used to start
a new conversation or steer the conversation into a new topic, such aslet's chat about musicor what's
your opinion on Donald Trump?. These can be contrasted with utterances that always are context
dependent, e.g.I like them, yeah, I think so too. The former are used as root nodes in the dialog graph,
while the latter should only exists at deeper levels of the graph. When automatically populating
the graph with user utterances, context dependent nodes were erroneously added as root nodes, and
context independent nodes were added at deeper levels in the graph. While it is not necessarily wrong
that context independent nodes exists deeper in the graph, it can be bene�cial to have them exist at
the root level as well. In order to automatically distinguish between these two types of utterances a
Root Node Classi�erwas developed which classi�es the context dependency of a certain utterance.
The classi�er was then used in order to relocate and remove erroneously inserted nodes.

8https://www.wikidata.org

11

The classi�er was trained using data of the 2000 most common utterances from the 2017 Alexa Prize
competition that were annotated as to whether they were always context dependent or if they could
be used to start of a new conversation.

Two versions of the root node classi�er were trained. The �rst was a bag of words neural network
model based on one-hot encodings of the POS tags and a selection of certain words that were
indicative of whether the utterance were to be considered a root node or not. The second model was
an extension of the �rst one, where an RNN model on a word-to-word level was used instead of the
bag of words model. The �rst of these reached an accuracy of 84% and the second one reached an
accuracy of about 86% on the task of correctly predicting the root nodes in the test set.

4.2.4 Automatic Merging

For the graph structure to work effectively, it was important to merge utterances with the same
meaning into the same node. Although this was a purely manual task at �rst some automation was
added to facilitate the process. Speci�cally, a script was implemented that automatically merged
provided lists of synonyms. Among these synonym lists were for instance a list containing different
ways of saying "yes", one for the ways of saying "no", and one for the ways of saying "I don't know".
During runtime all neighboring nodes that contained at least one element from the same of these
lists were merged with each other. Furthermore, this script was also tweaked to allow for merging of
certain patterns that were guaranteed to carry the same meaning; it is for instance generally true that
the user semantics inLet's talk about XandLet's chat about Xare the same.

4.3 Graph Search

A semantic similarity function was trained in order to match a given incoming utterance to the
most semantically similar utterance in the candidate nodes. This was accomplished by using an
approximative statistical framework, where an independence approximation of the features leads to
a multiplicative model. All functions return values in the interval[0; 1]. In order for the matching
function to work reliably in the realm of sparse data that the challenge is in, the amount of free
parameters in the model were effectively reduced by using a combination of feature engineering and
weight optimization on a validation dataset. The optimal weights were obtained through a grid search
algorithm. (See section 5.1) The resulting similarity score, f, between two utterances, utti and uttj , is
calculated as the product of the following scoring components: sentiment, topic, word vectors and
LDA, as shown in Equations 1-7. All functions return values in the interval[0; 1].

f (utti ; uttj) = f sentiment(utti ; uttj) � f topic(utti ; uttj) � f word vectors(utti ; uttj) � f LDA (utti ; uttj) (1)

f topic(utti ; uttj) =
�

1:00; if topic(utti) = topic(uttj)
ktopic; otherwise

(2)

f sentiment(utti ; uttj) = max
�

k1; 1:00�
�
sentiment(utti) � sentiment(uttj)

� k2
�

(3)

The topic classi�er and the sentiment extractor are described in Section 3.4.ktopic 2 [0:0; 1:0],
k1 2 [0:0; 1:0] andk2 > 0 are learned parameters.

f word vectors(utti ; uttj) = max
�

f word vectors, 1(utti ; uttj); f word vectors, 2(utti ; uttj)
�

(4)

The �rst word vector score makes an assumption of syntactical similarity between the two sentences.
It works by creating a separate average word embedding for each part-of-speech (POS) in each
of the utterances, and then computing the cosine similarity for each POS followed by a weighted
summation of the similarity scores.Ck is a weight constant corresponding to the k-th POS, as shown
in Equation 5:

f word vectors, 1(utti ; uttj) =

P
k Ck � cos

� P
i 02 POS kx

(1)
i 0 ;

P
j 02 POS kx

(2)
j 0

�

P
k Ck

(5)

12

The second word vector score computes the cosine similarity of the word-class-weighted average
word embeddings of the two utterances, as shown in Equation 6:

f word vectors, 2(utti ; uttj) = cos

 P
i 0 w(1)

i 0 x (1)
i 0

P
i 0 w(1)

i 0

;

P
j 0 w(2)

j 0 x (2)
j 0

P
j 0 w(2)

j 0

! 2

(6)

Here,x (1)
i 0 indicates the i-th word vector in the �rst utterance, andw(1)

i 0 indicates the weight constant
corresponding to that same word's POS. These are multiplied together and summed in order to con-
struct a POS-weighted average word embedding. The score functionf word vector, 2(utti ; uttj) measures
the squared cosine similarity of the weighted average word embeddings of the two utterances.

f LDA (utti ; uttj) = kLDA +
�

1 � kLDA

�
� cos

�
LDA(utti); LDA(uttj)

�
(7)

5 Observations

In this section, observations regarding the system and experimentation results which were made
during the course of the Amazon Alexa Prize 2018 competition, are described.

5.1 Weight Optimization in Similarity Function

A script was developed in order to compare the validity and performance of the similarity scoring
functions mentioned in Section 4.3 that creates a measure in the interval[0; 1] of semantic similarity
between two utterances. This script was also used in order to optimize the weight parameters of the
different scoring functions. The test script utilizes the fact that different utterances such aslet's chat
about musicandcan we talk about music pleasein a given node share the same semantic meaning.
This opens up for the possibility to automatically generate a dataset from the nodes containing several
utterances. The 100 root nodes containing the most utterances were chosen. The test script loops
through each pair of utterances and tries to predict if they belong to the same node or not in a binary
classi�cation task. This is done by calculating the similarity score between each pair of nodes, and
then varying the threshold� thres 2 [0:0; 1:0] in order to optimize theF1-score. Calculating the
prediction if an utterances belongs to the same node is shown in Equation 8.

ypred (utti ; uttj) =
�

1; if � thres � f (utti ; uttj) � 1:0
0; if 0:0 � f (utti ; uttj) < � thres

(8)

Based on the results from these tests, it was clear that words from different POS classes differ in
their usability to predict the semantic meaning of an utterance. Generally, it was found that nouns
and verbs are more indicative of the semantic meaning of an utterance than other POS classes such
as pronouns, adjectives and numeric values. It was also observed that the magnitude of the word
embedding vectors of different words did not contribute to predicting semantic representation.

Name F1 Precision Recall Threshold
Average Word Embedding (FastText) 0.18 0.28 0.38 0.87
Sentiment 0.06 0.036 0.68 0.99
Topic 0.28 0.21 0.84 0.94
Graph Search Similarity Score 0.63 0.69 0.73 0.74

Table 2: Results for individual components of the similarity function and the �nal combined approach.

5.2 Dialog graph

By the end of the semi �nals the dialog graph consisted of approximately 50,000 active nodes
(see Table 3 for additional data about the dialog graph). The number of user nodes at depth 2 is
signi�cantly higher than that of other levels. This is due to a large amount of system responses such as
What is your favorite movieor Do you have a favorite rock bandat depth 1 resulting in a wide variety
of answers from users. This observation further motivates work on scalability-enabling features such
as tags for named entities and automatic merging of semantically similar nodes (see Section 4.2).

13

	Introduction
	Related Work
	System overview
	Dialog Graph Overview
	System Components
	Online System
	Offline System

	Response Modules
	Graph Search
	Fallbacks
	Evi
	Safety Filter
	Introduction Phase
	Common Interactions
	Repeat Generator

	Feature Extraction
	Implementation

	Dialog Graph
	Crowdsourcing
	Data Quality Assurance
	Persona

	Scaling the Graph
	Tags for Named Entities
	Linked Nodes
	Root Node Classifier
	Automatic Merging

	Graph Search

	Observations
	Weight Optimization in Similarity Function
	Dialog graph
	System performance
	Correlations Between Response Module Usage and Amazon Customer Ratings
	Effect of Data Collecting Strategies
	LDA Topic Modeling

	Discussion
	On Adopting the Graph Search Model
	Insights
	Challenges and Future Work
	Innovation

	Example Interactions

