Pain PSYCHOLOGICAL PERSPECTIVES

Dr. Alex Jimenez D.C.

Pain

Edited by

Thomas Hadjistavropoulos Kenneth D. Craig

PSYCHOLOGICAL PERSPECTIVES

PAIN

Psychological Perspectives

PAIN Psychological Perspectives

Edited by

Thomas Hadjistavropoulos University of Regina

Kenneth D. Craig *University of British Columbia*

LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS Mahwah, New Jersey London2004

Copyright © 2004 by Lawrence Erlbaum Associates, Inc. All rights reserved. No part of this book may be reproduced in any form, by photostat, microform, retrieval system, or any other means, without the prior written permission of the publisher.

Lawrence Erlbaum Associates, Inc., Publishers 10 Industrial Avenue Mahwah, New Jersey 07430

Cover design by Sean Sciarrone

Library of Congress Cataloging-in-Publication Data

Pain: psychological perspectives / edited by Thomas Hadjistavropoulos, Kenneth D. Craig. p. cm.

Includes bibliographical references and index. ISBN 0-8058-4299-3 (alk. paper) 1. Pain—Psychological aspects. I. Hadjistavropoulos, Thomas. II. Craig, Kenneth D., 1937—

BF515.P29 2003 152.1c824—dc21 2003052862

CIP

Books published by Lawrence Erlbaum Associates are printed on acid-free paper, and their bindings are chosen for strength and durability.

Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

We dedicate this volume to those who mean the most to us:

Heather, Nicholas, and Dimitri — T. H.

Sydney, Kenneth, Alexandra, and Jamie — K. D. C.

Contributors ix

Preface xi

An Introduction to Pain: Psychological Perspectives 1 Thomas Hadjistavropoulos and Kenneth D. Craig 1 The Gate Control Theory: Reaching for the Brain 13 Ronald Melzack and Joel Katz 2 Biopsychosocial Approaches to Pain 35 Gordon J. G. Asmundson and Kristi D. Wright 3 Pain Perception, Affective Mechanisms, and Conscious Experience 59 C. Richard Chapman 4 Social Influences and the Communication of Pain 87 Thomas Hadjistavropoulos, Kenneth D. Craig, and Shannon Fuchs-Lacelle 5 Pain Over the Life Span: A Developmental Perspective 113 Stephen J. Gibson and Christine T. Chambers

Contents vii

6 Ethnocultural Variations in the Experience of Pain 155 Gary B. Rollman 7 Social Influences on Individual Differences in Responding to Pain 179 Suzanne M. Skevington and Victoria L. Mason 8 Assessment of Chronic Pain Sufferers 209 Dennis C. Turk, Elena S. Monarch, and Arthur D. Williams 9 Psychological Interventions for Acute Pain 245 Stephen Bruehl and Ok Yung Chung 10 Psychological Interventions and Chronic Pain 271 Heather D. Hadjistavropoulos and Amanda C. de C. Williams 11 Psychological Perspectives on Pain: Controversies 303 Kenneth D. Craig and Thomas Hadjistavropoulos 12 Ethics for Psychologists Who Treat, Assess, and/or Study Pain 327 Thomas Hadjistavropoulos

Author Index 345

Subject Index 371 viii CONTENTS

Gordon J. G. Asmundson Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada

Stephen Bruehl Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee

Christine T. Chambers Department of Pediatrics, University of British Columbia, Centre for Community Child Health Research, Vancouver, British Columbia, Can- ada

C. Richard Chapman Pain Research Centre, Department of Anesthesiology, Univer- sity of Utah, Salt Lake City, Utah

Ok Yung Chung Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee

Kenneth D. Craig Department of Psychology, University of British Columbia, Van- couver, British Columbia, Canada

Amanda C. de C. Williams INPUT Pain Management Unit, St. Thomas' Hospital, London, United Kingdom

Shannon Fuchs-Lacelle Department of Psychology, University of Regina, Regina, Saskatchewan, Canada

Steven J. Gibson National Ageing Research Institute, Parkville, Victoria, Australia

Heather D. Hadjistavropoulos Department of Psychology, University of Regina, Re- gina, Saskatchewan, Canada

Contributors ix

Thomas Hadjistavropoulos Department of Psychology, University of Regina, Re- gina, Saskatchewan, Canada

Joel Katz Department of Psychology, York University, Toronto, Ontario, Canada

Victoria L. Mason Department of Psychology, University of Bath, Bath, United King-dom

Ronald Melzack Department of Psychology, McGill University, Montreal, Qeubec, Canada

Elena S. Monarch Department of Anesthesiology, University of Washington, Seat- tle, Washington

Gary B. Rollman Department of Psychology, University of Western Ontario, Lon-don, Ontario, Canada

Suzanne M. Skevington Department of Psychology, University of Bath, Bath, United Kingdom

Dennis C. Turk Department of Anesthesiology, University of Washington, Seattle, Washington

Arthur D. Williams Department of Anesthesiology, University of Washington, Seat- tle, Washington

Kristi D. Wright Dalhousie University, Halifax, Nova Scotia, Canada x CONTRIBUTORS

This volume offers a state-of-the-art, comprehensive account of the psychol- ogy of pain that encompasses clinical perspectives but also basic social and behavioral science as well as biopsychological contributions to the field. The relatively recent focus on pain as a subjective experience has led to dramatic improvements in our understanding of the complex psychological processes that represent and control pain. There has also been an en- hanced understanding of the ontogenetic, socialization, and contextual de- terminants of pain. Mechanisms responsible for the complex synthesis of sensations, feelings, and thoughts underlying pain behavior have been the target of concerted research and clinical investigation. This volume explicates our current understanding of the current theory, research, and practice on these complex psychological processes. We are proud of our list of contributors that includes some of the most influential and productive pain researchers in the world.

Although the book is primarily intended for psychologists (practitioners, researchers, and students) managing, investigating, and studying pain, it would also be of interest to a variety of other professionals working in this area (e.g., physicians, nurses, physiotherapists). The book is also suitable as a textbook for graduate and advanced undergraduate courses on the psychology of pain.

We owe a debt of gratitude to the many sources of support made avail- able to us. In the first instance, we are most appreciative of the commit- ment, inspiration, and hard work of the people who work with us in the

Preface xi

common cause of developing a better understanding of pain and pain con- trol. Our graduate students and project staff continuously offer fresh per- spectives, ideas, and boundless energy, giving us a great hope for the future and confidence in our work today. We also acknowledge many outstanding colleagues who generously exchange ideas with us about important issues relating to the psychology of pain. These ideas are a source of inspiration and make us proud of the many scientific and clinical advances our field has achieved.

Work on this project was supported, in part, by a Canadian Institutes of Health Research Investigator Award to Thomas Hadjistavropoulos and by a Canadian Institutes of Health Research Senior Investigator Award to Ken- neth D. Craig. Related work in our laboratories has been supported by the Canadian Institutes of Health Research, the Social Sciences and Humanities Research Council of Canada, and the Health Services Utilization and Re- search Commission.

We acknowledge Holly Luhning's help in preparing and formatting the manuscript for submission to the publisher. We also thank Debra Riegert of Lawrence Erlbaum Associates for her support and enthusiasm about this project.

Most importantly, we acknowledge the love and support of our families. They give us strength. —Thomas Hadjistavropoulos —Kenneth D. Craig xii PREFACE

Pain is primarily a psychological experience. It is the most pervasive and universal form of human distress and it often contributes to dramatic re- ductions in the quality of life. As demonstrated repeatedly in the chapters to follow, it is virtually inevitable and a relatively frequent source of dis- tress from birth to old age. Episodes of pain can vary in magnitude from events that are mundane, but commonplace, to crises that are excruciating, sometimes intractable, and not so common, but still not rare. The costs of pain in human suffering and economic resources are extraordinary. It is the most common reason for seeking medical care, and it has been estimated that approximately 80% of physician office visits involve a pain component (Henry, 1999–2000).

The distinction between pain and nociception provides the basis for fo- cusing on pain as a psychological phenomenon. Nociception refers to the neurophysiologic processing of events that stimulate nociceptors and are capable of being experienced as pain (Turk & Melzack, 2000). Instigation of the nociceptive system and brain processing constitute the biological sub- strates of the experience. But pain must be appreciated as a psychological phenomenon, rather than a purely physiological phenomenon. Specifically, it represents a perceptual process associated with conscious awareness, selective abstraction, ascribed meaning, appraisal, and learning (Melzack & Casey, 1968). Emotional and motivational states are central to understand- ing its nature (Price, 2000). Pain requires central integration and modulation of a number of afferent and central processes (i.e., sending messages

An Introduction to Pain: Psychological Perspectives

Thomas Hadjistavropoulos University of Regina

Kenneth D. Craig University of British Columbia 1

toward the central nervous system and interacting with higher components of the central nervous system) and efferent processes (i.e., sending mes- sages away from higher centers in the central nervous system and toward muscle or gland).

This formulation acknowledges the importance of various levels of anal- ysis of pain. The biological sciences (molecular biology, genetics, neuro- physiology, pharmacological sciences, etc.) have made major advances. In- deed, they appear to be in ascendance in the study of pain. Ultimately, however, a unified theory of pain must integrate this understanding with the product of work in the behavioral and social sciences, as well as the hu- manities, because pain cannot be understood solely at the level of gene ex- pression, neuronal firing, and brain circuitry. Many of the serious problems in understanding and controlling pain must be understood at the psycho- logical and social level of analysis. The following come immediately to mind: How can we prevent pain? Why do many complaints of pain not have a medical basis? What accounts for some people reacting dispassionately and others with great distress to what appears to be the same degree of tis- sue damage? Why do we most often underestimate the pain of others? What accounts for general trends toward undermanagement of pain?

The discipline of psychology must play a central role in the study, as- sessment, and management of pain. It is not surprising that Ronald Melzack, one of the developers of the most influential theory in the field of pain, is a psychologist. Nor is it unexpected that at least 2 of the 10 most influential clinicians and researchers in the field of pain (as assessed by survey of a random sample of members of the International Association for the Study of Pain [IASP]) are psychologists (Asmundson, Hadjistavropoulos, & Anto- nishyn, 2001). These two individuals (Ronald Melzack and Dennis Turk) are contributors to this volume.

In this book we have tried to capture major features of the psychology of pain and the most influential contributions of psychologists to pain re- search and management. We are primarily interested in the ultimate impact of advances in understanding and controlling pain. Hence, although much of the volume covers applied issues, basic processes are also given careful consideration.

FROM DESCARTES TO THE NEUROMATRIX

Historical trends demonstrate the importance of psychological mechanisms. Descartes's (1644/1985) early mechanistic conceptions of pain resulted in the biomedical specificity theory that proposed that a specific pain system transmits messages from receptors to the brain. This theory is sometimes referred to as "the alarm bell" or "push button" theory (Melzack, 1973), 2 HADJISTAVROPOULOS AND CRAIG

because of its apparent simplicity. Descartes's early views were refined substantially over the years, and more complex mechanistic views gradu- ally emerged as investigators struggled to incorporate in their models of pain the complexities and puzzles of pain that dismayed patients and clini- cians struggling with pain control. Nevertheless, biomedical specificity theory continued to exert an enormous influence through the first half of the 20th century. There was little room for recognition of the importance of psychological processes such as emotion, attention, past experience, and cognitive processes in the study of pain. Patients suffering from pain without a pathophysiological basis or signs often were considered "crocks" (Melzack, 1993).

Despite dominance of sensory specificity and biomedical models of pain, clinicians were increasingly finding emotional and motivational processes to be important in understanding pain. Merskey (1998) observed that psy-chological explanations about motives for complaints about pain and psy-chodynamic theories gradually became popular during the early and mid-dle parts of the 20th century (e.g., Ellman, Savage, Wittkower, & Rodger, 1942; Scott, 1948). Early investigation of psychiatric patients with pain had led to the erroneous conclusion that physical and psychological factors in pain were mutually exclusive and that pain is either physical or psychologi- cal (IASP Ad Hoc Subcommittee for Psychology Curriculum, 1997). Persis- tent pain with no identifiable causes was frequently labeled as psychogenic, a regrettable construct because it perpetuates mind/body dualistic thinking (Liebeskind & Paul, 1977) and fails to recognize that biological mechanisms are integral to all psychological phenomena, including pain.

Freud (1893–1895) viewed pain as a common conversion symptom and favored the position that pains encountered in hysteria were originally of somatic origin. In other words, he argued that the pain was not created by the neurosis, but rather the neurosis served to maintain it. Dynamic con- ceptions of pain emphasize the role of psychic energies derived from innate drives linked to aggression, dependency, and sexuality and postulate that the pain experience is associated with the gratification or frustration of these drives (Pilowsky, 1986). For example, pain can be construed as the product of aggression that is inflicted either on oneself or on others and can be related to the formation of a cruel superego with an associated chronic sense of guilt and low self-esteem (Pilowsky, 1986).

Although psychodynamic approaches were frequently used to charac- terize patients whose pain unfortunately had been labeled as "psycho- genic," they have not led to any major empirically supported advances in pain management, and this perspective has been losing favor over the years (e.g., Merskey, 1998). Efforts to bolster the psychodynamic perspec- tive come from case studies, although some work has linked suppressed an- ger to the experience of persistent pain. Pilowsky and Spence (1975), for ex-

INTRODUCTION 3

ample, found that a pain clinic group reported a higher incidence of anger inhibition than 40 hospital outpatients who reported pain as their most prominent symptom. It is difficult, however, to draw causal relationships from such data.

Perhaps the most significant and systematic involvement of psycholo- gists in the field of pain began with the correspondence of Donald Hebb, a McGill University psychologist, and George A. Bishop, an American physiol- ogist, in the early 1950s (Merskey, 1996). The starting point of their discus- sion was Hebb's treatment of pain in his classic text *The Organization of Be- havior* (1949). Ronald Melzack, who was Hebb's student, was influenced by these ideas and began to study the effects of early experience on the pain response (Melzack & Scott, 1957). Along with Patrick Wall, Ronald Melzack later formulated the gate control theory of pain (Melzack & Wall, 1965; see also chap. 1, this volume). The theory has been the most influential and productive model of pain to date, and has led to widespread recognition of the necessity of the study of psychological factors in our understanding of pain. This work in the domain of physiological psychology was the first to account for individual variability in the pain response and to emphasize the importance of a diverse array of cognitive, emotional, environmental, and behavioral factors. These views gradually made their way into clinical practice. A large number of innovative and productive psychologists working in research and clinical capacities would acknowledge the inspiration and leadership of this work. More recently, Melzack (e.g., Melzack, 1989) pro- posed the concept of the "neuromatrix" to explain phenomena that could not be explained well by preexisting theories (see chap. 1, this volume).

Other psychologists and psychological theories have made major con- tributions. In the 1960s and 1970s, Fordyce and other behavior theorists began to construe pain behavior in terms of both operant and classical con- ditioning (e.g., Fordyce, Fowler, & DeLateur, 1968). Pain behaviors (e.g., complaints, inactivity, drug use) are subject to reinforcement control (i.e., through operant processes), and anxiety and other emotional reactions can become associated with certain movements and circumstances that elicit pain (i.e., through classical conditioning processes). Behavioral interven- tions arising from these models became fundamental to clinical practice (Fordyce, 1976). The 1980s saw an increased emphasis on cognitive proc- esses in the conceptualization of pain with work such as the pioneering vol- ume Pain and Behavioral Medicine by Turk, Meichenbaum, and Genest (1983), thereby generating interest in research and novel clinical practice. Interventions became geared toward personal beliefs about pain and its meaning, with clinicians then able to focus on modifying maladaptive thoughts. This work was complemented by further psychophysiological in- vestigations, the study of psychophysical processes, social psychological processes, and the study of cultural and individual differences. More re- 4 HADJISTAVROPOULOS AND CRAIG

fined views and methodologies have since been developed and are dis- cussed throughout this volume.

EPIDEMIOLOGY, GENDER, AND DEVELOPMENT

Although epidemiological reports vary as a function of methodology used, the population surveys of the prevalence of pain leave no question that per- sisting pain is of great magnitude for people of all ages (Crombie, Croft, Lin- ton, LeResche, & von Korff, 1999). The estimated prevalence of persistent pain in the community has been found to vary from 7% to 63.5% (e.g., Crom- bie, 1997; Bowsher, Rigge, & Sopp, 1991; von Korff, Dworkin, & LeResche, 1990). Moreover, more than 70% of patients with cancer develop significant pain over the course of their illness, with pain being the result not only of the disease, but also of chemotherapy, surgery, and radiotherapy (Henry, 1999–2000). The Canadian National Population Health Survey (Statistics Canada, 1996–1997) showed that 15% of Canadians over the age of 15 have chronic pain, with 70% of these people rating pain as severe to the point that it would cause interference with normal activity. According to the same study, people with pain had more days off work in the week prior to the survey, and more contacts with health care services (i.e., physician vis- its and hospital stays in the past year). In another frequently cited study, von Korff et al. (1990) studied a probability sample of 1,016 health mainte- nance organization employees and found evidence of recurrent or persistent pain in 45%; severe and persistent pain with 7 or more days of pain-related activity limitation in 2.7%; and persistent pain with activity limitations and three or more indicators of pain dysfunc- tion (e.g., high family stress; health status rated as fair or poor) in 1%. Such gradations in severity were predictive of outcomes such as psychological impairment and usage of medications and health care services.

Gender and Pain Prevalence

The relationship between gender and pain is not simple. LeResche (1999) observed that patterns differ from condition to condition, and gender-spe- cific prevalence for most conditions varies across the life span. The data with respect to back pain are inconsistent with the usual gender-related prevalence (i.e., in this special case, men often show a greater prevalence than women), and studies looking at sex differences in chest pain are lack- ing. LeResche (1999) reviewed the available studies and concluded that joint pain, chronic widespread pain, and fibromyalgia all increase in preva- lence at least until age 65 years and all are more frequent in women than men. Abdominal pain also is more frequent in women but does not increase

INTRODUCTION 5

with age. Unruh (1996) reviewed the literature and concluded that women were more likely than men to report persistent pains in addition to the pain relating to menstruation, pregnancy, and childbirth. Unruh also concluded that these differential patterns tend to persist even under more extreme life circumstances, such as homelessness, and that gender-specific differences begin to emerge during adolescence.

The generally higher rates of pain in women relate to a variety of social factors (see chap. 7, this volume), but the pain response itself may also be mediated, in part, by biological factors (Unruh, 1996). This has been sup- ported through headache research (Rasmussen, 1993), with pain responses and outcomes differentially affected during different stages of the men- strual cycle (Berkley, 1993; Hapidou & DeCatanzaro, 1988; Procacci et al., 1972; Rao, Ranganekar, & Safi, 1987). Animal research has supported the presence of biological factors, with male rats having significantly greater re- sponse to central morphine analgesia and systemic analgesia (Baamonde, Hidalgo, & Andres-Trelles, 1989; Kepler et al., 1991). It has been suggested that estrogen-dependent mechanisms may be responsible for some of the gender differences (Mogil, Sternberg, Kest, Marek, & Liebeskind, 1993). Ellemeyer and Westphal (1995) demonstrated that females showed greater pupil dilation at high tonic pressure levels applied to their fingers, suggest- ing that at least some aspects of gender differences in pain perception are beyond voluntary control. Paulson, Minoshima, Morrow, and Casey (1998) found gender differences in perceptual and neurophysiological responses to painful heat stimulation using positron emotion tomography, with fe- males showing significantly greater activation of the contralateral prefront- al cortex, insula, and thalamus.

Pain Prevalence and Development

Pain is common in children (McAlpine & McGrath, 1999), with 15% of school- age children reporting musculoskeletal pain (Goodman & McGrath, 1991). Moreover, abdominal pain affects 75% of students and occurs weekly in 13–15% of children studied (Hyams, Burke, Davis, Rzepski, & Andrulonis, 1996). Chapter 5, by Gibson and Chambers, documents prevalence rates across the life span as well as increases in pain as a function of increasing age. Gibson and Chambers also document gender differences in pain that are evident before adulthood.

Conditions often associated with pain (musculoskeletal disease, heart disease, neoplastic disease, HIV/AIDS) increase with advancing age, as does the frequency of pain problems, although these prevalence increases stop by the seventh decade of life (Helme & Gibson, 1999). Cook and Thomas (1994) found that 50% of older adults reported experiencing daily pain and another 26% reported experiencing pain at least once in the week prior to 6 HADJISTAVROPOULOS AND CRAIG

their survey. In another survey of seniors living in the community, 86% re- ported experiencing significant pain in the year prior to participation in the study with close to 60% reporting multiple pain complaints (Mobily, Herr, Clark, & Wallace, 1994). In a recent investigation of 3,195 nursing home resi- dents in three Canadian provinces, Proctor and Hirdes (2001) estimated the overall prevalence of pain in this sample as being close to 50% with approxi- mately 24% of residents experiencing daily pain. Moreover, these investigators compared seniors with and without cognitive impairments and did not find any differences in the prevalence of potentially painful conditions. In a related study, Marzinski (1991) examined patients' charts at an Alzheimer unit and found that 43% of the patients had painful conditions, a finding con- sistent with the observation that cognitive impairment does not spare peo- ple from the many sources of pain that could afflict anyone (Hadjistav- ropoulos, von Baeyer, & Craig, 2001). Nonetheless, as is often the case in studies of the epidemiology of pain, the prevalence rates vary from study to study as a function of methodology and the questions that were investigated. This volume is intended to provide a better understanding of the complex and widespread psychological experience of pain.

THE PERSPECTIVES

In chapter 1, this volume, Melzack and Katz examine the gate control theory and transformations in our understanding of pain since it was published (Melzack & Wall, 1965). The theory integrated diverse areas we now refer to as the *neurosciences* and accommodated psychological perspectives to explain phenomena ignored by earlier sensory specific models of pain. In describing the neural bases for the complexities of pain experience, it in- spired many major research and clinical advances, for example, our under- standing of neuroplasticity as a basis for chronic pain (Melzack, Coderre, Katz, & Vaccarino, 2001). The theory has continued to grow, assimilating new knowledge and inspiring Melzack's recent neuromatrix model of pain. The theory and developments had major importance for the psychological and medical management of pain. Also, it opened the door for the develop- ment and popularity of the biopsychosocial model of pain, which is the fo- cus of chapter 2, this volume, by Asmundson and Wright. This model ac- cepts an original physical basis of pain, even when an anatomical site or pathophysiological basis cannot be established, but also recognizes the im- portance of affective, cognitive, behavioral, and social factors as contribu- tors to chronic illness behavior. An overview of cognitive behavioral and psychodynamic perspectives is also provided in this chapter. The chapter provides a comprehensive overview of the model, its origins, and its empiri- cal and theoretical support.

INTRODUCTION 7

The chapter by Chapman focuses on motivational, perceptual, and affective mechanisms in pain and complements the chapter by Melzack and Katz. The author recognizes that pain has been defined as a distressing, complex, multidimensional experience. This requires a focus on perceptual mechanisms and the construction of conscious experience, as well as consideration of affective and motivational features. The latter are often ne-glected, as importance is attached to sensory mechanisms. Psychophysical and psychophysiological work provide a solid core for these investigations. Chapman's chapter develops the bridge between physiological mechanisms of pain and psychological practice by linking conscious perceptual processes with physiological functions. His concept of pain is broad (and mostly addresses "intrapersonal determinants" of the experience). Chapman's basic point is that if we want to provide good care, a more inclusive model of pain experience and its determinants needs to be employed.

Recognizing that interpersonal phenomena are often more important than intrapersonal events when pain control is the issue, we discuss in chapter 4 the communication of pain by examining both a theoretical model of pain communication (Craig, Lilley, & Gilbert, 1996; Hadjistavrop- oulos & Craig, 2002; Prkachin & Craig, 1995) and important findings concern- ing illness behavior. Social influences on the pain experience and its expres- sion are also discussed. Communication of pain serves important adaptive functions for humans from the bioevolutionary standpoint. It can elicit res- cue, protection, treatment, and longer term care to facilitate recovery. Its social purposes warn others of danger and promote delivery of culture spe- cific care. Communication of pain is accomplished via verbal and nonverbal channels (e.g., self-report, paralinguistic vocalizations, facial expressions, and other nonverbal actions). This chapter discusses research on the ex- pression of pain, including the importance of the entire communicative rep- ertoire and the potential for deception, the judgmental skills and biases of potential allies and antagonists, and the advantages and disadvantages of current social systems designed to care for people communicating painful distress. Issues related to the communication of pain within families are covered, as are matters pertaining to populations with limited ability to communicate (e.g., infants, persons with cognitive or neuromuscular im- pairments).

Following the first part of the book that is largely focused on theoretical work, Gibson and Chambers outline important developmental consider- ations in the psychology of pain. Pain expression and experience transform with aging, reflecting ontogenetic maturation, socialization in specific famil- ial and cultural settings, and the impact of experiences with pain. An under- standing of the cognitive, affective, behavioral, and social challenges con- fronted during the various stages of life from birth to terminal illness is required. The earliest and latest stages of life presently carry substantial 8 HADJISTAVROPOULOS AND CRAIG

risk of unnecessary or undermanaged pain because of an inadequate knowledge base, underdeveloped assessment procedures, and inadequate pain management. This chapter examines and systematizes developmental processes in pain experience, expression, and communication.

A major source of individual differences (other than biological matura- tion) is culture. The chapter by Rollman considers the empirical and theo- retical literature on the impact of culture on the experience and expression of pain, delineating observed differences and ethnocultural variations in the meaning of pain. There is a focus on mechanisms responsible for varia- tions (acculturation and socialization), linking them to the biopsychosocial model. The chapter also addresses issues of cultural sensitivity in practice.

Individual differences in response to comparable tissue stress and injury are systematically related to known factors (gender, health anxiety, other personality traits). The chapter by Skevington and Mason provides a re- view of the literature and a model of social factors impacting on pain in an effort to understand the origins of individual differences. This is done with special reference to quality-of-life issues. The role of intrapersonal factors such as self-efficacy and their relationship to outcomes and recovery from pain are also considered.

The next section of the book addresses clinical issues more directly than the preceding chapters. In chapter 8, Turk et al. provide a critical overview of methods for the assessment of pain in both research and clinical settings (i.e., self-report, behavioral observation, measurement of physiological re- sponses) and describe their relevance to a wide variety of clinical popula- tions and phenomena. Practical suggestions for clinicians are also offered. The role of psychological assessment among pre- and postsurgical pain pa- tients is discussed.

Bruehl and Chung move the book into an intervention focus with a state- of-the-art discussion of psychologically based interventions for acute pain (wounds, burn, other soft tissue injuries, fractures, medical procedure pain, etc.). These are examined and evaluated in terms of evidence for efficacy. Widely used behavioral and cognitive therapies and other procedures (e.g., hypnosis, placebo) are considered. Consideration is also given to life-span issues.

Heather Hadjistavropoulos and Amanda C. de C. Williams focus on inter- ventions for chronic pain. Psychological interventions represent a neces- sary feature of multidisciplinary care for patients suffering from chronic pain and pain-related disability. This chapter examines the most commonly employed approaches to the treatment of chronic pain as well as the empir- ical evidence (or lack thereof) pertaining to their efficacy. Widely used cog- nitive/behavioral approaches are featured, but psychodynamic perspec- tives are also examined. Best practice in the context of evidence-based treatment is presented. The manner in which medication usage relates to

INTRODUCTION 9

psychological treatment (e.g., medication compliance) is addressed. More- over, a discussion of how psychological interventions can be applied with postsurgical and presurgical pain patients is included.

The last section of the volume focuses on current controversies and ethi- cal issues. The chapter by Kenneth D. Craig and Thomas Hadjistavropoulos reviews current controversies, including critical analyses of the definition of pain, frequent unavailability of psychological interventions for chronic pain, the use of self-report as a gold standard in pain assessment, fears about the implementation of certain biomedical interventions and others.

The final chapter by Thomas Hadjistavropoulos presents a discussion of ethical standards put forth by organizations of pain researchers and psy- chological associations. The presentation of these standards is supple- mented by a discussion of ethical theory traditions on which such stan- dards are based. The chapter also provides coverage of various ethical concerns that are unique to the field of pain, as well as an overview of con- cerns that are especially relevant to psychologists.

We hope that the views presented herein will provide both a better ap- preciation of state-of-the-art developments in the psychology of pain and a greater appreciation of the richness and complexity of the pain experience.

REFERENCES

Asmundson, G. J. G., Hadjistavropoulos, T., & Antonishyn, M. (2001). Profiles and perspectives of leading contributors in the field of pain. *Pain Clinic*, *13*, 55–69.

Baamonde, A. I., Hidalgo, A., & Andres-Trelles, F. (1989). Sex-related differences in the effects of morphine and stress on visceral pain. *Neuropharmacology, 28*, 967–970.

Berkley, K. J. (1993, January/February). Sex and chronobiology: Opportunities for a focus on the positive. *IASP Newsletter*, 2–5.

Bowsher, D., Rigge, M., & Sopp, L. (1991). Prevalence of chronic pain in the British population: A telephone survey of 1037 households. *Pain Clinic, 4*, 223–230.

Cook, A. J., & Thomas, M. R. (1994). Pain and the use of health services among the elderly. *Journal of Aging and Health, 16*, 127–139.

Craig, K. D., Lilley, C. M., & Gilbert, C. A. (1996). Social barriers of optimal pain management in in- fants and children. *Clinical Journal of Pain*, 12, 232–242.

Crombie, I. K. (1997). Epidemiology of persistent pain. In T. S. Jensen, J. A. Turner, & Z. Wiesen- feld-Hallin (Eds.), *Proceedings of the 8th World Congress on Pain* (pp. 53–61). Seattle, WA: Inter- national Association for the Study of Pain.

Crombie, I. K., Croft, P. R., Linton, S. J., LeResche, L., & von Korff, M. (1999). *Epidemiology of pain*. Seattle, WA: International Association for the Study of Pain Press.

Descartes, R. (1985). *Treatise on man* (J. Cottingham, R. Stoothoff, & D. Murdoch, Trans.). Victo- ria, Australia: Cambridge University Press. (Original work published 1644)

Ellman, P., Savage, O. A., Wittkower, E., & Rodger, T. F. (1942). Fibrositis. A biographical study of 50 civilian and military cases. *Annals of the Rheumatic Diseases*, *3*, 56–76.

Ellemeyer, W., & Westphal, W. (1995). Gender differences in pain ratings and pupil reactions to painful pressure stimuli. *Pain, 61*, 435–439.

Fordyce, W. E. (1976). Behavioral methods for chronic pain and illness. St. Louis, MO: Mosby. 10 HADJISTAVROPOULOS AND CRAIG

Fordyce, W. E., Fowler, R., & DeLateur, B. (1968). An application of behavior modification tech- nique to a problem of chronic pain. *Behavoir Research Therapy, 6*, 105–107.

Freud, S. (1893–1895). Studies in hysteria. Complete psychological works (Standard ed., Vol. 2). Lon- don: Hogarth Press.

Goodman, J. E., & McGrath, P. J. (1991). The epidemiology of pain in children and adolescents. A review. *Pain, 46*, 247–264.

Hadjistavropoulos, T., & Craig, K. D. (2002). A theoretical framework for understanding self- report and observational measures of pain: A communications model. *Behaviour Research and Therapy, 40*, 551–570.

Hadjistavropoulos, T., von Baeyer, C., & Craig, K. D. (2001). Pain assessment in persons with lim- ited ability to communicate. In D. C. Turk & R. Melzack (Eds.), *Handbook of pain assessment* (2nd ed., pp. 134–149). New York: Guilford Press.

Hapidou, E. G., & DeCatanzaro, D. (1988). Sensitivity to cold pressor pain in dysmenorrheic and non-dysmenorrheic women as a function of menstrual cycle phase. *Pain, 34*, 277–283.

Hebb, D. O. (1949). *The organization of behavior*. New York: Wiley. Helme, R. D., & Gibson, S. J. (1999). Pain in older people. In I. K. Crombie, P. R. Croft, S. J. Linton, L.

LeResche, & M. von Korff (Eds.), *Epidemiology of pain* (2nd ed., pp. 103–112). Seattle, WA: In-ternational Association for the Study of Pain Press.

Henry, J. (1999–2000). First annual report. Montreal: Canadian Consortium on Pain Mechanisms, Diagnosis and Management.

Hyams, J. S., Burke, G., Davis, P. M., Rzepski, B., & Andrulonis, P. A. (1996). Abdominal pain and ir-ritable bowel syndrome in adolescents: A community-based study. *Journal of Pediatrics*, *129*, 220–226.

International Association for the Study of Pain Ad Hoc Subcommittee for Psychology Curricu- lum. (1997). *Curriculum on pain for students in psychology.* Seattle, WA: IASP Press.

Kepler, K. L., Standifer, K. M., Paul, D., Kest, B., Pasternak, G. W., & Bodnar, R. J. (1991). Gender ef- fects and central opioid analgesia. *Pain, 45,* 87–94.

LeResche, L. (1999). Gender considerations in the epidemiology of chronic pain. In I. K. Crombie, P. R. Croft, S. J. Linton, L. LeResche, & M. von Korff (Eds.), *Epidemiology of pain* (2nd ed., pp. 43–52). Seattle, WA: International Association for the Study of Pain Press.

Liebeskind, J., & Paul, L. (1977). Psychological and physiological mechanisms of pain. Annual Re-view of Psychology, 28, 41-60.

Marzinski, L. R. (1991). The tragedy of dementia: Clinically assessing pain in the confused, non- verbal elderly. *Journal of Gerontological Nursing*, 17, 25–28.

McAlpine, L., & McGrath, P. J. (1999). Chronic and recurrent pain in children. In A. R. Block, E. F. Kremer, & E. Fernandez (Eds.), *Handbook of pain syndromes* (pp. 529–545). Mahwah, NJ: Law-rence Erlbaum Associates.

Melzack, R. (1973). The puzzle of pain. New York: Basic Books. Melzack, R. (1989). Phantom limbs, the self and the brain. Canadian Psychology, 30, 1–16. Melzack, R. (1993). Pain: Past, present and future. Canadian Journal of Experimental Psychology, 47, 615–629. Melzack, R., & Casey, K. L. (1968). Sensory motivational and central controlled determinants of pain: A new conceptual model. In K. Shalod (Ed.), The skin senses (pp. 423–443). Springfield, IL: Charles C. Thomas.

Melzack, R., Coderre, T. J., Katz, J., & Vaccarino, A. L. (2001). Central neuroplasticity and patho- logical pain. *Annals of the New York Academy of Sciences, 933*, 157–174.

Melzack, R., & Scott, T. H. (1957). The effects of early experience on the response to pain. *Journal of Comparative Physiological Psychology, 50*, 155–161.

Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 150, 971–979. Merskey, H. (Ed.). (1996). Thoughts and findings on pain: The Hebb–Bishop correspondence. To- ronto: Canadian Pain Society.

INTRODUCTION 11

Merskey, H. (1998). History of pain research and management in Canada. *Pain Research and Man- agement, 3*, 164–173.

Mobily, P. R., Herr, K. A., Clark, M. K., & Wallace, R. B. (1994). An epidemiologic analysis of pain in the elderly: The lowa 65+ Rural Health Study. *Journal of Aging and Health, 6,* 139–154.

Mogil, J. S., Sternberg, W. F., Kest, B., Marek, P., & Liebeskind, J. (1983). Sex differences in the an-tagonism of swim stress-induced analgesia: Effects of gonadectomy and estrogen replace- ment. *Pain*, *53*, 17–25.

Paulson, P. E., Minoshima, S., Morrow, T. J., & Casey, K. L. (1998). Gender differences in pain per- ception and patterns of cerebral activation during noxious heat stimulation in humans. *Pain*, *76*, 223–229.

Pilowsky, I. (1986). Psychodynamic aspects of the pain experience. In R. A. Sternbach (Ed.), *The psychology of pain* (pp. 181–195). New York: Rayen Press.

Pilowsky, I., & Spence, N. D. (1975). Illness behavior syndromes associated with intractable pain. *Pain, 2*, 61–71.

Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Sci- ence, 288, 1769–1772.

Prkachin, K. M., & Craig, K. D. (1995). Expressing pain: The communication and interpretation of facial pain signals. *Journal of Nonverbal Behavior*, 19, 191–205.

Procacci, P., Buzzelli, G., Passeri, I., Sassi, R., Voegelin, M. R., & Zoppi, M. (1972). Studies on the cutaneous pricking pain threshold in man. Cicadian and circatrigintan changes. *Headache, 3*, 260–276.

Proctor, W. R., & Hirdes, J. P. (2001). Pain and cognitive status among nursing home residents in Canada. *Pain Research and Management*, *6*, 119–125.

Rao, S. S., Ranganekar, A. G., & Saifi, A. Q. (1987). Pain threshold in relation to sex hormones. *In-dian Journal of Physiological Pharmacology*, 31, 250–254.

Rasmussen, B. K. (1993). Tension-type headaches. Cluster headache and miscellaneous head- aches: Epidemiology. In J. Oleson, P. Tfelt-Hansen, & K. M. A. Welch (Eds.), *The headaches* (pp. 439–443). New York: Raven Press.

Scott, W. C. M. (1948). Some embryological, neurological, psychiatric and psychoanalytic impli- cations of the body scheme. *International Journal of Psychoanalysis*, *29*, 141–155.

Statistics Canada. (1996–1997). *National population health survey* (Catalogue No. 82-567-XPB). Ot- tawa: Statistics Canada Health Statistics Division.

Turk, D. C., Meichenbaum, D., & Genest, M. (1983). *Pain and behavioral medicine: A cognitive- behavorial perspective*. New York: Guilford Press.

Turk, D. C., & Melzack, R. (2001). *Handbook of pain assessment* (2nd ed.). New York: Guilford Press.

Unruh, A. M. (1996). Gender variations in clinical pain experience. Pain, 65, 123–167. von Korff, M., Dworkin, S. F., & Le Resche, L. (1990). Graded chronic pain status: An epi- demiologic evaluation. Pain, 40, 279–291. 12 HADJISTAVROPOULOS AND CRAIG

Theories of pain, like all scientific theories, evolve as a result of the accumu- lation of new facts as well as leaps of the imagination (Kuhn, 1970). The gate control theory's most revolutionary contribution to understanding pain was its emphasis on central neural mechanisms (Melzack & Wall, 1965). The the- ory forced the medical and biological sciences to accept the brain as an ac- tive system that filters, selects, and modulates inputs. The dorsal horns, too, were not merely passive transmission stations but sites at which dynamic ac- tivities—inhibition, excitation, and modulation—occurred. The great challenge ahead of us is to understand how the brain functions.

A BRIEF HISTORY OF PAIN IN THE 20TH CENTURY

The theory of pain we inherited in the 20th century was proposed by Des- cartes three centuries earlier (see Melzack & Wall, 1996). Descartes was the first philosopher to be influenced by the scientific method that flourished in the 17th century, and he achieved a major revolution by arguing that the body works like a machine that can be studied by using the experimental methods of physics pioneered by Galileo and others. Although humans, Descartes proposed, have a soul (or mind), the human body is nevertheless a machine like an animal's body.

CHAPTER1

The Gate Control Theory: Reaching for the Brain

Ronald Melzack Department of Psychology,

McGill University

Joel Katz Department of Psychology, Toronto General Hospital 13

The impact of Descartes's theory was enormous. The history of experiments on the anatomy and physiology of pain during the first half of the 20th century (reviewed in Melzack & Wall, 1996) is marked by a search for specific pain fibers and pathways and a pain center in the brain. The result was a concept of pain as a specific, straight-through sensory projection system (Fig. 1.1). This rigid anatomy of pain in the 1950s led to attempts to treat severe chronic pain by a variety of neurosurgical lesions. Descartes's specificity theory, then, determined the "facts" as they were known up to the middle of the 20th century, and even determined therapy.

Specificity theory proposed that injury activates specific pain receptors and fibers, which, in turn, project pain impulses through a spinal pain path- way to a pain center in the brain. The psychological experience of pain, therefore, was virtually equated with peripheral injury. In the 1950s, there was no room for psychological contributions to pain, such as attention, past experience, anxiety, depression, and the meaning of the situation. In- 14 MELZACK AND KATZ

FIG. 1.1. Descartes's concept of the pain pathway. He wrote: "If for example fire (A) comes near the foot (B), the minute particles of this fire, which as you know move with great velocity, have the power to set in motion the spot of the skin of the foot which they touch, and by this means pulling upon the delicate thread CC, which is attached to the spot of the skin, they open up at the same instant the pore, d.e., against which the delicate thread ends, just as by pulling at one end of a rope one makes to strike at the same instant a bell which hangs at the other end" (Keele, 1957, p. 72).

stead, pain experience was held to be proportional to peripheral injury or pathology. Patients who suffered back pain without presenting signs of or- ganic disease were often labeled as psychologically disturbed and sent to psychiatrists. The concept, in short, was simple and, not surprisingly, often failed to help patients who suffered severe chronic pain. To thoughtful clini- cal observers, specificity theory was clearly wrong.

There were several attempts to find a new theory. The major opponent to specificity was labeled as "pattern theory," but there were several differ- ent pattern theories and they were generally vague and inadequate (see Melzack & Wall, 1996). However, seen in retrospect, pattern theories gradu- ally evolved (Fig. 1.2) and set the stage for the gate control theory. Gold- scheider (1894) proposed that central summation in the dorsal horns is one of the critical determinants of pain. Livingston's (1943) theory postulated a reverberatory circuit in the dorsal horns to explain summation, referred pain, and pain that persisted long after healing was completed. Noorden- bos's (1959) theory proposed that large-diameter fibers inhibited small- diameter fibers, and he even suggested that the substantia gelatinosa in the dorsal horns plays a major role in the summation and other dynamic proc- esses described by Livingston. However, in none of these theories was there an explicit role for the brain other than as a passive receiver of mes- sages. Nevertheless, the successive theoretical concepts moved the field in the right direction: into the spinal cord and away from the periphery as the 1. THE GATE CONTROL THEORY 15

FIG. 1.2. (Continued)

FIG. 1.2. Schematic representation of conceptual models of pain mechanisms. (A) Specificity theory. Large (L) and small (S) fibers are assumed to transmit touch and pain impulses respectively, in separate, specific, straight-through pathways to touch and pain centers in the brain. (B) Goldscheider's (1894) summation theory, showing convergence of small fibers onto a dorsal horn cell. The central network projecting to the central cell represents Livingston's (1943) conceptual model of reverberatory circuits underlying pathological pain states. Touch is assumed to be carried by large fibers. (C) Sensory interac- tion theory, in which large (L) fibers inhibit () and small (S) fibers excite (+) central transmission neurons. The output projects to spinal cord neurons, which are conceived by Noordenbos (1959) to comprise a multisynaptic affer- ent system. (D) Gate control theory. The large (L) and small (S) fibers project to the substantia gelatinosa (SG) and first central transmission (T) cells. The central control trigger is represented by a line running from the large fiber sys- tem to central control mechanisms, which in turn project back to the gate con- trol system. The T cells project to the entry cells of the action system. +, Excita- tion; , inhibition. From Melzack (1991), with permission. 16

exclusive answer to pain. At least the field of pain was making its way up to- ward the brain.

THE GATE CONTROL THEORY OF PAIN

In 1965, Melzack and Wall proposed the gate control theory of pain. The fi- nal model, depicted in Fig. 1.2D in the context of earlier theories of pain, is the first theory of pain which incorporated the central control processes of the brain.

The gate control theory of pain (Melzack & Wall, 1965) proposes that the transmission of nerve impulses from afferent fibers to spinal cord transmis- sion (T) cells is modulated by a gating mechanism in the spinal dorsal horn. This gating mechanism is influenced by the relative amount of activity in large- and small-diameter fibers, so that large fibers tend to inhibit trans- mission (close the gate) while small fibers tend to facilitate transmission (open the gate). In addition, the spinal gating mechanism is influenced by nerve impulses that descend from the brain. When the output of the spinal T cells exceeds a critical level, it activates the action system—those neural areas that underlie the complex, sequential patterns of behavior and expe- rience characteristic of pain.

Publication of the gate control theory received an astonishing reception. The theory generated vigorous (sometimes vicious) debate as well as a great deal of research to disprove or support the theory. The search for specific pain fibers and spinal cells by our opponents now became almost frantic. It was not until the mid-1970s that the gate control theory was pre- sented in almost every major textbook in the biological and medical sci- ences. At the same time, there was an explosion in research on the physiol- ogy and pharmacology of the dorsal horns and the descending control systems.

The theory's emphasis on the modulation of inputs in the spinal dorsal horns and the dynamic role of the brain in pain processes had a clinical as well as a scientific impact. Psychological factors that were previously dis- missed as "reactions to pain" became seen to be an integral part of pain processing and new avenues for pain control by psychological therapies were opened. Similarly, cutting nerves and pathways was gradually re- placed by a host of methods to modulate the input. Physical therapists and other health-care professionals who use a multitude of modulation tech- niques were brought into the picture, and TENS became an important mo- dality for the treatment of chronic and acute pain. The current status of pain research and therapy has recently been evaluated and indicates that, despite the addition of a massive amount of detail, the conceptual compo- nents of the theory remain basically intact up to the present. 1. THE GATE CONTROL THEORY 17

BEYOND THE GATE

We believe the great challenge ahead of us is to understand brain function. Melzack and Casey (1968) made a start by proposing that specialized systems in the brain are involved in the sensory-discriminative, motivational- affective, and cognitive-evaluative dimensions of subjective pain experience (Fig. 1.3). These names for the dimensions of subjective experience seemed strange when they were coined, but they are now used so frequently and seem so "logical" that they have become part of our language. So, too, the McGill Pain Questionnaire (Fig. 1.4), which taps into subjective experience—a function of the brain—is widely used to measure pain (Melzack, 1975a, 1987).

The gate theory also postulated that the brain exerted a tonic inhibitory effect on pain. An experiment by Melzack, Stotler, and Livingston (1958) re- vealed the midbrain's tonic descending inhibitory control and led directly to Reynolds's (1969) discovery that electrical stimulation of the periaque- ductal gray produces analgesia. This study was followed by Liebeskind's re- search (Liebeskind & Paul, 1977) on pharmacological substances such as endorphins that contribute to the descending inhibition. The observation that "pain takes away pain," in which Melzack (1975b) postulated that de- scending inhibition tends to be activated by intense inputs, led to a series of studies on intense TENS stimulation. Later, a series of definitive studies on "diffuse noxious inhibitory controls" (DNIC) firmly established the power of descending inhibitory controls (Le Bars, Dickenson, & Besson, 1983; Fields & Basbaum, 1999). 18 MELZACK AND KATZ

FIG. 1.3. Conceptual model of the sensory, motivational, and central control de- terminants of pain. The output of the T (transmission) cells of the gate control system projects to the sensory-discriminative system and the motivational- affective system. The central control trigger is represented by a line running from the large fiber system to central control processes; these, in turn, project back to the gate control system, and to the sensory-discriminative and motiva- tional-affective systems. All three systems interact with one another, and project to the motor system. From Melzack and Casey (1968), with permission.

FIG. 1.4. McGill Pain Questionnaire. The descriptors fall into four major groups: sensory, 1–10; affective, 11–15; evaluative, 16; and miscellaneous, 17–20. The rank value for each descriptor is based on its position in the word set. The sum of the rank values is the pain rating index (PRI). The present pain intensity (PPI) is based on a scale of 0 to 5. From Melzack (1975a), with permission. 19

In 1978, Melzack and Loeser described severe pains in the phantom body of paraplegics with verified total sections of the spinal cord, and proposed a central "pattern-generating mechanism" above the level of the section (Melzack & Loeser, 1978). This concept, generally ignored for about 10 years, is now beginning to be accepted. It represents a revolutionary ad- vance: It did not merely extend the gate; it said that pain could be gener- ated by brain mechanisms in paraplegics in the absence of spinal input be- cause the brain is completely disconnected from the cord. Psychophysical specificity, in such a concept, makes no sense; instead, we must explore how patterns of nerve impulses generated in the brain can give rise to somesthetic experience.

PHANTOM LIMBS AND THE CONCEPT OF A NEUROMATRIX

It is evident that the gate control theory has taken us a long way. Yet, as his-torians of science have pointed out, good theories are instrumental in pro- ducing facts that eventually require a new theory to incorporate them. And this is what has happened. It is possible to make adjustments to the gate theory so that, for example, it includes long-lasting activity of the sort Wall has described (see Melzack & Wall, 1996). But there is a set of observations on pain in paraplegics that just does not fit the theory. This does not negate the gate theory, of course. Peripheral and spinal processes are obviously an important part of pain, and we need to know more about the mecha-nisms of peripheral inflammation, spinal modulation, midbrain descending control, and so forth. But the data on painful phantoms below the level of total spinal section (Melzack, 1989, 1990) indicate that we need to go above the spinal cord and into the brain.

Now let us make it clear that we mean more than the spinal projection areas in the thalamus and cortex. These areas are important, of course, but they are only part of the neural processes that underlie perception. The cortex, Gybels and Tasker (1999) made amply clear, is not the pain center and neither is the thalamus. The areas of the brain involved in pain experi- ence and behavior must include somatosensory projections as well as the limbic system. Furthermore, cognitive processes are known to involve widespread areas of the brain. Yet the plain fact is that we do not have an adequate theory of how the brain works.

Melzack's (1989) analysis of phantom limb phenomena, particularly the astonishing reports of a phantom body and severe phantom limb pain in people after a cordectomy—that is, complete removal of several spinal cord segments (Melzack & Loeser, 1978)—led to four conclusions that point to a new conceptual nervous system. First, because the phantom limb (or other 20 MELZACK AND KATZ

body part) feels so real, it is reasonable to conclude that the body we nor- mally feel is subserved by the same neural processes in the brain; these brain processes are normally activated and modulated by inputs from the body but they can act in the absence of any inputs. Second, all the qualities we normally feel from the body, including pain, are also felt in the absence of inputs from the body; from this we may conclude that the origins of the patterns that underlie the qualities of experience lie in neural networks in the brain; stimuli may trigger the patterns but do not produce them. Third, the body is perceived as a unity and is identified as the "self," distinct from other people and the surrounding world. The experience of a unity of such diverse feelings, including the self as the point of orientation in the sur-rounding environment, is produced by central neural processes and cannot derive from the peripheral nervous system or spinal cord. Fourth, the brain processes that underlie the body-self are, to an important extent that can no longer be ignored, "built in" by genetic specification, although this built- in substrate must, of course, be modified by experience. These conclusions provide the basis of the new conceptual model (Melzack, 1989, 1990, 2001; Fig. 1.5).

Outline of the Theory

The anatomical substrate of the body-self, Melzack proposed, is a large, widespread network of neurons that consists of loops between the thala- mus and cortex as well as between the cortex and limbic system. He labeled 1. THE GATE CONTROL THEORY 21

FIG. 1.5. Factors that contribute to the patterns of activity generated by the body-self neuromatrix, which is comprised of sensory, affective, and cognitive neuromodules. The output patterns from the neuromatrix produce the multi- ple dimensions of pain experience, as well as concurrent homeostatic and be- havioral responses. From Melzack (2001), with permission.

the entire network, whose spatial distribution and synaptic links are ini- tially determined genetically and are later sculpted by sensory inputs, as a *neuromatrix*. The loops diverge to permit parallel processing in different components of the neuromatrix and converge repeatedly to permit interac- tions between the output products of processing. The repeated *cyclical processing and synthesis* of nerve impulses through the neuromatrix imparts a characteristic pattern: the *neurosignature*. The neurosignature of the neu- romatrix is imparted on all nerve impulse patterns that flow through it; the neurosignature is produced by the patterns of synaptic connections in the entire neuromatrix. All inputs from the body undergo cyclical processing and synthesis so that characteristic patterns are impressed on them in the neuromatrix. Portions of the neuromatrix are specialized to process infor- mation related to major sensory events (such as injury, temperature change and stimulation of erogenous tissue) and may be labeled as neuro- modules that impress subsignatures on the larger neurosignature.

The neurosignature, which is a continuous output from the body-self neuromatrix, is projected to areas in the brain—the *sentient neural hub*—in which the stream of nerve impulses (the neurosignature modulated by on- going inputs) is converted into a continually changing stream of awareness. Furthermore, the neurosignature patterns may also activate a neuromatrix to produce movement. That is, the signature patterns bifurcate so that a pattern proceeds to the *sentient neural hub* (where the pattern is trans- formed into the experience of movement) and a similar pattern proceeds through a neuromatrix that eventually activates spinal cord neurons to pro- duce muscle patterns for complex actions.

The Body-Self Neuromatrix

The body is felt as a unity, with different qualities at different times. Mel- zack proposed that the brain mechanism that underlies the experience also comprises a unified system that acts as a whole and produces a neuro- signature pattern of a whole body. The conceptualization of this unified brain mechanism lies at the heart of the new theory, and the word neuro- matrix best characterizes it. Matrix has several definitions in Webster's Dic- tionary (1967), and some of them imply precisely the properties of the neuromatrix as Melzack conceived of it. First, a matrix is defined as "some- thing within which something else originates, takes form or develops." This is exactly what Melzack implied: The neuromatrix (not the stimulus, periph- eral nerves, or "brain center") is the origin of the neurosignature; the neurosignature originates and takes form in the neuromatrix. Although the neurosignature may be triggered or modulated by input, the input is only a "trigger" and does not produce the neurosignature itself. Matrix is also de- fined as a "mold" or "die," which leaves an imprint on something else. In 22 MELZACK AND KATZ

this sense, the neuromatrix "casts" its distinctive signature on all inputs (nerve impulse patterns) that flow through it. Finally, matrix is defined as "an array of circuit elements . . . for performing a specific function as inter- connected." The array of neurons in a neuromatrix, Melzack proposed, is genetically programmed to perform the specific function of producing the signature pattern. The final, integrated neurosignature pattern for the body- self ultimately produces awareness and action.

For these reasons, the term *neuromatrix* seems to be appropriate. The neuromatrix, distributed throughout many areas of the brain, comprises a widespread network of neurons that generates patterns, processes information that flows through it, and ultimately produces the pattern that is felt as a whole body. The stream of neurosignature output with constantly varying patterns riding on the main signature pattern produces the feelings of the whole body with constantly changing qualities.

Psychological Reasons for a Neuromatrix

It is difficult to comprehend how individual bits of information from skin, joints, or muscles can all come together to produce the experience of a co- herent, articulated body. At any instant in time, millions of nerve impulses arrive at the brain from all the body's sensory systems, including the pro- prioceptive and vestibular systems. How can all this be integrated in a con- stantly changing unity of experience? Where does it all come together?

Melzack visualized a genetically built-in neuromatrix for the whole body, producing a characteristic neurosignature for the body that carries with it patterns for the myriad qualities we feel. The neuromatrix, as Melzack con- ceived of it, produces a continuous message that represents the whole body in which details are differentiated within the whole as inputs come into it. We start from the top, with the experience of a unity of the body, and look for differentiation of detail within the whole. The neuromatrix, then, is a template of the whole, which provides the characteristic neural pattern for the whole body (the body's neurosignature), as well as subsets of signa- ture patterns (from neuromodules) that relate to events at (or in) different parts of the body.

These views are in sharp contrast to the classical specificity theory in which the qualities of experience are presumed to be inherent in peripheral nerve fibers. Pain is not injury; the quality of pain experiences must not be confused with the physical event of breaking skin or bone. Warmth and cold are not "out there"; temperature changes occur "out there," but the qualities of experience must be generated by structures in the brain. There are no external equivalents to stinging, smarting, tickling, itch; the qualities are produced by built-in neuromodules whose neurosignatures innately produce the qualities. 1. THE GATE CONTROL THEORY 23

We do not learn to feel qualities of experience: Our brains are built to produce them. The inadequacy of the traditional peripheralist view be- comes especially evident when we consider paraplegics with high-level complete spinal breaks. In spite of the absence of inputs from the body, vir- tually every quality of sensation and affect is experienced. It is known that the absence of input produces hyperactivity and abnormal firing patterns in spinal cells above the level of the break (Melzack & Loeser, 1978). But how, from this jumble of activity, do we get the meaningful experience of movement, the coordination of limbs with other limbs, cramping pain in specific (nonexistent) muscle groups, and so on? This must occur in the brain, in which neurosignatures are produced by neuromatrixes that are triggered by the output of hyperactive cells.

When all sensory systems are intact, inputs modulate the continuous neuromatrix output to produce the wide variety of experiences we feel. We may feel position, warmth, and several kinds of pain and pressure all at once. It is a single unitary feeling just as an orchestra produces a single uni- tary sound at any moment, even though the sound comprises violins, cel- los, horns, and so forth. Similarly, at a particular moment in time we feel complex qualities from all of the body. In addition, our experience of the body includes visual images, affect, and "knowledge" of the self (versus not- self), as well as the meaning of body parts in terms of social norms and val- ues. It is hard to conceive of all of these bits and pieces coming together to produce a unitary body-self, but we can visualize a neuromatrix that impresses a characteristic signature on all the inputs that converge on it and thereby produces the never-ending stream of feeling from the body.

The experience of the body-self involves multiple dimensions—sensory, affective, evaluative, postural, and many others. The sensory dimensions are subserved, in part at least, by portions of the neuromatrix that lie in the sensory projection areas of the brain; the affective dimensions, Melzack as- sumed, are subserved by areas in the brainstem and limbic system. Each major psychological dimension (or quality) of experience, he proposed, is subserved by a particular portion of the neuromatrix that contributes a dis- tinct portion of the total neurosignature. To use a musical analogy once again, it is like the strings, tympani, woodwinds, and brasses of a symphony orchestra that each comprise a part of the whole; each makes its unique contribution yet is an integral part of a single symphony that varies continually from beginning to end.

The neuromatrix resembles Hebb's "cell assembly" by being a wide- spread network of cells that subserves a particular psychological function. However, Hebb (1949) conceived of the cell assembly as a network devel- oped by gradual sensory learning, whereas Melzack, instead, proposed that the structure of the neuromatrix is predominantly determined by genetic factors, although its eventual synaptic architecture is influenced by sensory 24 MELZACK AND KATZ

inputs. This emphasis on the genetic contribution to the brain does not di-minish the importance of sensory inputs. The neuromatrix is a psychologi-cally meaningful unit, developed by both heredity and learning, that represents an entire unified entity.

Action Patterns: The Action Neuromatrix. The output of the body-self neuromatrix, Melzack (1991, 1995, 2001) proposed, is directed at two sys- tems: (a) the neural system that produces awareness of the output, and (b) a neuromatrix that generates overt action patterns. In this discussion, it is important to keep in mind that just as there is a steady stream of aware- ness, there is also a steady output of behavior.

It is important to recognize that behavior occurs only after the input has been at least partially synthesized and recognized. For example, when we respond to the experience of pain or itch, it is evident that the experience has been synthesized by the body-self neuromatrix (or relevant neuro- modules) sufficiently for the neuromatrix to have imparted the neurosig- nature patterns that underlie the quality of experience, affect, and meaning. Apart from a few reflexes (such as withdrawal of a limb, eyeblink, and so on), behavior occurs only after inputs have been analyzed and synthe- sized sufficiently to produce meaningful experience. When we reach for an apple, the visual input has clearly been synthesized by a neuromatrix so that it has three-dimensional shape, color, and meaning as an edible, desirable object, all of which are produced by the brain and are not in the object "out there." When we respond to pain (by withdrawal or even by telephoning for an ambulance), we respond to an experience that has sen- sory qualities, affect, and meaning as a dangerous (or potentially dangerous) event to the body.

After inputs from the body undergo transformation in the body-self neuromatrix, the appropriate action patterns are activated concurrently (or nearly so) with the neural system that generates experience. Thus, in the action neuromatrix, cyclical processing and synthesis produce activa- tion of several possible patterns and their successive elimination until one particular pattern emerges as the most appropriate for the circum- stances at the moment. In this way, input and output are synthesized si- multaneously, in parallel, not in series. This permits a smooth, continuous stream of action patterns.

The command, which originates in the brain, to perform a pattern such as running activates the neuromodule, which then produces firing in se- quences of neurons that send precise messages through ventral horn neu- ron pools to appropriate sets of muscles. At the same time, the output pat- terms from the body-self neuromatrix that engage the neuromodules for particular actions are also projected to the neural "awareness system" and produce experience. In this way, the brain commands may produce 1, THE GATE CONTROL THEORY 25

the experience of movement of phantom limbs even though there are no limbs to move and no proprioceptive feedback. Indeed, reports by para-plegics of terrible fatigue due to persistent bicycling movements, like the painful fatigue in a tightly clenched phantom fist in arm amputees (Katz, 1993), indicate that feelings of effort and fatigue are produced by the neurosignature of a neuromodule rather than particular input patterns from muscles and joints.

The phenomenon of phantom limbs has allowed us to examine some fun-damental assumptions in psychology. One assumption is that sensations are produced only by stimuli and that perceptions in the absence of stimuli are psychologically abnormal. Yet phantom limbs, as well as phantom see- ing (Schultz & Melzack, 1991), indicate that this notion is wrong. The brain does more than detect and analyze inputs; it generates perceptual experi- ence even when no external inputs occur.

Another entrenched assumption is that perception of one's body re- sults from sensory inputs that leave a memory in the brain, and that the total of these signals becomes the body image. But the existence of phan- toms in people born without a limb or who have lost a limb at an early age suggests that the neural networks for perceiving the body and its parts are built into the brain (Melzack, 1989, 1990, 1995; Melzack et al., 1997). The absence of inputs does not stop the networks from generating mes- sages about missing body parts; they continue to produce such messages throughout life. In short, phantom limbs are a mystery only if we assume the body sends sensory messages to a passively receiving brain. Phan- toms become comprehensible once we recognize that the brain generates the experience of the body. Sensory inputs merely modulate that experi- ence; they do not directly cause it.

PAIN AND STRESS

We are so accustomed to considering pain as a purely sensory phenome- non that we have ignored the obvious fact that injury does not merely pro- duce pain; it also disrupt the brain's homeostatic regulation systems, thereby producing "stress" and initiating complex programs to reinstate homeostasis. By recognizing the role of the stress system in pain processes, we discover that the scope of the puzzle of pain is vastly expanded and new pieces of the puzzle provide valuable clues in our quest to understand chronic pain (Melzack, 1998, 1999).

Hans Selye, who founded the field of stress research, dealt with stress in the biological sense of physical injury, infection, and pathology, and also recognized the importance of psychological stresses (Selye, 1956). In recent years, the latter sense of the word has come to dominate the field. How- 26 MELZACK AND KATZ

ever, it is important for the purpose of understanding pain to keep in mind that stress is a biological system that is activated by physical injury, infec- tion, or any threat to biological homeostasis, as well as by psychological threat and insult of the body-self. Both are correct and important.

The disruption of homeostasis by injury activates programs of neural, hormonal, and behavioral activity aimed at a return to homeostasis. The particular programs that are activated are selected from a genetically de- termined repertoire of programs and are influenced by the extent and se- verity of the injury. When injury occurs, sensory information rapidly alerts the brain and begins the complex sequence of events to reinstate homeo- stasis. Cytokines are released within seconds after injury. These sub- stances, such as gamma-interferon, interleukins 1 and 6, and tumor necrosis factor, enter the bloodstream in 1 to 4 minutes and travel to the brain. The cytokines, therefore, are able to activate fibers that send messages to the brain and, concurrently, to breach the blood-brain barrier at specific sites and have an immediate effect on hypothalamic cells. The cytokines to- gether with evaluative information from the brain rapidly begin a sequence of activities aimed at the release and utilization of glucose for necessary ac- tions, such as removal of debris, the repair of tissues, and (sometimes) fe- ver to destroy bacteria and other foreign substances. At sufficient severity of injury, the noradrenergic system is activated: Adrenalin is released into the blood stream and the powerful locus ceruleus/norepinephrine (LC/NE) system in the brainstem projects information upward throughout the brain and downward through the descending efferent sympathetic nervous sys- tem. Thus the whole sympathetic system is activated to produce readiness of the heart, blood vessels, and other viscera for complex programs to reinstate homeostasis (Chrousos & Gold, 1992; Sapolsky, 1994).

At the same time, the perception of pain activates the hypothalamic- pituitary-adrenal (HPA) system, in which corticotropin-releasing hormone (CRH) produced in the hypothalamus enters the local bloodstream, which carries the hormone to the pituitary, causing the release of adrenocorti- cotropic hormone (ACTH) and other substances. The ACTH then activates the adrenal cortex to release cortisol, which may play a powerful role in de- termining chronic pain. Cortisol also acts on the immune system and the endogenous opioid system. Although these opioids are released within min- utes, their initial function may be simply to inhibit or modulate the release of cortisol. Experiments with animals suggest that their analgesic effects may not appear until as long as 30 minutes after injury.

Cortisol, together with noradrenergic activation, sets the stage for re- sponse to life-threatening emergency. If the output of cortisol is prolonged, or excessive, or of abnormal patterning, it may produce destruction of mus- cle, bone, and neural tissue and produce the conditions for many kinds of chronic pain. 1. THE GATE CONTROL THEORY 27

Cortisol is an essential hormone for survival after injury because it is re- sponsible for producing and maintaining high levels of glucose for rapid re- sponse after injury, threat, or other emergency. However, cortisol is poten- tially a highly destructive substance because, to ensure a high level of glucose, it breaks down the protein in muscle and inhibits the ongoing re- placement of calcium in bone. Sustained cortisol release, therefore, can produce myopathy, weakness, fatigue, and decalcification of bone. It can also accelerate neural degeneration of the hippocampus during aging and suppress the immune system (Sapolsky, 1994). It may also affect the central nervous system (Lariviere & Melzack, 2000).

A major clue to the relationships among injury, stress, and pain is that many autoimmune diseases, such as rheumatoid arthritis and scleroderma, are also pain syndromes (Melzack, 1998, 1999). Furthermore, more women than men suffer from autoimmune diseases as well as chronic pain syn- dromes. Among the 5% of adults who suffer from an autoimmune disease, two out of three are women. Pain diseases also show a sex difference, as Berkley and Holdcroft (1999) argued, with the majority prevalent in women, and a smaller number prevalent in men. Of particular importance is the change in sex ratios concurrently with changes in sex hormone output as a function of age. Estrogen increases the release of peripheral cytokines, such as gamma-interferon, which in turn produce increased cortisol. This may explain, in part, why more females than males suffer from most kinds of chronic pain as well as painful autoimmune diseases such as multiple sclerosis and lupus.

Some forms of chronic pain may occur as a result of the cumulative de-structive effect of cortisol on muscle, bone, and neural tissue. Furthermore, loss of fibers in the hippocampus due to aging reduces a natural brake on cortisol release that is normally exerted by the hippocampus. As a result, cortisol is released in larger amounts, producing a greater loss of hippo-campal fibers and a cascading deleterious effect. This is found in aging pri-mates and presumably also occurs in humans. It could explain the increase of chronic pain problems among older people.

The cortisol output by itself may not be sufficient to cause any of these problems, but rather provides the conditions so that other contributing fac- tors may, all together, produce them. Sex-related hormones, genetic predis- positions, psychological stresses derived from social competition, and the hassles of everyday life may act together to influence cortisol release, its amount and pattern, and the effects of the target organs.

These speculations are supported by strong evidence. Chrousos and Gold (1992) documented the effects of dysregulation of the cortisol system: effects on muscle and bone, to which they attribute fibromyalgia, rheuma- toid arthritis, and chronic fatigue syndrome. They proposed that they are caused by hypocortisolism, which could be due do depletion of cortisol as 28 MELZACK AND KATZ

a result of prolonged stress. Indeed, Sapolsky (1994) attributed myopathy, bone decalcification, fatigue, and accelerated neural degeneration during aging to prolonged exposure to stress.

Clearly, consideration of the relationship between stress-system effects and chronic pain leads directly to examination of the effects of suppression of the immune system and the development of autoimmune effects. The fact that several autoimmune diseases are also classified as chronic pain syndromes—such as Crohn's disease, multiple sclerosis, rheumatoid arthri- tis, scleroderma, and lupus—suggests that the study of these syndromes in relation to stress effects and chronic pain could be fruitful. Immune sup- pression, which involves prolonging the presence of dead tissue, invading bacteria and viruses, could produce a greater output of cytokines, with a consequent increase in cortisol and its destructive effects. Furthermore, prolonged immune suppression may diminish gradually and give way to a rebound, excessive immune response. The immune system's attack on its own body's tissues may produce autoimmune diseases that are also chronic pain syndromes. Thorough investigation may provide valuable clues for understanding at least some of the terrible chronic pain syn- dromes that now perplex us and are beyond our control.

PAIN AND NEUROPLASTICITY

There was no place in the specificity concept of the nervous system for "plasticity," in which neuronal and synaptic functions are capable of being molded or shaped so that they influence subsequent perceptual experi- ences. Plasticity related to pain represents persistent functional changes, or "somatic memories," (Katz & Melzack, 1990), produced in the nervous system by injuries or other pathological events. The recognition that such changes can occur is essential to understanding the chronic pain syn- dromes, such as low back pain and phantom limb pain, that persist and of- ten destroy the lives of the people who suffer them.

Denervation Hypersensitivity and Neuronal Hyperactivity

Sensory disturbances associated with nerve injury have been closely linked to alterations in CNS function. Markus, Pomeranz, and Krushelnycky (1984) demonstrated that the development of hypersensitivity in a rat's hindpaw following sciatic nerve section occurs concurrently with the expansion of the saphenous nerve's somatotopic projection in the spinal cord. Nerve injury may also lead to the development of increased neuronal activity at every level of the somatosensory system (see review by Coderre, Katz, 1. THE GATE CONTROL THEORY 29

Vaccarino, & Melzack, 1993). In addition to spontaneous activity generated from the neuroma, peripheral neurectomy also leads to increased sponta- neous activity in the dorsal root ganglion and spinal cord. Furthermore, af- ter dorsal rhizotomy, there are increases in spontaneous neural activity in the dorsal horn, the spinal trigeminal nucleus, and the thalamus.

Clinical neurosurgery studies reveal a similar relationship between de- nervation and CNS hyperactivity. Neurons in the somatosensory thalamus of patients with neuropathic pain display high spontaneous firing rates, ab- normal bursting activity, and evoked responses to stimulation of body ar- eas that normally do not activate these neurons (Lenz et al., 1987; Lenz, Kwan, Dostrovsky, & Tasker, 1989). The site of abnormality in thalamic func- tion appears to be somatotopically related to the painful region. In patients with complete spinal cord transection and dysesthesias referred below the level of the break, neuronal hyperactivity was observed in thalamic regions that had lost their normal sensory input, but not in regions with apparently normal afferent input (Lenz et al., 1987). Furthermore, in patients with neuropathic pain, electrical stimulation of subthalamic, thalamic, and cap- sular regions may evoke pain and in some instances even reproduce the pa- tient's pain (Nathan, 1985; Tasker, 1989). Direct electrical stimulation of spontaneously hyperactive cells evokes pain in some but not all pain pa- tients, raising the possibility that in certain patients the observed changes in neuronal activity may contribute to the perception of pain (Lenz, Kwan, Dostrovsky, & Tasker, 1987). Studies of patients undergoing electrical brain stimulation during brain surgery reveal that pain is rarely elicited by test stimuli unless the patient suffers from a chronic pain problem. However, brain stimulation can elicit pain responses in patients with chronic pain that does not involve extensive nerve injury or deafferentation. Nathan (1985) described a patient who underwent thalamic stimulation for a move- ment disorder. The patient had been suffering from a toothache for 10 days prior to the operation. Electrical stimulation of the thalamus reproduced the toothache.

It is possible that receptive field expansions and spontaneous activity generated in the CNS following peripheral nerve injury are, in part, medi- ated by alterations in normal inhibitory processes in the dorsal horn. Within 4 days of a peripheral nerve section there is a reduction in the dor- sal root potential and, therefore, in the presynaptic inhibition it represents (Wall & Devor, 1981). Nerve section also induces a reduction in the inhibi- tory effect of A-fiber stimulation on activity in dorsal horn neurons (Woolf & Wall, 1982). Furthermore, nerve injury affects descending inhibitory con- trols from brainstem nuclei. In the intact nervous system, stimulation of the locus ceruleus (Segal & Sandberg, 1977) or the nucleus raphe magnus (Oliveras, Guilbaud, & Besson, 1979) produces an inhibition of dorsal horn neurons. Following dorsal rhizotomy, however, stimulation of these areas 30 MELZACK AND KATZ

produces excitation, rather than inhibition, in half the cells studied (Hodge, Apkarian, Owen, & Hanson, 1983).

Recent advances in our understanding of the mechanisms that underlie pathological pain have important implications for the treatment of both acute and chronic pain. Because it has been established that intense nox- ious stimulation produces a sensitization of CNS neurons, it is possible to direct treatments not only at the site of peripheral tissue damage, but also at the site of central changes. Furthermore, it may be possible in some in- stances to prevent the development of central changes which contribute to pathological pain states. The fact that amputees are more likely to develop phantom limb pain if there is pain in the limb prior to amputation (Katz & Melzack, 1990), combined with the finding that the incidence of phantom limb pain is reduced if patients are rendered pain free by epidural blockade with bupivacaine and morphine prior to amputation (Bach, Noreng, & Tjellden, 1988) suggests that the development of neuropathic pain can be prevented by reducing the potential for central sensitization at the time of amputation. Although the latter finding is contentious (McQuay, 1992; McQuay, Carroll, & Moore, 1988), the conclusions by Bach et al. remain valid (Katz et al., 1992, 1994).

The evidence that postoperative pain is also reduced by premedication with regional and/or spinal anesthetic blocks and/or opiates (McQuay et al., 1988; Tversky, Cozacov, Ayache, Bradley, & Kissin, 1990; Katz et al., 1992) suggests that acute postoperative pain can also benefit from the blocking of the afferent barrage arriving within the CNS and the central sensitization it may induce (Katz, Jackson, Kavanagh, & Sandler, 1996). Whether chronic postoperative problems such as painful scars, postthoracotomy chest-wall pain, and phantom limb and stump pain can be reduced by blocking noci- ceptive inputs during surgery remains to be determined. Furthermore, additional research is required to determine whether multiple-treatment ap- proaches (involving local and epidural anesthesia, as well as pretreatment with opiates and anti-inflammatory drugs) that produce an effective block- ade of afferent input may also prevent or relieve other forms of severe chronic pain such as postherpetic neuralgia and reflex sympathetic dystro- phy. It is hoped that a combination of new pharmacological developments, careful clinical trials, and an increased understanding of the contribution and mechanisms of noxious stimulus-induced neuroplasticity, will lead to improved clinical treatment and prevention of pathological pain.

THE MULTIPLE DETERMINANTS OF PAIN

The neuromatrix theory of pain proposes that the neurosignature for pain experience is determined by the synaptic architecture of the neuromatrix, which is produced by genetic and sensory influences. The neurosignature 1. THE GATE CONTROL THEORY 31

pattern is also modulated by sensory inputs and by cognitive events, such as psychological stress. Furthermore, stressors, physical as well as psychological, act on stress-regulation systems, which may produce lesions of muscle, bone, and nerve tissue, thereby contributing to the neurosignature patterns that give rise to chronic pain. In short, the neuromatrix, as a result of homeostasis-regulation patterns that have failed, may produce the de- structive conditions that give rise to many of the chronic pains that so far have been resistant to treatments developed primarily to manage pains that are triggered by sensory inputs. The stress regulation system, with its complex, delicately balanced interactions, is an integral part of the multiple contributions that give rise to chronic pain.

The neuromatrix theory guides us away from the Cartesian concept of pain as a sensation produced by injury or other tissue pathology and to- ward the concept of pain as a multidimensional experience produced by multiple influences. These influences range from the existing synaptic ar- chitecture of the neuromatrix to influences from within the body and from other areas in the brain. Genetic influences on synaptic architecture may determine—or predispose toward—the development of chronic pain syn- dromes. Figure 1.5 summarizes the factors that contribute to the output pat- tern from the neuromatrix that produce the sensory, affective, and cogni- tive dimensions of pain experience and the resultant behavior.

Multiple inputs act on the neuromatrix programs and contribute to the *output* neurosignature. They include (a) sensory inputs (cutaneous, vis- ceral, and other somatic receptors); (b) visual and other sensory inputs that influence the cognitive interpretation of the situation; (c) phasic and tonic cognitive and emotional inputs from other areas of the brain; (d) in- trinsic neural inhibitory modulation inherent in all brain function; and (e) the activity of the body's stress regulation systems, including cytokines as well as the endocrine, autonomic, immune, and opioid systems. We have traveled a long way from the psychophysical concept that seeks a simple one-to-one relationship between injury and pain. We now have a theoretical framework in which a genetically determined template for the body-self is modulated by the powerful stress system and the cognitive functions of the brain, in addition to the traditional sensory inputs.

REFERENCES

Bach, S., Noreng, M. F., & Tjellden, N. U. (1988). Phantom limb pain in amputees during the first 12 months following limb amputation, after preoperative lumbar epidural blockade. *Pain, 33*, 297–301.

Berkley, K. J., & Holdcroft, A. (1999). Sex and gender differences in pain. In P. D. Wall & R. Melzack (Eds.), Textbook of pain (4th ed., pp. 951–965). Edinburgh: Churchill Livingstone. 32 MELZACK AND KATZ

Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. J. Am. Med. Assoc., 267, 1244–1252.

Coderre, T. J., Katz, J., Vaccarino, A. L., & Melzack, R. (1993). Contribution of central neuro- plasticity to pathological pain: Review of clinical and experimental evidence. *Pain, 52*, 259–285.

Fields, H. L., & Basbaum, A. I. (1999). Central nervous system mechanisms of pain modulation. In P. D. Wall & R. Melzack (Eds.), *Textbook of pain* (4th ed., pp. 309–329). Edinburgh: Churchill Livingstone.

Goldscheider, A. (1894). Uber den schmerzs in physiologischer und klinischer hinsicht. Berlin: Hirschwald.

Gybels, J. M., & Tasker, R. R. (1999). Central neurosurgery. In P. D. Wall & R. Melzack (Eds.), *Text- book of pain* (4th ed., pp. 1307–1339). Edinburgh: Churchill Livingstone.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley. Hodge, C. J., Apkarian, A. V., Owen, M. P., & Hanson, B. S. (1983). Changes in the effects of stimula- tion of locus coeruleus and nucleus raphe magnus following dorsal rhizotomy. Brain Re- search, 288, 325–329.

Katz, J. (1993). The reality of phantom limbs. Emotion and Motivation, 17, 147–178. Katz, J., Claireux, M., Kavanagh, B. P., Roger, S., Nierenberg, H., Redahan, C., & Sandler, A. N. (1994). Pre-emptive lumbar epidural anaesthesia reduces postoperative pain and patient-controlled morphine consumption after lower abdominal surgery. Pain, 59, 395–403.

Katz, J., Jackson, M., Kavanagh, B. P., & Sandler, A. N. (1996). Acute pain after thoracic surgery predicts long-term post-thoracotomy pain. *Clinical Journal of Pain, 12*, 50–55.

Katz, J., Kavanagh, B. P., Sandler, A. N., Nierenberg, H., Boylan, J. F., & Shaw, B. F. (1992). Pre-emptive analgesia: Clinical evidence of neuroplasticity contributing to postoperative pain. *Anesthesiology*, 77, 439–446.

Katz, J., & Melzack, R. (1990). Pain "memories" in phantom limbs: Review and clinical observa- tions. *Pain, 43*, 319–336.

Keele, K. D. (1957). *Anatomies of pain.* Oxford: Blackwell Scientific Publications. Kuhn, T. S. (1970). *The structure of scientific revolutions* (2nd ed.). Chicago: University of Chicago

Press. Lariviere, W. R., & Melzack, R. (2000). The role of corticotropin-releasing factor in pain and anal- gesia. Pain, 84, 1–12. Le Bars, D., Dickenson, A. H., & Besson, J. M. (1983). Opiate analgesia and descending control sys- tems. In J. J. Bonica, U. Lindblom, & A. Iggo (Eds.), Advances in pain research and therapy: Pro- ceedings of the Illrd World Congress on Pain (Vol. 5, pp. 341–372). New York: Raven Press.

Lenz, F. A., Kwan, H. C., Dostrovsky, J. O., & Tasker, R. R. (1989). Characteristics of the bursting pattern of action potential that occurs in the thalamus of patients with central pain. *Brain Re- search, 496*, 357–360.

Lenz, F. A., Tasker, R. R., Dostrovsky, J. O., Kwan, H. C., Gorecki, J., Hirayama, T., & Murphy, J. T. (1987). Abnormal single-unit activity recorded in the somatosensory thalamus of a quadri-plegic patient with central pain. *Pain, 31,* 225–236.

Liebeskind, J. C., & Paul, L. A. (1977). Psychological and physiological mechanisms of pain. An- nual Review of Psychology, 28, 41–60.

Livingston, W. K. (1943). Pain mechanisms. New York: Macmillan. Markus, H., Pomeranz, B., & Krushelnycky, D. (1984). Spread of saphaneous somatotopic projec- tion map in spinal cord and hypersensitivity of the foot after chronic sciatic denervation in adult rat. Brain Research, 296, 27–39.

McQuay, H. J. (1992). Pre-emptive analgesia. British Journal of Anaesthesiology, 69, 1–3. McQuay, H. J., Carroll, D., & Moore, R. A. (1988). Post-operative orthopaedic pain—The effect of opiate premedication and local anaesthetic blocks. Pain, 33, 291–295. Melzack, R. (1975a). The McGill pain questionnaire: Major properties and scoring methods. Pain, 1, 277–299. 1. THE GATE CONTROL THEORY 33

Melzack, R. (1975b). Prolonged relief of pain by brief, intense transcutaneous somatic stimula- tion. *Pain, 1*, 357–373.

Melzack, R. (1987). The short-form McGill pain questionnaire. Pain, 30, 191–197. Melzack, R. (1989). Phantom limbs, the self and the brain (The D. O. Hebb Memorial Lecture). Ca- nadian Psychology, 30, 1–14. Melzack, R. (1990). Phantom limbs and the concept of a neuromatrix. Trends in Neuroscience, 13, 88–92. Melzack, R. (1991). The gate control theory 25 years later: New perspectives on phantom limb pain. In M. R. Bond, J. E. Charlton, & C. J. Woolf (Eds.), Pain research and therapy: Proceedings of the VIth world congress on pain (pp. 9–21). Amsterdam: Elsevier.

Melzack, R. (1995). Phantom limb pain and the brain. In B. Bromm & J. E. Desmedt (Eds.), *Pain and the brain* (pp. 73–82). New York: Raven Press.

Melzack, R. (1998). Pain and stress: Clues toward understanding chronic pain. In M. Sabourin, F. Craik, & M. Robert (Eds.), *Advances in psychological science, Vol. 2, Biological and cognitive as- pects* (pp. 63–85). Hove: Psychology Press.

Melzack, R. (1999). Pain and stress: A new perspective. In R. J. Gatchel & D. C. Turk (Eds.), *Psycho-logical factors in pain* (pp. 89–106). New York: Guilford Press.

Melzack, R. (2001). Pain and the neuromatrix in the brain. *Journal of Dental Education, 65*, 1378–1382.

Melzack, R., & Casey, K. L. (1968). Sensory, motivational and central control determinants of pain: A new conceptual model. In D. Kenshalo (Ed.), *The skin senses* (pp. 423–443). Spring- field, IL: Charles C. Thomas.

Melzack, R., Israel, R., Lacroix, R., & Schultz, G. (1997). Phantom limbs in people with congenital limb deficiency or amputation in early childhood. *Brain, 120*, 1603–1620.

Melzack, R., & Loeser, J. D. (1978). Phantom body pain in paraplegics: Evidence for a central "pat- tern generating mechanism" for pain. *Pain*, *4*, 195–210.

Melzack, R., Stotler, W. A., & Livingston, W. K. (1958). Effects of discrete brainstem lesions in cats on perception of noxious stimulation. Journal of Neurophysiology, 21, 353–367.

Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 150, 971–979. Melzack, R., & Wall, P. D. (1996). The challenge of pain (2nd ed.). London: Penguin. Nathan, P. W. (1985). Pain and nociception in the clinical context. Philosophical Transactions of the Royal Society of London, 308, 219–226. Noordenbos, W. (1959). Pain. Amsterdam: Elsevier. Oliveras, J. L., Guilbaud, G., & Besson, J. M. (1979). A map of serotonergic structures involved in stimulation produced analgesia in unrestrained freely moving cats. Brain Research, 164, 317–322.

Reynolds, D. V. (1969). Surgery in the rat during electrical analgesia induced by focal brain stim- ulation. Science, 164, 444–445.

Sapolsky, R. M. (1994). Why zebras don't get ulcers. New York: W. H. Freeman. Schultz, G., & Melzack, R. (1991). The Charles Bonnet syndrome: "Phantom visual images." Per- ception, 20, 809–825. Segal, M., & Sandberg, D. (1977). Analgesia produced by electrical stimulation of catecholamine nuclei in the rat brain. Brain Research, 123, 369–372. Selye, H. (1956). The stress of life. New York: McGraw-Hill. Tasker, R. R. (1989). Stereotactic surgery. In P. D. Wall & R. Melzack (Eds.), Textbook of pain (pp. 840–855). Edinburgh: Churchill Livingstone. Tverskoy, M., Cozacov, C., Ayache, M., Bradley, E. L., & Kissin, I. (1990). Postoperative pain after inguinal hemiorraphy with different types of anesthesia. Anesthesia and Analgesia, 70, 29–35. Wall, P. D., & Devor, M. (1981). The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals into the spinal cord. Brain Research, 209, 95–111. Webster's Seventh New Collegiate Dictionary. (1967). p. 522. Springfield, MA: G and C Merriam. Woolf, C. J., & Wall, P. D. (1982). Chronic peripheral nerve section diminishes the primary affer- ent A fibre mediated inhibition of rat dorsal horn neurons. Brain Research, 242, 77–85. 34 MELZACK AND KATZ

If we liken models of pain to facial displays of emotion, it becomes readily apparent that many expressions have evolved. Indeed, over the years there have been a large number of models proffered by individuals from varying intellectual traditions. Most of these models can be grouped within one of several general categories—traditional biomedical, psychodynamic, and biopsychosocial. The intent of all models, without exception, has been to address the enduring questions of "What is pain?" and "How do we best alleviate pain and the suffering associated with it?" The primary purpose of this chapter is to gain insight into answers to these questions by exploring various iterations of the biopsychosocial approach and related empirical literature.

To date, there have been a number of reviews written on biopsycho- social approaches to pain (e.g., Robinson & Riley, 1999; Turk, 1996a; Turk & Flor, 1999; Waddell, 1991, 1992). Nonetheless, the face of pain, or at least the way we as clinical and research psychologists view it, is constantly chang- ing. Indeed, many of the earlier models have proven inadequate for patient care, and more recent research has superseded initial formulations. Take, for example, the advancement of the original conceptualizations of the gate control theory (Melzack & Casey, 1968; Melzack & Wall, 1965, 1982)—the first to integrate physiological and psychological mechanisms of pain—to the current neuromatrix model as described by Melzack and Katz in chapter 1 of this volume. Similar progress has occurred in the context of biopsychosocial approaches that have emerged from postulates of the gate con-

CHAPTER2

Biopsychosocial Approaches to Pain

Gordon J. G. Asmundson Faculty of Kinesiology and Health Studies and Department of Psychology, University of Regina

Kristi D. Wright Department of Psychology, University of Regina 35

trol theory, such that our answers to the "what" and "how" questions just posed are, in our opinion, becoming more clear. To this end, the concepts presented herein provide an important piece of the foundation on which the assessment and treatment approaches described in other chapters of this volume are built.

Our intent in this chapter is to provide an overview and critical analysis of the traditional biomedical and psychodynamic models, summarize ele- ments of the gate control theory that strongly influenced current conceptu- alizations of pain, and review important details of models that fall under the biopsychosocial rubric. Within the context of the latter, we include discus- sion of some of the most influential behavioral, cognitive, and cognitive- behavioral models and associated empirical findings. We conclude by posit- ing a synthesis of the various iterations of the biopsychosocial approach, place this in the context of a comprehensive diathesis-stress model (i.e., a model in which dispositional tendencies to respond to stressors in a certain way interacts with stressors to produce illness behavior), and briefly dis- cuss its implications for future research.

TRADITIONAL BIOMEDICAL MODEL

The traditional biomedical model of pain dates back hundreds of years. Descartes (1596–1650) modernized it in the 17th century (Bonica, 1990; Turk, 1996a), and in that form it held considerable influence through to the mid 20th century. The model holds, in essence, that pain is a sensory experi- ence that results from stimulation of specific noxious receptors, usually from physical damage due to injury or disease (see Fig. 2.1). Consistent with Cartesian dualism (i.e., the idea that mind and body are nonoverlapping en- tities), the model has been described by some (e.g., Engel, 1977; Turk & Flor, 1999) as being both reductionistic (i.e., assumes that all disease is di- rectly linked to specific physical pathology) and exclusionary (i.e., assumes that social, psychological, behavioral mechanisms of illness are not of primary importance).

Consider the case of Jamie, a middle-aged person with strained muscles in the low back. Applying the traditional biomedical model, the method of 36 ASMUNDSON AND WRIGHT

FIG. 2.1. Schematic of traditional medical model.

diagnosing and subsequently treating Jamie should be, for all practical pur- poses (and notwithstanding availability of adequate diagnostic, surgical, and pharmacologic technology), straightforward. Jamie's physical pathol- ogy would be confirmed by data obtained from objective tests of physical damage and, if thorough, tests of impairment. Medical interventions would then be directed toward rectifying the muscle strain. The impact of the strain on Jamie's social, psychological, and behavioral functioning would not be given much weight in any intervention. Indeed, other symptoms re- ported by Jamie, such as depressed mood, hypervigilance to somatic sensa- tions, *and pain*, would not be viewed as significant but, rather, as secondary reactions to (or symptoms of) the muscle strain. These would be expected to subside after the muscle strain had healed.

In Jamie's case, intervention was targeted at healing the muscle strain and all symptoms subsided within 5 weeks. But, for every Jamie there is an- other person for whom application of an identical intervention does not re- solve pain and other symptoms, including disability, despite eventual heal- ing of physical pathology. Why? As becomes evident in this chapter, the reductionistic and exclusionary assumptions of the biomedical models have not been upheld. We now know that pain involves more than sensa- tion arising from physical pathology. Indeed, many people with persistent pain, including perhaps the majority with low back pain, will never have had an identifiable medical diagnosis of tissue damage.

Most 20th-century models of pain, including amendments to the tradi- tional biomedical model (e.g., Bonica, 1954; Hardy, Wollf, & Goodell, 1952), recognize to some degree that factors such as cognition and emotional state are important in the experience of pain. These models were not with- out criticism. For example, they posited a primary role for sensation and did not recognize the possibility that sensation and affect might be proc- essed in parallel (Craig, 1984). Still, they demarcated a beginning to the rec- ognition of the interplay between biological, psychological, and sociocul- tural factors in the pain experience. Before turning attention to integrated multidimensional models of pain, we lay more of the groundwork by taking a look at models of the psychodynamic tradition.

PSYCHODYNAMIC MODELS

The psychodynamic model can be considered to be among the first to posit a central role for psychological factors in pain (see Merskey & Spear, 1967), albeit with an emphasis on persistent (or chronic) rather than acute pres- entations. A number of psychodynamic models have been proposed over the years (e.g., Blumer & Heilbronn, 1981; Breuer & Freud, 1893–1895/1957; Engel, 1959). These models are similar in that, unlike the traditional biomed- 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 37

ical model, they shift focus from physical pathology by conceptualizing per- sistent pain as an expression of emotional conflict. Rather than review all of the psychodynamic models, we provide an overview of the influential mod- els of Freud (Breuer & Freud, 1893–1895/1957) and Engel (1959).

Freud (Breuer & Freud, 1893–1895/1957) held that persistent pain was maintained by an emotional loss or conflict, most often at the unconscious level. Central to Freud's model was the process of conversion, or express- ing *emotional pain* (i.e., the unresolved conflict) by converting it into physi- cal symptoms that were a symbolic and more tolerable expression of the underlying emotional issues. To illustrate, a women reporting dyspareunia (i.e., persistent genital pain associated with sexual intercourse) may be thought to be expressing some unresolved unconscious conflict regarding taboo sexual urges, such as having sex with her sister's husband. Freud be- lieved that the somatic expression of pain would subside with resolution of the emotional issues. These ideas have been subsequently modified and adapted by other theorists working within the framework of the psycho- dynamic tradition.

In 1959 Engel introduced the concepts of *psychogenic pain* and the *pain- prone personality* to further explain the nature of persistent pain. The key el- ements of Engel's position were that (a) persistent pain can, but need not, have a basis in physical pathology, and (b) in some people, it is a psycho- logical phenomenon that serves a self-protective function. It is pain in the absence of identifiable physical pathology that has, since Engel's (1959) contribution, been referred to by many as psychogenic, or of psychological origin. Most often the decision is made on the basis of exclusion; that is, in the absence of identifiable pathology, it is presumed emotional conflict must explain the symptoms.

Engel framed his model from a developmental perspective in which a person amasses a large set of experiences wherein pain is associated with, and derives meaning from, the context in which it has occurred. For exam- ple, early in life a person may learn to associate pain with others' responses to his or her behavior (e.g., affection in response to crying, punishment in response to inappropriate behavior, aggression). Later in life, the person may use pain as an unconscious defense against various bouts of emotional distress he or she experiences (much as posited by Freud). Although the former of these propositions was supported in part by findings from empiri- cal tests of social learning influences on pain (e.g., Craig, 1978), the latter re- mains controversial.

What type of person is most likely to do this or, in other words, to have a pain-prone personality? Engel (1959) suggested that those with psychiatric conditions, as described by diagnostic nomenclature of the day (e.g., DSM-I provided for the possibilities of hysteria, major depression, hypochon- driasis, or paranoid schizophrenia), were particularly prone to experience 38 ASMUNDSON AND WRIGHT

persistent pain. Amendments to Engel's model, such as Blumer and Heil- broon's (1982) position on chronic pain as a variant of major depressive dis- order, or *masked depression*, added depressed affect, alexithymia, family history of depression and chronic pain, and discrete biological markers (e.g., response to antidepressants) to the list of contributors to the pain- prone personality. The results of a large number of studies suggest that the prevalence of current psychiatric conditions is, indeed, elevated in patients with chronic pain relative to base rates in the general population (e.g., Asmundson, Jacobson, Allerdings, & Norton, 1996; Dersh, Gatchel, Polatin, & Mayer, 2002; Katon, Egan, & Miller, 1985; Large, 1986). It is questionable, however, whether the presence of psychiatric morbidity makes one more likely to use pain as an unconscious defense mechanism and, thereby, more prone to persistent pain (see, e.g., the July 1982 issue of *The Journal of Nerv- ous and Mental Disease*, and Large, 1986).

With few exceptions (Adler, Zlot, Hürny, Minder, 1989), the psychody- namic formulations have not fared well against empirical scrutiny (see re- views by Gamsa, 1994; Large, 1986; Roth, 2000; Roy, 1985), and now have di- minished popularity in mainstream psychology. Notwithstanding, they did play a key role in drawing attention to the importance of psychological (and contextual) factors in the experience of pain at a time when treatment for pain was primarily directed by the biomedical model. This attention led to increased and continuing research into a wide array of psychosocial vari- ables (e.g., birth order, childhood abuse, interpersonal and marital difficul- ties, depression, anxiety, personality disorders, illness behavior), their role in the development and maintenance of chronic pain, and their importance in contemporary psychological treatment formulations. Indeed, the interest in psychological factors spawned by psychodynamic theorists served as an essential precursor to the development of contemporary biopsychosocial approaches. However, using Roth's (2000) analogy of the double-edged sword, it is noteworthy that there are lingering and unwanted scars of this psychodynamic thrust. These include the general tendency to assume (a) that all cases of pain in the absence of identifiable physical pathology are the result of psychological factors, and (b) that these are equally relevant to al/people with persistent pain. Although incorrect, these assumptions can (and still often do) have a negative impact on opinions and general treatment of people who suffer from persistent pain conditions.

GATE CONTROL THEORY

As noted earlier, Melzack and colleagues' seminal papers on the gate con- trol theory of pain (Melzack & Casey, 1968; Melzack & Wall, 1965) are fre- quently cited as the first to integrate physiological and psychological mech- 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 39

anisms of pain within the context of a single model. It is beyond the scope of this chapter to provide a detailed synopsis of the theory; however, given its contribution to current conceptualizations of pain, a brief overview is warranted.

Melzack and Wall (1965) proposed that a hypothetical gating mechanism within the dorsal horn of the spinal cord is responsible for allowing or disal- lowing the passage of ascending nociceptive information from the periph- ery to the brain. These essential elements are as follows: The gating mechanism is influenced by the relative degree of excitatory activity in the spinal cord transmission cells, with excitation along the large-diameter, myelinated fibers closing the gate and along the small- diameter, unmyelinated fibers opening the gate. Descending transmissions (i.e., from the brain to the gating mechanism) regarding current cognition and affective state also influence the gating mechanism (suggesting the importance of higher level brain activities and processes). The summation of information traveling along the different types of as- cending fibers from the periphery with that traveling on descending fi- bers from the brain determines whether the gate is open or closed and, as such, influences the perception of pain.

Since this original proposal we have, of course, moved beyond believing that the key to understanding pain is knowing what happens in the dorsal horn. Melzack and Casey (1968) further proposed that three different neural networks (i.e., sensory-discriminative, motivational-affective, and cognitive- evaluative) influence the modulation of sensory input. They also recog- nized that processing of input could occur in parallel, at least at the sensory and affective level. This revised model allowed for "perceptual information regarding the location, magnitude, and spatiotemporal properties of the noxious stimulus, motivational tendency toward escape or attack, and cog- nitive information based on analysis of multimodal information, past experi- ence, and probability of outcome of different response strategies" (pp. 427–428).

Think back to the case of Jamie, who had pain associated with muscle strain in the low back. Applying the postulates of the gate control theory, Jamie's pain experience might be understood as follows: Stimulation of nociceptors in the region of muscle strain facilitated transmission of infor- mation along ascending fibers, through an open gate, and on to Jamie's brain. At the same time, Jamie's brain was sending information about her current cognitions and emotional state (i.e., depressed and hypervigilant) back to the gate along descending fibers. The summation of the ascending nociceptive input and descending information regarding cognition and 40 ASMUNDSON AND WRIGHT

emotion, in this case, kept the gate open. This process was ongoing (i.e., it lasted for many days) and involved an interaction between physiological, cognitive, and affective inputs that continuously modified Jamie's perception of the pain. Medical and behavioral interventions ultimately served to close the gate, reducing pain, and improving Jamie's mood state and overall functional ability.

Based on this brief overview it should be apparent that the gate control theory challenged the primary assumptions of the traditional biomedical and psychodynamic models. Rather than being exclusively conceptual- ized as sensation arising from physical pathology or somatic manifesta- tion of unresolved emotional conflicts, the experience of pain came to be viewed as a combination of both pathophysiology and psychological fac- tors. On this basis, then, Jamie's depressed mood would not be viewed as a secondary reaction to pain, nor would the pain be viewed as a result of depressed mood. Rather, each would be seen as having a reciprocal influ- ence on the other.

The assumptions of the gate control theory have not gone unchallenged, and advances in our understanding of the anatomy and structure of the gating mechanism have led to various revisions. The details of the changing views of the physiology of the gating mechanism are beyond the intent and scope of this chapter. We recommend that interested readers refer to articles in Supplement 6 of the 1999 volume of *Pain* entitled "A Tribute to Patrick D. Wall" and to recent reviews written by Turk and Flor (1999) and Wall (1996). Notwithstanding, the essential elements of the model, as described earlier, have proven a heuristic of considerable value to both basic scien- tists and clinical scientist-practitioners.

Melzack's (1999) own words most accurately describe the most impor- tant contribution of the theory:

Never again, after 1965, could anyone try to explain pain exclusively in terms of peripheral factors. The theory forced the medical and biological sciences to accept the brain as an active system that filters, selects and modulates in- puts... we highlighted the central nervous system as an essential component in the process. (p. S123)

Since 1965, but particularly over the past 25 years, there have been many advances to our understanding of the specific nature of the psychological and sociocultural factors of pain. For example, Price (2000) proposed a par- allel-serial model of pain affect that is consistent with existing literature. This model details a central network of brain structures (e.g., anterior cingulate cortex, hypothalamus, insular cortex) and pathways (e.g., spino- hypothalamic pathway, cortico-limbic somatosensory pathway), compris- ing both serial and parallel connections, as the mechanism through which 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 41

the emotional valance of pain is determined and subsequently expressed. Other important advances are succinctly captured in the context of Mel-zack's neuromatrix theory (see chap. 1, this volume), as well as in other general models that focus on the cognitive, affective, and behavioral as-pects of the pain experience.

THE BIOPSYCHOSOCIAL APPROACH

Turk and Flor (1999) have accurately and succinctly captured the basic premises of the biopsychosocial approach to pain. They stated:

Predispositional factors and current biological factors may initiate, maintain, and modulate physical perturbations; predispositional and current psycho- logical factors influence the appraisal and perception of internal physiological signs; and social factors shape the behavioral responses of patients to the perceptions of their physical perturbations. (p. 20)

In short, the biopsychosocial approach holds that the experience of pain is determined by the interaction among biological, psychological (which include cognition, affect, behavior), and social factors (which include the social and cultural contexts that influence a person's perception of and re- sponse to physical signs and symptoms). Compared to either of the tradi- tional biomedical or psychodynamic positions, the biopsychosocial ap- proach posits a much broader, multidimensional, and complex perspective on pain. This is true for both acute and chronic pain, although it is in the case of the latter that the model has proven most heuristic.

A number of specific iterations of the general biopsychosocial approach to pain have been put forth over the years. Like similar models proposed to account for other chronic health conditions (e.g., asthma, functional dys- pepsia; tinnitus, Meniere's disease; Asmundson, Wright, & Hadjistavrop- oulos, 2000), these iterations are based on several assumptions, as follows: Unlike the traditional biomedical model, the focus is not on disease per se but rather on illness, where illness is viewed as a type of behavior (Parsons, 1951). Illness behavior is a term used to describe the "ways in which given symptoms may be differently perceived, evaluated, or acted (or not acted) upon by different kinds of persons" (Mechanic, 1962, p. 189). This definition implies that there are individual differences in responses to somatic sensations, and that these can be understood in the context of psychological and social processes (Mechanic, 1962). Illness behavior is considered a dynamic processes, with the role of bio- logical, psychological, and social factors changing in relative impor- 42 ASMUNDSON AND WRIGHT

tance as the condition evolves (also see Engel, 1977; Lipowski, 1983). Al- though a condition may be initiated by biological factors, the psycholog- ical and social factors may come to play a primary role in maintenance and exacerbation. Also, as suggested earlier, there are individual differ- ences in the relative importance of any given factor at any given time during the course of a condition.

With these assumptions in mind, we now turn to several of the most influen- tial biopsychosocial approaches to chronic pain. These include the operant model, Glasgow model, biobehavioral model, and fear avoidance models. We organize our presentation of these models in an ascending chronologi- cal order. Empirical evidence is grouped according to degree of relevance to the model under consideration; however, it should be noted that the findings of some investigations have implications for more than one model.

THE OPERANT MODEL

Model Summary

Fordyce and colleagues (Fordyce, 1976; Fordyce, Shelton, & Dundore, 1982) detailed an operant conditioning model that describes how positive and negative reinforcement (i.e., presentation or removal of a stimulus, respectively) serve as mechanisms through which acute pain behaviors are main-tained over time and thus become chronic. The premises of this model are as follows: In response to an acute injury, people employ certain behaviors (e.g., escape or withdrawal, avoidance of activity, limping) that serve an adaptive function in reducing likelihood of further tissue damage. Behaviors that reduce pain are negatively reinforced, in the short term, by the reduction of suffering associated with stimulation of nociceptors. These behaviors can become persistent and maladaptive when rein-forcement shifts from the reduction of nociceptive input to various ex-ternal positive (e.g., increases social attention from family and friends) and negative (e.g., reduced degree of responsibility for completing tasks) reinforcers.

Accordingly, chronic pain is viewed as a set of observable behaviors that persist beyond the time required for healing of physical pathology and lead to declines in physical activity and associated deconditioning, increases in use of analgesic medications, and the development of additional illness be- haviors. 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 43

Empirical Overview

Evidence in support of the operant model has come primarily from studies supporting operant-based treatment approaches (Block, Kremer, & Gaylor, 1980; Cairns & Pasino, 1977; also see recent meta-analysis by Morley, Eccles- ton, & Williams, 1999), although this evidence is viewed by some as equivo- cal (Sharp, 2001; Turk, 1996b). Despite this treatment-based evidence, there have been few empirical tests of the validity of the operant model. Linton and Götestam (1985), for example, conducted an experiment with adult hospital employees exposed to a constant-level noxious stimulus while either increases or decreases in verbal reports of pain from ischemic stimuli were reinforced. Significant differences between reinforced increases and de- creases in pain reports within subjects were observed. More recently, Flor and colleagues (Flor, Knost, & Birbaumer, 2002) reinforced increases and decreases in verbal pain reports in chronic back pain patients and matched healthy controls exposed to electrical stimulation. Numerous physiological indices were also evaluated. Results indicated that, despite similar learning rates, the patients were influenced more by operant conditioning factors than were the control subjects. Specifically, they were more likely to main- tain elevated pain ratings and cortical responsivity (N150) during extinc- tion. Others, however, have failed to show clear-cut operant conditioning ef- fects (Lousberg, Groenman, Schmidt, & Gielen, 1996).

THE GLASGOW MODEL

Model Summary

In an attempt to give equal emphasis to all components of the biopsycho- social approach, Waddell and colleagues (Waddell, 1987, 1991, 1992; Wad- dell, Main, Morris, Di Paoloa, & Gray, 1984; Waddell, Newton, Henderson, Somerville, & Main, 1993) applied the construct of illness behavior to chronic low back pain. They view chronic low back pain as a form of illness behavior stemming from physiological impairment (defined as "pathologic, anatomic, or physiologic abnormality of structure or function leading to loss of normal body ability"; Waddell, Somerville, Henderson, & Netwon, 1992) and influenced by cognition, affect, and social factors. In Fig. 2.2 we depict the essential features of the model as they relate to the case of Kelly, who, like Jamie described earlier, had chronic back pain as well as de- pressed mood and hypervigilance to somatic sensations subsequent to a muscle strain. Unlike Jamie, Kelly's pain persisted over several years.

The illustration shows how biological and psychological factors interact (within the context of a larger social environment) in a manner that pro- 44 ASMUNDSON AND WRIGHT

motes chronic illness (or pain) behavior and, ultimately, disability. Social factors, although not explicit, impact on the interpretation of nociception as well as illness behaviors. The elements of the model can also be illustrated as a biopsychosocial cross section of a person's clinical presentation at a single point in time (see Fig. 2.3). Although not evident in either Fig. 2.2 or 2.3, it is noteworthy that the Glasgow model recognizes that physical pa- thology (whether or not currently identifiable) plays an important precipi- tating role, and that the ongoing physiological impairment (e.g., muscular deconditioning) can give rise to nociception that is distinct from the origi- nal physical pathology.

Empirical Overview

Waddell (1991, 1992) reviewed the literature related to the Glasgow model. Empirical investigations examining the importance of active exercise in re- habilitation of low back pain have, for the most part, yielded results that provide confirmation of its validity. Waddell (1992) identified 13 out of 17 controlled studies that showed statistically and clinically significant bene- fits in pain, disability, physical impairment, cardiovascular fitness, psycho- logical distress, or work loss as a result of the implementation of the active exercise approach (i.e., progressive increase in activity through exercise). Additionally, controlled trials comparing a combined behavioral/rehabilita- tion approach to physical exercise alone in the treatment of low back pain have also provided support for this model. 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 45

FIG. 2.2. Application of the Glasgow model of chronic low back pain to illus- trate Kelly's clinical presentation.

Through theoretical analysis and literature review, coupled with results from pilot studies, Waddell and colleagues (1993) concluded that the con- cept of fear avoidance is a significant and driving factor within the context of the biopsychosocial model of low back pain and disability. As such, the core features of the Glasgow model were recently subsumed as a part of the fear-avoidance models. The fear-avoidance literature is reviewed in more detail later.

THE BIOBEHAVIORAL MODEL

Model Summary

The first model of pain to comprehensively incorporate both cognitive and behavioral elements was proposed by Turk, Meichenbaum, and Genest (1983). The initial model was an attempt to extend the behavioral conceptu- alization posed by Fordyce (1976), based on the influential writings on cog- nitive therapy published in the latter part of the 1970s (e.g., Beck, 1976; Meichenbaum, 1977). More recently, Turk and colleagues (Turk, 2002; Turk & Flor, 1999) described the model using the term biobehavioral, where bio 46 ASMUNDSON AND WRIGHT

FIG. 2.3. Cross-sectional representation of the Glasgow model. Reprinted from Waddell et al. (1993), "A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability," p. 164. Copyright 1993. Reproduced with kind permission from Elsevier Science.

refers to biological factors and behavioral to a broad spectrum of psycho- logical and sociocultural factors. The key elements of the model are sum- marized as follows: Some people have a diathesis, or predisposition, for a reduced thresh- old for nociceptive activation and a tendency to respond with fear to bodily sensations. This diathesis may result from genetic makeup, so- cial learning, prior trauma, or some combination of each. Aversive stimulation, whether related to nociception or some other stressor (e.g., marital conflict, too many time demands), interacts with the diathesis. The diathesis-stress interaction leads to conditioned and unconditioned autonomic nervous system (comprising sympathetic and para- sympathetic divisions), sensitization of central nervous system structures, and muscular responsivity, as well as avoidance behavior, when appraisals are negative and coping resources are insufficient. The type (i.e., the specific symptom manifestation) and persistence of the illness problem that develops are determined, in part, by the way in which one attends and responds to nociception. A variety of learning processes, the meaning ascribed to symptoms (through processes such as expectancies, hypervigilance, preoccupation, misinterpretations of catastrophic nature, fear), avoidance behavior, social interaction (e.g., the way in which one's significant others re-spond to their pain), and subsequent alterations in physiological responsivity (e.g., persistent sympathetic nervous system activation; persistent muscular reactivity) play an important role in maintenance and exacerbation of symptoms.

To summarize, the biobehavioral model suggests that chronic pain problems are the product of an *interaction* between a necessary predisposition and specific (learned) cognitive, behavioral, social, and physiological response patterns to pain sensations and other stressors as well as subsequent maladaptive responses to resulting distress. In this context, then, it is the person's anticipation of and response to distress, not nociceptive input itself, that leads some to experience chronic pain and associated disability.

Empirical Overview

Empirical studies of postulates of the biobehavioral model were recently re- viewed by Turk and Flor (1999) and Turk (2002). Research in a number of ar- eas substantiates the applicability of the biobehavioral model to the gene- sis, maintenance, and exacerbation of pain. With respect to the notion of 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 47

diathesis, or predisposition, the presence of anxiety sensitivity (i.e., a dispo- sition to respond with fear to somatic sensations) was suggested as a pre- disposing factor in chronic pain (Asmundson, 1999; Asmundson, Norton, & Norton, 1999; Muris, Vlaeyen, & Meesters, 2001). A positive association was identified between anxiety sensitivity and pain-specific anxiety, avoidance behaviors, fear of negative consequences of pain, and negative affect (Turk, 2000; also see Asmundson, 1999; Asmundson et al., 1999). In terms of the im- pact of learning on behavior and pain perception, memories of somato- sensory pain specific to a particular pain site have been found to form as a result of chronic pain (Flor, Braun, Elbert, & Birbaumer, 1997). This forma- tion was shown to manifest itself in an exaggerated portrayal of the affected pain site in the primary somatosensory cortex. Further, learned memory for pain was demonstrated in patients with phantom limb pain, such that the amount of reorganization in cortical structures was shown to be pro- portional to the magnitude of phantom leg pain (Flor et al., 1995).

Turk and Flor (1999) suggested that pain management programs that aim to facilitate a patient's ability to attribute success to his or her own volition will result in long-term behavioral changes, and these, in turn, will impact affective, cognitive, and sensory aspects of pain experience. Investigations showed that these types of treatment programs do promote changes in pain-specific beliefs, coping style, and behavior, as well as pain severity (e.g., Arnstein, Caudill, Mandle, Norris, & Beasly, 1999; Buckelew et al., 1996; Dolce, Crocker, Moletteire, & Doleys, 1986). Indeed, it was specifically dem- onstrated that increased perceived control over pain and decreased catastrophizing are associated with decreases in pain severity ratings, functional disability, and physiological activity (e.g., Jensen & Bodin, 1998; Jensen, Turner, & Romano, 1991; Jensen, Turner, Romano, & Karoly, 1991; Sullivan et al., 2001).

FEAR-AVOIDANCE MODELS

Model Summary

The role of fear and avoidance behavior as they relate to chronic pain have received considerable attention over the past decade (for recent reviews, see Asmundson et al., 1999; Vlaeyen & Linton, 2000). Indeed, the literature in this area has grown to the point where state-of-the-art theory and research are being published in the form of an edited book (Asmundson, Vlaeyen, & Crombez, 2003). The postulates of fear-avoidance models have their roots in early observations of significant anxiety in the pathology of pain (e.g., Paulett, 1947; Rowbotham, 1946), as well as in operant conditioning theory (Linton, Melin, & Götestam, 1984; Fordyce, 1976) and its illness behavior reformulations (Turk & Flor, 1999; Waddell et al., 1993). 48 ASMUNDSON AND WRIGHT

Several fear-avoidance models have been proposed to account for chronic pain behavior. The fear-avoidance model of exaggerated pain per- ception (Lethem, Slade, Troup, & Bentley, 1983), for example, attempted to explain the process by which the emotional and sensory components of pain become desynchronous (i.e., why fear and avoidance remain while tis- sue damage remits) in some patients with chronic pain. Extending postu- lates of the operant model of chronic pain, Philips (1987) incorporated ele- ments of the cognitive theory of avoidance (Seligman & Johnson, 1973) to explain cases where behavioral withdrawal was observed to continue in the absence of adequate reinforcement. Avoidance was viewed as a product of pain severity, a preference for minimizing discomfort, and cognitions (com- prising expectancies, feelings of self-efficacy, and memories of past expo- sures) that reexposure to certain experiences or activities will result in pain and suffering.

Influenced by the work of Waddell et al. (1993), Letham et al. (1983), and Philips (1987), and building on their earlier work (Linton et al., 1984; Vlaeyen, Kole-Snijders, Boeren, & van Eek, 1995), Vlaeyen and Linton (2000) proposed a comprehensive fear-avoidance model of chronic musculoskele- tal pain. This model, illustrated in Fig. 2.4, can be summarized as follows: 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 49

FIG. 2.4. Fear-avoidance model. Reprinted from Vlaeyen and Linton, "Fear- avoidance and its consequences in chronic musculoskeletal pain: A state of the art," p. 329. Copyright 2000. Reproduced with kind permission from the In- ternational Association for the Study of Pain, 909 NE 43rd Ave, Suite 306, Seat- tle, WA, USA.

Injury initiates the experience of pain. If the experience is appraised as nonthreatening (e.g., viewed as a tempo- rary hindrance that can be overcome), it is confronted and dealt with in an adaptive manner that allows the person to proceed toward recovery. If the experience is appraised as threatening (e.g., a catastrophic event that will never resolve), it may be dealt with in a maladaptive manner that perpetuates a vicious fear—avoidance cycle that, in turn, promotes disability.

In this context, then, confrontation is conceptualized as an adaptive re- sponse that is associated with behaviors that promote recovery. Avoid- ance, on the other hand, is viewed as a maladaptive response that leads to a number of undesirable consequences. These include limitations in activ- ity, physical and psychological consequences that contribute to disability, continued nociceptive input (which, like the Glasgow model, may not neces- sarily be related to original injury; also see Norton & Asmundson, 2003), and further catastrophizing and fear.

Empirical Overview

Vlaeyen and Linton (2000) published a state-of-the-art review showing an ever-increasing number of findings that corroborate postulates of fear- avoidance models. Precursors of pain-related fear, including anxiety sensitivity and health anxiety (i.e., the belief that bodily signs and symptoms are indicative of serious illness), have been clearly identified. For example, in a sample of chronic musculoskeletal pain patients, Asmundson and Taylor (1996) found that anxiety sensitivity directly influences fear of pain, which, in turn, directly influences self-reported escape/avoidance behavior. These findings were replicated in adolescents (Muris et al., 2001) and adults with heterogeneous pain complaints (Zvolensky, Goodie, McNeil, Sperry, & Sor- rell, 2001). There is converging evidence demonstrating that fear of pain affects the way people attend and respond to information about pain (As- mundson, Kuperos, & Norton, 1997; Eccleston & Crombez, 1999; Hadjistav- ropoulos, Craig, & Hadjistavropoulos, 1998; McCracken, 1997; Peters, Vlae- yen, & Kunnen, 2002; Snider, Asmundson, & Weise, 2000). Likewise, there is mounting evidence that fear of pain influences physical performance and is more strongly related to functional disability than are indices of pain sever- ity (Crombez, Vervaet, Lysens, Baeyens, & Eelen, 1998; Crombez, Vlaeyen, Heuts, & Lysens, 1999; McCracken, Zayfert, & Gross, 1992; Vlaeyen et al., 1995; Waddell et al., 1993). Finally, at the practical level, specifically treating the "fear" component using techniques known to be effective in reducing fears (i.e., graded exposure) has been shown to be most effective in reducing fears (i.e., graded exposure) has been shown to be most effective in reducing behavior and associated disability in patients with chronic 50 ASMUNDSON AND WRIGHT

musculoskeletal pain (Linton, Overmeer, Janson, Vlaeyen, & de Jong, 2002; Vlaeyen, de Jong, Geilen, Heuts, & van Breukelen, 2001; Vlaeyen, de Jong, Onghena, Kerckhoffs-Hanssen, & Kole-Snidiers, 2002).

TOWARD AN INTEGRATED DIATHESIS-STRESS MODEL

Our presentation of the various faces of pain shows, to a large degree, a de- velopmental progression from the simplistic notions of somatogenic and psychogenic causation through to the increasingly elaborate yet parsimoni- ous postulates of the contemporary multidimensional, biopsychosocial ap- proaches. In scanning the essential elements of the various models consid- ered under the rubric of "biopsychosocial," certain consistencies and themes are apparent. These include recognition of the importance of (a) some physiological pathology (which may not remain the same as that as- sociated with initial nociception), (b) some form of vulnerability (diathesis), (c) a tendency to catastrophically misinterpret somatic sensations and re- spond to them in maladaptive ways, and (d) the development of a self- reinforcing vicious cycle that serves to exacerbate and maintain symptoms and functional disability. Taking an approach similar to that employed by Sharp (2001) in his recent reformulation of Turk and colleagues biobe- havioral model of pain (Turk, 2002; Turk & Flor, 1999; Turk et al., 1983), we propose a model that integrates empirically supported elements of the op- erant, Glasgow, biobehavioral, and contemporary fear-avoidance models. This integrated stress-diathesis model is illustrated in Fig. 2.5.

It is important to keep in mind that pain and pain behaviors do not occur in isolation. Rather, they are communicated in (see Hadjistavropoulos & Craig, 2002) and influenced, for better or worse, by one's social, interper- sonal, and cultural milieu (e.g., Bates, Edwards, & Anderson, 1993; Craig, 1978). For example, a supportive environment can facilitate efforts to cope with pain; however, if there is not enough or, indeed, too much support (i.e., where the "supporter" is overly solicitous), the overall pain experience is likely to be aggravated. This appears to hold true for interactions with signifi- cant others as well as those responsible for medical care, litigation, and other such responses (see Sharp, 2001). Similarly, social modeling and social learning experiences influence strongly the way in which one interprets and responds to signs and symptoms of illness (e.g., Chambers, Craig, & Bennet, 2002; Craig & Prkachin, 1978; Martin, Lemos, & Leventhal, 2001). So, interpre- tation and behavioral responses to pain depend, to some degree, on what is learned from seeing others in pain and from cultural norms. This is recog- nized, to varying degrees, in all of the biopsychosocial models discussed ear- lier and provides the umbrella under which our model is placed. 2. METHODOLOGY IN WASHBACK STUDIES 51

As illustrated, our integrated diathesis—stress model recognizes the im- portance of physiological, psychological, and sociocultural factors in the etiology, exacerbation, and maintenance of chronic pain. Interactions be- tween various factors are clearly indicated and, importantly, can lead to a vicious, self-reinforcing cycle that influences and is influenced by distress and functional disability. An initial physical pathology or injury is recog- nized as necessary to nociception and the appraisal that set the cycle in motion. Also necessary is a predispositional vulnerability factor (diathesis). The difference between those who become distressed and disabled (like Kelly) and those who don't (like Jamie) is presumed to lie in the manner in which nociception is appraised and responded to. Those with a predisposition that reduces threshold for nociceptive activation and increases the tendency to respond with fear to bodily sensations (i.e., anxiety sensitivity, illness sensitivity) are more likely to respond to pain sensations with anx- ious apprehension (i.e., a future-oriented preparedness to cope with upcom- ing negative events or experiences). In turn, they develop cognitive and behavioral repertoires that serve to maintain this preparedness. Also, phys- iological stimulation shifts from nociceptive input of the precipitating pa- thology or injury to that stemming from autonomic nervous system and muscular activation. Learning processes contribute not only to the mainte- nance of the vicious cycle, but to anxious anticipation regarding events only remotely associated with pain-specific distress and disability. Thus, a 52 ASMUNDSON AND WRIGHT

FIG. 2.5. An integrated stress-diathesis model of chronic pain.

general sense of perceived readiness for and inability to influence person- ally relevant events and outcomes develops. Those without the necessary predisposition appraise their pain sensation as nonthreatening, do not re- spond with maladaptive cognitive or behavioral repertoires, and in most cases recover.

CONCLUSIONS

The primary intent of this chapter was to provide an overview of the vari- ous expressions of pain that have been prominent over the years in ad- dressing the enduring questions of "What is pain?" and "How can we allevi- ate it?" Early models, whether physiological or psychological in focus, were based on a unidimensional conceptualization. Subsequent to the seminal contributions of Melzack and colleagues (Melzack & Casey, 1968; Melzack & Wall, 1965), models moved toward a multidimensional conceptualization, recognizing a complex interplay between physiological, psychological, and sociocultural mechanisms in the pain experience. Today there are a num- ber of heuristic biopsychosocial models, each holding (sometimes overlap- ping) implications for understanding, assessing, and treating pain that per- sists in the absence of identifiable physical pathology.

We have presented an integrated diathesis-stress model of chronic pain founded, in part, on empirical support garnered from tests of other models, in an attempt to emphasize the importance of interplay between biology, cognition, affect, and social factors, as well as the key role of learning and associated self-reinforcing feedback loops. In this context it should be clear that simplistic notions of somatogenesis and psychogenesis are obsolete. Our model, like its predecessors, yields a number of questions that, should they be answered systematically, will serve to guide further advances in both pain assessment and intervention strategies. What is the precise nature of the diathesis? Is it genetic or learned? Can it be modified? To what extend does anxious apprehension for pain-specific events and experiences generalize to other sectors of a person's life? Can we apply the models in a way that allows identification of vulnerable or atrisk people prior to devel- opment of chronic pain and associated disability? In other words, is preven- tion feasible? In what ways do physiological reactivity serve to perpetuate the cycle? What is the best method of intervention for those who become mired in the vicious cycle? Graded in vivo exposure appears to have great potential, but is there more to learn from the effective interventions of fundamental fears? How do we best address the influence of social influences in the context of intervention? These are but a few of the questions that await further investigation. 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 53

REFERENCES

Adler, R. H., Zlot, S., Hürny, C., & Minder, C. (1989). Engel's "Psychogenic pain and the pain-prone patient": A retrospective, controlled clinical study. *Psychosomatic Medicine*, *51*, 87–101.

Arnstein, P., Caudill, M., Mandle, C., Norris, A., & Beasly, R. (1999). Self efficacy as a mediator of the relationship between pain intensity, disability and depression in chronic pain patients. *Pain, 80,* 483–491.

Asmundson, G. J. G. (1999). Anxiety sensitivity and chronic pain: Empirical findings, clinical im- plications, and future directions. In S. Taylor (Ed.), *Anxiety sensitivity: Theory, research and treatment of the Fear of Anxiety* (pp. 269–285). Mahwah, NJ: Lawrence Erlbaum Associates.

Asmundson, G. J. G., Jacobson, S. J., Allerdings, M. D., & Norton, G. R. (1996). Social phobia in dis-abled workers with chronic musculoskeletal pain. *Behaviour Research and Therapy, 34*, 939–943.

Asmundson, G. J. G., Kuperos, J. L., & Norton, G. R. (1997). Do patients with chronic pain selectively attend to pain-related information?: Preliminary evidence for mediating role of fear. *Pain, 72*, 27–32.

Asmundson, G. J. G., Norton, P. J., & Norton, G. R. (1999). Beyond pain: The role of fear and avoid- ance in chronicity. *Clincial Psychology Review, 19*, 97–119.

Asmundson, G. J. G., & Taylor, S. (1996). Role of anxiety sensitivity in pain-related fear and avoid- ance. *Journal of Behavioral Medicine*, 19, 577–586.

Asmundson, G. J. G., Vlaeyen, J. W. S., & Crombez, G. (2003). Understanding and treating fear of pain. New York: Oxford University Press.

Asmundson, G. J. G., Wright, K. D., & Hadjistavropoulos, H. D. (2000). Anxiety sensitivity and dis-abling chronic health conditions: State of the art and future directions. *Scandinavian Journal of Behaviour Therapy, 29*, 100–117.

Bates, M., Edwards, W., & Anderson, K. (1993). Ethnocultural influences on variation in chronic pain perception. *Pain, 52*, 101–112.

Beck, A. (1976). Cognitive therapy and emotional disorders. New York: International University Press.

Block, A., Kremer, E., & Gaylor, M. (1980). Behavioral treatment of chronic pain: The spouse as a discriminitive cue for pain behavior. *Pain, 9,* 243–252.

Blumer, D., & Heilbronn, M. (1982). Chronic pain as a variant of depressive disease: The pain- prone disorder. *Journal of Nervous and Mental Disease*. 170. 381–406.

Bonica, J. J. (1954). *The management of pain*. Philadelphia: Lea & Febiger. Bonica, J. J. (1990). *The management of pain* (2nd ed.). Philadelphia: Lea & Febiger. Breuer, J., & Freud, S. (1957). *Studies on hysteria* (J. Strachey, Ed. and Trans.). New York: Basic

Books. (Original work published 1893–1895) Buckelew, S. P., Huyser, B., Hewett, J. E., Parker, J. C., Johnson, J. C., Conway, R., & Kay, D. (1996).

Self-efficacy predicting outcome among fibromyalgia subjects. Arthritis Care and Research, 9, 97–104.

Cairns, D., & Pasino, J. (1977). Comparison of verbal reinforcement and feedback in the operant treatment of disability due to chronic low back pain. *Behavior Therapy*, *8*, 621–630.

Chambers, C. T., Craig, K. D., & Bennett, S. M. (2002). The impact of maternal behavior on chil- dren's pain experiences: An experimental analysis. *Journal of Pediatric Psychology, 27*, 293–301.

Craig, K. (1978). Social modeling influences on pain. In R. Sternback (Ed.), *The psychology of pain* (pp. 67–95). New York: Raven Press.

Craig, K. D. (1984). Emotional aspects of pain. In P. D. Wall & R. Melzack (Eds.), *Textbook of pain* (pp. 261–274). Edinburgh: Churchill-Livingston.

Craig, K. D., & Prkachin, K. M. (1978). Social modeling influences on sensory decision theory and psychophysiological indexes of pain. Journal of Personality and Social Psychology, 36, 805–815. 54 ASMUNDSON AND WRIGHT

Crombez, G., Vervaet, L., Lysens, R., Baeyens, F., & Eelen, P. (1998). Avoidance and confrontation of painful, back straining movements in chronic back pain patients. *Behavior Modification*, 22, 62–77.

Crombez, G., Vlaeyen, J. W. S., Heuts, P. H. T. G., & Lysens, R. (1999). Fear of pain is more dis-abling than pain itself. Evidence on the role of pain-related fear in chronic back pain disabil-ity. *Pain, 80*, 329–339.

Dersh, J., Gatchel, R. J., Polatin, P., & Mayer, T. (2002). Prevalence of psychiatric disorders in pa-tients with chronic work-related musculoskeletal pain disability. *Journal of Occupational and Environmental Medicine, 44*, 459–468.

Dolce, J. J., Crocker, M. F., Moletteire, C., & Doleys, D. M. (1986). Exercise, quotas, anticipatory concern and self efficacy expectancies in chronic pain: A preliminary report. *Pain, 24*, 365–372.

Eccleston, C., & Crombez, G. (1999). Pain demands attention: A cognitive-affective model of the interruptive function of pain. *Psychological Bulletin*, *125*, 209–215.

Engel, G. L. (1959). "Psychogenic" pain and pain-prone patient. *American Journal of Medicine, 26*, 899–918.

Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. *Science*, 196, 129–135.

Flor, H., Braun, C., Elbert, T., & Birbaumer, N. (1997). Extensive reorganization of primary somatosensory cortex in chronic back pain patients. *Neuroscience Letters*, 224, 5–8.

Flor, H., Elbert, T., Wienbruch, C., Pantev, C., Knecht, S., Birbaumer, N., Larbig, W., & Taub, E. (1995). Phantom limb pain as a perceptual correlate of cortical reorganization. *Nature, 357,* 482–484.

Flor, H., Knost, B., & Birbaumer, N. (2002). The role of operant conditioning in chronic pain: An experimental investigation. *Pain, 95*, 111–118.

Fordyce, W. E. (1976). Behavioural methods for chronic pain and illness. St. Louis, MO: C. V. Mosby. Fordyce, W. E., Shelton, J. L., & Dundore, D. E. (1982). The modification of avoidance learning pain behaviours. Journal of Behavioural Medicine, 5, 405–414. Gamsa, A. (1994). The role of psychological factors in chronic pain. I. A half century of study.

Pain, 57, 5–15. Hadjistavropoulos, H. D., Craig, K. D., & Hadjistavropoulos, T. (1998). Cognitive and behavioral responses to illness information: The role of health anxiety. Behavioural Research and Ther- apy, 36, 149–164.

Hadjistavropoulos, T., & Craig, K. D. (2002). A theoretical framework for understanding self- report and observational measures of pain: A communications model. *Behaviour Research and Therapy, 40*, 551–570.

Hardy, J. D., Wollf, H. G., & Goodell, H. (1952). *Pain sensations and reactions*. Baltimore, MD: Wil- liams & Wilkins.

Jensen, I. B., & Bodin, L. (1998). Multimodal cognitive-behavioural treatment for workers with chronic spinal pain: A matched cohort study with an 18-month follow-up. *Pain, 76*, 35–44.

Jensen, M. P., Turner, J. A., & Romano, J. M. (1991). Self-efficacy and outcome expectancies: Rela-tionship to chronic pain coping strategies and adjustment. *Pain*, *44*, 263–269.

Jensen, M. P., Turner, J. A., Romano, J. M., & Karoly, P. (1991). Coping with chronic pain: A critical review of the literature. *Pain, 47,* 249–283.

Katon, W., Egan, K., & Miller, D. (1985). Chronic pain: Lifetime psychiatric diagnoses and family history. *American Journal of Psychiatry*, 142, 1156–1160.

Large, R. (1986). DSM-III diagnosis in chronic pain. Confusion or clarity? *Journal of Nervous and Mental Disease, 174*, 295–303.

Lethem, J., Slade, P. D., Troup, J. D. G., & Bentley, G. (1983). Outline of a fear-avoidance model of exaggerated pain perception—I. *Behaviour Research and Therapy, 21*, 401–408.

Linton, S. J., & Götestam, K. G. (1985). Controlling pain reports through operant conditioning: A laboratory demonstration. Perceptual and Motor Skills, 60, 427–437. 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 55

Linton, S. J., Melin, L., & Götestam, K. G. (1984). *Behavioral analysis of chronic pain and its manage- ment* (Progress in behavior modification, Vol. 18). New York: Academic Press.

Linton, S. J., Overmeer, T., Janson, M., Vlaeyen, J. W. S., & de Jong, J. R. (2002). Graded in-vivo ex-posure treatment for fear-avoidant pain patients with functional disability: A case study. *Cog-nitive Behavior Therapy, 31*, 49–58.

Lipowski, Z. J. (1983). Psychosocial reactions to physical illness. Canadian Medical Association Journal, 128, 1069–1072.

Lousberg, R., Groenman, N. H., Schmidt, A. J., & Gielen, A. A. (1996). Operant conditioning of the pain experiences. *Perceptual and Motor Skills*, 83, 883–900.

Martin, R., Lemos, K., & Leventhal, H. (2001). The psychology of physical symptoms and illness behavior. In G. J. G. Asmundson, S. Taylor, & B. J. Cox (Eds.), *Health Anxiety: Clinical and re-search perspectives on hypochondriasis and related disorders* (pp. 23–45). London: Wiley.

McCracken, L. M. (1997). "Attention" to pain in persons with chronic pain. A behavioral ap- proach. Behavior Therapy, 28, 271–284.

McCracken, L. M., Zayfert, C., & Gross, R. T. (1992). The pain anxiety symptoms scale: Develop- ment and validation of a scale to measure fear of pain. *Pain*, *50*, 67–73.

Mechanic, D. (1962). The concept of illness behavior. Journal of Chronic Disease, 15, 189–194. Meichenbaum, D. (1977). Cognitive behavior modification: An integrative approach. New York: Ple- num. Melzack, R. (1999). From the gate to the neuromatrix. Pain, Suppl 6, S121–S126. Melzack, R., & Casey, K. L. (1968). Sensory, motivational, and central control determinants of pain. A new conceptual model. In D. R. Kenshalo (Ed.), The skin senses (pp. 423–443). Spring- field, IL: Charles C. Thomas.

Melzack, R., & Wall, P. D. (1965). Pain mechanisms. Science, 150, 971–979. Melzack, R., & Wall, P. D. (1982). The challenge of pain. New York: Basic Books. Merskey, H., & Spear, F. D. (1967). The concept of pain. Journal of Psychosomatic Research, 11, 59–67. Morley, S., Eccleston, C., & Williams, A. (1999). A systematic review and meta-analysis of random- ized controlled trials of cognitive-behaviour therapy and behaviour therapy for chronic pain in adults, excluding headaches. Pain, 80, 1–13.

Muris, P., Vlaeyen, J., & Meesters, C. (2001). The relationship between anxiety sensitivity and fear of pain in healthy adolescents. *Behavior Research and Therapy, 39*, 1357–1368.

Norton, G. R., & Asmundson, G. J. G. (2003). Physiological arousal in fear-avoidance models of chronic pain. Behavior Therapy, 34, 17–30.

Parsons, T. (1951). Illness and the role of the physician: A sociological perspective. *American Journal of Orthopsychiatry, 21*, 452–460.

Paulett, J. D. (1947). Low back pain. Lancet, 253, 272–276. Peters, M. L., Vlaeyen, J. W. S., & Kunnen, A. M. W. (2002). Is pain-related fear a predictor of somatosensory hypervigilance in chronic low back pain patients? Behaviour Research and Therapy, 40, 85–103.

Philips, H. C. (1987). Avoidance behaviour and its role in sustaining chronic pain. *Behaviour Re- search and Therapy, 25*, 273–279.

Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. *Sci- ence, 288*, 1769–1772.

Robinson, M. E., & Riley, J. L. III. (1999). Models of pain. In A. R. Block, E. F. Kremer, & E. Fernandez (Eds.), *Handbook of pain syndromes: Biopsychosocial perspectives* (pp. 23–40). Mahwah, NJ: Lawrence Erlbaum Associates.

Roth, R. (2000). Psychogenic models of chronic pain. A selective review and critique. In M. Massie (Ed.), *Psychogenic models of chronic pain* (pp. 89–131). Washington, DC: American Psy- chiatric Press.

Rowbotham, G. F. (1946). Pain and its underlying pathology. Journal of Mental Science, 92, 595–604. 56 ASMUNDSON AND WRIGHT

Roy, R. (1985). Engel's pain-prone disorder patient: 25 Years after. *Psychotherapy and Psycho-somatics, 43*, 126–135.

Seligman, M., & Johnson, J. C. (1973). A cognitive theory of avoidance learning. In F. J. McGuigan & D. B. Lumsden (Eds.), *Contemporary approaches to conditioning and learning* (pp. 69–110). New York: Wiley.

Sharp, T. J. (2001). Chronic pain: A reformulation of the cognitive-behavioural model. Behaviour Research and Therapy, 39, 787–800.

Snider, B., Asmundson, G. J. G., & Weise, K. (2000). Automatic and strategic processing of threat cues in patients with chronic pain: A modified Stroop evaluation. *Clinical Journal of Pain.* 16. 144–154.

Sullivan, M. J. L., Thorn, B., Haythornthwaite, J. A., Keefe, F., Martin, M., Bradley, L. A., & Lefebre, J. C. (2001). Theoretical perspectives on the relation between catastrophizing and pain. *Clini- cal Journal of Pain*, *17*, 52–64.

Turk, D. C. (1996a). Biopsychosocial perspective on chronic pain. In R. J. Gatchel & D. C. Turk (Eds.), *Psychological approaches to pain management* (pp. 3–32). New York: Guilford Press.

Turk, D. C. (1996b). Cognitive factors in chronic pain and disability. In K. Dobson & K. Craig (Eds.), *Advances in cognitive-behavioral therapy* (pp. 83–115). Newbury Park, CA: Sage.

Turk, D. C. (2002). A diathesis-stress model of chronic pain and disability following traumatic in- jury. *Pain Research and Management, 7*, 9–19.

Turk, D. C., & Flor, H. (1999). The Biobehavioral perspective of pain. In R. J. Gatchel & D. C. Turk (Eds.), *Psychosocial factors in pain. Clinical perspectives* (pp. 18–34). New York: Guilford Press.

Turk, D. C., Meichenbaum, D., & Genest, M. (1983). *Pain and behavioral medicine: A cognitive- behavioral perspective*. New York: Guilford Press.

Vlaeyen, J. W. S., de Jong, J., Geilen, M., Heuts, P. H. T. G., & van Breukelen, G. (2001). Graded ex-posure in vivo in the treatment of pain-related fear: A replicated single-case experimental de-sign in four patients with chronic low back pain. *Behaviour Research and Therapy,* 39, 151–156.

Vlaeyen, J. W. S., de Jong, J., Onghena, P., Kerckhoffs-Hanssen, M., & Kole-Snijders, A. M. J. (2002). Can pain-related fear be reduced? The application of cognitive-behavioural exposure in vivo. *Pain Research and Management, 7*, 144–153.

Vlaeyen, J. W. S., Kole-Snijders, A. M. J., Boerem, R. G. B., & van Eek, H. (1995). Fear of movement/ (re)injury in chronic low back pain and its relation to behavioral performance. *Pain*, *62*, 363–372.

Vlaeyen, J. W. S., & Linton, S. J. (2000). Fear-avoidance and its consequences in chronic musculo- skeletal pain: A state of the art. *Pain,* 85, 317–332.

Waddell, G. (1987). A new clinical model for the treatment of low back pain. Spine, 12, 632–644. Waddell, G. (1991). Low back disability. A syndrome of Western civilization. Neurosurgery Clinics of North America, 2, 719–738. Waddell, G. (1992). Biopsychosocial analysis of low back pain. Clinical Rheumatology, 6, 523–557. Waddell, G., Main, C. J., Morris, E. W., Di Paola, M. P., & Gray, I. C. M. (1984). Chronic low back pain, psychological distress, and illness behavior. Spine, 9, 209–213. Waddell, G., Newton, M., Henderson, I., Somerville, D., & Main, C. J. (1993). A Fear-Avoidance Be- liefs Questionnaire (FABQ) and the role of fear-avoidance in chronic low back pain and disability. Pain, 52, 157–168.

Waddell, G., Somerville, D., Henderson, I., & Newton, M. (1992). Objective clinical evaluation of physical impairment in chronic low back pain. *Spine*, *17*, 617–628.

Wall, P. D. (1996). Comments after 30 years of the gate control theory of pain. *Pain Forum. 5.* 12–22.

Zvolensky, M. J., Goodie, J. L., McNeil, D. W., Sperry, J. A., & Sorrell, J. T. (2001). Anxiety sensitiv- ity in the prediction of pain-related fear and anxiety in a heterogeneous chronic pain popula- tions. Behaviour Research and Therapy, 39, 683–696. 2. BIOPSYCHOSOCIAL APPROACHES TO PAIN 57

Pain has afflicted humankind since the dawn of human self-awareness, yet we are still struggling to understand its nature. Young physicians in train- ing, whose job it will be to prevent or relieve pain in myriad medical set- tings, listen to instructors who teach about pain receptors, pain pathways, and mechanisms that gate pain at the dorsal horn of the spinal cord. Con- tinuing medical education efforts sustain and enhance the same message, implying that pain is a primitive sensory signal. Specific sensory end organs transduce injury and transmit "pain," and along the pathway from the pe- riphery to the brain, descending modulatory pathways gate this transmis- sion. Curiously, these same lecturers and teachers are quick to agree that pain is subjective and that it exists only in the brain and when the perceiver is conscious. They point out that they merely equate nociception, the trans- duction and signal transmission of tissue injury, with pain itself. Surely, they reason, when injury occurs, some message of tissue trauma moves from the periphery to the somatosensory cortex, and when that message reaches the somatosensory cortex, something "realizes" it and pain hap- pens. They further reason that, because pain is intrinsically unpleasant, it causes negative emotional responses that we recognize as emotional reac- tions to pain.

I emphasize this to point out that a large gap exists between what sci- ence now knows about pain and what we understand in day-to-day life, ap- ply in medical practice, and teach future health care providers. Current evi- dence makes it clear that nociception and pain are far from synonyms. Pain

CHAPTER3

Pain Perception, Affective Mechanisms, and Conscious Experience

C. Richard Chapman Pain Research Center,

Department of Anesthesiology, University of Utah 59

is conscious; nociception is not. Pain can exist in the absence of nociception, and nociception can take place without pain. Importantly, pain has emotional features and nociception does not.

Although nociception can occur in an unconscious individual, pain can- not. Like other phenomena of consciousness, pain is an emergent product of complex, distributed activity within the brain. It is not a signal that "en- ters" consciousness, but rather an aspect of the moment-to-moment con- struction of consciousness, which comprises awareness of both the exter- nal and internal, or somatic, environment. Put succinctly, pain is a complex, consciousness-dependent, unpleasant somatic experience with cognitive and emotional as well as sensory features.

Pain does not occur alone but rather against a background of complex bodily awareness. We experience a range of somatic perceptions that signal ill-being (e.g., nausea, fatigue, vertigo) as opposed to well-being, and pain is one of these. Pain is the somatic perception of tissue damage; it entails sen- sory awareness, negative emotional arousal (threat), and cognition (atten- tion, appraisal, attribution, and more). Persons in pain become emotional, not because reactions occur when the sensory message reaches the soma- tosensory cortex, but because nociception triggers multiple limbic proc- esses in parallel with central sensory processes.

These considerations indicate that pain is inherently psychological in na- ture; it is not a primitive sensory message of tissue trauma. One can pursue its mechanisms reductionistically, focusing on neuron, neurotransmitter, or even calcium channel, but at the end of the day, human pain is always a complex psychological experience. It follows that the prevention and con- trol of pain are inherently psychological maneuvers.

This chapter begins by reviewing some historical lines of thought that have shaped today's beliefs about pain. I then define and consider the na- ture of emotion and cognition, as they apply to pain as a psychological ex- perience. Turning to the limbic brain, I introduce the concept of nocicep- tion-driven emotion, describe the central neuroanatomy of such emotion, and review literature that reveals the mechanisms by which nociception triggers central mechanisms for negative feeling. This includes functional brain imaging studies of patients and volunteers in pain. Finally, I briefly de- scribe the potential relationship of nociception and pain to stress and sick- ness. A concluding section considers the clinical implications of a psycho- logical view of pain.

THE MIND-BODY PROBLEM

Our current understanding of the relationship between mental processes and the body stems directly from Descartes' notions of mind-body dualism. Descartes, a 17th-century philosopher and mathematician, viewed human 60 CHAPMAN

beings as dualistic creatures: The mind and body are separate entities (Des- cartes, 1649/1967). The immaterial soul, he reasoned, must reside in the pin- eal body because this is the only unpaired organ in the brain. He described the life processes of the body itself as something akin to clockwork mecha- nisms. The actions of the mind were, in Cartesian thinking, the workings of the soul.

Descartes held that the awareness of pain, like awareness of other bodily sensations, must take place in a special location where the mind observes the body. Dennett (1991) termed this hypothetical seat of the mind the *Carte- sian theater*. In this theater, the mind observes and interprets the constantly changing array of multimodality signals that the body produces. The body is a passive environment; the mind is the nonphysical activity of the soul.

Today, most scholars avow that a theater of the mind cannot exist. Scien- tifically, the activity of the brain and the mind are inseparable. Nonetheless, Cartesian dualism is endemic in Western thought and culture. Classical ap- proaches to emotion and pain stemmed from Cartesian thinking, as did psychophysics. Early work on psychosomatic disorders focused on mind—body relationships. Today, much of the popular movement favoring alterna- tive medicine emphasizes "the mind—body connection," keeping oneself healthy through right thinking, and the power of the mind to control the im- mune system. It is hard to avoid Cartesian thinking when the very fabric of our language threads it through our thinking as we reason and speak.

Cartesian assumptions erect a subtle but powerful barrier for someone seeking to understand the affective dimension of pain. Relegating emotions to the realm of the mind and their physiological consequences to the body is classical Descartes. It prevents us from appreciating the intricate interde- pendence of subjective feelings and physiology, and it detracts from our ability to comprehend how the efferent properties of autonomic nervous function can contribute causally to the realization of an emotional state. Mental processes and physiology are interdependent. What we call the mind is consciousness, and consciousness is an emergent property of the activity of the brain. In a feedback-dependent manner, the brain regulates the physiological arousal of the body, and emotion is a part of this process.

PAIN AS EMOTION

What Is Emotion?

Descartes (1649) introduced the term emotion in his essay on "Passion of the Soul." It allowed him to distinguish specific bodily sensations from more complex feeling states such as fear, hate, and joy. Understanding pain as an emotion must begin with an appreciation for the origins and purposes of emotion. 3. PAIN PERCEPTION AND EXPERIENCE 61

Many physicians who treat pain problems regard emotions as epiphe- nomenal feeling states associated with mental activity, subjective in character, and largely irrelevant to the state of a patient's physical health and functional capability. In fact, emotions are primarily physiological and only secondarily subjective. To the extent that they are subjective, we experi- ence them in terms of bodily awareness and judge the events that provoke them as good or bad according to how our bodies feel. Because they can strongly affect cardiovascular function, visceral motility, and genitourinary function, emotions can have an important role in health overall and espe- cially in pain management. Simple negative emotional arousal can exacer- bate certain pain states such as sympathetically maintained pain, angina, and tension headache. It contributes significantly to musculoskeletal pain, pelvic pain, and other pain problems in some patients.

Emotions are complex states of physiological arousal and awareness that im- pute positive or negative hedonic qualities to a stimulus (event) in the internal or external environment. Behaviorally, they serve as action dispositions. A rich and complex literature exists on the nature of emotion, with many compet- ing perspectives. I cannot cover it here and instead offer what is necessarily an overly simplistic summary of the field, as I think it should apply to pain research and theory.

One objective aspect of emotion is autonomically and hormonally medi- ated physiological arousal. Another objective aspect is behavioral, as de- fined by observation. The subjective aspects of emotion, "feelings," are phenomena of consciousness. Emotion represents in consciousness the bi- ological importance or meaning of an event to the perceiver.

Emotion as a whole has two defining features: valence and arousal. *Va- lence* refers to the hedonic quality associated with an emotion: the positive or negative feeling attached to perception. *Arousal* refers to the degree of heightened activity in the central nervous system and autonomic nervous system associated with perception.

Although emotions as a whole can be either positive or negative in valence, pain research addresses only negative emotion. Viewed as an emo-tion, pain represents threat to the biological, psychological, or social integ-rity of the person. In this respect, the emotional aspect of pain is a protec-tive response that normally contributes to adaptation and survival. If uncontrolled or poorly managed in patients with severe or prolonged pain, it produces suffering.

Emotion and Evolution

There are many frameworks for studying the psychology of emotion. I favor a sociobiological (evolutionary) framework because this way of thinking construes feeling states, related physiology, and behavior as mechanisms 62 CHAPMAN

of adaptation and survival. Nature has equipped us with the capability for negative emotion for a purpose; bad feelings are not simply accidents of hu- man consciousness. They are protective mechanisms that normally serve us well, but, like uncontrolled pain, sustained and uncontrolled negative emotions can become pathological states that can produce both maladap- tive behavior and physiological pathology.

By exploring the emotional dimension of pain from the sociobiological perspective, the reader may gain some insight about how to prevent or con- trol the negative affective aspect of pain, which fosters suffering. Unfortu- nately, implementing this perspective requires that we change conven- tional language habits that involve describing pain as a transient sensory event. I suggest the following: Pain is a compelling and emotionally negative state of the individual that has as its primary defining feature awareness of, and homeostatic adjustment to, tissue trauma.

Emotions including the emotional dimension of pain characterize mam- mals exclusively, and they foster mammalian adaptation by making possi- ble complex behaviors and adaptations. Importantly, they play a strong role in consciousness and serve the function of producing and summarizing information that is important for selection among alternative behaviors. Ac- cording to MacLean (1990), emotions "impart subjective information that is instrumental in guiding behavior required for self-preservation and preser- vation of the species." The subjective awareness that is an affect consists of a sense of bodily pervasiveness or of *feelings localized to certain parts of the body*. Because negative emotion such as fear evolved to facilitate adapta- tion and survival, emotion plays an important defensive role. The ability to experience threat when encountering injurious events protects against life- threatening injury.

Cognition and Emotion

The strength of emotional arousal associated with an injury indicates, and expresses, the magnitude of perceived threat to the biological integrity of the person. Within the contents of consciousness, threat is a strong nega- tive feeling state and not a pure informational appraisal. In humans, threat- ening events such as injury that are not immediately present can exist as emotionally colored somatosensory images.

Phenomenal awareness consists largely of the production of images. Vi- sual images are familiar to everyone: We can readily imagine seeing things. We can also produce auditory images by imaging a familiar tune or taste im- ages by imaging sucking a lemon or tasting a familiar drink or food. Simi- larly, we can generate somatosensory images. Everyone can, for example, imagine the feeling of a full bladder, the sensation of a particular shoe on a foot, or a familiar muscle tension or a familiar ache. Interpretation of im- 3. PAIN PERCEPTION AND EXPERIENCE 63

ages often takes the form of self-talk, which employs language. The use of language allows the individual to quickly communicate private experience to others. Apart from language and self-talk, cognition operates largely on images.

Patients can react emotionally to the mental image of a painful event be- fore it happens (e.g., venipuncture), or for that matter they can respond emotionally to the sight of another person's tissue trauma. The emotional intensity of such a feeling marks the adaptive significance of the event that produced the experience for the perceiver. In general, the threat of a minor injury normally provokes less feeling than one that incurs a risk of death. The emotional magnitude of a pain is the internal representation of the threat associated with the event that produced the pain.

At more abstract levels, patients make meaning of tissue injury or pain- ful events of any sort by interpreting them in a broader context. This proc- ess is unique to the individual, although culture can shape the process. In some cases, the meaning that the patient creates for an event can itself be- come a stimulus for negative emotion, and this can interact with, and am- plify, the affective component of the pain. For example, consider two hypo- thetical young women who suffer identical injuries. The first woman, who works as a fashion model, expresses great anguish immediately after an in- jury that may leave a scar. Another young woman, whose passion is riding a trail bike on rocky mountainsides, expresses much less anguish. She com- monly suffers falls that lead to injuries and scars, which she regards without concern. The scar that will follow the tissue trauma is a threat to one, but not to the other, and the threat that the first woman experiences com- bines additively with the emotional arousal inherent in the pain itself. She will experience more pain and express more anguish than the first because a secondary factor amplifies the affective dimension of her pain. This illus- trates a basic psychological principle: Emotion and cognition are interde- pendent determinants of behavior and subjective well-being.

THE LIMBIC BRAIN AND MECHANISMS OF EMOTION

The limbic brain represents an anatomical common denominator across mammalian species (MacLean, 1990), and emotion is a common feature of mammals. Consequently, investigators can learn much about human emo-tion by studying mammalian laboratory animals. The limbic brain is very complex, and it is the central mechanism of emotion.

Early investigators focused on the role of olfaction in limbic function, and this led them to link the limbic brain to emotion. Emotion may have evolutionary roots in olfactory perception. MacLean introduced the some- 64 CHAPMAN

what controversial term "limbic system" and characterized its functions (MacLean, 1952). He identified three main subdivisions of the limbic brain: amygdala, septum and thalamocingulate (MacLean, 1990) that represent sources of afferents to parts of limbic cortex (see Fig. 3.1). MacLean postu- lated that the limbic brain responds to two basic types of input: interocep- tive and exteroceptive. These refer to sensory information from internal and external environments, respectively. Because nociception by definition involves signals of tissue trauma, it excites the limbic brain via intero- ceptive signaling.

Pain research has yet to address the links between nociception and limbic processing definitively. However, anecdotal medical evidence implicates limbic structures in the distress that characterizes the experience of pain. Radical frontal lobotomies, once performed on patients for psycho-surgical purposes, typically interrupted pathways projecting from hypo-thalamus to cingulate cortex and putatively relieved the suffering of intrac-table pain without destroying sensory awareness (Fulton, 1951). Such neurosurgical records help clarify recent positron emission tomographic observations of human subjects undergoing painful cutaneous heat stimulation: Noxious stimulation activates contralateral cingulate cortex and sev- 3. PAIN PERCEPTION AND EXPERIENCE 65

FIG. 3.1. Three divisions of the limbic brain, according to MacLean (1990). The amygdalal and septal divisions are phylogenetically older than the thalamo- cingulate division. The amygdalar division contributes to self-preservation (feeding, attack, defense). The septal division is concerned with sexual behavior and procreation. The thalamocingulate division contributes to sexual and family-related behaviors, including nurturance, autonomic arousal, and probably some cognitive processes such as attention.

eral other limbic areas. Later, I describe progress in functional brain imag- ing research on pain that further elucidates the relationship of limbic activity to pain.

The Autonomic Nervous System and Emotion

The autonomic nervous system (ANS) plays an important role in regulating the constancy of the internal environment, and it does so in a feedback- regulated manner under the direction of the hypothalamus, the solitary nu- cleus, the amygdala, and other central nervous system structures (LeDoux, 1986, 1996). In general, it regulates activities that are not normally under voluntary control. The hypothalamus is the principal integrator of auto- nomic activity. Stimulation of the hypothalamus elicits highly integrated patterns of response that involve the limbic system and other structures (Morgane, 1981).

Many researchers hold that the ANS comprises three divisions, the sym- pathetic, the parasympathetic, and the enteric (Burnstock & Hoyle, 1992; Dodd & Role, 1991). Others subsume the enteric under the other two divi- sions. Broadly, the sympathetic nervous system makes possible the arousal needed for fight and flight reactions, whereas the parasympathetic system governs basal heart rate, metabolism, and respiration. The enteric nervous system innervates the viscera via a complex network of interconnected plexuses.

The sympathetic and parasympathetic systems are largely mutual physi- ological antagonists—if one system inhibits a function, the other typically augments it. There are, however, important exceptions to this rule that demonstrate complementary or integratory relationships. The mechanism most heavily involved in the affective response to tissue trauma is the sym- pathetic nervous system.

During emergency or injury to the body, the hypothalamus uses the sym- pathetic nervous system to increase cardiac output, respiration rate, and blood glucose. It also regulates body temperature, causes piloerection, al- ters muscle tone, provides compensatory responses to hemorrhage, and di- lates pupils. These responses are part of a coordinated, well-orchestrated response pattern called the defense response (Cannon, 1929; Sokolov, 1963, 1990). It resembles the better known orienting response in some respects, but it can only occur following a strong stimulus that is noxious or frankly painful. It sets the stage for escape or confrontation, thus serving to protect the organism from danger. In a conscious cat, both electrical stimulation of the hypothalamus and infusion of norepinephrine into the hypothalamus elicit a rage reaction with hissing, snarling, and attack posture with claw ex- posure, and a pattern of sympathetic nervous system arousal accompanies this (Barrett, Shaikh, Edinger, & Siegel, 1987; Hess, 1936; Hilton, 1966). Circu- 66 CHAPMAN

lating epinephrine produced by the adrenal medulla during activation of the hypothalamo-pituitary-adrenocortical axis accentuates the defense re- sponse, fear responses, and aversive emotional arousal in general.

Because the defense response and related changes are involuntary in na- ture, we generally perceive them as something that the environment does to us. We generally describe such physiological changes, not as the bodily responses that they are, but rather as feelings. We might describe a threat- ening and physiologically arousing event by saying that "It scared me" or that "It made me really mad."

Phenomenologically, feelings seem to happen to us; we do not "do" them in the sense that we think thoughts or choose actions. They are not voli- tional. Emotions are who we are in a given circumstance rather than choices we make, and we commonly interpret events and circumstances in terms of the emotions that they elicit. ANS arousal, therefore, plays a major role in the complex psychological experience of injury and is a part of that experience.

Early views of the ANS followed the lead of Cannon (1929) and held that emergency responses and all forms of intense aversive arousal are undiffer- entiated, diffuse patterns of sympathetic activation. Although this is broadly true, research has shown that definable patterns characterize emotional arousal, and that these are related to the emotion involved, the motor activ- ity required, and perhaps the context (LeDoux, 1986, 1996). An investigator attempting to understand how humans experience emotions must remember that the brain not only recognizes patterns of arousal; it also creates them.

One of the primary mechanisms in the creation of emotion is feedback- dependent sympathetic efferent activation. The ANS has both afferent and ef- ferent functions. The afferent mechanisms signal changes in the viscera and other organs, whereas efferent activity conveys commands to those organs. Consequently, the ANS can maintain feedback loops related to viscera, mus- cle, blood flow, and other responses. The visceral feedback system exempli- fies this process. In addition, feedback can occur via the endocrine system, which under the control of the ANS releases neurohormones into the sys- temic circulation. Because feedback involves both autonomic afferents and endocrine responses, and because some feedback occurs at the level of un- conscious homeostatic balance and other feedback involves awareness, the issue of how visceral change contributes to the creation of an emotional state is complex. The mechanisms are almost certainly pattern dependent, dynamical, and at least partly specific to the emotion involved. Moreover, they occur in parallel with sensory information processing.

The feedback concept is central to emotion research: Awareness of physiological changes elicited by a stimulus is a primary mechanism of emotion. The psychiatric patient presenting with panic attack, phobia, or anxiety is reporting a subjective state based on patterns of physiological 3. PAIN PERCEPTION AND EXPERIENCE 67

signals and not an existential crisis that exists somewhere in the domain of the mind, somehow apart from the body. Similarly, the medical patient ex- pressing emotional distress during a painful procedure, or during uncon- trolled postoperative pain, is experiencing the sensory features of that pain against the background of a cacophony of sympathetic arousal signals.

The concept of feedback underscores an essential point: A sensory stim- ulus does not have purely sensory effects. It undergoes parallel processing at the affective level. When a neural signal involves threat to biological integrity, it elicits strong patterns of sympathetic and neuroendocrine re- sponse. These, in turn, contribute to the awareness of the perceiver. Sen- sory processing provides information about the environment, but this infor- mation exists in awareness against a background of emotional arousal, either positive or negative, and that arousal may vary from mild to extreme.

Nociception and the Limbic Brain

Central sensory and affective pain processes share common sensory mech- anisms in the periphery. A-delta and C fibers serve as tissue trauma trans- ducers (nociceptors) for both, the chemical products of inflammation sensi- tize these nociceptors, and peripheral neuropathic mechanisms such as ectopic firing excite both processes. In some cases neuropathic mecha- nisms may substitute for transduction as we classically define it, producing afferent signal volleys that appear, to the central nervous system, like sig- nals originating in nociceptors. Differentiation of sensory and affective processing begins at the dorsal horn of the spinal cord. Sensory transmis- sion follows spinothalamic pathways, and transmission destined for affective processing takes place in spinoreticular pathways. For more detail on the sensory processing of nociception, see Willis and Westlund (1997).

Nociceptive centripetal transmission engages multiple pathways: spino- reticular, spinomesencephalic, spinolimbic, spinocervical, and spinothalamic tracts (Villanueva, Bing, Bouhassira, & Le Bars, 1989; Willis & Westlund, 1997). The spinoreticular tract contains somatosensory and viscerosensory afferent pathways that arrive at different levels of the brain stem. Spinoreticular ax- ons possess receptive fields that resemble those of spinothalamic tract neu- rons projecting to medial thalamus, and, like their spinothalamic counterparts, they transmit tissue injury information (Craig, 1992; Villanueva, Cliffer, Sorkin, Le Bars, & Willis, 1990). Most spinoreticular neurons carry nociceptive signals, and many of them respond preferentially to noxious ac- tivity (Bing, Villanueva, & Le Bars, 1990; Bowsher, 1976). The spinomesen- cephalic tract comprises several projections that terminate in multiple mid- brain nuclei, including the periaqueductal gray, the red nucleus, nucleus cuniformis, and the Edinger-Westphal nucleus (Willis & Westlund, 1997). Spinolimbic tracts include the spinohypothalamic tract, which reaches both 68 CHAPMAN

lateral and medial hypothalamus (Burstein, Cliffer, & Giesler, 1988; Burstein, Dado, Cliffer, & Giesler, 1991) and the spinoamygdalar tract that extends to the central nucleus of the amygdala (Bernard & Besson, 1990). The spino- cervical tract, like the spinothalamic tract, conveys signals to the thalamus. All of these tracts transmit tissue trauma signals rostrally.

Central processing of nociceptive signals to produce affect undoubtedly involves multiple neurotransmitter systems. Four extrathalamic afferent pathways project to neocortex: the noradrenergic medial forebrain bundle originating in the locus ceruleus (LC); the serotonergic fibers that arise in the dorsal and median raphé nuclei; the dopaminergic pathways of the ven- tral tegmental tract that arise from substantia nigra; and the acetylcho- linergic neurons that arise principally from the nucleus basalis of the sub- stantia innominata (Foote & Morrison, 1987). Of these, the noradrenergic and serotonergic pathways link most closely to negative emotional states (Bremner, Krystal, Southwick, & Charney, 1996; Gray, 1982, 1987). The set of structures receiving projections from this complex and extensive network corresponds to classic definition of the limbic brain (Isaacson, 1982; Mac- Lean, 1990; Papez, 1937).

Although other processes governed predominantly by other neurotrans- mitters almost certainly play important roles in the complex experience of emotion during pain, I emphasize the role of central noradrenergic process- ing and the medial forebrain bundle here. This limited perspective offers the advantage of simplicity, and the literature on the role of central norad- renergic pathways in anxiety, panic, stress, and posttraumatic stress disor- der provides a strong basis (Bremner et al., 1996; Charney & Deutch, 1996). This processing involves the medial forebrain bundle that subdivides into two central noradrenergic pathways: the dorsal and ventral noradrenergic bundles.

Locus Ceruleus and the Dorsal Noradrenergic Bundle

Substantial evidence supports the hypothesis that noradrenergic brain pathways are major mechanisms of anxiety and stress (Bremner et al., 1996). The majority of noradrenergic neurons originate in the locus ceru- leus (LC). This pontine nucleus resides bilaterally near the wall of the fourth ventricle. The locus has three major projections: ascending, de- scending, and cerebellar. The ascending projection, the dorsal noradre- nergic bundle (DNB), is the most extensive and important pathway for our purposes (Fillenz, 1990). Projecting from the LC throughout limbic brain and to all of neocortex, the DNB accounts for about 70% of all brain nor- epinephrine (Svensson, 1987). The LC gives rise to most central noradrener- gic fibers in spinal cord, hypothalamus, thalamus, hippocampus (Aston- Jones, Foote, & Segal, 1985), and, in addition, it projects to limbic cortex and 3. PAIN PERCEPTION AND EXPERIENCE 69

neocortex. Consequently, the LC exerts a powerful influence on higher level brain activity. Figure 3.2 illustrates the relationships among central norad- renergic pathways and structures.

The noradrenergic stress response hypothesis holds that any stimulus that threatens the biological, psychological, or psychosocial integrity of the indi- vidual increases the firing rate of the LC, and this in turn results in increased release and turnover of norepinephrine in the brain areas involved in noradrenergic innervation. Studies show that the LC reacts to signaling from sensory stimuli that potentially threaten the biological integrity of the indi- vidual or signal damage to that integrity (Elam, Svensson, & Thoren, 1986b; 70 CHAPMAN

FIG. 3.2. Noradrenergic pathways activated by nociception.

Svensson, 1987). Spinal-cord lamina one cells terminate in the LC (Craig, 1992). The major sources of LC afferent input are the paragigantocellularis and prepositus hypoglossi nuclei in the medulla, but destruction of these nu- clei does not block LC response to somatosensory stimuli (Rasmussen & Aghajanian, 1989). Other sources of afferent input to the locus include the lat- eral hypothalamus, the amygdala, and the solitary nucleus. Whether nocicep- tion stimulates the LC directly or indirectly is still uncertain.

Nociception inevitably and reliably increases activity in neurons of the LC, and LC excitation appears to be a consistent response to nociception (Korf, Bunney, & Aghajanian, 1974; Morilak, Fornal, & Jacobs, 1987; Stone, 1975; Svensson, 1987). Notably, this does not require cognitively mediated attentional control because it occurs in anesthetized animals. Foote, Bloom, and Aston-Jones (1983) reported that slow, tonic spontaneous activity at the locus in rats changed under anesthesia in response to noxious stimula- tion. Experimentally induced phasic LC activation produces alarm and ap- parent fear in primates (Redmond & Huang, 1979), and lesions of the LC eliminate normal heart-rate increases to threatening stimuli (Redmond, 1977). In a resting animal, LC neurons discharge in a slow, phasic manner (Rasmussen, Morilak, & Jacobs, 1986).

The LC reacts consistently, but it does not respond exclusively, to noci-ception. LC firing rates increase following nonpainful but threatening events such as strong cardiovascular stimulation (Elam, Svensson, & Thoren, 1985; Morilak et al., 1987) and certain visceral events such as dis-tention of the bladder, stomach, colon, or rectum (Svensson, 1987; Aston-Jones et al., 1985). Highly novel and sudden stimuli that could represent po-tential threat, such as loud clicks or light flashes, can also excite the LC in experimental animals (Rasmussen et al., 1986). Thus, the LC responds to bi-ologically threatening or potentially threatening events, of which tissue in-jury is a significant subset. Amaral and Sinnamon (1977) described the LC as a central analog of the sympathetic ganglia. Viewed in this way, it is an extension of the autonomic protective mechanism described earlier.

Invasive studies confirm the linkage between LC activity and threat. Di- rect activation of the DNB and associated limbic structures in laboratory animals produces sympathetic nervous system response and elicits emo- tional behaviors such as defensive threat, fright, enhanced startle, freezing, and vocalization (McNaughton & Mason, 1980). This indicates that en- hanced activity in these pathways corresponds to negative emotional arousal and behaviors appropriate to perceived threat. LC firing rates in- crease two- to threefold during the defense response elicited in a cat that has perceived a dog (Barrett et al., 1987). Moreover, infusion of norepi- nephrine into the hypothalamus of an awake cat elicits a defensive rage re- action that includes activation of the LC noradrenergic system. In general, the mammalian defense response involves increased regional turnover and 3. PAIN PERCEPTION AND EXPERIENCE 71

release of norepinephrine in the brain regions that the LC innervates. The LC response to threat, therefore, may be a component of the partly "prewired" patterns associated with the defense response.

Increased alertness is a key element in early stages of the defense re- sponse. Normally, activity in the LC increases alertness. Tonically en- hanced LC and DNB discharge corresponds to hypervigilance and emotion- ality (Bremner et al., 1996; Butler, Weiss, Stout, & Nemeroff, 1990; Foote et al., 1983). The DNB is the mechanism for vigilance and defensive orientation to affectively relevant and novel stimuli. It also regulates attentional proc- esses and facilitates motor responses (Foote & Morrison, 1987; Gray, 1987; Svensson, 1987; Elam, Svensson, & Thoren, 1986a). In this sense, the LC in- fluences the stream of consciousness on an ongoing basis and readies the individual to respond quickly and effectively to threat when it occurs.

LC and DNB support biological survival by making possible global vigi- lance for threatening and harmful stimuli. Siegel and Rogawski (1988) hy- pothesized a link between the LC noradrenergic system and vigilance, focusing on rapid eye movement (REM) sleep. They noted that LC norad- renergic neurons maintain continuous activity in both normal waking state and non-REM sleep, but during REM sleep, these neurons virtually cease discharge activity. Moreover, an increase in REM sleep ensues either after lesion of the DNB or following administration of clonidine, an alpha-2 ad- renoceptor agonist. Because LC inactivation during REM sleep permits re- building of noradrenergic stores, REM sleep may be necessary preparation for sustained periods of high alertness during subsequent waking. Conversely, reduced LC activity periods (REM sleep) allow time for a suppres- sion of sympathetic tone.

Both adaptation and sensitization can alter the LC response to threat. Abercrombie and Jacobs (1987a, 1987b) demonstrated a noradrenergically mediated increase in heart rate in cats exposed to white noise. Elevated heart rate decreased with repeated exposure, as did LC activation and cir- culating levels of norepinephrine. Libet and Gleason (1994) found that stim- ulation via permanently implanted LC electrodes did not elicit indefinite anxiety. This indicates that the brain either adapts to locus excitation or en- gages a compensatory response to excessive LC activation under some cir- cumstances. In addition, central noradrenergic responsiveness changes as a function of learning. In the cat, pairing a stimulus with a noxious air puff results in increased LC firing with subsequent presentations of the stimu- lus, but previous pairing of that stimulus with a food reward produces no al- teration in LC firing rates with repeated presentation (Rasmussen et al., 1986). These studies show that, despite its apparently "prewired" behav- ioral subroutines, the noradrenergic brain shows substantial neuroplas- ticity. The emotional response of animals and people to a painful stimulus can adapt, and it can change as a function of experience. 72 CHAPMAN

From a different perspective, Bremner et al. (1996) postulated that chronic stress can affect regional norepinephrine turnover and thus con-tribute to the *response sensitization* evident in panic disorder and post-traumatic stress disorder. Chronic exposure to a stressor (including per-severating nociception) could create a situation in which noradrenergic synthesis cannot keep up with demand, thus depleting brain norepineph-rine levels. Animals exposed to inescapable shock demonstrate greater LC responsiveness to an excitatory stimulus than animals that have experi-enced escapable shock (Weiss & Simson, 1986). In addition, such animals display "learned helplessness" behaviors—they cease trying to adapt to, or cope with, the source of shock (Seligman, Weiss, Weinraub, & Schulman, 1980). From an evolutionary perspective, this is a failure of the defense re-sponse as adaptation; it represents surrender to suffering. Extrapolating this and related observations to patients, Bremner and colleagues (1996) suggested that persons who have once encountered overwhelming stress and suffered exhaustion of central noradrenergic resources may respond excessively to similar stressors that they encounter later.

The Ventral Noradrenergic Bundle and the Hypothalamo-Pituitary-Adrenocortical (HPA) Axis

The ventral noradrenergic bundle (VNB) originates in the LC and enters the medial forebrain bundle. Neurons in the medullary reticular formation pro- ject to the hypothalamus via the VNB (Sumal, Blessing, Joh, Reis, & Pickel, 1983). Sawchenko and Swanson (1982) identified two VNB-linked norad- renergic and adrenergic pathways to paraventricular hypothalamus in the rat: the A1 region of the ventral medulla (lateral reticular nucleus, LRN), and the A2 region of the dorsal vagal complex (the nucleus tractus soli- tarius, or solitary nucleus), which receives visceral afferents. These medul- lary neuronal complexes supply 90% of catecholaminergic innervation to the paraventricular hypothalamus via the VNB (Assenmacher, Szafarczyk, Alonso, Ixart, & Barbanel, 1987).

The noradrenergic axons in the VNB respond to noxious stimulation (Svensson, 1987), as does the hypothalamus itself (Kanosue, Nakayama, Ishikawa, & Imai-Matsumura, 1984). Moreover, nociception-transmitting neu- rons at all segmental levels of the spinal cord project to medial and lateral hypothalamus and several telencephalic regions (Burstein et al., 1988, 1991; Willis & Westlund, 1987). These projections link tissue injury and the hypo- thalamic response, as do hormonal messengers in some circumstances.

The hypothalamic paraventricular nucleus (PVN) coordinates the HPA axis. Neurons of the PVN receive afferent information from several reticular areas including ventrolateral medulla, dorsal raphé nucleus, nucleus raphé magnus, LC, dorsomedial nucleus, and the nucleus tractus solitarius (Lopez, 3. PAIN PERCEPTION AND EXPERIENCE 73

Young, Herman, Akil, & Watson, 1991; Peschanski & Weil-Fugacza, 1987; Sawchenko & Swanson, 1982). Still other afferents project to the PVN from the hippocampus, septum, and amygdala (Feldman, Conforti, & Weidenfeld, 1995). Nearly all hypothalamic and preoptic nuclei send projections to the PVN. This suggests that limbic connections mediate endocrine responses during stress. Feldman et al. noted that limbic stimulation always increases adrenocortical activity in rats.

In responding to potentially or frankly injurious stimuli, the PVN initiates a complex series of events regulated by feed back mechanisms. These proc- esses ready the organism for extraordinary behaviors that will maximize its chances to cope with the threat at hand (Selye, 1978). Although laboratory studies often involve highly controlled and specific noxious stimulation, real-life tissue trauma usually involves a spectrum of afferent activity, and the pattern of activity may be a greater determinant of the stress response than the specific receptor system involved (Lilly & Gann, 1992). Traumatic injury, for example, might involve complex signaling from the site of injury including inflammatory mediators, baroreceptor signals from blood volume changes, and hypercapnea. Tissue trauma normally initiates much more than nociception.

Diminished nociceptive transmission during stress or injury helps peo- ple and animals to cope with threat without the distraction of pain. Labo- ratory studies with rodents indicate that animals placed in restraint or subjected to cold water develop analgesia (Amir & Amit, 1979; Bodnar, Glusman, Brutus, Spiaggia, & Kelly, 1979; Kelly, Silverman, Glusman, & Bodner, 1993). Lesioning the PVN attenuates such stress-induced analge- sia (Truesdell & Bodnar, 1987).

The medullary mechanisms involved in this are complex and include the response of the solitary nucleus to baroreceptor stimulation (Ghione, 1996). Stressor-induced, increased blood pressure stimulates carotid barorecep- tors, and these in turn activate the solitary nucleus, which then initiates ac- tivity in descending pathways that gate incoming nociceptive traffic at the dorsal horn of the spinal cord. This mechanism links psychophysiological response to a stressor with endogenous pain modulation.

Some investigators emphasize that neuroendocrine arousal mechanisms are not limited to emergency situations, even though most research empha- sizes that such situations elicit them (Grant, Aston-Jones, & Redmond, 1988; Henry, 1986). In complex social contexts, submission, dominance, and other transactions can elicit neuroendocrine and autonomic responses, modified perhaps by learning and memory. This suggests that neuroendocrine proc- esses accompany all sorts of emotion-eliciting situations.

The hypothalamic PVN supports stress-related autonomic arousal through neural as well as hormonal pathways. It sends direct projections to the sympathetic intermediolateral cell column in the thoracolumbar spinal 74 CHAPMAN

cord and the parasympathetic vagal complex, both sources of preganglionic autonomic outflow (Krukoff, 1990). In addition, it signals release of epineph- rine and norepinephrine from the adrenal medulla. ACTH (adrenocortico- trophic hormone) release, although not instantaneous, is quite rapid: It occurs within about 15 seconds (Sapolsky, 1992). These considerations impli- cate the HPA axis in the neuroendocrinologic and autonomic manifestations of emotion associated with tissue trauma.

In addition to controlling neuroendocrine and autonomic nervous system reactivity, the HPA axis coordinates emotional arousal with behavior (Panksepp, 1986). As noted earlier, stimulation of the hypothalamus can elicit well-organized action patterns, including defensive threat behaviors and autonomic arousal (Jänig, 1985). The existence of demonstrable behavioral subroutines in animals suggests that the hypothalamus plays a key role in matching behavioral reactions and bodily adjustments to challeng- ing circumstances or biologically relevant stimuli. Moreover, stress hor- mones at high levels, especially glucocorticoids, may affect central emo- tional arousal, lowering startle thresholds and influencing cognition (Sapolsky, 1992). Saphier (1987) observed that cortisol altered the firing rate of neurons in limbic forebrain. Clearly, stress regulation is a complex, feedback-dependent, and coordinated process. The hypothalamus appears to take executive responsibility for coordinating behavioral readiness with physiological capability, awareness, and cognitive function.

Chapman and Gavrin (1999) suggested that prolonged nociception may cause a sustained, maladaptive stress response in patients. Signs of this in-clude fatigue, dysphoria, myalgia, nonrestorative sleep, somatic hyper-vigilance, reduced appetite and libido, impaired physical functioning, and impaired concentration. In this way, the emotional dimension of persisting pain may, through its physiological manifestation, contribute heavily to the disability associated with chronic or unrelieved cancer pain.

Central Serotonergic Pathways

The serotonergic system is the most extensive monoaminergic system in the brain. It originates in the raphé nuclei of the medulla, the pons, and the mesencephalon (Grove, Coplan, & Hollander, 1997; Watson, Khachaturian, Lewis, & Akil, 1986). Descending projections from the raphé nuclei modu- late nociceptive traffic at laminae I and II in the spinal cord and also motor neurons. The raphé nuclei of the midbrain and upper pons project via the medial forebrain bundle to multiple limbic sites such as hypothalamus, sep- tum and hippocampus, cingulate cortex, and cerebral cortex, including frontal cortex.

The potential role of serotonergic mechanisms in affective disorders, particularly depression and panic disorder, continues to receive a great 3. PAIN PERCEPTION AND EXPERIENCE 75

deal of attention (Grove et al., 1997; van Praag, 1996). These are important for pain perception because descending endogenous modulatory pathways from the nucleus raphé magnus, the solitary nucleus, and other mesen-cephalic structures can attenuate or gate nociceptive signaling at the level of the dorsal horn, and these pathways are largely serotonergic. Longstanding, but thinly supported, speculation holds that depletion of serotonin may result in diminished endogenous modulation of nociception and hypersen-sitivity to noxious events.

Currently, the major antidepressant medications are selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors, often called SSRIs (Asberg & Martensson, 1993). Increased receptor selectivity in the newer drugs helps to maximize benefit and minimize side effects of these medications.

It is now clear that the older assumptions of simple bioamine deficiency are insufficient to account for the role of serotonin in affective disorders. Al- though a definitive understanding is still at issue, it has become clear that the serotonergic system influences the actions of the HPA axis, particularly by augmenting cortisol-induced feedback inhibition (Bagdy, Calogero, Mur- phy, & Szemeredi, 1989; Dinan, 1996; Korte, Van, Bouws, Koolhaas, & Bohus, 1991). Moreover, it interacts with noradrenergic pathways in complex ways, including attenuation of firing in LC neurons (Aston-Jones et al., 1991). The interdependence of the monoamine systems and the HPA axis indicates that we cannot hope to account for complex patterns of brain or behavioral responses by considering these elements individually. They appear to be components of a larger system that we have yet to conceptualize.

TWO STAGES IN THE EMOTIONAL ASPECT OF PAIN

The physiology of emotion suggests that the affective dimension of pain in-volves a two-stage mechanism. The primary mechanism generates an im- mediate experience akin to hypervigilance or fear; put simply, it is threat. In nature, this rapid response to injury serves to disrupt ongoing attentional and behavioral patterns. At the same time, efferent messages from the hy- pothalamus, amygdala, and other limbic structures excite the autonomic nervous system, which in turn alters bodily states. Cardiac function, muscle tension, altered visceral function, respiration rate, and trembling all occur, and awareness of these reactions creates a strong negative subjective experience. This body state awareness is the second mechanism of the affective dimension of pain.

Damasio (1994) submitted that visceral and other event-related, autonom- ically mediated body state changes constitute "somatic markers." That is, they serve as messengers, delivering affective evaluations of perceptual ex- 76 CHAPMAN

periences that either confirm or deny the potential threat inherent in an event. A somatic marker is essentially a somatic image. Perceptually, the brain operates on images that are symbolic representations of external and internal objects or events. Just as it is more efficient for a listener to work with words in language as opposed to phonemes, cognition is more efficient when it uses images rather than simple sensations. The somatic marker im- ages associated with tissue trauma are often complex patterns of physiolog- ical arousal. They serve as symbolic representations of threat to the biolog- ical (and sometimes the psychological or social) integrity of the person. Like other images, they can enter into complex patterns of association. Be- cause the secondary stage of the affective response involves images and symbols, it represents cognition as well as emotion.

PAIN, STRESS, AND SICKNESS

The defensive response of the central nervous system to injury or disease is complex. We have already seen that it is not limited to simple sensory signaling of tissue trauma, awareness of such signaling, and conscious re- sponse. Much of the information processing is unconscious, and physiologi- cal responses are initially unconscious, producing affective changes and subsequent awareness of emotional arousal. The HPA axis plays a strong role in emotional arousal and the defense response, and it helps govern the immune system (Sternberg, 1995). The immune system does much more than identifying and destroying foreign substances: It may function as a sense organ that is diffusely distributed throughout the body (Blalock, Smith, & Meyer, 1985; Willis & Westlund, 1997).

Some investigators contend that the brain and immune system form a bi- directional communication network (Lilly & Gann, 1992; Maier & Watkins, 1998). First, products of the immune system communicate injury-related events and tissue pathology to the brain. The key products are cytokines such as interleukin-1 (IL-1) and interleukin-6 (IL-6) released by macrophages and other immune cells. They appear to do this not by functioning as blood- borne messengers, but by activating the vagus nerve. Paraganglia sur- rounding vagal terminals have dense binding sites for IL-1, and they syn- apse on vagal fibers that terminate in the solitary nucleus. Thus, cytokines appear to excite (albeit indirectly) vagal afferents that terminate in one of the major control centers for the autonomic nervous system.

Second, the brain controls the immune system via the actions of the sympathetic nervous system and the hypothalamic secretion into the blood- stream of releasing factors that activate the anterior pituitary via the HPA axis (Sternberg, 1995). The pituitary body releases peptides related to pro- opiomelanocortin, such as ACTH and beta-endorphin, and these in turn trig- 3. PAIN PERCEPTION AND EXPERIENCE 77

ger the release of glucocorticoids. Because the cells and organs of the im- mune system express receptors for these hormones, they can respond to humoral messenger molecules of central origin. This system is important for pain research because, according to Maier and Watkins (1998), activa- tion of these pathways by a stressor such as tissue trauma produces a con- stellation of adaptive behaviors and physiological changes that correspond to the "sickness" response.

The *sickness response* is a negative experience, but it evolved to promote recuperation and survival. It includes fever, increased slow-wave sleep, increased leucocytosis, reduced exploration, diminished sexual interest, re- duced activity, depressed mood, and somewhat diminished cognitive abili- ties. Collectively, these responses conserve energy and foster its redirec- tion to increased body temperature, which suppresses the reproduction of microbial organisms. Sickness tends to occur with both microbial infection and tissue injury because an open wound normally invites infection. Viewed broadly, sickness is an unpleasant motivational state that promotes recuperation.

These considerations suggest that feeling sick is a part of the brain's de-fense against microbial invasion. Tissue trauma can provoke it, and thus it tends to accompany the experience of pain. Obviously, chronic sickness in the absence of definable injury of pathology serves no biological purpose. The role of the sickness response in chronic pain states merits study.

CLINICAL IMPLICATIONS

The preceding review reveals that the brain deals in complex ways with sig- nals of tissue trauma. Figure 3.3 provides a simple overview of this com- plexity and indicates how different types of intervention for pain act at different levels of the neuraxis. It is rarely reasonable to assume that psy- chological processes are incidental to pain; indeed, pain is itself a psycho- logical experience, and the expression of pain is a behavior.

Highly organized patterns of protective response occur during pain, and they involve the autonomic nervous system, the HPA axis, and the immune system, as well as subjective awareness. Negative emotion is a major feature of pain and a direct consequence of complex central nociceptive processing involving sympathetic activation and activity in the HPA axis. Emotion is not purely subjective, and its psychophysiology can be medically significant. Cognitive processes invariably accompany human emotion, so they are a part of the pain experience.

If the emotional component of pain is an integral part of the experience of pain, with its own physiological mechanisms, then it stands to reason that medicine should incorporate the affective dimension into diagnosis of 78 CHAPMAN

pain states and direct therapeutic intervention toward pain affect. Most physicians try to look around or beyond the negative emotion that the pa- tient in pain presents in an attempt to discern whether the pain sensation signals an undiagnosed injury or disease process. This is a necessary first step, but when the results are negative, it is important to assess the pa- tient's affective status. This should entail more than asking about the pa- tient's spirits or mood. The goal is to discern whether the patient produces excessive sympathetic activity in everyday life, and whether there is endo- crinological evidence for HPA axis arousal.

Reports of poor or nonrestorative sleep, diminished appetite, general on- going fatigue, and sore muscles or "ache all over" feelings are often indica- tors of excessive or prolonged negative affect. Nociception-driven affective arousal maybe the cause of the patient's suffering, a complicating factor in the pain syndrome (e.g., contributing secondarily to sympathetic mecha- 3. PAIN PERCEPTION AND EXPERIENCE 79

FIG. 3.3. Mechanisms of pain and related interventional strategies, organized according to levels of the neuraxis.

nisms), or the cause of many of the debilitating complications of persisting pain. There is a pressing need for further research on the role of pain affect in generating and perpetuating the constellation of symptoms that accom- pany chronic pain or cancer pain such as fatigue, sleep disorder, impaired concentration, general myalgia, and negative mood.

The progress of acute pain to disabling chronic pain may depend, in some cases, heavily on the affective dimension of pain. Such dependence can be psychological (e.g., involving classical and operant conditioning), but it can also be physiological because negative emotion involves sympa- thetic arousal, and this may interact with the mechanisms of some complex regional pain syndromes, angina, or other disorders.

The best way to control the affective dimension of pain medically, when possible, is to prevent or stop the nociceptive or neuropathic neural traffic. When this is not possible, then the affective dimension of pain should be a target for intervention in its own right. The physiological consequences of prolonged sympathetic arousal and HPA axis arousal are negative, and the patient is suffering.

Many clinicians think first of benzodiazepines for controlling negative emotions, but these work primarily at cortical areas. They may quiet the patient and change behavior, but this does not mean that they reduce the physiological consequences of the nociception at lower levels of the neuraxis. There is a need for further research on the potential prophylactic benefits of alpha-2 agonists, which may help prevent or blunt the sympathetic response to acute pain states such as postoperative pain or procedural pain. Patients with chronic pain could potentially benefit from these drugs as well if they have complex regional pain syndrome, angina, head-ache, or a variety of other conditions in which sympathetic activation helps sustain the pain.

Psychological training in deep relaxation may assist the rehabilitation of chronic pain patients by helping them to limit the affective dimension of their pain. In addition, clinicians can sometimes attenuate negative emo- tional overlay by providing information to patients and by listening pa- tiently to the patient's concerns. Patients who feel that they can trust their providers are less anxious. Many respond positively to clinician awareness of suffering and bad feelings.

Because pain is a complex psychological experience, psychology should have a strong role in pain research and pain management. Although psy- chologists have contributed to the field in such areas as pain assessment and cognitive-behavioral therapy, they have not yet built a bridge between the physiological mechanisms of pain and psychological practice. Such a bridge is important not only for scientific reasons, but also for communica- tion. Psychology needs to be at the center of the pain field where it can inte- grate progress in basic science with clinical pain assessment and treatment. 80 CHAPMAN

This will require a combination of strong theory and a psychophysiological basis for psychological constructs. Strong effort in this direction is crucial for the pain field because no other discipline can properly characterize and comprehensively study pain.

REFERENCES

Abercrombie, E. D., & Jacobs, B. L. (1987a). Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. *Journal of Neuroscience*. 79), 2837–2843.

Abercrombie, E. D., & Jacobs, B. L. (1987b). Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II. Adaptation to chronically presented stressful stim- uli. *Journal of Neuroscience*, 79), 2844–2848.

Amaral, D. B., & Sinnamon, H. M. (1977). The locus coeruleus: Neurobiology of a central norad- renergic nucleus. *Progress in Neurobiology*, *9*, 147–196.

Amir, S., & Amit, Z. (1979). The pituitary gland mediates acute and chronic pain responsiveness in stressed and non-stressed rats. *Life Sciences, 24*, 439–448.

Asberg, M., & Martensson, B. (1993). Serotonin selective antidepressant drugs: Past, present, fu-ture. *Clinical Neuropharmacology*, *16*(Suppl. 3), S32–S44.

Assenmacher, I., Szafarczyk, A., Alonso, G., Ixart, G., & Barbanel, G. (1987). Physiology of neuro- pathways affecting CRH secretion. In W. F. Ganong, M. F. Dallman, & J. L. Roberts (Eds.), *The hypothalamic-pituitary-adrenal axis revisited* (Vol. 512, pp. 149–161). New York: New York Acad- emy of Sciences.

Aston-Jones, G., Foote, S. L., & Segal, M. (1985). Impulse conduction properties of noradrenergic locus coeruleus axons projecting to monkey cerebrocortex. *Neuroscience*, *15*, 765–777.

Aston-Jones, G., Shipley, M. T., Chouvet, G., Ennis, M., Van, B. E., Pieribone, V., Shiekhattar, R., Akaoka, H., Drolet, G., Astier, B., et al. (1991). Afferent regulation of locus coeruleus neurons: Anatomy, physiology and pharmacology. *Progress in Brain Research, 88*, 47–75.

Bagdy, G., Calogero, A. E., Murphy, D. L., & Szemeredi, K. (1989). Serotonin agonists cause paral-lel activation of the sympathoadrenomedullary system and the hypothalamo-pituitary-ad-renocortical axis in conscious rats. *Endocrinology, 125*(5), 2664–2669.

Barrett, J. A., Shaikh, M. B., Edinger, H., & Siegel, A. (1987). The effects of intrahypothalamic injections of norepinephrine upon affective defense behavior in the cat. *Brain Research*, 426(2), 381–384.

Bernard, J. F., & Besson, J. M. (1990). The spino(trigemino)pontoamygdaloid pathway: Electro- physiological evidence for an involvement in pain processes. *Journal of Neurophysiology*, *63*(3), 473–490.

Bing, Z., Villanueva, L., & Le Bars, D. (1990). Ascending pathways in the spinal cord involved in the activation of subnucleus reticularis dorsalis neurons in the medulla of the rat. *Journal of Neurophysiology*, *63*, 424–438.

Blalock, J. E., Smith, E. M., & Meyer, W. J., 3rd. (1985). The pituitary-adrenocortical axis and the immune system. *Clinics in Endocrinology and Metabolism, 14*(4), 1021–1038.

Bodnar, R. J., Glusman, M., Brutus, M., Spiaggia, A., & Kelly, D. (1979). Analgesia induced by cold-water stress: Attenuation following hypophysectomy. *Physiology & Behaviour*, *23*, 53–62.

Bowsher, D. (1976). Role of the reticular formation in responses to noxious stimulation. *Pain, 2*, 361–378.

Bremner, J. D., Krystal, J. H., Southwick, S. M., & Charney, D. S. (1996). Noradrenergic mecha- nisms in stress and anxiety: I. Preclinical studies. Synapse, 23(1), 28–38. 3. PAIN PERCEPTION AND EXPERIENCE 81

Burnstock, G., & Hoyle, C. H. V. (Eds.). (1992). Autonomic neuroeffector mechanisms. Philadelphia: Harwood Academic.

Burstein, R., Cliffer, K. D., & Giesler, G. J. (Eds.). (1988). *The spinohypothalamic and spinotele- cephalic tracts: Direct nociceptive projections from the spinal cord to the hypothalamus and telencephalon*. New York: Elsevier.

Burstein, R., Dado, R. J., Cliffer, K. D., & Giesler, G. J. J. (1991). Physiological characterization of spinohypothalamic tract neurons in the lumbar enlargement of rats. *Journal of Neurophysi- ology, 66*(1), 261–284.

Butler, P. D., Weiss, J. M., Stout, J. C., & Nemeroff, C. B. (1990). Corticotropin-releasing factor pro-duces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. *Journal of Neuroscience*, 10, 176–183.

Cannon, W. B. (1929). Bodily changes in pain, hunger, fear and rage. New York: Appleton. Chapman, C. R., & Gavrin, J. (1999). Suffering the contributions of persisting pain. Lancet, 353, 2233–2237. Charney, D. S., & Deutch, A. (1996). A functional neuroanatomy of anxiety and fear: Implications for the pathophysiology and treatment of anxiety disorders. Critical Reviews of Neurobiology, 10(3–4), 419–446.

Craig, A. D. (1992). Spinal and trigeminal lamina I input to the locus coeruleus anterogradely la-beled with *Phaseolus vulgaris* leucoagglutinin (PHA-L) in the cat and the monkey. *Brain Re- search*, *584*(1–2), 325–328.

Damasio, A. R. (1994). Descartes' error: Emotion and reason in the human brain. New York: Grosset/Putnam.

Dennett, D. (1991). Consciousness explained. Boston: Little, Brown. Descartes, R. (1967). The passions of the soul. In The philosophical works of Descartes (Vol. 1, pp. 219–327, Trans. E. S. Haldane & G. T. R. Ross). New York: Dover. (Original work published 1649)

Dinan, T. G. (1996). Serotonin and the regulation of hypothalamic-pituitary-adrenal axis function. Life Sciences, 58(20), 1683–1694.

Dodd, J., & Role, L. W. (1991). The anatomic nervous system. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), *Principles of neural science* (3rd ed., pp. 761–775). New York: Elsevier.

Elam, M., Svensson, T. H., & Thoren, P. (1985). Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic nerves. *Brain Research*, *358*, 71–84.

Elam, M., Svensson, T. H., & Thoren, P. (1986a). Locus coeruleus neurons and sympathetic nerves: Activation by cutaneous sensory afferents. *Brain Research, 366*, 254–261.

Elam, M., Svensson, T. H., & Thoren, P. (1986b). Locus coeruleus neurons and sympathetic nerves: Activation by visceral afferents. *Brain Research*, 375, 117–125.

Feldman, S., Conforti, N., & Weidenfeld, J. (1995). Limbic pathways and hypothalamic neuro- transmitters mediating adrenocortical responses to neural stimuli. *Neuroscience and Bio- behavioural Reviews, 19*(2), 235–240.

Fillenz, M. (1990). Noradrenergic neurons. Cambridge: Cambridge University Press. Foote, S. L., & Morrison, J. H. (1987). Extrathalamic modulation of corticofunction. Annual Review of Neuroscience, 10, 67–95. Foote, S. L., Bloom, F. E., & Aston-Jones, G. (1983). Nucleus locus ceruleus: New evidence of ana-tomical and physiological specificity. Physiology Review, 63, 844–914. Fulton, J. E. (1951). Frontal lobotomy and affective behavior. New York: W. W. Norton. Ghione, S. (1996). Hypertension-associated hypalgesia. Evidence in experimental animals and humans, pathophysiological mechanisms, and potential clinical consequences. Hyperten-sion, 28(3), 494–504.

Grant, S. J., Aston-Jones, G., & Redmond, D. E., Jr. (1988). Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. *Brain Research Bulletin, 21*(3), 401–410.

Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo- hippocampal system. New York: Oxford University Press. 82 CHAPMAN

Gray, J. A. (1987). The psychology of fear and stress (2nd ed.). Cambridge: Cambridge University Press.

Grove, G., Coplan, J. D., & Hollander, E. (1997). The neuroanatomy of 5-HT dysregulation and panic disorder. *Journal of Neuropsychiatry and Clinical Neurosciences, 9*(2), 198–207.

Henry, J. P. (1986). Neuroendocrine patterns of emotional response. In R. Plutchik & H. Keller- man (Eds.), *Emotion: Theory, research and practice* (Vol. 3, pp. 37–60). Orlando, FL: Academic Press.

Hess, W. R. (1936). Hypothalamus und die Zantren des autonomen Nervensystems: Physiologie. *Archiv fuer Psychiatrie und Nervenkrankheiten, 104*(548–557).

Hilton, S. M. (1966). Hypothalamic regulation of the cardiovascular system. *British Medical Bulle-tin, 22*, 243–248.

Isaacson, R. L. (1982). The limbic system (2nd ed.). New York: Plenum Press. Jänig, W. (1985). Systemic and specific autonomic reactions in pain: Efferent, afferent and endo- crine components. European Journal of Anaesthesiology, 2, 319–346. Kanosue, K., Nakayama, T., Ishikawa, Y., & Imai-Matsumura, K. (1984). Responses of hypotha- lamic and thalamic neurons to noxious and scrotal thermal stimulation in rats. Journal of Thermal Biology, 9, 11–13.

Kelly, D. D., Silverman, A. J., Glusman, M., & Bodner, R. J. (1993). Characterization of pituitary me-diation of stress-induced antinociception in rats. *Physiology & Behaviour*, *53*, 769–775.

Korf, J., Bunney, B. S., & Aghajanian, G. K. (1974). Noradrenergic neurons: Morphine inhibition of spontaneous activity. *European Journal of Pharmacology*, *25*, 165–169.

Korte, S. M., Van, D. S., Bouws, G. A., Koolhaas, J. M., & Bohus, B. (1991). Involvement of hypotha- lamic serotonin in activation of the sympathoadrenomedullary system and hypothalamo- pituitary-adrenocortical axis in male Wistar rats. *European Journal of Pharmacology,* 197(2–3), 225–228.

Krukoff, T. L. (1990). Neuropeptide regulation of autonomic outflow at the sympathetic pre-ganglionic neuron: Anatomical and neurochemical specificity. *Annals of the New York Acad-emy of Science, 579*, 162–167.

LeDoux, J. E. (1986). The neurobiology of emotion. In J. E. Ledoux & W. Hirst (Eds.), *Mind and brain: Dialogs in cognitive neuroscience* (pp. 301–354). Cambridge, MA: Cambridge University Press.

LeDoux, J. E. (1996). *The emotional brain: The mysterious underpinnings of emotional life*. New York: Simon & Schuster.

Libet, B., & Gleason, C. A. (1994). The human locus coeruleus and anxiogenesis. *Brain Research, 634*(1), 178–180.

Lilly, M. P., & Gann, D. S. (1992). The hypothalamic-pituitary-adrenal-immune axis. A critical as- sessment. *Archives of Surgery, 121*(12), 1463–1474.

Lopez, J. F., Young, E. A., Herman, J. P., Akil, H., & Watson, S. J. (1991). Regulatory biology of the HPA axis: An integrative approach. In S. C. Risch (Ed.), *Central nervous system peptide mecha- nisms in stress and depression* (pp. 1–52). Washington, DC: American Psychiatric Press.

MacLean, P. D. (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). *Electroencephalography and Clinical Neurophysi- ology, 4*, 407–418.

MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Ple- num Press.

Maier, S. F., & Watkins, L. R. (1998). Cytokines for psychologists: Implications of bidirectional im- mune-to-brain communication for understanding behavior, mood, and cognition. *Psychologi- cal Review, 105*(1), 83–107.

McNaughton, N., & Mason, S. T. (1980). The neuropsychology and neuropharmacology of the dorsal ascending noradrenergic bundle—A review. *Progress in Neurobiology, 14*, 157–219.

Morgane, P. J. (1981). Historical and modern concepts of hypothalamic organization and func- tion. In P. J. Morgan & J. Panksepp (Eds.), Handbook of the hypothalamus (Vol. 1, pp. 1–64). New York: Marcel Dekker. 3. PAIN PERCEPTION AND EXPERIENCE 83

Morilak, D. A., Fornal, C. A., & Jacobs, B. L. (1987). Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. II. Cardiovascular challenge. *Brain Re- search, 422*, 24–31.

Panksepp, J. (1986). The anatomy of emotions. In R. Plutchik & H. Kellerman (Eds.), *Emotion: The- ory, research and experience* (Vol. 3, pp. 91–124). Orlando, FL: Academic Press.

Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38, 725–743.

Peschanski, M., & Weil-Fugacza, J. (1987). Aminergic and cholinergic afferents to the thalamus: Experimental data with reference to pain pathways. In J. M. Besson, G. Guilbaud, & M. Paschanski (Eds.), *Thalamus and pain* (pp. 127–154). Amsterdam: Excerpta Medica.

Rasmussen, K., & Aghajanian, G. K. (1989). Withdrawal-induced activation of locus coeruleus neurons in opiate-dependent rats: Attenuation by lesions of the nucleus paragigantocel- lularis. *Brain Research*, 505(2), 346–350.

Rasmussen, K., Morilak, D. A., & Jacobs, B. L. (1986). Single unit activity of locus coeruleus neu-rons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli. *Brain Research*, 371(2), 324–334.

Redmond, D. E. J. (1977). Alteration in the functions of the nucleus locus coeruleus: A possible model for studies of anxiety. In I. Hannin & E. Usdin (Eds.), *Animal models in psychiatry and neurology* (pp. 293–306). New York: Pergamon Press.

Redmond, D. E. J., & Huang, Y. G. (1979). Current concepts. II. New evidence for a locus coeru- leus-norepinephrine connection with anxiety. *Life Sciences*, 25, 2149–2162.

Saphier, D. (1987). Cortisol alters firing rate and synaptic responses of limbic forebrain units. *Brain Research Bulletin, 19*, 519–524.

Sapolsky, R. M. (1992). Stress, the aging brain, and the mechanisms of neuron death. Cambridge: MIT Press.

Sawchenko, P. E., & Swanson, L. W. (1982). The organization of noradrenergic pathways from the brain stem to the paraventricular and supraoptic nuclei in the rat. *Brain Research*, 273(3), 275–325.

Seligman, M. E., Weiss, J., Weinraub, M., & Schulman, A. (1980). Coping behavior: Learned help-lessness, physiological change and learned inactivity. *Behaviour Research and Therapy, 18,* 459–512.

Selye, H. (1978). The stress of life. New York: McGraw-Hill. Siegel, J. M., & Rogawski, M. A. (1988). A function for REM sleep: Regulation of noradrenergic re- ceptor sensitivity. Brain Research Reviews, 13, 213–233. Sokolov, E. N. (1963). Perception and the conditioned reflex. Oxford: Pergamon Press. Sokolov, E. N. (1990). The orienting response, and future directions of its development. Pavlovi- an Journal of Biological Science, 25(3), 142–150. Sternberg, E. M. (1995). Neuroendocrine factors in susceptibility to inflammatory disease: Focus on the hypothalamic-pituitary-adrenal axis. Hormone Research, 43(4), 159–161. Stone, E. A. (1975). Stress and catecholamines. In A. J. Friedhoff (Ed.), Catecholamines and behav- ior (Vol. 2, pp. 31–72). New York: Plenum Press. Sumal, K. K., Blessing, W. W., Joh, T. H., Reis, D. J., & Pickel, V. M. (1983). Synaptic interaction of vagal afference and catecholaminergic neurons in the rat nucleus tractus solitarius. Journal of Brain Research, 277, 31–40.

Svensson, T. H. (1987). Peripheral, autonomic regulation of locus coeruleus noradrenergic neu- rons in brain: Putative implications for psychiatry and psychopharmacology. *Psychopharma- cology*, *92*, 1–7.

Truesdell, L. S., & Bodner, R. J. (1987). Reduction in cold-water swim analgesia following hypo- thalamic paraventricular nucleus lesions. Physiology & Behaviour, 39, 727–731. van Praag, H. M. (1996). Faulty cortisol/serotonin interplay. Psychopathological and biological characterisation of a new, hypothetical depression subtype (SeCA depression). Psychiatry Research, 65(3), 143–157. 84 CHAPMAN

Villanueva, L., Bing, Z., Bouhassira, D., & Le Bars, D. (1989). Encoding of electrical, thermal, and mechanical noxious stimuli by subnucleus reticularis dorsalis neurons in the rat medulla. *Journal of Neurophysiology, 61*, 391–402.

Villanueva, L., Cliffer, K. D., Sorkin, L. S., Le Bars, D., & Willis, W. D. J. (1990). Convergence of heterotopic nociceptive information onto neurons of caudal medullary reticular formation in monkey (Macaca fascicularis). *Journal of Neurophysiology, 63*, 1118–1127.

Watson, S. J., Khachaturian, S., Lewis, M. E., & Akil, H. (1986). Chemical neuroanatomy as a basis for biological psychiatry. In P. A. Berger & K. H. Brodie (Eds.), *Biological psychiatry* (2nd ed., Vol. 8, pp. 3–33). New York: Basic Books.

Weiss, J. M., & Simson, P. G. (1986). Depression in an animal model: Focus on the locus ceruleus. *Ciba Foundation Symposium, 123*, 191–215.

Willis, W. D., & Westlund, K. N. (1997). Neuroanatomy of the pain system and of the pathways that modulate pain. Journal of Clinical Neurophysiology, 14, 2–31. 3. PAIN PERCEPTION AND EXPERIENCE 85

THE FUNCTIONS OF PAIN COMMUNICATION

Pain is commonly described as emerging in the course of evolution as a bio- logical system for signaling real or impending tissue damage and motivat- ing withdrawal or escape from physical danger. These functions undoubt- edly are essential to the safety and survival of all animal species, including humans, but do not address many uniquely human needs and capabilities that emerged in our societies. Evolution of the human brain, with its exten- sive capacities for those psychological computations associated with social interdependencies, complex problem solving, language, and speech, intro- duced novel features that must be understood if the complexities of human pain are to be appreciated. Reconsideration of the nature of pain from the broader perspective of human biological functioning necessitates consideration of the social ramifications of pain.

The uniquely human adaptations were superimposed on the biological and behavioral capabilities of nonhuman species for escape from physical danger. The ability to engage in reflexive withdrawal from noxious insult is

CHAPTER4

Social Influences and the Communication of Pain

Thomas Hadjistavropoulos Department of Psychology,

University of Regina

Kenneth D. Craig Department of Psychology,

University of British Columbia

Shannon Fuchs-Lacelle Department of Psychology,

University of Regina 87

readily demonstrated in nonhuman progenitor species. This aspect of pain is evident even in invertebrates and is emphasized in the animal research that has provided the basis for neuroscience approaches to the study of pain. The immediate reflexive reaction remains conspicuous in humans, al- lowing study of nociceptive reflexes even in newborns (Andrews & Fitzger- ald, 2002), and nonverbal behavior through the life span. Emergence of the capacity to recognize and react to events signaling imminent physical trauma, evident in Pavlovian classical conditioning, permitted the opportu- nity to learn to fear and avoid potentially damaging situations. Fear of pain remains a powerful phenomenon for humans (Asmundson, Norton, & Nor- ton, 1999). But neither of these behavioral reaction patterns (i.e., fear and avoidance) necessitates a capacity for the complexities of the human sub- jective experience of pain. Both reflexive withdrawal and an ability to asso- ciate cues with risk of harm require minimal cognitive capabilities.

It seems likely that the capacity to subjectively experience pain as hu-mans know it would have been one of the first primordial conscious experi- ences demanding problem solving. Somewhere in the course of evolution, the ability to reflect on self-interest, risks, and how they could be avoided emerged, permitting flexibility in adaptive responding. Humans benefit sub-stantially from the ability to understand the significance of the pain experi-ence, their ability to plan strategies for establishing control, and the sophis-ticated skills people use to engage others in providing assistance. These skills free humans, to some extent, from the strong biological predispositions that govern pain behavior in other species, and permit substantially greater participation in social networks for support and care.

Others' Pain Reactions as Signs of Danger

Numerous adaptive advantages emerged when a capacity to recognize and react to the pain of others appeared in the course of evolution. Acute sensi- tivity to the reactions of others may have represented the first social or communicative feature of pain. Social alarms would warn of personal threat and could enhance vigilance and protective behavior, including escape from threat. This is relatively obvious in domesticated animals; for exam- ple, humans breed dogs for watch purposes, and use them to guard from threat. Language is not always needed, as alert observers can respond to evidence of physical damage, withdrawal reflexes, reflexive vocalizations, guarded postures, facial expressions, or evidence of destabilized homeosta- sis in breathing, skin pallor, and so on. These primordial reactions would not necessarily have had interpersonal functions in the first instance, but they could have been captured for social purposes, because sensitivity to them would have enhanced survival prospects and other adaptive advan- tages (Darwin, 1965; Fridlund, 1994). The beneficial social consequences 88 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

could have contributed to their persistence as species characteristics, through either genetic inheritance or cultural inheritance. It may be useful to characterize persistence of the capacity to engage in certain behaviors as inherited, with their realization in social action as dependent on social- ization in familial/cultural contexts.

Pain as an Instigator of Altruistic Behavior

The safety benefits conferred on observers by sensitivity to the experi- ences of others would be reciprocated if the observers were motivated to provide care for the individual in distress. Care for kin and conspecifics characterizes many species. The case is clearest with newborns and in- fants. Different species can be characterized as precocial or altricial. Pre- cocial species are born capable of independent survival. They are not de- pendent on parents or other species for food, shelter, or protection. In contrast, members of altricial species are wholly dependent on the care provided by others. In the case of humans, newborns are remarkably fragile and vulnerable, requiring care for years following birth. Throughout this span of time, parents and other caretaking adults must be sensitive to the details of children's needs, as this ensures specific care and conserves re- sources. Hunger, fatigue, the impact of injury or disease, and other states require the particular ministrations of others. Most often, the adult re- sponse must be specific to the infant's state. Although there are some fasci- nating exceptions (Blass & Watt, 1999), food does not serve to palliate pain, nor do analgesics diminish hunger. Evidence of pain often signifies great ur- gency. On the other hand, for at least a brief period of time, ignoring fatigue or hunger can be accomplished without cost to the child. In contrast, pain reactions can alert to serious tissue trauma and the presence of danger that may be prevented by immediate intervention. There is evidence that chil- dren's cries are particularly salient and commanding of parental attention and feelings of urgency (Murray, 1979).

Despite the importance of accurate judgments to the well-being of the child, it is clear that parents and other adults often have considerable diffi- culty identifying an infant's needs. Witness parents' frustration when un- able to settle a child who has awakened in distress in the middle of the night. Caring for infants often is a matter of parents anticipating needs as a result of prior experience, and trial and error when their anticipation is un- successful. Parents come to sequence through known and experimental methods for palliating an upset child.

It is noteworthy that the human capacity for altruistic behavior has its limits. Persistent crying can lead to deterioration of the attachment bond between infants and parents, and increases the risk of physical abuse (Blackman, 2000). Limits on what seem biological imperatives to minimize 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 89

children's pain and distress are evident in use of corporal punishment, in- fanticide, and willingness to disregard pain when it is incidental to proce- dures of known prophylactic, diagnostic, or treatment value to the child. There also is evidence of pervasive underestimation of pain in children, perhaps the basis for systematic underassessment and undermanagement of children's pain (Bauchner, 1991). The case is well illustrated in parents' proxy estimates of their children's pain. When these are contrasted with available children's self-reports, they almost always, but not invariably, are underestimates (Chambers, Giesbrecht, Craig, Bennett, & Hunstman, 1999; Chambers, Reid, Craig, McGrath, & Finley, 1999). Many health professionals seem to underestimate pain to an even greater degree (Chambers, Giesbrecht, Craig, Bennett, & Hunstman, 1999; Chambers, Reid, Craig, McGrath, & Finley, 1999; Lander, 1990).

Similar cases can be developed concerning the care provided to other vulnerable populations where communication of painful distress is even more difficult or there is a tendency to ignore the needs of the individual. The argument can be generated for children and adults with intellectual dis- abilities, brain damage leading to cognitive or neuromotor impairment, and older adults suffering from dementia, among other possibilities (Hadjista- vropoulos, von Baeyer, & Craig, 2001).

Pain Expression as a Determinant of Social Bonding and Relationships

Pain also has important implications for social relationships among peo- ple. Again there is considerable evidence of continuity with nonhuman an- imal species. This can be observed clearly in nonhuman primates when painful conditions impact on hierarchical power structures (De Waal, 1988). Indeed, dominance among rivals often is established when one suc- cessfully inflicts through violent aggression injury and pain upon another. Many illustrations in human society are also available. As noted earlier, the normally positive emotional attachment between infants and their mothers or fathers may be affected by prolonged distress in the child. Per- sistent pain in school-aged children can influence social relationships. Chronic abdominal pain relates to school avoidance (Walker, 1999) and can partly be exacerbated by aversions to social demands in school and overprotective parenting. Children suffering from chronic conditions may become estranged from peers. People suffering chronic pain often find their interpersonal relationships deteriorating. This may reflect inability to participate in usual activities at home, work, or in recreational pursuits and irritability associated with persistent pain, but there may be a broader phenomenon analogous to the interpersonal difficulties experi- enced by people suffering from chronic depression. 90 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

There is also widespread suspicion of people suffering chronic pain from the community at large, and from health care practitioners and pro- viders. Pain cannot be directly observed, and insurance providers fre- quently deny benefits to patients who suffer chronic pain without a medical explanation. Elderly people are often acutely sensitive to the implications of their complaining about pain. They may suppress pain complaints be- cause they fear unattractive labels, such as "old crock" or "whiner," and may believe that they need to reserve their complaints until they experi- ence something "serious." They also may fear the effects of complaining (e.g., being deprived of their independence or given potent analgesics with possible negative effects). Numerous other illustrations could be gen- erated demonstrating the impact of painful conditions on how others re- act to the person in pain.

Also, the nature and quality of social support made available to the per- son in pain have an impact on pain, suffering, and pain disability. Social support can enhance psychological wellness and quality of life for patients with chronic pain (Burckhardt, 1985; Faucett & Levine, 1991; Murphy, Creed, & Jayson, 1988; Schultz & Decker, 1985; Turner & Noh, 1988). In contrast, conflict and problems with social relationships seem to increase depres- sion and somatization (Feuerstein, Sult, & Houle, 1985; Fiore, Becker, & Coppel, 1983; Goldberg, Kerns, & Rosenberg, 1993).

A COMMUNICATIONS MODEL OF PAIN EXPRESSION

It seems clear that a comprehensive model of pain must include the inter- personal domain. In several papers, we have developed a communications model of pain. This model can be used, for example, to examine facial ex- pression of pain (Prkachin & Craig, 1995), to overcome social barriers to op- timal care of infants and children (Craig, Lilley, & Gilbert, 1996), and to dif- ferentiate the usefulness and functions of self-report and observational measures of pain (Hadjistavropoulos & Craig, 2002). The model is based on an earlier formulation by Rosenthal (1982). In this model, the experience of pain may be encoded in particular features of expressive behavior (reflexes, cry, self-report) that can then be decoded by observers who draw in- ferences about the sender's experience. The model is depicted on Fig. 4.1.

The central row depicts the sequence already described wherein tissue stress or trauma would ordinarily instigate the acute pain experience. Be- havioral reactions may or may not be evident to observers or caregivers who may or may not deliver aid. The row above describes intrapersonal determinants of the responses and actions of person in pain and the po- tential caregiver. The bottom row depicts environmental and social con- 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 91

FIG. 4.1. The sociocommunications model of pain: components of a comprehensive model of pain. Care can be provided only if the caregiver can decode the expressive behavior of the person reacting to a source of pain and provide safe and effective care. Both the experience and expres- sion of the person in pain and judgments and decisions of the caregiver will be influenced by complex intrapersonal dispositions and the context where pain is being experienced. 92

The Sociocommunications Model of Pain

textual factors that determine the subjective experience and behavior of the person in pain, as well as the judgments and action dispositions of the observer.

The subjective pain experience represents the biological systems that provide its corporeal basis. The physiological processes have complex de- terminants in genetics, nutrition, and experience, including the social his- tory of the individual. Central motor programs responsible for self-report and nonverbal behavioral reactions are also the product of both the biolog- ical and social history of the individual (Prkachin & Craig, 1995). The motor programs would reflect both biological capabilities and learning of social display rules—the specifics of how one should behave to optimize the care of others and not violate normative social standards.

Observer inferences of pain and the actions they instigate also have complex, multiple determinants. Caregivers not only integrate indications of pain evident in self-report, nonverbal behavior, or physiological reactiv- ity, but they may also attend to evidence of injury, characteristics of the person in pain, and their understanding of the nature of pain. The assess- ment will reflect attentional and attitudinal dispositions of the observer as well as the context in which pain is being assessed. For example, someone who has a close personal relationship with the person being assessed might provide a different assessment than an aloof health professional. Care provided to the person in pain would be expected to reflect the back- ground and training of the person treating the pain, as well as the setting where the person in pain was encountered. Caring for the person in pain is a complex process, with numerous intra- and interpersonal factors determining whether appropriate care is delivered. The following considers vari- ous features of this social communications model of pain, illustrating how the relatively unique social capabilities of humans require consideration, and are not ordinarily included in neuroscience-based models of pain.

Pain Experience

Pain in competent and mature humans can be characterized as a synthesis of thoughts and feelings, as well as sensory input. Sensory input and its modulation are the primary focus of most neuroscience approaches to pain. The most notable exemptions would be psychophysiological ap- proaches to the study of pain that have attempted to help us understand the nature of pain in humans through use of external physiological monitor- ing (e.g., the study of autonomic reactivity; Sternbach, 1968), electroenceph- alography, and evoked potential recordings (Chen, Niddam, Crawfor, Oost- enveld, & Arendt-Nielsen, 2002), culminating in the exciting advances current techniques of brain imaging (e.g., fMRI, PET scans) have generated (Casey & Bushnell, 2000). These approaches have permitted detailed under- 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 93

standing of the biological substrates of those cognitive and affective fea- tures of pain that are well described using self-report and observational be- havior methodologies (Hadjistavropoulos & Craig, 2002).

Fundamental to the social communications model of pain is the proposi- tion that the focus on pain as a private, internal experience neglects its fun- damental social features. The arguments outlined earlier lead to the conclu- sion that the experience itself is shaped by the evolution of the human brain. For example, humans use language to evaluate the meaning and sig- nificance of painful events. In other words, both the biological structures and social processes leading to language acquisition will have an indelible impact on how individuals experience pain in terms of both cognitive ap- praisal and emotional reaction. Similarly, the adaptive significance of pain- ful expression as a warning to conspecifics and instigators of care demands an appreciation of pain as a type of social behavior of which the form cannot be appreciated without consideration of interpersonal factors.

Fundamental to the communications model of pain is recognition of the striking plasticity of the pain experience, with the social context and inter- personal interventions serving as powerful determinants that often account for the lack of one-to-one correspondence between the severity of physical insult and the severity of pain suffered by the individual. This lack of one-to- one correspondence represents the most serious limitation of traditional biophysical models of pain. It dictates provision of care that goes beyond traditional medical models that focus exclusively on physical pathology.

Social Influences on the Experience of Pain. Although it is often difficult to determine whether social influences and context affect the experience of pain or simply the report of pain, there is both anthropological and experi- mental evidence in support of their importance. With respect to anthropological evidence there are well-documented rituals that involve substantial tissue damage with little manifest evidence that the persons affected experi- ence much pain. Practices involving the intentional self-infliction of pain can include self-flagellation, barefoot pilgrimages, extreme fasting, sleepless nights in prayer vigils, piercing the body, wearing coarse and irritating garments, and others (Glucklich, 2000). They can be legitimized through reli- gious explanation as serving constructive religious and social purposes. The Hindu ritual of Thaipusam is celebrated annually in Singapore and Malaysia (although banned in India) as an expression of faith and penance. On the day of the festival, thousands of celebrants march several kilometers from one temple to another carrying substantial metal and wooden frames decorated with peacock feathers, paper, and fruit. The frames are suspended by metal rods that pierce the celebrants' flesh. Others pull weighty trailers with metal hooks skewered through the flesh of their backs. One of the most cited ritu- als of this kind involves a hook swinging ceremony practiced in remote In- 94 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

dian villages (e.g., Kosambi, 1967; Melzack & Wall, 1965). The ritual involves steel hooks that are attached to ropes that are inserted in the back of the cel- ebrant who later, during the ceremony, swings freely suspended only by the hooks. The celebrant shows no sign of pain. Explanations for the effect vary. The celebrants are likely to refer to divine intervention. Others believe hyp- nosis induces altered states of consciousness, and some choose social psy- chological explanations that refer to social learning of coping skills and pain behavior (Craig, 1986).

The medical use of both placebos and hypnosis for analgesic purposes effectively illustrate well-documented, powerful forms of social influence on pain. Placebos are commonly used in evaluations of pharmaceutical inter- ventions because even inert substances can have a major impact on physi- cal symptoms. In the case of pain, inert substances frequently induce re- ports of analgesia when their impact is compared with no intervention controls. For this reason, the gold standard research design for pharmaceu- tical evaluations is the double-blind randomized control design. The recom- mended use of double-blind procedures (where neither the patient nor the experimenter is aware of who is receiving the placebo or the active chemi- cal) provides further evidence of the impact of social influence on physical symptoms. Double-blind procedures control for patient expectancy and im- plicit experimenter influence that could bias the outcome of clinical trials.

Research also demonstrates the social impact of the expression and ex- perience of pain. Craig and Weiss (1975), for example, showed that research participants who observe people modeling high levels of pain tolerance re- ported less pain in response to electric shock than research participants who were not exposed to these models. Similarly, observing models with low pain tolerance produced comparable changes in the pain tolerance of observers. A succession of related studies in this and other research centers have replicated the finding and explored features of the phenomenon (cf. Craig, 1986). Central to the subsequent research were findings indicating that the impact of the models was not only upon the willingness of the research participant to report pain, but there also was an impact on a variety of measures of pain experience (psychophysiological measures of auto-nomic reactivity, derived psychophysical measures of experience, nonver-bal measures that are not usually subject to self-monitoring and self-control for the purposes of impression management) (see Craig, 1986). Other forms of social influence can have a substantial impact on measures of pain experience. Levine and De Simon (1991) found that males report less pain in response to a cold pressor stimulus (i.e., holding one's hand in very cold water) in the presence of an attractive female experimenter than in the presence of a male one. Moreover, a dental procedure administered in a dental clinic is associated with greater reports of pain than the same proce- dure administered in a research laboratory (Dworkin & Chen, 1982). A re- 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 95

cent focus upon the importance of controlling pain in infants and neonates has demonstrated the value of systematically simulating the techniques mothers and other caregivers spontaneously use to control pain in these fragile infants (Johnston, Stremler, Stevens, & Horton, 1997). It seems clear that social contexts and interventions have a potent impact on pain experi- ence; their inclusion in programs of pain intervention have considerable positive potential.

Modes of Pain Expression

Pain communication can be intentional (e.g., in response to a query) or un- intentional (e.g., reflexive pain reactions), with verbal and nonverbal meas- ures (e.g., body and limb movements, facial expressions and paralinguistic vocalizations) providing some differentiation. Self-report of pain normally requires some self-awareness and attention to the task, whereas nonverbal indices of pain largely occur spontaneously without commanding prior at- tention, although the person may monitor the action. Although some non- human species appear capable of intentionality and can use vocalizations to communicate (Dennett, 1988), they do not have the remarkable capacity for self-expression exercised by humans. This uniquely human form of pain communication is subject to conscious control and the influence of a vari- ety of factors including, but not limited to, social desirability.

Verbal Communication and Other Forms of Self-Report. Although the most common forms of self-reported pain rely on the use of spoken or writ- ten language, other forms of self-reported communication also exist. This includes intentional gestures that indicate that someone is in pain, the use of sign language, and the use of nonverbal self-report measures of pain (e.g., pain faces scales; Chambers & Craig, 2001; Frank, Moll, & Hort, 1982; von Baeyer & Hicks, 2000).

Self-report includes any deliberate act to communicate pain to another person (Champion, Goodenough, von Baeyer, & Thomas, 1998). When peo- ple are asked for descriptions of pain severity, their accounts represent in- tegrated summations and often retrospective accounts of the complexities of their subjective experiences. Verbal communication and self-report are often described as representing the "gold standard" for understanding the subjective state of pain (Craig, 1992). Unquestionably, self-report can pro- vide a means for describing subjective experiences and it is methodologi- cally convenient, but it should only be used if it is recognized that pain is a complex experience not readily reduced to language, and with awareness of the possibilities for response biases, situational demand, and the risks of conscious distortion (e.g., malingering). Failure to recognize these limita- tions could mean that self-report was a form of "fool's gold." 96 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

The ideal would be to have well-validated systematic measures. It is now recognized that subtle variations in psychometric questionnaires for as- sessing any internal state can elicit very different responses. For example, Schwartz (1999) has shown that even minor changes in wording can affect the responses obtained. In an illustrative study (Schwartz, Knauper, Hip- pler, Noelle-Newman, & Clark, 1991), participants were asked to respond to a question about life success using two types of 11-point scales (i.e., 0 to 10 vs. +5 to 5) with the anchors being kept constant (i.e., "not successful" to "extremely successful"). The researchers found that 34% of the participants endorsed a value between +5 and 5 whereas only 13% endorsed the equiv- alent values (i.e., between 0 and 5) in the 0–10 scale. It is noteworthy that pain clinicians adopt self-report scales that vary widely with respect to the metric used (e.g., 0–10, 1–5, 0–100) (von Baeyer & Hicks, 2000). Thus, it is dif- ficult to compare pain levels reported by different patient populations. Ad- ditional factors such as content of adjacent scales and research affiliation of the researcher/clinician also affect responses to self-report scales (Schwartz, 1999; Strack, Schwartz, & Wanke, 1991). Chambers and colleagues have ob- served that self-report and proxy judgments of children's pain using the very popular faces scales vary systematically as a function of whether the lower end of the scale is anchored by a neutral face or a smiling face. When a smiling face is used, children tend to endorse faces indicating more se- vere pain (Chambers, Giesbrecht, Craig, McGrath, & Finley, 1999; Chambers & Craig, 2001). Thus, estimates of children's pain, and potentially the use of potent analgesics, is influenced by biases built into the scale. Greater effort should be devoted to developing accurate and useful self-report measures.

Nonverbal Communication. Hadjistavropoulos and Craig (2002) observed that nonverbal expressions of pain that do not fall in the self-report category are likely to be less subject to distortion than verbal report because their relatively more automatic and reflexive nature reduces their depend- ence on conscious processes and executive cognitive mediation. Nonverbal pain expression includes facial reactions, paralinguistic vocalizations, body and limb movements, visible physiological activity (e.g., muscle tension, sweating), and other nonverbal qualities of speech such as volume and tim- bre (Craig, Prkachin, & Grunau, 2001). These manifestations of pain always play an important role in pain communication, but become most vital where self-report is unavailable (e.g., in infants and persons with severe cognitive impairments).

Facial expression is recognized as being particularly important, because it plays a crucial role in normal social interchanges and can convey a remark- able amount of information. Faces are extremely plastic, tend to change rap- idly, and can represent a dramatic range of states. The Facial Action Coding System (FACS; Ekman & Friesen, 1978) provides an atheoretical, anatomi- 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 97

cally based system designed for thorough description of facial movements that create facial expressions. A number of investigators have studied ex- pressions of pain in adults of all ages (e.g., Craig et al., 2001; Hadjistavrop- oulos, LaChapelle, Hadjistavropoulos, Green, & Asmundson, 2002). Al- though some variability exists across individuals in identified features of the facial expression of pain, lowering of the brows, narrowing of the eyes, raising of the cheeks, blinking or closing of the eyes, raising the upper lip, dropping of the jaw, and parting of the lips are commonly found pain- related actions. This "fuzzy prototype" of a facial display appears relatively sensitive and specific to pain, accounting for its usefulness in clinical set- tings. There is much support for the argument that the display is relatively reflexive and automatic in nature. Evidence shows that there are real differ- ences in the specific facial actions and their timing between spontaneous and faked displays of pain, and findings indicate that people cannot fully suppress facial reactions to painful physical insult. Some evidence indi- cates, for example, that observers can discriminate between genuine, sup- pressed, and exaggerated pain expressions (Hadjistavropoulos, Craig, Had- jistavropoulos, & Poole, 1996; Hill & Craig, 2002), although the number of false positives and false negatives presently is too high for application to the individual case (Hill & Craig, 2002). Training observers to attend to spe- cific features of the facial expression can help improve accuracy rates (see Hill & Craig, in press).

Nonverbal behavior represents the only form of pain expression avail- able for the assessment of pain in populations that do not have language available as a medium of communication. This is the case for infants and very young children, many children and adults with cognitive and serious psychological disabilities, people suffering traumatic brain damage, and seniors suffering from severe dementia. When the total number of people with communication impairments is considered, it represents a substantial proportion of the public at large (Hadjistavropoulos et al., 2001) and special consideration of their needs is required. This was recognized by the International Association for the Study of Pain in 2001 when it modified its widely endorsed definition of pain as "An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage." It added the note, "The inability to communicate verbally in no way negates the possibility that an individual is experiencing pain and is in need of appropriate pain relieving treatment" (see http://www.iasp-pain.org/terms-p.html). The note reflects a concern for people who are unable to articulate their distress. Fortu- nately, people with communication limitations usually are quite capable of letting others know about their distress through nonverbal communica- tion channels. 98 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

Nonverbal communication of pain has been explored substantially in young infants, who express distress primarily through cry, facial expression, and body and limb movements. Because the facial display appears the most sensitive and specific modality of nonverbal expression, the Neonatal Facial Coding System has been developed as a measure of infant pain (Craig, 1998; Grunau & Craig, 1987, 1990). The characteristic pattern of infant pain display includes lowered brows, eyes squeezed shut, opened mouth, and deepened nasolabial furrow (the fold that extends down and beyond the lip corners). Often these displays are accompanied by a taut cupped tongue that has also been associated with other stressful states (Grunau & Craig, 1990). Infant facial expressions of pain show a greater degree of consistency than do adult expressions, are central to adult judgments of infant pain, provide outcome measures for analgesic trials, and demonstrate long- term impact of severe neonatal pain (Craig et al., 2001).

Vocalizations, other than those with linguistic meaning, also are often present. Patients can scream, moan, or otherwise vocally express their distress when they are in pain. In infants, cry powerfully elicits parental attention from afar and effectively encodes the severity of distress, al- though the specific source of distress may not be readily identified (e.g., Craig, Gilbert-McLeod, & Lilley, 2000). Consequentially, parents usually seek other evidence, including the other behavioral signs noted earlier, and use contextual information (e.g., evidence of injury or knowledge about infant need states such as fatigue, hunger, etc.) in order to deter- mine whether pain is present.

Other nonverbal pain signals are available (Keefe, Williams, & Smith, 2001). Various studies have examined the validity of a series of behaviors that are associated with pain (e.g., guarding, bracing, rubbing the affected area) (Keefe & Block, 1982), finding them to be valid indices of pain, in- cluding low back pain, osteoarthritis, and postoperative pain (e.g., Hadji- stavropoulos, LaChapelle, Hadjistavropoulos, Green, & Asmundson, 2002; Hadjistavropoulos, LaChapelle, MacLeod, Snider, & Craig, 2000). Keefe and Block (1982) asked patients with low back pain to engage in a series of standardized activities (e.g., walking, standing, reclining) and validated an observational system designed to measure motor pain behaviors. The method showed concurrent validity and excellent reliability. This system, which has been used in a variety of studies (Keefe et al., 2001), has helped demonstrate the usefulness of nonverbal pain signals that are not limited to facial expressions.

Factors Affecting the Communication of Pain. A variety of social, psy-chological, and dispositional variables influence both the expression and experience of pain. Pain expression is often predicted better by psychologi-4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 99

cal rather than physical or medical factors (e.g., Difede, Jaffe, Musngi, Perry, & Yurt, 1997). A perfect relationship between experience and express- sion would not be expected, as activation thresholds vary as a function of expressive modality, cognitive modulation of expression, and situational determinants. In fact, studies have shown that nonverbal pain expressions often do not correlate with self-report (Craig et al., 2001). Expression of pain can be extremely sensitive to contextual factors. Even the simple task of asking people to provide self-report measures of pain could draw attention to the pain state and exacerbate it. Alternatively, completing a question- naire could be a distracting and palliating event. Several studies have con- firmed the presence of reactive effects of measurement in studies of experi- mental pain, postoperative pain, and labor pain (Leventhal, Leventhal, Shacham, & Easterling, 1989; Mikail, VanDeursen, & von Baeyer, 1986), al- though one study of persistent pain (von Baeyer, 1994) failed to find an im- pact of self-report on the experience of pain.

Deliberate attempts to misrepresent whether one is in pain or not can af- fect both self-report and nonverbal expression. Incentives exist for deceiv- ing others (e.g., to manipulate the emotions of others). Moreover, people may malinger because of financial incentives. Because these actions are in- herently dishonest and detection could lead to shame or punishment, it is difficult to know how often they occur, but estimates are usually quite low (5%; Craig, Hill, & McMurtry, 1999). Perhaps more common are efforts to conceal pain for a variety of reasons, including the desire to conform to so- cial ideals of stoicism, or the fear of the consequences of being diagnosed, such as loss of privileged positions, loss of independence, or exposure to fearsome drugs, dependency, or addiction.

Gender differences in pain expression are present from infancy (Guins- burg et al., 2000), before any learned reaction patterns could appear. This suggests the presence of constitutional differences in pain expression. Ac- culturation also has an impact on pain expression. Men are often socialized to downplay pain reports in order to meet social, religious and cultural ex- pectations (Otto & Dougher, 1985). Fearon, McGrath, and Achat (1996) found that among school-age children and preschoolers, girls were much more likely to react to pain by crying, screaming, and displaying other signs of anger. Men who scored high on masculinity measures were found to dis- play a higher pain tolerance (Otto & Dougher, 1985). Unruh (1996) has re- ported that females show increased emotional responses to pain compared to men. In a recent study, Keefe et al. (2000) found that women with osteoarthritis expressed more pain (both in a self-report measure and behaviorally) than men, but this sex difference was eliminated after control- ling for catastrophizing. This mediating effect of catastrophizing was main- tained even after controlling for levels of depression. The authors postu- lated that sex differences in catastrophizing may be a function of social 100 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

learning. Some gender differences in the meaning of pain appear to exist. But there is also evidence in support of the presence of biological and hor- monal mechanisms that could account for some of the gender differences in pain experience and expression (see Introduction, this volume). A vari- ety of other intraindividual factors (e.g., beliefs) may also affect pain ex- pressiveness (e.g., Manstead, 1991; Wagner, Lewis, Ramsey, & Krediet, 1992). Rollman considers cross-cultural influences in chapter 6 of this volume.

Relationships Between Self-Report and Nonverbal Indices of Pain. Given that nonverbal pain expression and self-report differ with respect to the extent to which they are subject to self-control, and represent different features of the complex pain reaction, it is not surprising that studies have varied in whether these separate measures of pain are correlated. A number of studies report nonsignificant correlations (Hadjistavropoulos, La- Chapelle, MacLeod, Hale, O'Rourke, & Craig, 1998; Hadjistavropoulos et al., 2002; LeResche & Dworkin, 1988; Prkachin, 1992), whereas others have reported significant correlations (e.g., Patrick, Craig, & Prkachin, 1986). Facial displays appear to best reflect the immediate onset of pain or exacerbations of pain. For example, Craig and Patrick (1985) observed that the most vigorous facial displays of pain occurred at the onset of immersion of the hand and forearm in ice cold water, and dissipated thereafter, whereas self-report of pain increased with time. Contextual factors are also likely crucial determinants of discrepancies between self-report and nonverbal displays of pain. Nonverbal expression taps the more immediate, reflexive aspects of the pain experience, whereas self-report measures can often be construed as retrospective and more likely to be affected by anticipation of consequences and social desirability (Craig et al., 2001). The neurophysio-logical systems responsible for self-report and nonverbal expression also appear to differ (Hadjistavropoulos & Craig, 2002). Self-report requires higher neocortical operations to control the executive cognitive functions engaged. In contrast, the reflexive, involuntary nature of nonverbal express-sion operates without intention and outside awareness. It is noteworthy that nonverbal measures of pain are less likely than self-report measures to be correlated with patient mood and depression (Green, Hadjistavropou-los, & LaChapelle, 2000).

Decoding Pain

The pain message has to be decoded and understood by observers if they are to provide care and assistance. There appear to be powerful inherent dispositions to attend and react emotionally to the distress of others, re- flecting the adaptive evolutionary value of this sensitivity. However, spe- cific understanding appears to require the ability to process information 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 101

about the nature of the individual's distress. Relatively little is known about the specific mechanisms and processes that allow the integration of infor- mation and formation of judgments. The multiple cues available to trigger one's inferences or attributions of pain require the observer to be attentive, to appreciate their significance, to ignore irrelevant information, and to in- terpret information from the person in pain in the context of other salient, contextual information. The presence of injury or disease is often heavily weighted by clinicians, to the disadvantage of patients for whom there is no pathophysiological basis for their complaints (e.g., many patients with persistent back pain, fibromyalgia, or chronic fatigue). It is generally believed that self-report is more likely to reflect the subjective experience of pain. Clearly, it is methodologically more convenient. But observers tend to at- tach greater credibility to nonverbal expression and appear to have little difficulty integrating observations in order to decide the nature and sever- ity of another person's distress and the credibility they should attach to the observation (Craig et al., 2001).

Stereotypes and Other Important Influences in the Decoding of Pain. There is considerable potential for some patients' individual characteristics, not related to the pain experience itself, to elicit erroneous judg- ments of pain. Hadjistavropoulos, Ross, and von Baeyer (1990) found that physicians were inclined to attribute lower levels of pain, distress, and need for help and higher ratings of health when people in pain were attractive rather than unattractive. Hadjistavropoulos, McMurtry, and Craig (1996) similarly found that the physically attractive and male patients were perceived as experiencing less pain intensity and disability than less attractive and female patients. Physically attractive patients were also perceived as being less likely to catastrophize and less likely to receive compensation than were unattractive patients. Finally, attractive patients were judged as being more likely to use cognitive and behavioral coping strategies than less attractive patients. These impressions were unrelated to actual patient functioning (as assessed using psychometrically valid instruments). The finding that men were viewed as having less pain and disability than women is especially interesting given that, in at least one study (Cleeland et al., 1994), women were found to be more likely to be undermedicated for pain than men. In another study, Hadjistavropoulos, LaChapelle, Hale, and MacLeod (2000) investigated observers' perceptions of patients who dif- fered with respect to age and who were undergoing a painful medical pro- cedure (after controlling for actual levels of patient pain expressiveness). The observers viewed the patients on film. Results showed that older and less physically attractive patients were perceived as experiencing more pain and having lower overall functioning. 102 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

The coping style of the patient may also interfere with the ability to make accurate judgments about pain and disability. For example, does the individual who reacts with stoicism to pain receive as much attention as an- other who reacts in a melodramatic fashion? MacLeod, LaChapelle, Hadji- stavropoulos, and Pfeifer (2001) asked undergraduate students to make judgments about pain patients who claimed disability compensation. The patients were described in short fictitious vignettes that highlighted differ- ent approaches of coping with pain. Despite keeping the patients' self- reported level of pain constant across all vignettes, claimants who were de- scribed as catastrophizing or coping with pain largely by hoping for divine intervention were more likely than other claimants to be perceived as disabled and as deserving compensation. A further study (von Baeyer, John- son, & Macmillan, 1984) was consistent with the proposition that vigorous complaints led to more sympathetic reactions. High nonverbal expressive- ness yielded significantly higher ratings of patients' pain and distress, and observer concern. However, in another vignette study, Chibnall and Tait (1999) did not find any evidence that ethnicity (Caucasian vs. African Ameri- can) affected symptom evaluations by employees of a university health cen- ter. Nonetheless, involvement of social psychological factors in judgments of pain make the task more complex than it might appear on the surface.

Actions to Assist Persons Who Are in Pain

Pain interventions stem directly from the observer's understanding of the patient's experience of pain. Compassionate observers can be expected to intervene. Family members and health care practitioners typically attempt to provide relief, although exceptions are inevitable. Family members might believe that the pain suffered by kin is desirable—for example, when neces- sary medical procedures are used, or when cultural or religious rituals are followed. The following examples illustrate special contexts in which pain communication assumes particular importance.

Pain Communication in Couples and Families. The onset of painful conditions, whether as a result of physical injury or disease, ordinarily provokes sympathy and support from family members. Usually, these conditions are self-limiting or responsive to treatment. Therefore, the length of time the sick role elicits responsive behavior from family members is limited. However, many people suffer from chronic pain, either recurrent or unremitting. In this case, special demands are made of family members who are unexpectedly committed to intense relationships with patients whose lives are often transformed by chronic pain. The relationship between the 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 103

person in pain and the other family member has the potential to have an impact on both pain and pain-related disability.

The operant model of chronic pain emphasizes the potential of social re- inforcement to perpetuate pain and disability (Block, Kremer, & Gaylor, 1980a; Fordyce, 1976). This model has been supported by studies that dem- onstrated a relationship between pain-relevant interactions, particularly so- licitous attention from the spouse, and pain reports, pain behaviors fre- quency, and disability ratings (Kerns, Haythornthwaite, Southwick, & Giller, & Jacob, 1991; Flor, Kerns, & Turk, 1987; Flor, Turk, & Rudy, 1989; Romano et al., 1992; Turk, Kerns, & Rosenberg, 1992). For example, pain patients with spouses who are excessively solicitous may report considerably more pain when in the presence of the spouse than when in the presence of a neutral observer (Block, Kremer, & Gaylor, 1980b). Moreover, pain-contingent spousal re- sponses have been found to reinforce overt expressions of pain in partners who have chronic pain conditions.

The operant model of chronic pain has been challenged by studies that demonstrate a much more complex interaction between spousal feedback and pain behavior. Though pain-contingent spousal responses have been found to reinforce overt expressions of pain in partners who have chronic pain condition, this seems to be mediated by attributions. Specifically, patients who made relationship-enhancing attributions about their spouse's behavior were less depressed than patients who made destructive attributions, even when responding negatively to the partner's pain (Weiss, 1996). For example, a chronic pain patient's perception of social support from spouses may moderate the pain experience and associated depression (Goldberg, Kerns, & Rosenburg, 1993). The perceived spousal support can act as a buffer and protect the person with chronic pain from depression.

Marital conflict in couples in which one suffers chronic pain is associ- ated with increases in subsequent display of pain behaviors, which, in turn, are associated with greater negative affective responses and more punitive behaviors by the spouse (Schwartz, Slater, & Birchler, 1996). Punitive spouse behaviors were also associated with patient physical and psycho- social impairment. Conflict in the family and lack of social support in the workplace also contribute to increases in pain severity (Feuerstein et al., 1985). Lane and Hobfoll (1992) and Schwartz, Slater, Birchler, and Atkinson (1991) found that anger in patients with chronic pain adversely affects the mood of their spouse. Anger and hostility may affect the amount of spousal support given, which influences the adjustment to chronic pain (Burns, Johnson, Mahoney, Devine, & Pawl, 1996; Fernandez & Turk, 1995).

The type of social support (e.g., perceived vs. enacted) affects patient displays of pain. For example, Paulsen and Altmaier (1995) found that pa- tients who reported higher levels of enacted spouse social support dis- 104 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

played a greater number of pain behaviors, regardless of whether the spouse was present, as compared to chronic pain patients who reported lower levels of enacted spousal support. When a measure of perceived sup- port was utilized, the pain behavior displayed differed depending on spouse presence/absence and on the level of support.

Pain Communication and the Health Care System. Physician—patient communication is important for proper pain assessment and management (Feldt, Warne, & Ryden, 1998; McDonald & Sterling, 1998; Zalon, 1997). An es- timated 42% of cancer patients do not get sufficient relief from pain, partly because of patient—physician communication barriers (Oliver, Kravitz, Kap- lan, & Meyers, 2001). These barriers may include the patients not knowing their options and fear of addiction to drugs (Oliver et al., 2001). Older adults represent a further challenge to physician—patient communication regard- ing pain. For example, nearly half of a sample of older adults who were in- terviewed preoperatively indicated that they would not ask for analgesics, and only 13.3% planned on discussing their pain with health care providers (McDonald & Sterling, 1998). Improving patient communication can help eliminate some of these barriers. Older adults who participated in a com- munication training program reported less postoperative pain over the course of their hospital stay than older adults who were not trained in com- munication (McDonald, Freeland, Thomas, & Moore, 2001). Communication between patient and physician can be challenging when there are cultural and linguistic diversities (Johnson, Noble, Matthews, & Aguilar, 1999).

Persons With Limited Ability to Communicate. A large number of per- sons are affected by conditions that limit their ability to communicate pain (Hadjistavropoulos et al., 2001). This group includes persons with severe in- tellectual and neurological disabilities, persons who have sustained severe head injuries, and seniors in the advanced stages of dementia. This is a topic of great concern as self-report of pain tends to decrease as the level of cognitive impairment increases. This inverse relationship is maintained even after controlling for the number of health problems (Parmelee, Smith, & Katz, 1993). Moreover, physicians often miss pain problems among pa- tients with severe neurological impairments (Sengstaken & King, 1993). The existing evidence suggests that such neurological impairments do not tend to spare sufferers from the vast array of pain-related conditions that could affect anyone (e.g., Proctor & Hirdes, 2001). There is also evidence that such persons may be more likely to die and develop serious health problems, partly due to pain problems going undetected because caretakers are often unable to appropriately decode pain messages (Biersdorff, 1991; Roy & Si- mon, 1987). Moreover, research suggests that seniors with dementia tend to be undertreated for pain problems as compared to their cognitively intact 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 105

counterparts (Kaasalainen et al., 1998; Marzinski, 1991). Elderly persons suf- fering from dementia do not seem to differ with respect to pain thresholds from their cognitively intact age-related peers (Gibson, Voukelatos, Ames, Flicker, & Helme, 2001), although they may be less reliable in reporting these. Moreover, facial reactions to acute phasic pain do not vary as a func- tion of cognitive status and do not correlate with intelligence quotients (Hadjistavropoulos et al., 1998; LaChapelle, Hadjistavropoulos, & Craig, 1999).

Recent work, based on systematic behavioral observation, has begun to address communication challenges with people with cognitive impairment (Breau, Camfield, McGrath, Rosmus, & Finley, 2000, 2001; Hadjistavropoulos, von Baeyer, & Craig, 2001). For example, seniors with dementia seem to dis- play pain reactions (e.g., facial reactions, guarding) that are similar to se- niors without cognitive impairments (Hadjistavropoulos et al., 1998; Had- jistavropoulos, LaChapelle, MacLeod, Snider, & Craig, 2000). LaChapelle et al. (1999) found that reaction to acute, phasic pain can be identified among young adults with severe intellectual disabilities using the Facial Action Coding System. Breau et al. (2000, 2001) validated a caregiver-administered checklist of pain behaviors suitable for persons with developmental disabil- ities. The checklist seems to be sensitive and specific to pain. That is, using the checklist, pain reactions can be discriminated from reactions to dis- tressing but nonpainful events and calm, nonpainful event. More recently, Fuchs, Hadjistavropoulos, and McGrath (2002) and Fuchs and Hadjistav- ropoulos (2002) have developed a similar instrument for seniors with de- mentia and reported good initial psychometric properties. These studies taken together have begun to address serious decoding challenges and pave the way for more effective and thus more systematic treatment of pain among such persons.

CONCLUSIONS

This chapter provided an overview of important functions of pain commu-nication within the context of a communications model of pain. Given that pain is a subjective and private experience, its communication is of vital importance both where systematic study and clinical care are involved. This places psychology, with its focus on behavioral expression and sub-jective states, in a very important position within the multidisciplinary study of pain.

Like any form of interpersonal communication, the communication of pain—and especially the self-report of pain—is subject to conscious distor- tion. Moreover, it is subject to contextual and social influences that affect both those producing the pain message and those trying to decode it. Find- ings that suggest pain messages are not perfectly consistent across commu- 106 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

nication modalities complicate this issue further, and indicate that clini- cians and caretakers should give careful consideration to all modes of pain expression.

ACKNOWLEDGMENTS

The preparation of this chapter was supported in part by a Canadian Insti- tutes of Health Research Investigator Award to Thomas Hadjistavropoulos and by a Canadian Institutes of Health Research Senior Investigator Award to Kenneth D. Craig. Direct correspondence to Thomas Hadjistavropoulos.

REFERENCES

Andrews, K., & Fitzgerald, M. (2002). Wound sensitivity as a measure of analgesic effects follow- ing surgery in human neonates and infants. *Pain*, *99*, 185–196.

Asmundson, G. J. G., Norton, P. J., & Norton, G. R. (1999). Beyond pain: The role of fear and avoid- ance in chronicity. *Clinical Psychology Review*. 19. 97–119.

Bauchner, H. (1991). Procedures, pain and patients. Pediatrics, 87, 563–565. Biersdorff, K. K. (1991). Incidence of significantly altered pain experience among individuals with developmental disabilities. American Journal on Mental Retardation, 98, 619–631. Blackman, J. A. (2000). Crying in the child with a disability: The special challenge of crying as a signal. In R. G. Barr, B. Hopkins, & J. A. Green (Eds.), Crying as a sign, a symptom& a signal (pp. 106–120). London: MacKeith Press.

Blass, E. M., & Watt, L. (1999). Suckling and sucrose-induced analgesia in human newborns. *Pain, 83*, 611–623.

Block, A. R., Kremer, E. F., & Gaylor, M. (1980a). Behavioral treatment of chronic pain: Variable af- fecting treatment efficacy. *Pain, 8*, 367–371.

Block, A. R., Kremer, E. F., & Gaylor, M. (1980b). Behavioral treatment of chronic pain: The spouse as a discriminative cue for pain behavior. *Pain*, *9*, 243–252.

Breau, L. M., Camfield, C., McGrath, P. J., Rosmus, C., & Finley, G. A. (2001). Measuring pain accu-rately in children with cognitive impairments: Refinement of a caregiver scale. *Journal of Pe- diatrics, 138*, 721–727.

Breau, L. M., McGrath, P. J., Camfield, C., Rosmus, C., & Finley, G. A. (2000). Preliminary validation of an observational pain checklist for cognitively impaired, non-verbal persons. *Developmen- tal Medicine and Child Neurology, 42*, 609–616.

Burckhardt, C. S. (1985). The impact of arthritis on quality of life. Nursing Research, 34, 11–16. Burns, J. W., Johnson, B. J., Mahoney, N., Devine, J., & Pawl, R. (1996). Anger management style, hostility and spouse responses: Gender difference in predictors of adjustment among chron- ic pain patients. Pain, 64, 445–453.

Casey, K. L., & Bushnell, M. C. (2000). Pain imaging: Progress in pain research management (Vol. 18). Seattle, WA: IASP Press.

Chambers, C. T., & Craig, K. D. (2001). Smiling face as anchor for pain intensity scales: Reply to D. Wong and C. Baker (letter to the editor concerning Chambers, C. T. et al. (1999). A compari- son of faces scales for the measurement of pediatric pain: Children's and parents' ratings. Pain, 83, 25–35). Pain, 89, 297–300. 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 107

Chambers, C. T., Giesbrecht, K., Craig, K. D., Bennett, S. M., & Huntsman, E. (1999). A comparison of faces scales for the measurement of pediatric pain: Children's and parents' ratings. *Pain*, *83*, 25–35.

Chambers, C. T., Reid, G. J., Craig, K. D., McGrath, P. J., & Finley, G. A. (1999). Agreement between child and parent reports of pain. *Clinical Journal of Pain, 14*, 336–342.

Champion, G. D., Goodenough, B., von Baeyer, C. L., & Thomas, W. (1998). Measurement of pain by self-report. In G. A. Finley & P. J. McGrath (Eds.), *Measurement of pain in infants and chil- dren* (pp. 123–160). Seattle, WA: IASP Press.

Chen, A. C. N., Niddam, D. M., Crawford, H. J., Oostenveld, R., & Arendt-Nielsen, L. (2002). Spatial summations of pain processing in the human brain as assessed by cerebral event related po- tentials. *Neuroscience Letters*, *328*, 190–194.

Chibnall, J. T., & Tait, R. C. (1999). Social and medical influences on attributions and evaluations of chronic pain. *Psychology and Health,* 14,719–729.

Cleeland, C., Gonin, R., Hatfield, A. K., Edmonson, J. H., Blum, R. H., Stewart, J. A., & Pandya, K. J. (1994). Pain and its treatment in outpatients with metastatic cancer. *New England Journal of Medicine*, *330*, 592–596.

Craig, K. D. (1986). Social modelling influences: Pain in context. In R. A. Sternbach (Ed.), *The psy-chology of pain* (2nd ed., pp. 67–96). New York: Raven Press.

Craig, K. D. (1992). The facial expression of pain: Better than a thousand words? *American Pain Society Journal, 1*, 153–162.

Craig, K. D., Gilbert-McLeod, C. A., & Lilley, C. M. (2000). Cry as an indicator of pain in infants. In R. G. Barr, B. Hopkins, & J. Green (Eds.), *Crying as a signal, a sign, and a symptom* (pp. 23–40). London: MacKeith Press.

Craig, K. D., Hill, M. L., & McMurtry, B. (1999). Detecting deception and malingering. In A. R. Block, E. F. Kremer, & E. Fernandez (Eds.), *Handbook of chronic pain syndromes: Biopsycho- social perspectives* (pp. 41–58). Mahwah, NJ: Lawrence Erlbaum Associates.

Craig, K. D., Lilley, C. M., & Gilbert, C. A. (1996). Social barriers to optimal pain management in in- fants and children. *Clinical Journal of Pain, 12,* 232–242.

Craig, K. D., & Patrick, C. J. (1985). Facial expression during induced pain. Journal of Personality and Social Psychology, 44, 1080–1091.

Craig, K. D., Prkachin, K. M., & Grunau, R. V. E. (2001). The facial expression of pain. In D. C. Turk & R. Melzack (Eds.), *Handbook of pain assessment* (2nd ed., pp. 153–169). New York: Guilford Press.

Craig, K. D., & Weiss, S. M. (1975). Verbal reports of pain without noxious stimulation. *Perceptual and Motor Skills, 34*, 943–948.

Darwin, C. (1965). *The expression of emotions in man and animals*. Chicago: University of Chicago Press. (Original work published 1872)

Dennett, D. C. (1988). The intentional stance in theory and practice. In R. Byrne & A. Whiten (Eds.), *Machiavellian intelligence* (pp. 180–202). Oxford: Clarendon Press.

De Waal, F. (1988). Chimpanzee politics. In R. Byrne & A. Whiten (Eds.), *Machiavellian intelligence* (p. 123). Oxford: Clarendon Press.

Difede, J., Jaffe, A. B., Musngi, G., Perry, S., & Yurt, R. (1997). Determinants of pain expression in hospitalized burn patients. *Pain, 72*, 245–251.

Dworkin, S. F., & Chen, A. C. (1982). Pain in clinical and laboratory contexts. *Journal of Dental Re- search, 61*, 772–774.

Ekman, P., & Friesen, W. V. (1978). Facial action coding system. Palo Alto, CA: Consulting Psycholo- gists Press.

Faucett, J. A., & Levine, J. D. (1991). The contributions of interpersonal conflict to chronic pain in the presence or absence of organic pathology. *Pain, 44,* 35–43.

Fearon, I., McGrath, P. J., & Achat, C. (1996). "Booboos": The study of everyday pain among young children. Pain, 68, 55–62. 108 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

Feldt, K., Warne, M., & Ryden, M. (1998). Examining pain in aggressive cognitively impaired older adults. *Journal of Gerontological Nursing*, 24. 14–22.

Fernandez, E., & Turk, D. C. (1995). The scope and significance of anger in the experience of chronic pain. *Pain, 61*, 165–175.

Feuerstein, M., Sult, S., & Houle, M. (1985). Environmental stressors and chronic low back pain: Life events, family and work environment. *Pain, 22,* 295–307.

Fiore, J., Becker, J., & Coppel, D. (1983). Social network interactions: A buffer or a stress. *Ameri- can Journal of Community Psychology*, 11, 423–439.

Flor, H., Kerns, R. D., & Turk, D. C. (1987). The role of spouse reinforcement, perceived pain, and activity levels of chronic pain patient. *Journal of Psychosomatic Research, 31*, 251–259.

Flor, H., Turk, D. C., & Rudy, T. E. (1989). Relationship of pain impact and significant other rein- forcement of pain behaviors: The mediating role of gender, marital status and marital satis- faction. *Pain, 38,* 45–50.

Fordyce, W. E. (1976). *Behavioral methods for chronic pain and illness*. St. Louis, MO: C. V. Mosby. Frank, A. J., Moll, J. M., & Hort, J. F. (1982). A comparison of three ways of measuring pain.

Rheumatology Rehabilitation, 21, 211–217. Fridlund, A. J. (1994). Human facial expressions: An evolutionary view. San Diego, CA: Academic

Press. Fuchs, S., & Hadjistavropoulos, T. (2002). Validation of a pain assessment scale for seniors with severe dementia. In Aging and society: Taking charge of the future, Official program book of the 31st Annual Scientific and Educational Meeting of the Canadian Association on Gerontology (p. 79). Ottawa: Canadian Association on Gerontology.

Fuchs, S., Hadjistavropoulos, T., & McGrath, P. J. (2002). Psychometric development of a pain as-sessment scale for older adults with severe dementia: A report on the first two studies. *Ab-stracts, 10th World Congress on Pain* (p. 559). Seattle, WA: IASP Press.

Gibson, S. J., Voukelatos, X., Ames, D., Flicker, L., & Helme R. D. (2001). An examination of pain perception and cerebral event-related potentials following carbon dioxide laser stimulation in patients with Alzheimer's disease and age-matched control volunteers. *Pain Research Management*, 6, 126–132.

Glucklich, A. (2000). Sacred pain. Oxford: Oxford University Press. Goldberg, G. M., Kerns, R. D., & Rosenberg, R. (1993). Pain-relevant support as a buffer from de- pression among chronic pain patients low in instrumental activity. Clinical Journal of Pain, 9, 34–40.

Green, S. M., Hadjistavropoulos, T., & LaChapelle, D. (2000). Using behavioral and self-report measures to assess pain in seniors. *Pain Research andManagement, 5*(Suppl. A, abstr. 95).

Grunau, R. V. E., & Craig, K. D. (1987). Pain expression in neonates: Facial action and cry. *Pain, 28*, 395–410.

Grunau, R. V. E., & Craig, K. D. (1990). Facial activity as a measure of neonatal pain perception. In D. C. Tyler & E. J. Krane (Eds.), *Advances in pain research and therapy. Proceedings of the 1st In-ternational Symposium on Pediatric Pain* (pp. 147–155). New York: Raven Press.

Guinsburg, R., de Araujo Peres, C., Branco de Almeida, M. F., de Cassia Xavier Balda, R., Cassia Berenguel, R., Tonelotto, J., & Kopelman, B. I. (2000). Differences in pain expression between male and female newborn infants. *Pain, 85*, 127–133.

Hadjistavropoulos, H. D., Craig, K. D., Hadjistavropoulos, T., & Poole, G. (1996). Subjective judg- ments of deception in pain expression: Accuracy and errors. *Pain, 65,* 251–258.

Hadjistavropoulos, H. D., Ross, M., & von Baeyer, C. (1990). Are physicians' ratings of pain af- fected by patients' physical attractiveness? *Social Science and Medicine*, *31*, 69–72.

Hadjistavropoulos, T., & Craig, K. D. (2002). A theoretical framework for understanding self- report and observational measures of pain: A communications model. *Behavior Research and Therapy, 40*, 551–570.

Hadjistavropoulos, T., LaChapelle, D., Hadjistavropoulos, H. D., Green, S., & Asmundson, G. J. G. (2002). Using facial expressions to assess musculoskeletal pain in older persons. European Journal of Pain, 6, 179–187. 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 109

Hadjistavropoulos, T., LaChapelle, D., Hale, C., & MacLeod, F. K. (2000). Age- and appearance- related stereotypes about patients undergoing a painful medical procedure. *Pain Clinic*, *12*, 25–33.

Hadjistavropoulos, T., LaChapelle, D., MacLeod, F., Hale, C., O'Rourke, N., & Craig, K. D. (1998). Cognitive functioning and pain reactions in hospitalized elders. *Pain Research and Manage- ment, 3*, 145–151.

Hadjistavropoulos, T., LaChapelle, D., MacLeod, F. K., Snider, B., & Craig, K. D. (2000). Measuring movement exacerbated pain in cognitively impaired frail elders. *Clinical Journal of Pain, 16*, 54–63.

Hadjistavropoulos, T., McMurtry, B., & Craig, K. D. (1996). Beautiful faces in pain: Biases and ac- curacy in the perception of pain. *Psychology and Health, 11*, 411–420.

Hadjistavropoulos, T., von Baeyer, C., & Craig, K. D. (2001). Pain assessment in persons with lim- ited ability to communicate. In D. C. Turk & R. Melzack (Eds.), *Handbook of pain assessment* (2nd ed., pp. 134–149). New York: Guilford Press.

Hill, M., & Craig, K. D. (2002). Detecting deception in pain expressions: The structure of genuine and deceptive facial displays. *Pain*, *98*, 135–144.

Hill, M., & Craig, K. D. (in press). Detecting voluntary misrepresentation in facial expression. In P. Firestone & W. L. Marshall (Eds.), *Pain in infants, children and adolescents* (2nd ed.). Balti- more: Williams & Wilkins.

Johnson, M., Noble, C., Matthews, C., & Aguilar, N. (1999). Bilingual communicators within the health care setting. *Qualitative Health Research*, *9*, 329–343.

Johnston, C. C., Stremler, R. L., Stevens, B. J., & Horton, L. J. (1997). Effectiveness of oral sucrose and simulated rocking on pain response in preterm neonates. *Pain, 72*, 193–199.

Kaasalainen, S., Middleton, J., Knezacek, S., Hartely, T., Stewart, N., Ife, C., & Robinson, L. (1998). Pain and cognitive status in the institutionalized elderly: Perceptions and interventions. *Journal of Gerontological Nursing, 24*, 24–31.

Keefe, F. J., & Block, A. R. (1982). Development of an observation method for assessing pain be-havior in chronic low back pain patients. *Behavior Therapy, 13*, 363–375.

Keefe, F. J., Lefebvre, J. C., Egert, J. R., Affleck, G., Sullivan, M., & Caldwell, D. (2000). The relation-ship of gender to pain, pain behavior and disability in osteoarthritis patients: The role of catastrophizing. *Pain, 87,* 325–334.

Keefe, F. J., Williams, D. A., & Smith, S. J. (2001). Assessment of pain behaviors. In D. C. Turk & R. Melzack (Eds.), *Handbook of pain assessment* (2nd ed., pp. 170–187). New York: Guilford Press.

Kerns, R. D., Haythornthwaite, J., Rosenberg, R., Southwick, S., Giller, E. L., & Jacob, M. C. (1991). The Pain Behavior Check List (PBCL): Factor structure and psychometric properties. *Journal of Behavioral Medicine*, 14, 155–167.

Kerns, R. D., Haythornthwaite, J., Southwick, S., & Giller, E. L., Jr. (1990). The role of marital inter- action in chronic pain and depressive symptom severity. *Journal of Psychosomatic Research, 34*, 401–408.

Kerns, R. D., & Turk, D. (1987). Depression and chronic pain: The mediating role of the spouse. *Journal of Marriage and Family, 46*, 845–852.

Kosambi, D. D. (1967). Living prehistory in India. Scientific American, 216, 105–114. LaChapelle, D., Hadjistavropoulos, T., & Craig, K. D. (1999). Pain measurement in persons with in- tellectual disabilities. Clinical Journal of Pain, 15, 13–23. Lander, J. (1990). Clinical judgements in pain management. Pain, 42, 15–22. Lane, C., & Hobfoll, S. E. (1992). How loss affects anger and alienates potential supporters. Jour- nal of Consulting and Clinical Psychology, 60, 935–942. LeResche, L., & Dworkin, S. (1988). Facial expressions of pain and emotion in chronic TMD pa- tients. Pain, 35, 71–78. Leventhal, E. A., Leventhal, H., Shacham, S., & Easterling, D. V. (1989). Active coping reduces re- ports of pain from childbirth. Journal of Consulting and Clinical Psychology, 57, 365–371. 110 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

Levine, F. M., & De Simon, L. L. (1991). The effects of experimenter gender on pain report in male and female subjects. *Pain, 44*, 69–72.

MacLeod, F., LaChapelle, D. L., Hadjistavropoulos, T., & Pfeifer, J. E. (2002). The effect of disabil- ity claimants' coping styles on judgements of pain, disability and compensation: A vignette study. *Rehabilitation Psychology*, 46, 417–435.

Manstead, A. S. R. (1991). Expressiveness as an individual difference. In R. B. Feldman & B. Rime (Eds.), *Fundamental of nonverbal behavior: Studies in emotion and social interaction* (pp. 285–328). New York: Cambridge University Press.

Marzinski, L. R. (1991). The tragedy of dementia: Clinically assessing pain in the confused, non- verbal elderly. *Journal of Gerontological Nursing, 17,* 25–28.

McDonald, D. D., Freeland, M., Thomas, G., & Moore, J. (2001). Testing a preoperative pain man-agement intervention for elders. *Research in Nursing & Health, 24*, 402–409.

McDonald, D., & Sterling, R. (1998). Acute pain reduction strategies used by well older adults. *In-ternational Journal of Nursing Studies,* 35, 265–270.

Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 50, 971–979. Mikail, R., VanDeursen, J., & von Baeyer, C. L. (1986). Rating pain or rating serenity: Effects of cold pressor pain tolerance. Canadian Journal of Behavioral Science, 18, 126–132. Murray, A. D. (1979). Infant crying as an elictor of parental behavior: An examination of two mod- els. Psychological Bulletin, 86, 191–215. Murphy, S., Creed, F., & Jayson, M. (1988). Psychiatric disorders and illness behavior in rheuma- toid arthritis. British Journal of Rheumatology, 27, 357–363. Oliver, J. W., Kravitz, R. L., Kaplan, S. H., & Meyers, F. J. (2001). Individualized patient education and coaching to improve pain control among cancer outpatients. Journal of Clinical Oncology, 15, 2206–2212.

Otto, M. W., & Dougher, M. J. (1985). Sex differences and personality factors in responsivity to pain. *Perceptual and Motor Skills, 61*, 383–390.

Parmelee, P. A., Smith, B., & Katz, I. R. (1993). Pain complaints and cognitive status among elderly institution residents. *Journal of the American Geriatrics Society, 41*, 517–522.

Patrick, C. M., Craig, K. D., & Prkachin, K. M. (1986). Observer judgments of acute pain: Facial ac- tion determinants. *Journal of Personality and Social Psychology, 50*, 1291–1298.

Paulsen, J. S., & Altmaier, E. M. (1995). The effects of perceived versus enacted social support on the discriminative cue function of spouses for pain behaviors. *Pain, 60,* 103–110.

Prkachin, K. M. (1992). The consistency of facial expressions of pain: A comparison across mo-dalities. *Pain*, 51, 297–306.

Prkachin, K. M., & Craig, K. D. (1995). Expressing pain: The communication and interpretation of facial pain signals. *Journal of Nonverbal Behavior*, 19, 191–205.

Proctor, W. R., & Hirdes, J. P. (2001). Pain and cognitive status among nursing home residents in Canada. *Pain Research and Management*, *6*, 119–125.

Romano, J. M., Turner, J. A., Friedman, L. S., Bulcroft, R. A., Jensne, M. P., Hops, H., & Wright, S. F. (1992). Sequential analysis of chronic pain behaviors and spouse responses. *Journal of Con-sulting and Clinical Psychology*, *60*, 777–782.

Rosenthal, R. (1982). Conducting judgement studies. In K. Scherer & D. Ekman (Eds.), *Handbook of methods in nonverbal behavior research* (pp. 287–361). New York: Cambridge University Press.

Roy, A., & Simon, G. B. (1987). Intestinal obstruction as a cause of death in the mentally handi- capped. *Journal of Mental Deficiency Research*, 31, 193–197.

Schultz, R., & Decker, S. (1985). Long-term adjustment to physical disability: The role of social support, perceived control, and self-blame. Journal of Personality and Social Psychology, 48, 1162–1172.

Schwartz, N. (1999). Self-reports: How the questions shape the answers. American Psychologist, 54, 93–105. 4. SOCIAL INFLUENCES AND COMMUNICATION OF PAIN 111

Schwartz, N., Knauper, B., Hippler, H. J., Noelle-Neuman, E., & Clark, F. (1991). Rating scales: Nu-meric values may change the meaning of scale labels. *Public Opinion Quarterly*, 55, 570–582.

Schwartz, L., Slater, M. A., & Birchler, B. (1996). The role of pain behaviors in the modulation of marital conflict in chronic pain couples. *Pain.* 65, 227–233.

Schwartz, L., Slater, M. A., Birchler, G. R., & Atkinson, J. H. (1991). Depression in spouses of chronic pain patients: The role of patient pain and anger, and marital satisfaction. *Pain*, *44*, 61–67.

Sengstaken, E., & King, S. (1993). The problems of pain and its detection among geriatric nursing home residents. *Journal of the American Geriatrics Society, 41*, 541–544.

Sternbach, R. A. (1968). Pain: A psychophysiological analysis. New York: Academic Press. Strack, F., Schwartz, N., & Wanke, M. (1991). Semantic and pragmatic aspects of context effects in social and psychological research. Social Cognition, 9, 111–125. Turk, D. C., Kerns, R. D., & Rosenberg, R. (1992). Effects of marital interaction on chronic pain and disability: Examining the down side of social support. Rehabilitation Psychology, 37, 259–274. Turner, R. J., & Noh, S. (1988). Physical disability and depression: A longitudinal analysis. Journal of Health and Social Behavior, 29, 23–37. Unruh, A. M. (1996). Gender variations in clinical pain experience. Pain, 65, 123–167. von Baeyer, C. L. (1994). Social and pain behavior in the first three minutes of a pain clinic medi- cal interview. Pain Clinic, 7(3), 169–177. von Baeyer, C. L., & Hicks, C. L. (2000). Support for a common metric for pediatric pain intensity scales. Pain Research and Management, 5, 157–160. von Baeyer, C. L., Johnson, M. E., & MacMillan, M. J. (1984). Consequences of nonverbal express- sion of pain: Patient distress and observer concern. Social Science & Medicine, 19, 1319–1324. Wagner, H. L., Lewis, H., Ramsay, S., & Krediet, I. (1992). Prediction of facial displays from knowl- edge of norms of emotional expressiveness. Motivation and Emotion, 16, 347–362. Walker, L. (1999). The evolution of research on recurrent abdominal pain: History, assumptions, and a conceptual model. In P. J. McGrath & G. A. Finley (Eds.), Chronic and recurrent pain in children and adolescents (pp. 141–172). Seattle, WA: IASP Press.

Weiss, L. H. (1996). From a cognitive-behavioral perspective an examination of pain-relevant marital communication in chronic pain patients. *Dissertation Abstracts International: Section B: Sciences & Engineering, 56*, 4596.

Zalon, M. (1997). Pain in frail, elderly women after surgery. Image: Journal of Nursing Scholarship, 29, 21–26. 112 HADJISTAVROPOULOS, CRAIG, FUCHS-LACELLE

Pain is a complex phenomenon that consists of interacting biological, psy- chological, and social components (Merskey & Bogduk, 1994). For many years, the study of pain was focused primarily on young and middle-aged adult populations; however, as research in the area of pain expanded, so did consideration of the importance of developmental factors in pain expe- rience and expression, including pain in infants, children, and seniors. Life- span developmental psychology involves the study of constancy and change in behavior through the life course (Baltes, 1987). This approach can be helpful in gaining knowledge about the pain experience across the life span and furthering understanding about interindividual differences and similarity in pain responses.

The present chapter provides a broad overview of developmental per- spectives in pain across various life stages, including infancy, childhood, adolescence, adulthood, and seniors. Research pertaining to age differ- ences in pain experience and report and psychosocial and physiological factors that impact on pain for each of these developmental periods are re- viewed. Further, developmental factors that relate to pain assessment and management are discussed. An appreciation of the unique challenges faced by individuals at various stages of life is critical to furthering understanding about the developmental progression of pain across the life span.

CHAPTER5

Pain Over the Life Span: A Developmental Perspective

Stephen J. Gibson National Ageing Research Institute, Parkville, and Department of Medicine, University of Melbourne

Christine T. Chambers Department of Pediatrics, University of British Columbia, and Centre for Community Child Health Research, Vancouver 113

INTRODUCTION TO CHILDHOOD SEGMENTS OF THE LIFE SPAN

For the purposes of this chapter, child development is segmented into the following periods (Berk, 2000): 1. Infancy and toddlerhood (from birth to 2 years). This period is charac- terized by dramatic changes to the body and brain and the emergence of a wide array of cognitive capacities, including language and the ca- pability to engage in social relationships with others. 2. Early to middle childhood (3 to 11 years). These years are character- ized by further refinements in motor skills and cognitive functioning. Advances in understanding of the self and others are evident during this phase. 3. Adolescence (from 11 to 18 years). These years form the bridge be- tween childhood and adulthood. Cognitive abilities become more ab- stract and puberty leads to physical and sexual maturity.

A broad spectrum of pain experiences is evident across these developmental periods. Throughout the sections that follow, the terms children or child-hood are used to refer to the entire range from 0 to 18 years and particular developmental periods are specified as appropriate.

Age Differences in Pain Experience and Report During Childhood

In comparison to the extensive literature among adult populations, little is known about the epidemiology of pain in children and adolescents (Good- man & McGrath, 1991). Investigations of pain prevalence have traditionally focused on specific pain conditions restricted to particular developmental periods, rather than providing a more comprehensive description of pain problems across childhood. Headache is the pain condition among children that has been most broadly explored (Goodman & McGrath, 1991), with prevalence rates ranging anywhere from 2% (Bille, 1962) to 27% (Abu-Arefeh & Russell, 1994), depending on the type of diagnostic criteria used and the age and gender of the child. Prevalence of headache generally increases with age of the child, and higher prevalence rates are frequently reported for girls as compared to boys (Andrasik, Holroyd, & Abell, 1980; Bille, 1962; Linet, Stewart, Celentano, Ziegler, & Sprecher, 1989).

Other pain conditions commonly reported in childhood include recur- rent abdominal pain (Apley & Naish, 1958), recurrent limb pain (Naish & Apley, 1951), and back pain (Balaque, Dutoit, & Waldburger, 1988; Taimela, 114 GIBSON AND CHAMBERS

Kujala, Salminen, & Viljanen, 1997). It appears that recurrent abdominal pain peaks in prevalence among children aged 5–6 years (with an estimated prevalence of 25%) (Faull & Nicol, 1985), but declines with age from that point on (Davison, Faull, & Nicol, 1986). Limb pain and back pain, on the other hand, have been more commonly reported among older children and adolescents.

A recent study by Perquin, Hazebroek-Kampschreur, Hunfeld, Bohnen, van Suijlekom-Smit, Passchier, and van der Wouden (2000) provided a com- prehensive examination of pain prevalence among a sample of 5,424 Dutch children aged 0 to 18 years. A questionnaire regarding pain experiences in the previous 3 months was completed by either the parents (for children aged 0 to 7 years) or the children themselves (for ages 8 to 18 years). Re- sults of this survey indicated that pain was a common experience for chil- dren, with 54% of respondents reporting pain within the previous 3 months and 25% of respondents reporting a recurrent or continuous pain that had persisted for more than 3 months. The results of this study also indicated that the prevalence of pain increased with age. For example, chronic pain was reported among 11.8% of 0-3-year-olds, 19.3% of 4-7-year-olds, 23.7% of 8-11-year-olds, 35.7% of 12-15-year-olds, and 31.2% of 16-18-year-olds. Gen- der differences in pain reports also varied as a function of the age of the child, with girls reporting more pain than boys in all age groups but the youngest (0-3 years). Gender differences were particularly marked among 12- to 18-year-olds, with girls reporting a pain prevalence that was approxi- mately twice that of boys. The most commonly reported pains by children were headache (23%), abdominal pain (22%), and limb pain (22%). Recurrent abdominal pain was most prevalent among children up to age 8, whereas limb and head pains were more common among children aged 8 years and older. Multiple pains were reported by more than half of the children, with the prevalence of multiple pains increasing with child age. The results of this study clearly indicate that chronic pain is a common experience among children and provides important information regarding age-related pat- terns of pain prevalence in a pediatric sample.

There has been a dearth of epidemiological research documenting pat- terns of pain prevalence from childhood into adulthood. As a result, conclu- sions regarding how the pain experiences of children and adolescents com- pare to those of adults are limited. A study by Blyth and colleagues (2001) examined chronic pain prevalence among a sample of 17,543 Australian in- dividuals. The study focused primarily on the pain experiences of adults up to the age of 84 years; however, the youngest age group included in the study was a group of adolescents aged 15 to 19 years. Results of the study indicated that, overall, chronic pain was reported by approximately 17% of males and 20% of females. Prevalence of pain was lowest among the adoles- cent group, with less than 10% of males and approximately 12% of females 5. PAIN OVER THE LIFE SPAN 115

aged 15 to 19 years reporting chronic pain. Pain prevalence increased steadily until a peak of 27% among 65–69-year-old males and 31% among 80–84-year-old females. The adolescent group contained a relatively small number of respondents suggesting caution, but this research does provide preliminary data regarding the continuum of pain experiences from adoles- cence into adulthood.

In addition to documenting pain prevalence among children, researchers have begun to explore pain-related disability among children and adoles- cents (Palermo, 2000). Compared to research conducted in this area among adults, specific data regarding the impact of pain on children's lives is scant. However, it is presumed that pain results in disruptions in school functioning, peer and social functioning, sleep disturbance, parental bur- den, and burden on the health care system (Palermo, 2000). Initial attempts to document pain-related disability among school-aged children and adoles- cents have failed to reveal any age-related differences (Walker & Greene, 1991). Research documenting physician consultation and medication use among children and adolescents aged 0 to 18 years experiencing chronic pain has revealed that parents of children aged 0 to 3 years were the most likely to consult a physician and use medication for pain in their children (Perquin, Hazebroek-Kampschreur, Hunfeld, van Suijlekom-Smit, Passchier, & van der Wouden, 2000). The authors indicate that this finding could be ex- plained by anxiety or inexperience on the part of parents, rather than being indicative of higher levels of pain-related interference or disability among this age group (Perquin, Hazebroek-Kampschreur, Hunfeld, van Suijlekom- Smit, Passchier, & van der Wouden, 2000). Interestingly, the study by Blyth et al. (2001) found that although the prevalence of pain was lowest among the adolescents aged 15 to 19 years in their sample, interference of daily ac- tivities caused by pain was highest in this group. Future research is needed to document and explore age-related differences in interference and disabil- ity due to pain in children.

Beyond the realm of chronic pain in children, considerable research has examined developmental differences in children's responses to acute stim- uli, such as medical procedures. For many years, it was believed that in- fants did not feel or remember pain that resulted from procedures (Schech- ter, 1989). These myths frequently led to substandard pain management for young children (Craig, Lilley, & Gilbert, 1996). However, advances in our ability to assess pain in infants have led to the acknowledgment that infants are indeed capable of experiencing pain from birth onwards (Stevens & Franck, 2001). Although infants are not capable of providing a self-report of their pain, substantial empirical evidence collected over the last 20 years supports that infants do show an acute pain response through both behav- ioral (e.g., facial activity, cry, gross motor movement) and physiological 116 GIBSON AND CHAMBERS

(e.g., heart rate, palmar sweating) means (Anand, Sippell, & Aynsley-Green, 1987; Stevens, Johnston, & Gibbins, 2000).

Remarkable changes in all areas of functioning are evident during the first 2 years of life known as infancy and toddlerhood. Developmental changes in children's acute pain responses during this period have also been explored. Using measures of facial expression and cry, Lewis and Thomas (1990) found that 6-month-old infants quieted more quickly than did 2- or 4-month-olds following routine immunization injections. Similar studies have found that infants under 4 months of age evidenced a longer duration of pain responses (measured by facial expression, cry, and body movement) compared to infants over 4 months of age (Maikler, 1991) and that infants under 12 months of age showed more generalized responses to pain following immunization whereas infants aged 13–24 months demonstrated more coordinated, goal-directed behavior in response to pain (Craig, Hadjistavropoulos, Grunau, & Whitfield, 1994).

A study conducted by Lilley, Craig, and Grunau (1997) examined age- related changes in facial expression of pain during routine immunization over the first 18 months of life (2-, 4-, 6-, 12-, and 18-month age groups). Al- though there were some age-related differences in the magnitude of the in- fants' pain reactions, there was remarkable continuity in the infants' pain expression. Johnston, Stevens, Craig, and Grunau (1993) conducted the only study examining age-related changes in pain expression to include a com- parison group of premature infants. They compared the pain responses (measured by cry and facial expression) of premature infants undergoing heel stick, full-term infants receiving an intramuscular injection, and 2- and 4-month-old infants receiving subcutaneous injection. Results showed that all groups of children displayed a pain response; however, the premature infants' ability to communicate pain via facial actions was not as well devel- oped as in the full-term children. Additional research has suggested that age differences in infant pain responses are linked to social context and parenting style (Sweet, McGrath, & Symons, 1999).

In brief, research examining age-related changes in children's pain ex- pression within the infancy and toddler period indicates that these children demonstrate a pain response. Although some modes of pain expression may not be fully formed in preterm infants (e.g., facial activity), there is con- siderable consistency in pain responses evidenced from birth to 18 months of age. However, age-related changes in children's abilities to suppress or control their pain expression do appear to emerge over this developmental period. Unfortunately, in part due to issues related to the complexities of measuring pain in a uniform way across developmental periods, no re- search has compared the intensity and quality of infants' acute pain experi- ences to those of older children and adolescents. 5. PAIN OVER THE LIFE SPAN 117

Research has explored age-related differences in older children's pain experiences using both behavioral measures and self-reports of pain. Two early laboratory-based studies examined pain threshold in children using pressure pain (Haslam, 1969) and pinpoint heat stimulus (Schludermann & Zubek, 1962). The study by Haslam (1969) explored pain perception in chil- dren aged 5 to 18 years, whereas the study by Schludermann and Zubek (1962) compared a sample of adolescents aged 12 years and up to a sample of adults up to the age of 83 years. Haslam (1969) reported that children's pain threshold increased between the ages of 5 and 18 years. Similarly, Schuldermann and Zubek (1962) reported increased levels of pain thresh- old from adolescence through to adulthood. These findings would indicate that sensitivity to acute pain appears to decline with age; however, it is noted that the measures used in this research may confound pain experi- ence and pain expression and that the results of this research should be viewed as suggestive rather than conclusive.

Research examining children's distress behaviors in response to painful medical procedures has typically shown that young children exhibit more distress behaviors than older children (Jay, Ozolins, Elliott, & Caldwell, 1983; Katz, Kellerman, & Siegel, 1980). For example, Katz and colleagues ex- amined behavioral distress among a sample of 115 children with cancer, aged 8 months to 18 years, undergoing painful medical procedures. A signif- icant relationship was found between age and quantity and type of anxious behavior, with younger children showing a greater variety of anxious be- haviors over a longer period of time than older children. However, research using behavioral measures more specific to pain has failed to confirm the presence of age-related differences in children's longer term, postoperative pain expression (Chambers, Reid, McGrath, & Finley, 1996).

Older children are capable of using validated measures to provide self- reports of pain and there currently exist a number of tools designed to elicit self-reports from children (Champion, Goodenough, von Baeyer, & Thomas, 1998). Using these measures, there are well-documented findings indicating that younger children report more pain from medical proce- dures (e.g., venipuncture, immunization) than older children (Arts et al., 1994; Fowler-Kerry & Lander, 1987; Fradet, McGrath, Kay, Adams, & Luke, 1990; Lander & Fowler-Kerry, 1991; Manne, Redd, Jacobsen, Gorfinkle, & Schorr, 1990; Palermo & Drotar, 1996). For example, a study by Good- enough and colleagues (1997) compared needle pain ratings of children aged 3 to 7 years, 8 to 11 years, and 12 to 17 years. Results confirmed that younger children gave significantly higher ratings of pain severity than did older children. Additional research by this group has indicated that age effects in children's self-reports of pain are predominantly manifested in ratings of sensory intensity, rather than its affective qualities (Good- enough et al., 1999). 118 GIBSON AND CHAMBERS

A few studies have provided observational assessments of children's "everyday" pain experiences outside of the clinical realm (Fearon, McGrath, & Achat, 1996; von Baeyer, Baskerville, & McGrath, 1998). Results of this re- search have indicated that young children experience an "everyday" pain event (e.g., falling down and hurting themselves) approximately once every 3 hours (Fearon et al., 1996; von Baeyer et al., 1998). Using a sample of chil- dren aged 3 to 7 years, this research has failed to establish any age-related differences in children's intensity or duration of pain responses, although increasing age was found to be associated with decreasing help-seeking behaviors as a result of pain (Fearon et al., 1996).

Discordance among multiple measures of acute pain in children is not uncommon (Beyer, McGrath, & Berde, 1990), with recent research demon-strating age-related differences in the relationships among different meas- ures of pain in children. Goodenough, Champion, Laubreaux, Tabah, and Kampel (1998) reported that correlations between behavioral and self-re- port measures were strongest for the 3–7-year-olds in their sample and weakest for the 12–17-year-olds. Evidence from research based on both be- havioral and self-report measures appears to indicate that younger chil- dren express and report more pain than older children and adolescents, who are occasionally included in these studies.

In summary, data regarding age-related patterns in both chronic pain and acute pain experiences of children are available. Although conclusions regarding age-related differences are sometimes limited due to restrictions in the age range examined, the evidence generally supports that, as chil- dren grow older, prevalence of chronic pain increases. Conversely, re- search examining acute pain reactions indicates that increasing child age is associated with decreased pain and distress. To date, no research has ex- plored potential mechanisms that might account for these contrasting pat- terns; however, it is likely that various complex psychological (e.g., coping strategies), social (e.g., family influence), and biological factors (e.g., puber- tal status) interact to contribute to these findings. Research examining the developmental progression of pain experiences and pain-related disability across childhood and into adulthood is needed.

Psychosocial Influences on the Experience and Expression of Pain During Childhood

McGrath (1994) described a model depicting psychosocial factors that af- fect a child's pain perception. The model includes consideration of cogni- tive, behavioral/social, and emotional factors. Individual child characteris- tics, including age, are thought to be related to each of these factors, which in turn can influence children's pain experiences (McGrath, 1994). 5. PAIN OVER THE LIFE SPAN 119

Although additional research is needed to provide empirical evidence supporting certain components of this model, it is useful in the consider- ation of a broad range of psychosocial factors that could be related to children's pain.

Cognitive factors include children's understanding of the cause of their pain, expectations regarding continuing pain and treatment efficacy, the rel- evance or meaning of the pain, and coping strategies (McGrath, 1994). Con- siderable research has examined children's concepts of general illness from a developmental perspective (Bibace & Walsh, 1980; Burbach & Peter- son, 1986), with most data suggesting that children's concepts of illness evolve in a systematic, age-related sequence, consistent with Piagetian the- ory of cognitive development. Far less research has examined the develop- mental course of children's specific understanding of pain. Harbeck and Peterson (1992) found, among a sample of children and youth aged 3 to 23 years, that older children and youth had more complex and precise under- standings of pain than younger children. For example, children in the preoperational stage of development were unlikely to be able to offer an ex- planation for the value of pain, whereas children in the formal operations stage were able to acknowledge that pain often carries a preventative or di- agnostic value (Harbeck & Peterson, 1992). Ability to understand the cause and value of pain is likely related to pain perception, although no research has explored the links between children's understanding of pain and subse- quent pain responses. Research has also confirmed the presence of age- related differences in children's predictions of pain intensity, with younger children making less accurate predictions than older children (von Baeyer, Carlson, & Webb, 1997).

Craig, 1993; Reid, Gilbert, & McGrath, 1998). Reid and colleagues (1998) detailed the devel- opment of a measure of pain coping in children that assessed coping in three broad areas: approach (e.g., information seeking, seeking social support), problem-focused avoidance (e.g., behavioral distraction, cognitive distraction), and emotion-focused avoidance (e.g., internalizing, catastrophizing). Use of this measure among a sample of children aged 8 to 18 years revealed that adolescents (13–18 years) reported higher levels of emotion-focused avoidance than children aged 8 to 12 years (Reid et al., 1998). The authors attributed this finding to increased frequency of pain among adolescents for which they may experience difficulties managing and consequently re- sort to more emotion-focused avoidant approaches. Other research has examined children's coping with postoperative pain (Bennett-Branson & Craig, 1993). Results of this research showed that older children (aged 10 to 16 years) spontaneously reported a higher frequency of cognitive coping 120 GIBSON AND CHAMBERS

strategies for dealing with postoperative pain when compared to younger children (aged 7 to 9 years).

The family is a common social factor that is related to children's pain experiences (McGrath, 1994). Studies of the aggregation of pain com-plaints in families have highlighted the important context of the family in childhood pain (Goodman, McGrath, & Forward, 1997). For example, stud- ies have shown that children with recurrent abdominal pain are more likely to have parents who report similar pain problems (Apley, 1975; Apley & Naish, 1958; Zuckerman, Stevenson, & Bailey, 1987), and that per- sons with recurrent pain often come from families with a positive family history for pain (Ehde, Holm, & Metzger, 1991; Turkat, Kuczmierczyk, & Adams, 1984). Goodman et al. (1997) conducted a prospective community- based study of over 500 families and found that children whose parents re- ported a large number of painful incidents during the 1-week study period were more likely to also report a large number of painful incidents themselves. Parental modeling and reinforcement of pain are often hypothe- sized to be important mechanisms that could contribute to transmission of pain within families (Craig, 1986). Recent research has shown that pa- rental behavior can have a strong direct effect on children's pain experi- ences (Chambers, Craig, & Bennett, 2002); however, to date, no research has examined family influences on children's pain experiences as a func- tion of age of the child. It seems probable that parental influences might be most salient among younger children.

Similar to adult populations, emotional factors, such as anxiety, fear, frustration, and anger, are also related to children's pain expression in im- portant ways (Craig, 1989; McGrath, 1994). For example, in a study of chil- dren aged 7 to 17 years undergoing surgery, anticipatory anxiety emerged as a significant predictor of children's postoperative pain experiences (Pa- lermo & Drotar, 1996). Further, research has shown age-related effects in children's decisions to control or express emotions (Zeman & Garber, 1996). Results of this research, which compared children aged 6 to 10 years, showed that younger children were more willing to express emotions such as anger and sadness than older children (Zeman & Garber, 1996). It is likely that age-related differences in children's emotional displays are asso- ciated with developmental changes in children's pain expression.

In summary, a variety of psychosocial factors can impact on children's pain experiences. The majority of research has been conducted in the early to middle childhood periods. Additional research focusing on age-related differences in psychosocial factors that influence pain among infants and adolescents is needed. Regardless, existing data appear to support the no- tion that developmental differences in psychosocial factors likely contrib- ute to children's pain experiences and expression. 5. PAIN OVER THE LIFE SPAN 121

Age Differences in Neurophysiological Mechanisms and Correlates of Pain During Childhood

Relatively little research has examined age-related variation in physiological systems that control pain in children. It is noted that, due to its complex nature, physiological and psychological factors likely interact to contribute to a child's pain. Age-related differences are noted on a number of physio- logical variables frequently associated with pain in children. For example, heart rate generally decreases with age (Izard et al., 1991). Bournaki (1997) studied the physiological pain responses of 8- to 12-year-old children and found a greater deviation in heart rate from venipuncture to baseline com- pared to older children.

Although the pain systems required for detection, transmission, and re- action to noxious stimuli are present in the neonate, a number of develop- mental changes in pain processing have been described. For example, in terms of peripheral transmission of pain, C-fibers are slow to make final synaptic contacts among neonates (Fitzgerald, 1985, 1987). It is also under- stood that excitatory neurotransmitters and their receptors within the dor- sal horn undergo marked changes in the postnatal period (Fitzgerald, 1993). Further, the nervous system of neonates is more plastic than that of adults, and alteration in typical activity patterns in development can permanently change patterns of connections within the CNS (Dickenson & Rahman, 1999). A more comprehensive review of the development of the pain system in infants is available elsewhere (Fitzgerald & de Lima, 2001).

Increasingly, researchers have become interested in the long-term ef- fects of pain in infants (Taddio, 1999). Animal studies have indicated that early pain experience may alter the subsequent development of pain path- ways (for a review, see Schellinck & Anand, 1999). Research with human in- fants examining the effects of single medical procedures and prolonged hospitalization indicates that these factors can contribute to alterations in infants' pain behaviors and clinical outcomes (Anand, Phil, & Hickey, 1992; Taddio, Katz, Ilersich, & Koren, 1997; Taddio, Nulman, Goldbach, Ipp, & Koren, 1994; Taddio, Stevens, Craig, Rastogi, Ben David, Shennan, Mulligan, & Koren, 1997). For example, Taddio, Nulman, Goldbach, Ipp, and Koren (1997) compared the pain responses to inoculation at age 4 or 6 months of three groups of boys: uncircumcised, circumcised with topical anesthetic cream, and circumcised with placebo cream. Results showed that the un-circumcised boys responded less to inoculation, measured by observer re- ports using a visual analogue scale (VAS) and recordings of infant cry and fa- cial activity, when compared to the other two groups. The group treated with the topical anesthetic differed significantly from the group treated with pla- cebo on the VAS measure, but not in cry or facial activity. Research has also examined the long-term consequences of pain at developmental stages be- 122 GIBSON AND CHAMBERS

yond the infancy period. For example, Grunau and her colleagues have conducted a series of studies comparing the pain responses of former preterm and full-term children postinfancy. This research has shown lower levels of reactivity in response to everyday pain at age 18 months among the low birthweight children (Grunau, Whitfield, & Petrie, 1994), a higher incidence of somatization among 4.5-year-old preterm children (Grunau, Whitfield, Petrie, & Fryer, 1994), and higher ratings of pain in response to vignettes depicting medical events at age 8–10 years among former preterm children (Grunau, Whitfield, & Petrie, 1998), when compared to full-term peers.

Another biological factor that is thought to contribute to age-related dif- ferences in children's pain experiences is body surface area (BSA). In their study of needle pain ratings of children between the ages of 3 and 17 years, Goodenough et al. (1997) found that self-reported pain intensity scores were predicted equally well by the BSA of the child, an anatomical metric, as by chronological age. The authors hypothesized that developmental ana- tomical differences may form a component of age-related responses to pain in children (Goodenough et al., 1997). Future research is needed to explore age differences in physiological factors that may relate to pain across infancy, childhood, and adolescence.

Age Differences in Pain Assessment During Childhood

There exist a variety of measures to assess pain in children, including self- report, behavioral, and physiological measures. Comprehensive reviews of these measures are available elsewhere (Finley & McGrath, 1998; McGrath & Gillespie, 2001). Due to its subjective nature, self-reports are generally considered to be the gold standard in pediatric pain assessment, where possible (Merskey & Bogduk, 1994). Examples of self-report tools include numeric ratings scales, faces scales, and colored analogue scales (Cham- pion, Goodenough, von Baeyer, & Thomas, 1998). Assessment measures de- signed specifically for adolescents are also available (Savedra, Tesler, Hol- zemer, Wilkie, & Ward, 1990) as are more comprehensive chronic pain inventories (Varni, Thompson, & Hanson, 1987). However, cognitive and emotional limitations may hinder the appropriateness of use of self-report measures with some children. Although researchers have employed self- report measures with children as young as 3 years of age (Goodenough et al., 1997), recent research has indicated that children younger than approxi- mately 7 years of age may not possess the cognitive abilities to appropri- ately use these measures (Chambers & Johnston, 2002). For example, young children tend to rely on the extremes of ratings scales (Chambers & Johnston, 2002; von Baeyer et al., 1997). Future research is needed to examine cognitive skills necessary for providing accurate self-reports of pain, meth-5. PAIN OVER THE LIFE SPAN 123

ods to estimate the age at which these skills emerge, and ways to train young children to more appropriately use self-report measures.

A variety of behavioral measures also exist to assess pain in children. These range from detailed coding of facial expressions (Craig, 1998) to quantification of broad band behaviors (McGrath, 1998), such as screaming or flailing. Behavioral measures have typically been developed for a partic- ular developmental period. For example, specific behavioral measures exist for assessment of premature infants (e.g., the Premature Infant Pain Profile; Stevens, Johnston, Petryshen, & Taddio, 1996) and toddlers and preschool- ers (e.g., the Toddler–Preschooler Postoperative Pain Scale; Tarbell, Cohen, & Marsh, 1992). Behavioral measures are especially valuable in the case where self-reports of pain are not possible (e.g., in infants, children with de- velopmental disabilities). Observer (e.g., parent, nurse) ratings are often employed to provide a global assessment of children's pain. Research has generally indicated that observer ratings underestimate children's pain in- tensity (Chambers, Reid, Craig, McGrath, & Finley, 1998), although no re- search has documented age-dependent differences in agreement between observer and child reports of pain.

Physiological measures are also employed in the assessment of pain in children (Sweet & McGrath, 1998). These include heart rate, respiratory rate, and skin blood flow, among others. Research has generally shown that such physiological responses tend to habituate over time and are not spe- cific to pain, although they can be useful in providing complementary infor- mation regarding a child's pain experience (Sweet & McGrath, 1998). As indicated earlier, age-related differences in children's physiological respon- siveness to pain have been reported (Bournaki, 1997).

Regardless of the specific type of pain measure of interest, it is of impor- tance to give consideration to the unique developmental features of the measure and its appropriateness for use with children of particular ages. Al- though it is helpful that available measures have been tailored to children of specific ages, this approach may, in part, hinder our ability to conduct com- parisons of children's pain responses across developmental periods.

Treatment Considerations During Various Stages of Childhood

Developmental factors must also be taken into account when considering pain management in children. Pain management techniques can be broadly classified into either pharmacological or cognitive/behavioral approaches. Specific guidelines for the management of children's acute pain have been established by the American Academy of Pediatrics and the American Pain Society and are beyond the scope of this chapter (AAP, 2001). Research has shown that the efficacy of certain pharmacological interventions may vary 124 GIBSON AND CHAMBERS

depending on the age of the child. For example, Arts et al. (1994) compared the efficacy of a local anesthetic cream and music distraction in reducing pain from intravenous cannulation in children aged 4 to 16 years. Using chil- dren's self-reports of pain, the results showed a superiority of the local an- esthetic cream in the youngest age group (4 to 6 years) when compared to the older children and adolescents in their sample. Characteristics of new- born physiology and the pharmacology of opioids and local anesthetics within the infancy period may also contribute to age-related differences in responsiveness to pharmacological interventions for pain (Houck, 1998).

Similarly, the appropriateness of certain psychological interventions, such as hypnosis, muscle relaxation, and control of negative thoughts, may also vary depending on the age of the child. A recent systematic review of randomized controlled trials of psychological therapy for pediatric chronic pain has revealed strong evidence in support of relaxation and cognitive behavioral therapy as effective treatments for reducing the severity and fre- quency of chronic pain in children (Eccleston, Morley, Williams, Yorke, & Mastroyannopoulou, 2002). The authors indicate that there is insufficient evidence to permit conclusions regarding the effectiveness of these treat- ments in reducing pain-related mood disturbance and disability. Of note, the age of the youngest children included in these trials was 9 years (Sanders & Morrison, 1990; Sanders et al., 1989). As a result, data regarding the effectiveness of these approaches for treating chronic pain in younger children are not available. Indeed, children less than 8 or 9 years of age may have difficulties engaging in these interventions and require the in vivo as- sistance of a parent or other coach (McGrath, 1995). In contrast, a recent re- view of psychological treatments for procedure-related pain (e.g., breathing exercises, behavioral rehearsal) has documented the overall efficacy of these approaches in children as young as 3 years of age (Powers, 1999). Ad- ditional research is needed to provide data regarding the relative efficacy of different psychological approaches to pain management among children of varying ages. This information, in turn, could be used to inform psycho- logical treatment of chronic pain among young children.

PAIN DURING THE ADULT YEARS

As previously noted, the developmental pain literature has emphasized no- tions of order change, growth, and maturation when dealing with neonatal and pediatric samples. In marked contrast, the adult phase of the life span has been characterized by concepts of stability, invariance and eventual se- nescence or decline. An important implication of this general view has been the decided lack of interest in developmental processes over the adult years. In fact, the conceptualization of a life-span approach has been a very 5. PAIN OVER THE LIFE SPAN 125

recent innovation in the adult pain literature (Gagliese & Melzack, 2000; Riley, Wade, Robinson, & Price, 2000; Walco & Harkins, 1999) and develop- mental concepts have been largely ignored. This situation must change if we are to develop a more comprehensive understanding of the pain experi- ence in all persons, both young and old, who suffer severe or unremitting pain and seek our clinical care.

From a developmental perspective it is clear that biological, psychologi- cal, and social factors all alter over the life cycle, and these influences have been used to help define stage of life during the adult years. However, so- cial transitions, biological processes, and even chronological life stage can vary as a function of gender, culture, and individual experience. As a result, chronological age has become the de facto gold standard in most research settings, and it is argued to provide the best overall surrogate of life stage (Birren & Schaie, 1996). Demographic and epidemiological convention has often divided the adult population into two broad age cohorts: 18–65 and 65 plus, which presumably reflects the official retirement age in most Western societies. Others have added further age subdivisions in describing the population as being young adult, mid-aged, the "young" old (65–74), the "old" old (75–85), and more recently the "oldest" old (85+; Suzman & Riley, 1985) and the "very oldest" old (95+). Although these age categories can help account for specific differences in physical, social, mental, and func- tional abilities particularly during the later years of life, they have rarely been used in the study of pain. In fact, the working adult population (18–65) has attracted the overwhelming majority of interest in pain research stud- ies and has formed the customary comparison group for studies on chil- dren or the aged. For this reason, discussions are focused around the broad categories of adulthood and the aged with appropriate demarcations into finer age cohorts where possible.

Age Differences in Pain Experience and Report During the Adulthood

Recent reviews of the epidemiologic literature reveal a marked age-related increase in the prevalence of persistent pain up until the seventh decade of life and then a plateau or decline (Helme & Gibson, 2001; Verhaak, Kerssens, Dekker, Sorbi, & Bensing, 1998). In contrast, the point prevalence of acute pain appears to remain relatively constant at approximately 5% regardless of age (Crook, Rideout, & Browne, 1984; Kendig, Helme, & Teshuva, 1996). The absolute prevalence figures of persistent pain vary widely between cross-sectional studies and probably reflect differences in the time sample under consideration (e.g., pain in the last week, 6-month or 12-month pe-riod, etc.) and the method of survey (postal, telephone, interview), as well as the type and sites of pain included in the survey (Helme & Gibson, 1999). 126 GIBSON AND CHAMBERS

Nonetheless, with one exception (Crook et al., 1984), epidemiologic studies show a progressive increase in pain prevalence throughout early adult- hood (10–40%) with a peak prevalence during late middle age (50–65; 20–80%) followed by a plateau or decline in the "old" old (75–85) and "oldest" old (85+; 15–70%) adults (Andersson, Ejlertsson, Leden, & Rosenberg, 1993; Bassols, Bosch, Campillo, Cannelas, & Banos, 1999; Blyth et al., 2001; Bratt- berg, Parker, & Thorslund, 1997; Brattberg, Thorslund, & Wikman, 1989; Kendig et al., 1996; Kind, Dolan, Gudex, & Williams, 1998; Magni, Marchetti, Moreschi, Merskey, & Luchini, 1993; Mobily, Herr, Clark, & Wallace, 1994). These findings of reduced pain in very advanced age are perhaps surpris- ing given that disease prevalence and pain associated pathology continues to rise throughout the entire life span.

If one examines pain at specific anatomical sites, a slightly different pic- ture emerges. The prevalence of articular joint pain more than doubles in adults over 65 years (Barberger-Gateau et al., 1992; Bergman et al., 2001; Harkins, Price, & Bush, 1994; Sternbach, 1986; von Korff, Dworkin, & Le Resche, 1990). Foot and leg pain have also been reported to increase with advancing age well into the ninth decade of life (Benvenuti, Ferrucci, Gural- nik, Gagnermi, & Baroni, 1995; Herr, Mobily, Wallace, & Chung, 1991; Leveille, Gurlanik, Ferrucci, Hirsch, Simonsick, & Hochberg, 1998). Con- versely, the prevalence of headache (Andersson et al., 1993; D'Allesandro et al., 1988; Kay, Jorgensen, & Schultz-Larsen, 1992; Sternbach, 1986), abdomi- nal pain (Kay et al., 1992; LaVasky-Shulan et al., 1985) and chest pain (Andersson et al., 1993; Sternbach, 1986; Tibblin, Bengtsson, Furness, & Lapidus, 1990; von Korff, Dworkin, Le Resche, & Kruger, 1988) all peak dur- ing later middle age (45–55) and then decline thereafter. Studies of age- specific rates of back pain are more mixed with some reports of a progres- sive increase over the life span (Harkins et al., 1994; von Korff et al., 1988), whereas others have reported the reverse trend after a peak prevalence at 40–50 years (Andersson et al., 1993; Borenstein, 2001; Perez, 2000; Sternbach, 1986; Tibblin et al., 1990).

Another useful source of information on age differences in the pain experience involves a review of symptom presentation in those clinical disease states that are known to have pain as a usual component. The majority of studies in this area focused on visceral pain complaints and particularly myocardial pain, abdominal pain associated with acute infection, and different forms of malignancy. Variations in the classic presentations of "crush-ing" myocardial pain in the chest, left arm, and jaw are known to be much more common in older adults. Remarkably, approximately 35–42% of adults over the age of 65 years experience apparently silent or painless heart attack (Konu, 1977; MacDonald, Baillie, & Williams, 1983). This represents a striking example of tissue damage without pain signaling the obvious threat, although the level of nociceptive input is seldom known with clinical 5. PAIN OVER THE LIFE SPAN 127

pain states. Nonetheless, attempts to address this issue by using more con-trolled and quantitative examples of cardiac pain have been recently under- taken. For many patients with coronary artery disease, strenuous physical exercise will induce myocardial ischemia as indexed by a 1-mm drop in the ST segment of the electrocardiogram. By comparing the onset and degree of exertion-induced ischemia with subjective pain report, it is possible to provide an experimentally controlled evaluation of myocardial pain across the adult life span. Several studies have documented a significant age- related delay between the onset of ischemia and the report of chest pain (Ambepitiya, lyengar, & Roberts, 1993; Ambepitiya, Roberts, & Ranjada- yalan, 1994; Miller, Sheps, & Bragdon, 1990). Adults over 70 years take almost 3 times as long as young adults to first report the presence of pain (Ambepitiya et al., 1993, 1994). Moreover, the severity of pain report is re- duced even after controlling for variations in the extent of ischemia. Collec- tively, these findings provide strong support for the view that myocardial pain may be somewhat muted in adults of advanced age.

The presentation of clinical pain associated with abdominal complaints such as peritonitis, peptic ulcer, and intestinal obstruction show a similar pattern of age-related change. Pain symptoms become more occult after the age of 60 years and in marked contrast to young adults, the collection of clinical symptoms (nausea, fever, tachycardia) with the highest diagnostic accuracy does not even include abdominal pain (Albano, Zielinski, & Organ, 1975; Wroblewski & Mikulowski, 1991). With regard to pain associated with various types of malignancy, a recent retrospective review of more than 1,500 cases revealed a marked difference in the incidence of pain between younger adults (55% with pain), middle-aged adults (35% with pain), and older adults (26% with pain). With one exception (Vigano, Bruera, & Suarex- Almazor, 1998), most studies also note a significant decline in the intensity of cancer pain symptoms in adults of advanced age (70+ years; Brescia, Portenoy, Ryan, Krasnoff, & Gray, 1992; Caraceni & Portenoy, 1999; McMillan, 1989). It remains somewhat unclear as to whether the apparent decline in pain reflects some age difference in disease severity, in the will-ingness to report pain as a symptom, or an actual age-related change in the pain experience itself.

Other reports of atypical pain presentation have been documented for pneumonia, pneumothorax, and postoperative pain. For instance, several studies suggest that older adults report a lower intensity of pain in the post- operative recovery period even after matching for the type of surgical pro- cedure and the extent of tissue damage (Gagliese, Wowk, Sandler, & Katz, 1999; Meier, Morrison, & Ahronheim, 1996; Oberle, Paul, & Wry, 1990; Thomas, Robinson, & Champion, 1998). This change is thought to be clini- cally significant and is on the order of a 10–20% reduction per decade after 128 GIBSON AND CHAMBERS

the age of 60 years (Meier et al., 1996; Thomas et al., 1998). Recent studies of chronic musculoskeletal pain have also started to address the issue of age differences. This is of considerable importance given that more than three- fourths of persistent pain states are of musculoskeletal origin. Unfortu- nately, the findings are quite equivocal with reports of increased arthritic pain in older adults (Harkins et al., 1994; Wilkinson, Madhok, & Hunter, 1993), decreased pain severity (Lichtenberg, Skehan, & Swensen, 1984; Parker et al., 1988), and no change (Gagliese & Melzack, 1997b; Yunus, Holt, Masi, & Aldag, 1998). Studies on patients with predominantly musculo- skeletal pain attending multidisciplinary pain management centers show similar variable findings and appear to depend on the type of pain assessment scale used for measurement. Studies using a unidimensional scale such as visual analogue of pain intensity or a simple word descriptor have typically found no age difference (Benbow, Cossins, & Wiles, 1996; Corran, Gibson, Farrell, & Helme, 1994; Middaugh, Levin, Kee, Barchiesi, & Roberts, 1988; Riley et al., 2000; Sorkin, Rudy, Hanlon, Turk, & Stieg, 1990), whereas reports based on multidimensional measures or composite scores have re- ported an age-related decline in pain intensity and unpleasantness (Corran, Farrell, Helme, & Gibson, 1997; Gagliese & Melzack, 1997b; Gibson & Helme, 2001; Mosley, McCracken, Gross, Penzien, & Plaud, 1993; Turk, Okifuji, & Scharff, 1995). In explaining this apparent disparity it may be that VAS scales are less appropriate for use in older persons (see section on pain as- sessment), or it could be that only the quality of chronic pain sensation changes rather than the intensity per se (Gagliese & Melzack, 1997b). This would be more likely if there were diagnostic differences in the cause of pain between younger and older adult patients attending multidisciplinary pain management centers.

A full understanding of changes in the chronic pain experience over the life span requires some consideration of pain-related impacts, such as the occurrence of emotional distress and functional disability. There have been fewer studies of age differences in the mood and function of chronic pain patients, but some relatively consistent trends have emerged. Despite one or two exceptions (Corran et al., 1997; Riley et al., 2000), there is now good evidence for no age difference in the number of self-reported depressive symptoms (Cossins, Benbow, & Wiles, 1999; Gagliese & Melzack, 1997b; Herr, Mobily, & Smith, 1993; Middaugh et al., 1988; Mosley et al., 1993; Sorkin et al., 1990; Turk et al., 1995) or in the percentage of patients diagnosed with a depressive disorder (Benbow et al., 1996; Corran et al., 1994; Herr et al., 1993; Wijeratne et al., 2001). Pain-related anxiety, on the other hand, may be less pervasive and intense in adults over the age of 60 years. Results are not universal (Cossins et al., 1999), but several studies have shown an obvious decline in the reported symptoms of anxiety (Benbow, Cossins, & Bowsher, 5. PAIN OVER THE LIFE SPAN 129

1995; Cook & Chastain, 2001; Corran et al., 1994; Cossins et al., 1999; Mosley et al., 1993; Parmelee, 1997; Riley et al., 2000) for older chronic pain patients and the magnitude of change (approximately 25% reduction) is likely to be of clinical significance.

With regard to pain-related disability or impact on the level of general activity, there have been five reports of age differences (Corran et al., 1994; Cutler, Fishbain, Rosomoff, & Rosomoff, 1994; Mosley et al., 1993; Riley et al., 2000; Wijeratne et al., 2001) and seven studies that found no change over the adult life span (Benbow et al., 1995; Cook & Chastain, 2001; Corran et al., 1997; Cossins et al., 1999; Middaugh et al., 1988; Sorkin et al., 1990; Turk et al., 1995). Moreover, the direction of any age difference is unclear with three studies noting a decrease in self-rated disability for older adult patients (Cutler et al., 1994; Riley et al., 2000; Wijeratne et al., 2001), one study noting higher levels of disability (Mosley et al., 1993), and the final report indicat- ing an age-related increase in functional impact on physical activities but a decrease on psychosocial impact (Corran et al., 1994). At this stage it would seem unwise to draw any firm conclusions, although a focus on measure- ment issues and the age range of the sample under study may provide use- ful topics for future research.

In summary, the findings from numerous large-sample epidemiologic stud- ies suggest that pain is most common during the late middle-aged phase of life, and this is true regardless of the anatomical site or the pathogenic cause of pain. The one exception appears to be degenerative joint disease (e.g., osteoarthritis), which shows an exponential increase up until at least 90 years of age. Studies of clinical disease and injury would suggest a relative absence of pain, often atypical presentation, and a reduction in the intensity of pain symptoms with advancing age. Changes in myocardial chest pain and abdominal pain have been most frequently documented, but age differences in postoperative pain, cancer pain, and musculoskeletal pain conditions have also been reported. It is important to note that most studies in this area have relied on retrospective review of medical records rather than direct patient report. Much of the information comes from hospital admission data, and this may underestimate the prevalence of painless disease or injury seen in the community setting. On the other hand, a lack of age differences in disease presentation is unlikely to be reported or published and this could overem- phasize age differences in clinical pain presentation. Studies of clinical pain have usually defined adult groups as being either young or old and there has been little recognition of finer nuances in life stage (e.g., young adult, middle- aged, old, "old" old, and "oldest" old). Indeed, very few studies have included adults over the age of 80 years. Nonetheless, a consensus view would be that there are clinically significant changes in the pain experience over the adult life span and that such changes are most obvious in late middle age and the very old age cohorts. 130 GIBSON AND CHAMBERS

Psychosocial Influences on the Experience and Expression of Pain Over the Adult Life Span

Pain is a complex perceptual experience that combines sensory, affective, and cognitive dimensions. The context in which noxious input is processed, the cognitive beliefs of the individual, and the meanings attributed to pain symptoms are known to be important factors in shaping the overall pain ex- perience. A number of recent studies have examined psychological compo- nents of pain over the adult life span, and there is now clear evidence for some important age differences in cognitive beliefs and coping mechanisms.

It has been suggested that older adults perceive pain as something to be expected and just a normal companion of advancing age (Hofland, 1992). A number of empirical studies provide clear support for this view (Harkins et al., 1984; Liddell & Locker, 1997; Ruzicka, 1998; Weiner & Rudy, 2000), al- though there are some exceptions (Gagliese & Melzack, 1997b; McCracken, 1998). Stoller (1993) examined causal attributions in 667 community dwell- ing adults aged 65 plus and found that 43% of the sample attributed joint or muscle pain to the normal aging process. Conversely, in a sample of 396 adults only 21% of the elderly aged 60-plus attributed aching to a specific disease, whereas 36% of young adults aged 20–39 perceived this symptom as a warning sign of disease (Leventhal & Prohaska, 1986; Prohaska, Leven- thal, Leventhal, & Keller, 1985). One exception may occur in the presence of severe or persistent pain. Under such circumstances older adults may be more likely to interpret pain as a sign of serious illness and seek more rapid medical treatment than their young counterparts (Stoller, 1993; Leventhal, Leventhal, Schaefer, & Easterling, 1993). There are also a number of studies that demonstrate that mild pain symptoms do not affect self-rated perceptions of health in older adults, but do so in the young (Ebrahim, Brittis, & Wu, 1991; Mangione et al., 1993). On the basis of these findings, it is clear that older adults underreport pain as a symptom of illness. Seniors are very aware of the increasing prevalence of disease with advancing age, and this is thought to contribute to the widespread misattribution of pain symp- toms. However, attributing mild aches and pains to the normal aging proc- ess greatly reduces the importance of this symptom and alters the funda- mental meaning of pain itself.

Other types of pain beliefs and attitudes have also started to attract in- creasing attention from the pain research community. Gagliese and Mel- zack (1997b) reported a lack of age differences in both pain-free individuals and chronic pain patients when using the pain beliefs questionnaire (Wil- liams & Thorn, 1989). This instrument monitors beliefs about psychological influences over pain (i.e., that depression makes pain seem worse) as well as physiological causes of pain (i.e., pain is a result of tissue damage). Re- gardless of age, patients with chronic pain were more likely to endorse psy- 5. PAIN OVER THE LIFE SPAN 131

chological beliefs than organic causes of pain. In contrast, others have noted that chronic pain patients show significant age differences in most of the beliefs as assessed by the cognitive risks profile (Cook, DeGood, & Chastain, 1999). Older adults (60–90) were found to have a lower cognitive risk of helplessness, self-blame, and absence of emotional support, but an increased desire for a medical treatment breakthrough and a greater denial of pain-related mood disturbance. In a recent study, the locus of control scale was used to examine cognitive factors and the experience of pain and suffering in older adults (Gibson & Helme, 2000). Chronic pain patients aged over 80 years were shown to have a greater belief in pain severity being controlled by factors of chance or fate (Gibson & Helme, 2000). This contrasts with younger pain patients, who endorse their own behaviors and ac- tions as a strongest determinant of pain severity. In agreement with previ- ous studies (see Melding, 1995, for review), a belief in chance factors was also shown to be associated with increased pain, depression, functional im- pact, and choice of maladaptive coping strategies. Finally, using a newly de- veloped psychometric measure of pain attitudes, Yong, Gibson, Horne, and Helme (2001) found that older persons living in the community exhibited a greater belief in the need for stoic reticence and an increased cautious re-luctance and self-doubt when making a report of pain. These findings are in agreement with early psychophysical studies that show that older persons adopt a more stringent response criterion for the threshold report of pain and are less willing to label a sensation as painful (Clark & Mehl, 1971; Harkins & Chapman, 1976, 1977). The finding is also consistent with other recent studies of stoic attitudes in older pain patients (Klinger & Spaulding, 1998; Machin & Williams, 1998; Morley, Dovle. & Beese, 2000) and provides strong empirical support for the widely held view that older cohorts are generally more stoic in response to pain.

Another potentially important psychological influence relates to possi- ble age differences in self-efficacy and the use of pain coping strategies. Self- efficacy in being able to use coping strategies to effectively reduce the se- verity of pain does not appear to change between early adulthood and older age (Corran et al., 1994; Gagliese, Jackson, Ritvo, Wowk, & Katz, 2000; Harkins, 1988; Keefe & Williams, 1990; Keefe et al., 1991), although adoles- cents may have slightly poorer self-efficacy than other segments of the adult population (Burckhart, Clark, & Bennett, 2001; Goyen & Anshell, 1998). These findings would seem to challenge the commonly held view that older persons have less self-efficacy and instead show a stability and resilience in beliefs of personal competence across the major portion of the adult life span. The literature on coping strategy use is less clear-cut. Studies by Keefe and colleagues (1990, 1991) showed no age differences in the fre- quency of coping strategy use, although there was a strong trend for older adults to use more praying and hoping than their younger counterparts. 132 GIBSON AND CHAMBERS

Conversely, older people with chronic pain have been found to report fewer cognitive coping strategies and an increased use of physical methods of pain control when compared to young adults (Sorkin et al., 1990). Corran et al. (1994) examined a large sample of outpatients attending a multi- disciplinary pain treatment center, aged from 18 to 92 years. Consistent with others (Gardner, Garland, Workman, & Mendelson, 2001; Mosley et al., 1993), they found a significantly higher use of praying and hoping as well as less frequent use of ignoring pain in adults aged greater than 60 years. Such differences are thought to be more likely due to sociocultural cohort effects rather than to some maturational change per se (Corran et al., 1994).

Corran et al. (1994) also reported some age differences in the relation- ship between coping strategy use and self-reported levels of pain, depres- sion, anxiety, and disability. The use of catastrophizing as a cognitive cop- ing strategy was found to be the strongest predictor of negative clinical presentation in both young and older adults (accounting for 20–30% of the variation in outcome scores). This finding is consistent with many earlier studies in young adult chronic pain patients (see Jensen, Turner, Romano, & Karoly, 1991, for review) and has since been confirmed in older popula- tions as well (Bishop, Ferraro, & Borowiak, 2001). It is in the use of other coping strategies, however, that age differences start to emerge. In the elderly cohort, self-coping statements and diverting attention were shown to be significant predictors of clinical outcome measures, whereas ignoring pain and reinterpretation of pain sensations were of more importance in young chronic pain patients. As these coping strategies were secondary to catastrophizing and only account for between 5 and 10% of the variation in reports of pain, mood disturbance, and disability, the observed age differ- ence probably represents a subtle shift in the interaction between coping and clinical presentation rather than some major change.

In summary, these findings document some clear age-related differ- ences in many types of pain beliefs, coping mechanisms, attribution of pain symptoms, and attitudes towards pain. These psychological influ- ences are likely to shape the overall pain experience, but observed age differences may be very dependent on the intensity of painful symptoms. If a pain symptom is mild or transient in older adults, it is likely to be at- tributed to the normal aging process, be more readily accepted, and be ac- companied by a different choice of strategy to cope with pain. These fac- tors are likely to diminish the importance of mild aches and pains, and actually alter the fundamental meaning of pain symptoms. More stoic atti- tudes to mild pain and a stronger belief in chance factors as the major determinant of pain onset and severity are likely to lead to the under- reporting of pain symptoms by older segments of the adult population. However, many of the age differences in coping, misattribution, and be- liefs disappear if pain is persistent or severe. 5. PAIN OVER THE LIFE SPAN 133

Age Differences in Neurophysiologic Mechanisms and Correlates of Pain During Adulthood

Any age-related change in the function of nociceptive pathways would be expected to alter pain sensitivity and therefore alter the perception of nox- ious events and the prevalence of pain complaints over the adult life span. There is some limited evidence of an agerelated decline in the physiologic function of peripheral, spinal, and central nervous system nociceptive mechanisms. For instance, a marked decrease in the density of myelinated and unmyelinated nerve fibers has been found in older adults (Ochoa & Mair, 1969). Moreover, the neuronal content of the pain-related neuropep- tides substance P and calcitonin gene-related peptide (CGRP) are known to fall with advancing age (Helme & McKernan, 1984; Li & Duckles, 1993). Nerve conduction studies indicate a prolonged latency and decreased amplitude of sensory nerve action potentials in apparently healthy older adults (Adler & Nacimiento, 1988; Buchthal & Rosenfalck, 1966). Studies of the perceptual experience associated with activation of nociceptive fibers indicate a selec- tive age-related impairment in A fiber function and a greater reliance on C- fiber information for the report of pain in older adults (Chakour, Gibson, Bradbeer, & Helme, 1996). Given that A fibers subserve the epicritic, first warning aspects of pain, while C-fiber sensation is more prolonged, dull, and diffuse, one might reasonably expect some changes in pain quality and intensity in older adults. Spinal mechanisms of nociception also appear to change with age. Three recent studies have shown that the temporal sum- mation of noxious input may be altered in older persons (Edwards & Fil- lingim, 2001; Gibson, Chang, & Farrell, 2002; Harkins, Davis, Bush, & Price, 1996). Temporal summation refers to the enhancement of pain sensation as- sociated with repeated stimulation. It results from a transient sensitization of dorsal horn neurons in the spinal cord and is thought to play an impor- tant role in the development and expression of postinjury tenderness and hyperalgesia. Zheng, Gibson, Khalil, McMeeken, and Helme (2000) extended these observations by comparing the intensity and time course of post- injury hyperalgesia in young (20–40) and older (73–88) adults. Although the intensity and area of hyperalgesia were similar in both groups, the state of mechanical tenderness persisted for a much longer duration in the older group. As mechanical tenderness is known to be mediated by sensitized spinal neurons, these findings may indicate a reduced capacity of the aged CNS to reverse the sensitization process once it has been initiated. The clin- ical implication is that postinjury pain and tenderness will resolve more slowly in older persons. However, in combination with the studies of tem-poral summation, these findings provide strong evidence for an age-related reduction in the functional plasticity of spinal nociceptive neurons follow- ing an acute noxious event. 134 GIBSON AND **CHAMBERS**

Variations in pain sensitivity depend not only on activity in the afferent nociceptive pathways but also endogenous pain inhibitory control mecha- nisms that descend from the cortex and midbrain onto spinal cord neu- rons. A recent study has shown that the analgesic efficacy of this endoge- nous inhibitory system may decline with advancing age (Washington, Gibson, & Helme, 2000). Following activation of the endogenous analgesic system, young adults showed an increase in pain threshold of up to 150% whereas the apparently healthy older adult group increased pain thresh- old by approximately 40%. Such age differences in the efficiency of endog- enous analgesic modulation are consistent with many earlier animal stud- ies (see Bodnar, Romero, & Kramer, 1988, for review) and would be expected to reduce the ability of older adults to cope with severe or per- sistent pain states.

There are widespread morphological and neurochemical changes to the central nervous system with advancing age, although few studies have ex- amined those areas specifically related to the processing of nociceptive in- formation (see Gibson & Helme, 1995, for review). An investigation of the cortical response to painful stimulation has documented some changes in adults over 60 years. Using the pain-related encephalographic response in order to index the central nervous system processing of noxious input, older adults were found to display a significant reduction in peak amplitude and an increased latency of response (Gibson, Gorman, & Helme, 1990). These findings might suggest an age-related slowing in the cognitive proc- essing of noxious information and a reduced cortical activation. There has also been one report of a more diffuse topographic spread in the post- stimulus electroencephalogram (Gibson, Helme, & Gorman, 1993). Although this finding could indicate a wider recruitment of CNS neurons during the cortical processing of noxious input, more recent neuroimaging techniques, with better temporal and spatial resolution, would be needed to confirm this suggestion.

Age Differences in Pain Assessment During the Adult Years

Three main approaches have been used to assess clinical pain in the adult population: self-report psychometric measures, behavioral—observational methods, and third-party proxy ratings. The vast majority of research into pain measurement has been conducted on young and middle-aged adults and there is a huge literature on this topic (for review see Katz & Melzack, 1999; Lee, 2001; Williams, 2001). In order to consider pain measurement from a developmental perspective there need to be direct comparative studies between young and older adults. There is no literature on age differ- ences in pain assessment, although issues of measurement reliability and 5. PAIN OVER THE LIFE SPAN 135

validity have been investigated within specific age segments of the adult population.

Evidence from a variety of sources would suggest that any measure- ment approach found to be useful in young adult populations, also has a potential for use with most older persons (Helme & Gibson, 1998; Parmelee, 1994). Single-item scales of self-reported pain intensity, such as verbal descriptor scales, numeric rating scales, colored analogue scales, and the pictorial pain faces scale, have all been shown to possess some at- tributes of validity and reliability when used with healthy older adults and even in those with mild cognitive impairment (Benesh, Szigeti, & Ferraro, 1997; Chibnall & Tait, 2001; Cook, Niven, & Downs, 1999; Corran, Helme, & Gibson, 1991; Ferrell, 1995; Gloth, 2000; Helme et al., 1989; Herr & Mobily, 1993; Herr, Mobily, Koout, & Wagenaar, 1998; Weiner, Pieper, McConnell, Martinez, & Keefe, 1996; Weiner, Peterson, Logue, & Keefe, 1998). Visual an- alogue scales (VAS) also have some evidence of validity (Scherder & Bouma, 2000), although several others have raised concerns about the suitability of this measure for use with older patients (Benesh et al., 1997; Ferrell, 1995; Herr et al., 1993; Tiplady, Jackson, Maskrey, & Swift, 1998). In particular, it has been suggested that older persons may have difficulties with the more abstract nature of the visual analogue scale scaling proper- ties (Herr et al., 1993; Jensen & Karoly, 1992; Kremer, Atkinson, & Ignelzi, 1981). Multidimensional word descriptor inventories (e.g., the McGill Pain Questionnaire) have also been questioned due to complexity and the need for advanced language skills (Herr & Mobily, 1991). However, most data would support the use of such instruments in older adults with and without cognitive impairment (Corran et al., 1991; Ferrell et al., 1995; Gagliese, 2002; Gagliese & Melzack, 1997a; Helme et al., 1989; Weiner, Peter- son, Logue, & Keefe, 1998), although completion rates may drop somewhat (Ferrell, 1995; Hadjistavropoulos, Craig, Martin, Hadjistavropoulos, & McMurtry, 1997; Parmelee, 1994).

Some older persons will suffer from multiple comorbid medical illnesses, physical impairments in vision or hearing, severe cognitive impairment, or difficulties with verbal communication skills, all of which may complicate routine psychometric pain assessment. Behavioral—observational meas- ures of pain can bypass many of these difficulties and have been examined for use in frail older populations (e.g., nursing home residents, demented elderly). Standardized protocols have been developed (e.g., Keefe & Block, 1982) to monitor the frequency of pain-related behaviors (i.e., guarding, bracing, rubbing, grimace, sighing). Interrater reliability and concurrent va- lidity appear to be adequate in older nursing home residents, including those with mild to moderate cognitive impairment (Kovach, Griffie, Matson, & Muchka, 1999; Simons & Malabar, 1995; Weiner et al., 1996, 1998; Weiner, 136 GIBSON AND CHAMBERS

Peterson, & Keefe, 1999). However, the level of agreement between resident and staff perceptions of pain as indexed by behavioral markers has been shown to be relatively poor (kappa .3; Weiner et al., 1999). A related ap- proach involves measurement of discrete facial expressions as nonverbal indicators of pain (Craig, Prkachin, & Grunau, 2001). A characteristic pain face has been noted (including lowered eyebrows, raised cheeks, closed eyes, parting or tightening of lips), and despite some individual differences, this expression is instantly recognizable by other third-party observers. The complexity and speed of facial gestures can lead to errors of judgment, but a facial action coding system (Ekman & Friesen, 1969) has been devel- oped to systematically analyze facial expressions from videotaped record- ings. When using this technique in frail older adults, interrater reliability has been shown to be excellent and there is good validity evidence (Hadji- stavropoulos et al., 1997; Hadjistavropoulos, LaChapelle, MacLeod, Snider, & Craig, 1998; Hadjistavropoulos, LaChapelle, Hadjistavropoulos, Green, & Asmundson, 2002). It is noted, however, that self-report measures of pain and nonverbal indices do not always correspond (e.g., Hadjistavropoulos et al., 2000) and there may be some age differences in the correspondence be- tween pain self-report and the intensity of facial reactions (Matheson, 1997). Nonetheless, these findings are encouraging and may offer another method of pain measurement that is sensitive to differences in functional capacity and can capitalize on the available communication repertoire of persons at the end stage of the life span.

The final class of measures involves third-party proxy ratings of pain by medical staff, carers, or others who know the individual well. Given that pain is a latent and subjective experience, which is really only accessible to the individual who is suffering, this method cannot be recommended for routine pain assessment. However, such measures may be of some value when no other method is available. For instance, some studies of older patients with dementia have shown a reasonable level of agreement (70%) between nursing staff and patient ratings when identifying the presence of pain (Krulwitch et al., 2000; Weiner, Peterson, Logue, & Keefe, 1998; Werner, Cohen-Mansfield, Watson, & Pasis, 1998). On the other hand, staff often underestimate the presence of pain, there is often poor interrater reliability, and estimates of pain intensity may vary widely between patient and proxy ratings (Krulwitch et al., 2000; Weiner, Peterson, & Keefe, 1998).

In summary, there are several different methods by which pain can be assessed although the utility, validity, and reliability may vary as a function of life stage due to the inherent strengths and weaknesses of each ap- proach. Self-report measures represent the de facto gold standard and can be used in most segments of the adult population, although nonverbal be- havioral methods may be particularly useful in frail older samples. 5. PAIN OVER THE LIFE SPAN 137

Treatment Considerations Across the Adult Life Span

There are a myriad of pharmacological, surgical, psychological, behavioral, and physical therapies that have demonstrated efficacy for use in those suf- fering from severe or unremitting pain. The vast majority of treatments have been developed in young adult populations and there have been very few investigations of age differences in the treatment response over the adult life span. In the absence of adequate data, most pain clinicians simply extrapolate treatment guidelines from younger patients, tempering their judgments with prudence appropriate for the frailities of the aged (Porte- noy & Farkash, 1988). It is not entirely clear why there has been a limited in- terest in pursuing age differences, although recent evidence indicates a substantial age bias against patient referral and prognosis, as well as bias against the perceived effectiveness of many pharmacological and nonphar- macological treatments (Kee, Middaugh, Redpath, & Hargadon, 1998).

Pharmacological approaches, whether self-administered or prescribed, are the most frequently used method of pain management and include sim- ple analgesics (e.g., paracetamol, nonsteroidal anti-inflammatory drugs), opioid medications (e.g., codeine, morphine), and adjuvant analgesic drugs (tricyclic antidepressants, anticonvulsants). Older adults are more likely to experience adverse side effects and are more sensitive to analgesic actions than their younger counterparts (Katz & Helme, 1998; Wall, 1990). This may be due to the well-known age-related changes in drug metabolism and clear- ance with associated alterations in the pharmacokinetic and pharmacodynamic profile. As a result, drugs with a short half-life are thought to be preferable, commenced at a low dose and titrated upward in a steady but slow regime. Patient-controlled analgesia is one way to help ensure ade- quate dosage with a tolerable side-effect profile, and a recent study has shown that this method is appropriate for older postsurgical patients (Gagliese, Verma, & Mossey, 2000). Dosing requirements must also take into account any concurrent medications and coexisting disease states that may alter the time course and profile of analgesic action (Helme & Gibson, 1998). For instance, the average 70-year-old is likely to take seven different medications and have three comorbid medical complaints (Gloth, 2000). A more comprehensive discussion of these matters can be found in the clinical practice guidelines on the management of chronic pain from the American Geriatrics Society expert panel (AGS, 2002).

Pharmacological therapy is always more effective when combined with nonpharmacological approaches designed to optimize pain management. The application of heat or cold, massage (Eisenberg et al., 1993), or trans- cutaneous electrical nerve stimulation (Thorstiensson, 1987) may be useful. Regular physical activity can increase fitness and reverse the physical deconditioning that is often seen in patients with chronic pain problems. A 138 GIBSON AND CHAMBERS

recent randomized control trial demonstrated a significant overall improve- ment in pain, functional status, and performance measures in elderly veter- ans with chronic musculoskeletal pain (Ferrell, Josephson, Pollan, Loy, & Ferrell, 1997). Unfortunately, this study did not include a young adult com- parison group and there is no other evidence to show whether older per- sons respond as well, less well, or to the same extent as younger cohorts.

Psychological approaches for the management of pain have been well es- tablished in young adult populations (for review see Gatchel & Turk, 1998). Uncontrolled, essentially descriptive studies have also shown that older adults can benefit from relaxation training (Arena, Hannah, Bruno, & Mea- dor, 1991; Arena, Hightower, & Chong, 1988), biofeedback (Nicholson & Blanchard, 1993), behavior therapy (Miller & Le Lieuvre, 1982), and cogni- tive-behavioral treatment programs (Puder, 1988). Recently there has been one randomized control trial of cognitive-behavioral therapy in nursing home residents (Cook, 1998). Cognitive-behavioral therapy involving 10 weekly sessions of education, reconceptualization of pain and belief struc- tures, and training in coping skills, relaxation, and goal setting was shown to greatly improve self-rated pain and functional disability, but not de- pressed mood. These effects were maintained at 4-month follow-up. In com- bination, these findings may help refute the notion that older persons are less accepting of psychological approaches to pain management (Kee, Mid- daugh, & Pawlick, 1996), but without formal age comparative data, it is im- possible to evaluate the relative treatment efficacy within different age seg- ments of the adult population.

Multidisciplinary pain management facilities are thought to offer state-of- the-art treatment for more complex chronic pain problems, particularly when conventional management strategies have failed (Flor, Fydrich, & Turk, 1992; Guzman et al., 2001). Several authors have noted the importance of modifying standard treatment protocols in order to accommodate the special needs of older patients (Arena et al., 1988; Gibson, Farrell, Katz, & Helme, 1996; Portenoy & Farkash, 1988). Such factors may include ensuring age-relevant treatment goals, a recognition of comorbid disease and its in- fluence on treatment decisions, allowing greater time for assessment and treatment instructions, and ensuring that the older person takes an active role in the treatment process and has good self-efficacy for the recommended treatment approach (Gibson et al., 1996). It may also be important to ensure that the social milieu of the clinic is appropriate for older per- sons, as group therapy is more effective if members share similar life expe- rience, have similar aspirations, and face similar problems. Nonetheless, the available literature on treatment outcome for older adults provides strong support for multidisciplinary treatment (see Gibson et al., 1996, for review). With few exceptions (Aronoff & Evans, 1982; Guck, Meilman, Skul- tety, & Dowd, 1986; Painter, Seres, & Newman, 1980), it appears that older 5. PAIN OVER THE LIFE SPAN 139

adults can show substantial posttreatment benefits (e.g., Cutler et al., 1994; Farrell & Gibson, 1993; Groves, Garland, Mendelson, & Gibson, 2002; Hallet & Pilowsky, 1982; Helme et al., 1989, 1996; Hodgson, Suda, Bruce, & Rome, 1993; Kolter-Cope & Gerber, 1993; Middaugh et al., 1988; Ysla, Rosomoff, & Rosomoff, 1986). Although these findings are encouraging, it is worth noting that there has yet to be a randomized control trial of multidisciplinary treat- ment in older adults and many studies have not even included a control group. The choice of outcome measures may also be questioned in some cases and the sample size of the older segment of the population is often small. Despite these limitations, it is apparent that the vast majority of stud- ies suggest clear benefits from multidisciplinary treatment across the entire adult life span.

CONCLUDING REMARKS

As is evident from the research reviewed in this chapter, pain experiences of individuals across the life span are characterized by both patterns of similarities and idiosyncratic features unique to particular developmental periods. Awareness of the impact of developmental factors on clinical pain assessment and management across the life span is needed. Our under- standing of pain could be enhanced greatly by more directly applying de- velopmental methodologies and extending research across developmental periods and a broader age range of individuals.

REFERENCES

Abu-Arefeh, I., & Russell, G. (1994). Prevalence of headache and migraine in school children. Brit- ish Medical Journal, 309, 765–769.

Adler, G., & Nacimiento, A. C. (1988). Age-dependent changes of short-latency somatosensory evoked potentials in healthy adults. *Applied Neurophysiology*, *51*(1), 55–59.

AGS Panel on Persistent Pain in Older Persons. (2002). The management of persistent pain in older persons. *Journal of the American Geriatric Society, 50*(Suppl. 6), S205–S224.

Albano, W., Zielinski, C. M., & Organ, C. H. (1975). Is appendicitis in the aged really different? *Geri- atrics, 30*, 81–88.

Ambepitiya, G. B., lyengar, E. N., & Roberts, M. E. (1993). Silent exertional myocardial ischaemia and perception of angina in elderly people. *Age Ageing, 22*, 302–307.

Ambepitiya, G. B., Roberts, M. E., & Ranjadayalan, K. (1994). Silent exertional myocardial ische- mia in the elderly: A quantitative analysis of anginal perceptual threshold and the influence of autonomic function. *Journal of the American Geriatrics Society, 42*, 732–737.

American Academy of Pediatrics Committee on Psychosocial Aspects of Child and Family Health & American Pain Society Task Force on Pain in Infants, Children and Adolescents. (2001). The assessment and management of acute pain in infants, children, and adolescents. Pediatrics, 108, 793–797. 140 GIBSON AND CHAMBERS

Anand, K. J. S., Phil, D., & Hickey, P. R. (1992). Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. *New Eng- land Journal of Medicine, 326*, 1–9.

Anand, K. J. S., Sippell, W. G., & Aynsley-Green, A. (1987). Randomized trial of fentanyl anaesthe- sia in preterm babies undergoing surgery: Effects on stress response. *Lancet*, *1*, 243–248.

Andersson, H. I., Ejlertsson, G., Leden, I., & Rosenberg, C. (1993). Chronic pain in a geographically defined general population: Studies of differences in age, gender, social class, and pain local- ization. *Clinical Journal of Pain, 9*, 174–182.

Andrasik, F., Holroyd, K. A., & Abell, T. (1980). Prevalence of headache within a college student population: A preliminary analysis. *Headache*. *19*, 384–387.

Apley, J. (1975). *The child with abdominal pains* (2nd ed.). Oxford: Blackwell. Apley, J., & Naish, N. (1958). Recurrent abdominal pains: A field survey of 1,000 school children.

Archives of Disease in Childhood, 33, 165–170. Arena, J. G., Hannah, S. L., Bruno, G. M., & Meador, K. J. (1991). Electromyographic biofeedback training for tension headache in the elderly: A prospective study. Biofeedback Self Regula- tion, 16(4), 379–390.

Arena, J. G., Hightower, N. E., & Chong, G. C. (1988). Relaxation therapy for tension headache in the elderly: A prospective study. *Psychology Aging*, *3*(1), 96–98.

Aronoff, G. M., & Evans, W. O. (1982). The prediction of treatment outcome at a multidisciplinary pain center. *Pain, 14*(1), 67–73.

Arts, S. E., Abu-Saad, H. H., Champion, G. D., Crawford, M. R., Fisher, R. J., Juniper, K. H., & Ziegler, J. B. (1994). Age-related response to lidocaine-prilocaine (EMLA) emulsion and effect of mu- sic distraction on the pain of intravenous cannulation. *Pediatrics*, *93*, 797–801.

Balaque, F., Dutoit, G., & Waldburger, M. (1988). Low back pain in school children: An epidemio- logical study. *Scandinavian Journal of Rehabilitation Medicine*, *20*, 175–179.

Baltes, P. B. (1987). Theoretical propositions of life-span developmental psychology: On the dy-namics between growth and decline. *Developmental Psychology, 23*, 611–626.

Barberger-Gateau, P., Chaslerie, A., Dartigues, J., Commenges, D., Gagnon, M., & Salamon, R. (1992). Health measures correlates in a French elderly community population: The PAQUID study. *Journals of Gerontology, 472*, S88–S95.

Bassols, A., Bosch, F., Campillo, M., Cannelas, M., & Banos, J. E. (1999). An epidemiologic compar- ison of pain complaints in the general population of Catalonia (Spain). *Pain. 83.* 9–16.

Benbow, S., Cossins, L., & Wiles, J. R. (1996). A comparative study of disability, depression and pain severity in young and elderly chronic pain patients. *8thWorld Congress on Pain*, 1996, Ab- stract No. 238a.

Benbow, S. J., Cossins, L., & Bowsher, D. (1995). A comparison of young and elderly patients at-tending a regional pain centre. *Pain Clinic*, 8, 323–332.

Benesch, L. S., Szigeti, E., & Ferraro, F. R. (1997). Tools for assessing chronic pain in rural elderly women. *Home HealthCare Nurse, 15*, 207–212.

Bennett-Branson, S. M., & Craig, K. D. (1993). Postoperative pain in children—Developmental and family influences on spontaneous coping strategies. *Canadian Journal of Behavioural Science*, *25*, 355–383.

Benvenuti, F., Ferrucci, L., Guralnik, J. M., Gagnermi, S., & Baroni, A. (1995). Foot pain and disabil- ity in older persons. *Journal of the American Geriatrics Society, 43*, 479–484.

Bergman, S., Herrstrom, P., Hogstrom, K., Petersson, I. F., Svensson, B., & Jacobsson, L. T. (2001). Chronic musculoskeletal pain, prevalence rates, and sociodemographic associations in a Swedish population study. *Journal of Rheumatology, 28*, 1369–1377.

Berk, L. E. (2000). Child development (5th ed.). Boston: Allyn & Bacon. Beyer, J. E., McGrath, P. J., & Berde, C. B. (1990). Discordance between self-report and behavioral pain measures in children aged 3–7 years after surgery. Journal of Pain and SymptomManage- ment, 5, 350–356. 5. PAIN OVER THE LIFE SPAN 141

Bibace, R., & Walsh, M. E. (1980). Development of children's concepts of illness. *Pediatrics, 66*, 912–917.

Bille, B. (1962). Migraine in schoolchildren.Acta Paediatrica Scandinavia, 51(Suppl. 136), 1–151. Bishop, K. L., Ferraro, F. R., & Borowiak, D. M. (2001). Pain management in older adults: Role of fear avoidance. Clinical Gerontologist, 23(1–2), 33–42. Birren, J. E., & Schaie, K. W. (1996). Handbook of the psychology of aging (4th ed.). San Diego, CA:

Academic Press. Blyth, F. M., March, L. M., Brnabic, A. J. M., Jorm, L. R., Williamson, M., & Cousins, M. J. (2001).

Chronic pain in Australia: A prevalence study. Pain, 89, 127–134. Bodnar, R. J., Romero, M. T., & Kramer, E. (1988). Organismic variables and pain inhibition: Roles of gender and aging. Brain Research Bulletin, 21(6), 947–953. Borenstein, D. G. (2001). Epidemiology, etiology, diagnostic evaluation, and treatment of low back pain. Current Opinions in Rheumatology, 13, 128–134. Bournaki, M. (1997). Correlates of pain-related responses to venipunctures in school-age chil- dren. Nursing Research, 46, 147–154. Brattberg, G., Thorslund, M., & Wikman, A. (1989). The prevalence of pain in the general community: The results of a postal survey in a county of Sweden. Pain, 37, 21–32. Brattberg, G., Parker, M. G., & Thorslund, M. (1997). A longitudinal study of pain: Reported pain from middle age to old age. Clinical Journal of Pain, 13, 144–149. Brescia, F. J., Portenoy, R. K., Ryan, M., Krasnoff, L., & Gray, G. (1992). Pain, opioid use, and survival in hospitalized patients with advanced cancer. Journal of Clinical Oncology, 10, 149–155. Buchthal, F., & Rosenfalck, P. (1966). Evoked action potentials and conduction velocity in human sensory nerves. Brain Research, 3, 1–22. Burbach, D. J., & Peterson, L. (1986). Children's concepts of physical illness: A review and cri- tique of the cognitive-developmental literature. Health Psychology, 5, 307–325. Burckhardt, C. S., Clark, S. R., & Bennett, R. M. (2001). Pain coping strategies and quality of life in women with fibromyalgia: Does age make a difference? Journal of Musculoskeletal Pain, Spe- cial Issue, 9, 5–18.

Caraceni, A., & Portenoy, R. K. (1999). An international survey of cancer pain characteristics and syndromes. *Pain, 82*, 263–274.

Chakour, M. C., Gibson, S. J., Bradbeer, M., & Helme, R. D. (1996). The effect of age on A-delta and C-fibre thermal pain perception. *Pain,* 64, 143–152.

Chambers, C. T., & Craig, K. D. (1998). An intrusive impact of anchors in children's faces pain scales. *Pain, 78,* 27–37.

Chambers, C. T., Craig, K. D., & Bennett, S. M. (2002). The impact of maternal behavior on chil- dren's pain experiences. *Journal Pediatric Psychology*, *27*, 293–301.

Chambers, C. T., & Johnston, C. (2002). Developmental differences in children's use of rating scales. *Journal of Pediatric Psychology, 27*, 27–36.

Chambers, C. T., Reid, G. J., Craig, K. D., McGrath, P. J., & Finley, G. A. (1998). Agreement between child and parent reports of pain. *Clinical Journal of Pain*, 14, 336–342.

Chambers, C. T., Reid, G. J., McGrath, P. J., & Finley, G. A. (1996). Development and preliminary validation of a postoperative pain measure for parents. *Pain, 68*, 307–313.

Champion, G. D., Goodenough, B., von Baeyer, C. L., & Thomas, W. (1998). Measurement of pain by self-report. In G. A. Finley & P. J. McGrath (Eds.), *Measurement of pain in infants and chil- dren, Progress in pain research and management* (Vol. 10, pp. 123–160). Seattle, WA: IASP Press.

Chibnall, J. T., & Tait, R. C. (2001). Pain assessment in cognitively impaired and unimpaired older adults: A comparison of four scales. *Pain, 92.* 173–186.

Clark, W. C., & Mehl, L. (1971). Thermal pain: A sensory decision theory analysis of the effect of age and sex on d , various response criteria, and 50% pain threshold. Journal of Abnormal Psy- chology, 78, 202–212. 142 GIBSON AND CHAMBERS

Cook, A. J. (1998). Cognitive-behavioral pain management for elderly nursing home residents. *Journals of Gerontology, 53B*, P51–P59.

Cook, A. J., & Chastain, D. C. (2001). The classification of patients with chronic pain: Age and sex differences. *Pain Research Management,* 6. 142–151.

Cook, A. J., DeGood, D. E., & Chastain, D. C. (1999, August). Age differences in pain beliefs. *9th World Congress on Pain*, 1999, Abstract No. 182, p. 557.

Cook, A. K., Niven, C. A., & Downs, M. G. (1999). Assessing the pain of people with cognitive im- pairment. *International Journal Geriatric Psychiatry*, 14, 421–425.

Corran, T. M., Farrell, M. J., Helme, R. D., & Gibson, S. J. (1997). The classification of patients with chronic pain: Age as a contributing factor. *Clinical Journal of Pain, 13*, 207–214.

Corran, T. M., Gibson, S. J., Farrell, M. J., & Helme, R. D. (1994). Comparison of chronic pain expe-rience between young and elderly patients. In G. F. Gebhart, D. L. Hammond, & T. S. Jensen (Eds.), *Progress in pain research and management* (pp. 895–906). Seattle, WA: IASP Press.

Corran, T. M., Helme, R. D., & Gibson, S. J. (1991). An assessment of psychometric instruments used in a geriatric outpatient pain clinic. *Australian Psychologist, 26*, 128–131.

Cossins, L., Benbow, S., & Wiles, J. R. (1999, August). A comparison of outcome in young and eld-erly patients attending a pain clinic. *9thWorld Congress on Pain*, 1999, Abstract No. 299, p. 90.

Craig, K. D. (1986). Social modelling influence: Pain in context. In R. A. Sternbach (Ed.), *The psy-chology of pain* (2nd ed., pp. 67–95). New York: Raven Press.

Craig, K. D. (1989). Emotional aspects of pain. In P. D. Wall & R. Melzack (Eds.), *Textbook of pain* (2nd ed., pp. 220–230). Oxford: University Printing House.

Craig, K. D. (1998). The facial display of pain. In G. A. Finley & P. J. McGrath (Eds.), *Measurement of pain in infants and children* (pp. 103–122). Seattle, WA: IASP Press.

Craig, K. D., Prkachin, K. M., & Grunau, R. V. E. (2001). The facial expression of pain. In D. C. Turk & R. Melzack (Eds.), *Handbook of pain assessment* (2nd ed., pp. 153–169). New York: Guilford Press.

Craig, K. D., Hadjistavropoulos, H. D., Grunau, R. V. E., & Whitfield, M. F. (1994). A comparison of 2 measures of facial activity during pain in the newborn child. *Journal of Pediatric Psychology*, *19*, 305–318.

Craig, K. D., Lilley, C. M., & Gilbert, C. A. (1996). Social barriers to optimal pain management in in- fants and children. *Clinical Journal of Pain, 12,* 232–242.

Crook, J., Rideout, E., & Browne, G. (1984). The prevalence of pain complaints in a general popu- lation. *Pain, 18*, 299–305.

Cutler, R. B., Fishbain, D. A., Rosomoff, R. S., & Rosomoff, H. L. (1994). Outcomes in treatment of pain in geriatric and younger groups. *Archives Physical Medicine Rehabilitation*, *75*, 457–464.

D'Alessandro, R., Benassi, G., Lenzi, P. L., Gamberini, G., DeCarolis, P., & Lugaseri, E. (1988). Epi- demiology of headache in the republic of San Marino. *Journal Neurology Neurosurgery Psychia- try, 51*, 21–27.

Davison, I. S., Faull, C., & Nicol, A. R. (1986). Research note. Temperament and behaviour in six- year-olds with recurrent abdominal pain: A follow-up. *Journal of Child Psychology and Psychia- try and Allied Disciplines, 27*, 539–544.

Dickenson, A. H., & Rahman, W. (1999). Mechanisms of chronic pain and the developing nervous system. In P. J. McGrath & G. A. Finley (Eds.), *Chronic and recurrent pain in children and adoles- cents, Progress in pain research andmanagement* (Vol. 13, pp. 5–38). Seattle, WA: IASP Press.

Ebrahim, S., Brittis, S., & Wu, A. (1991). The valuation of states of ill-health: The impact of age and disability. Age and Ageing, 20, 37–40.

Eccleston, C., Morley, S., Williams, A., Yorke, L., & Mastroyannopoulou, K. (2002). Systematic re-view of randomised controlled trials of psychological therapy for chronic pain in children and adolescents, with a subset meta-analysis of pain relief. *Pain, 99*, 157–165.

Ekman, P., & Friesen, W. (1969). The repertoire of nonverbal behavior: Categories, origins, usage and coding. Semiotica, 1, 49–98. 5. PAIN OVER THE LIFE SPAN 143

Edwards, R. R., & Fillingim, R. B. (2001). The effects of age on temporal summation and habitua- tion of thermal pain: Clinical relevance in healthy older and younger adults. *Journal of Pain, 6*(2), 307–317.

Ehde, D. M., Holm, J. E., & Metzger, D. L. (1991). The role of family structure, functioning, and pain modeling in headache. *Headache, 31*, 35–40.

Eisenberg, D. M., Kessler, R. C., Foster, C., Norlock, F. E., Calkins, D. R., & Delbanco, T. L. (1993). Unconventional medicine in the United States. Prevalence, costs, and patterns of use. *New England Journal Medicine*, 328(4), 246–252.

Farrell, M. J., & Gibson, S. J. (1993, February). Outcomes for geriatric pain clinic patients. *14th Sci- entific Meeting of the Australian Pain Society*, p. 48. Melbourne, Australia.

Faull, C., & Nicol, A. (1985). Abdominal pain in six-year-olds: An epidemiological study in a new town. *Journal of Child Psychology and Psychiatry, 27*, 251–260.

Fearon, I., McGrath, P. J., & Achat, H. (1996). "Booboos": The study of everyday pain among young children. *Pain, 68*, 55–62.

Ferrell, B. A. (1995). Pain evaluation and management in the nursing home. *Annals of Internal Medicine*, 123, 681–695.

Ferrell, B. A., Josephson, K. R., Pollan, A. M., Loy, S., & Ferrell, B. R. (1997). A randomized trial of walking versus physical methods for chronic pain management. *Aging (Milano)*, *9*(1–2), 99–105.

Finley, G. A., & McGrath, P. J. (Eds.). (1998). *Measurement of pain in infants and children* (Progress in Pain Research and Management, Vol. 10). Seattle, WA: IASP Press.

Fitzgerald, M. (1985). The postnatal development of cutaneous afferent fibre input and receptive field organization in the rat dorsal horn. Journal of Physiology, 364, 1–18.

Fitzgerald, M. (1987). The prenatal growth of fine diameter afferents into the rat spinal cord—A transganglionic study. *Journal of Comprehensive Neurology, 261*, 98–104.

Fitzgerald, M. (1993). The developmental neuroanatomy and neurophysiology of pain. In N. Schechter, C. Berde, & M. Yaster (Eds.), *Pain management in infants, children and adolescents* (pp. 11–32). Baltimore, MD: Williams & Wilkins.

Fitzgerald, M., & de Lima, J. (2001). Hyperalgesia and allodynia in infants. In G. A. Finley & P. J. McGrath (Eds.), *Acute and procedure pain in infants and children* (pp. 1–12). Seattle, WA: IASP Press.

Flor, H., Fydrich, T., & Turk, D. C. (1992). Efficacy of multidisciplinary pain treatment centers: A meta-analytic review. *Pain, 49*(2), 221–230.

Fowler-Kerry, S., & Lander, J. R. (1987). Management of injection pain in children. *Pain, 30*, 169–175.

Fradet, C., McGrath, P. J., Kay, J., Adams, S., & Luke, B. (1990). A prospective survey of reactions to blood-tests by children and adolescents. *Pain*, *40*, 53–60.

Gagliese, K., Wowk, A., Sandler, A., & Katz, J. (1999, August). Pain and opioid self-administration following prostatectomy in middle-aged and elderly men. *9th World Congress on Pain*, 1999, Abstr. 185, p. 558.

Gagliese, L. (2002). Assessment of pain in elderly people. In D. C. Turk & R. Melzack (Eds.), *Hand-book of pain assessment* (pp. 119–133). New York: Guilford Press.

Gagliese, L., Jackson, M., Ritvo, P, Wowk, A., & Katz, J. (2000). Age is not an impediment to effective use of patient-controlled analgesia by surgical patients. *Anesthesiology*, *93*, 601–610.

Gagliese, L., & Melzack, R. (1997a). Age differences in the quality of chronic pain: A preliminary study. *Pain Research and Management, 2*, 157–162.

Gagliese, L., & Melzack, R. (1997b). Lack of evidence for age differences in pain beliefs. *Pain Re- search and Management, 2*, 19–28.

Gagliese, L., & Melzack, R. (2000). Age differences in nociception and pain behaviours in the rat. *Neuroscience & Biobehavioral Reviews, 24*(8), 843–854.

Gallagher, R. M., Verma, S., & Mossey, J. (2000). Chronic pain. Sources of late-life pain and risk factors for disability. Geriatrics, 55, 40–44. 144 GIBSON AND CHAMBERS

Gardner, P., Garland, K., Workman, B., & Mendelson, G. (2001, April). A comparison of the use of coping strategies by older-aged chronic pain patients with a general chronic pain sample us- ing the Coping Strategies Questionnaire (CSQ). *22nd Australian Pain Society Conference*, p. 45.

Gatchel, R. J., & Turk, D. C. (Eds.). (1999). Psychosocial factors in pain: Critical perspectives. New York: Guilford Press.

Gibson, S. J., Chang, W. C., & Farrell, M. J. (2002, August). Age interacts with frequency in the tem-poral summation of painful electrical stimuli. *10thWorld Congress on Pain*, Abstr. 905, p. 175.

Gibson, S. J., Farrell, M., Katz, B., & Helme, R. D. (1996). Multidisciplinary management of chronic non-malignant pain in older adults. In B. R. Ferrell & B. A. Ferrell (Eds.), *Pain in the elderly* (pp. 91–99). Seattle, WA: IASP Press.

Gibson, S. J., Gorman, M. M., & Helme, R. D. (1990). Assessment of pain in the elderly using event- related cerebral potentials. In M. R. Bond, J. E. Charlton, & C. Woolf (Eds.), *Proceedings of the VIth World Congress on Pain* (pp. 523–529). Amsterdam: Elsevier.

Gibson, S. J., & Helme, R. D. (1995). Age differences in pain perception and report: A review of physiological, psychological, laboratory and clinical studies. *Pain Reviews, 2*, 111–137.

Gibson, S. J., & Helme, R. D. (2000). Cognitive factors and the experience of pain and suffering in older persons. *Pain, 85*, 375–383.

- Gibson, S. J., & Helme, R. D. (2001). Age-related differences in pain perception and report. *Clinics in Geriatric Medicine*, 17, 433–456.
- Gibson, S. J., Helme, R. D., & Gorman, M. M. (1993, August). Age related changes in the scalp to-pography of cerebral event related potentials following noxious CO2 laser stimulation. *7th World Congress on Pain*, 1993, Abstr. 428, p. 159.
- Gloth, F. M. (2000). Factors that limit pain relief and increase complications. Geriatrics, 55, 46–54. Goodenough, B., Champion, G. D., Laubreaux, L., Tabah, L., & Kampel, L. (1998). Needle pain se-verity in children: Does the relationship between self-report and observed behaviour vary as a function of age? Australian Journal of Psychology, 50, 1–9.
- Goodenough, B., Kampel, L., Champion, G. D., Laubreaux, L., Nicholas, M. K., Ziegler, J. B., & McInerney, M. (1997). An investigation of the placebo effect and age-related factors in the re- port of needle pain from venipuncture in children. *Pain, 72*, 383–391.
- Goodenough, B., Thomas, W., Champion, G. D., Perrott, D., Taplin, J. E., von Baeyer, C. L., & Ziegler, J. B. (1999). Unravelling age effects in needle pain: Ratings of sensory intensity and unpleasantness of venipuncture pain by children and their parents. *Pain, 80*, 179–190.
- Goodman, J. E., & McGrath, P. J. (1991). The epidemiology of pain in children and adolescents—A review. *Pain, 46*, 247–264.
- Goodman, J. E., McGrath, P. J., & Forward, S. P. (1997). Aggregation of pain complaints and pain- related disability and handicap in a community sample of families. In T. S. Jensen, J. A. Turner, & Z. Wiesenfeld-Hallin (Eds.), *Proceedings of the 8th World Congress on Pain: Progress in pain research and management* (pp. 673–682). Seattle, WA: IASP Press.
- Goyen, M. J., & Anshel, M. H. (1998). Sources of acute competitive stress and use of coping strate- gies as a function of age and gender. *Journal of Applied Developmental Psychology, 19*, 469–486.
- Groves, F., Garland, K., Mendelson, G., & Gibson, S. J. (2002, August). Multidisciplinary pain treat- ment outcome differs as a function of age. *10th World Congress on Pain*, Abstr. 230, p. 226.
- Grunau, R. V. E., Whitfield, M. F., & Petrie, J. H. (1994). Pain sensitivity and temperament in ex-tremely-low-birthweight premature toddlers and preterm and full-term controls. *Pain*, *58*, 341–346.
- Grunau, R. V. E., Whitfield, M. F., Petrie, J. H., & Fryer, E. L. (1994). Early pain experience, child and family factors as precursors of somatization: A prospective study of extremely prema-ture and fullterm children. *Pain*, *56*, 353–359.
- Grunau, R. V. E., Whitfield, M. F., & Petrie, J. H. (1998). Children's judgments about pain at age 8–10 years: Do extremely low birthweight (1000 g) children differ from full birthweight peers? Journal of Child Psychology and Psychiatry, 39, 587–594. 5. PAIN OVER THE LIFE SPAN 145
- Guck, T. P., Meilman, P. W., Skultety, F. M., & Dowd, E. T. (1986). Prediction of long-term outcome of multidisciplinary pain treatment. *Archives of Physical Medicine Rehabilitation, 67*(5), 293–296.
- Guzman, J., Esmail, R., Karjalainen, K., Malmivaara, A., Irvin, E., & Bombardier, C. (2002). Multi-disciplinary bio-psycho-social rehabilitation for chronic low back pain. *Cochrane Database Systematic Reviews, 1*, CD000963.

Hadjistavropoulos, T., Craig, K. D., Martin, N., Hadjistavropoulos, H., & McMurtry, B. (1997). To- ward a research outcome measure of pain in frail elderly in chronic care. *Pain Clinic, 10,* 71–79.

Hadjistavropoulos, T., LaChapelle, D., MacLeod, F., Hale, C., O'Rourke, N., & Craig, K. D. (1998). Cognitive functioning and pain reactions in hospitalized elders. *Pain Research and Manage- ment, 3*, 145–151.

Hadjistavropoulos, T., LaChapelle, D. L., Hadjistavropoulos, H. D., Green, S., & Asmundson, G. J. G. (2002). Using facial expressions to assess musculoskeletal pain in older persons. *Euro- pean Journal of Pain, 6*, 174–187.

Hadjistavropoulos, T., LaChapelle, D. L., MacLeod, F. K., Snider, B., & Craig, K. D. (2000). Meas- uring movement-exacerbated pain in cognitively impaired frail elders. *Clinical Journal of Pain, 16*, 54–63.

Hallett, E. C., & Pilowsky, I. (1982). The response to treatment in a multidisciplinary pain clinic. *Pain, 12*(4), 365–374.

Harbeck, C., & Peterson, L. (1992). Elephants dancing in my head: A developmental approach to children's concepts of specific pains. *Child Development*, *63*, 138–149.

Harkins, S. W. (1988). Pain in the elderly. In R. Dubner, G. F. Gebhart, & M. R. Bond (Eds.), *Proceed-ings of the Vth World Congress on Pain* (pp. 355–367). Amsterdam: Elsevier.

Harkins, S. W., & Chapman, C. R. (1976). Detection and decision factors in pain perception in young and elderly men. *Pain, 2*, 253–264.

Harkins, S. W., & Chapman, C. R. (1977). The perception of induced dental pain in young and eld- erly women. *Journals of Gerontology, 32*, 428–435.

Harkins, S. W., Davis, M. D., Bush, F. M., & Price, D. D. (1996). Suppression of first pain and slow temporal summation of second pain in relation to age. *Journals of Gerontology*, *51*, M260–265.

Harkins, S. W., Kwentus, J., & Price, D. D. (1984). Pain and the elderly. In C. Benedetti, C. R. Chap-man, & G. Moricca (Eds.), *Advances in pain research and therapy* (Vol. 7, pp. 103–112). New York: Raven Press.

Harkins, S. W., & Price, D. D. (1992). Assessment of pain in the elderly. In R. Melzack & D. C. Turk (Eds.), *Handbook of pain assessment* (pp. 315–331). New York: Guilford Press.

Harkins, S. W., Price, D. D., & Bush, F. M. (1994). Geriatric pain. In P. D. Wall & R. Melzack (Eds.), *Textbook of pain* (pp. 769–787). New York: Churchill Livingstone.

Haslam, D. R. (1969). Age and the perception of pain. *Psychonomic Science*, *15*, 86–87. Helme, R. D., & Gibson, S. J. (1998). Measurement and management of pain in older people.

Australasian Journal on Ageing, 17, 5–9. Helme, R. D., & Gibson, S. J. (1999). Pain in older people. In I. K. Crombie (Ed.), Epidemiology of pain (pp. 103–112). Seattle, WA: IASP Press. Helme, R. D., & Gibson, S. J. (2001). The epidemiology of pain in elderly people. Clinics in Geriatric

Medicine, 17, 417–431. Helme, R. D., Katz, B., Gibson, S. J., Bradbeer, M., Farrell, M., Neufeld, M., & Corran, T. (1996).

Multidisciplinary pain clinics for older people: Do they have a role? Clinics in Geriatric Medi-cine, 12(3), 563–582.

Helme, R. D., Katz, B., Neufeld, M., Lachal, S., Herbert, T., & Corran, T. (1989). The establishment of a geriatric pain clinic: A preliminary report on the first 100 patients. *Australian Journal on Ageing, 8*, 27–30.

Helme, R. D., & McKernan, S. (1985). Neurogenic flare responses following topical application of capsaicin in humans. Annals of Neurology, 18, 505–511. 146 GIBSON AND CHAMBERS

Herr, K. A., & Mobily, P. R. (1991). Pain assessment in the elderly—Clinical considerations. *Journal of Gerontological Nursing*, 17, 12–19.

Herr, K. A., & Mobily, P. R. (1993). Comparison of selected pain assessment tools for use with the elderly. *Applied Nursing Research, 6*, 39–46.

Herr, K. A., Mobily, P. R., Wallace, R. B., & Chung, Y. (1991). Leg pain in the rural lowa 65+ popula- tion: Prevalence, related factors, and association with functional status. *Clinical Journal of Pain, 7*, 114–121.

Herr, K. A., Mobily, P. R., Koout, F. J., & Wagenaar, D. (1998). Evaluation of the Faces Pain Scale for use with the elderly. *Clinical Journal of Pain, 14,* 29–38.

Herr, K. A., Mobily, P. R., & Smith, C. (1993). Depression and the experience of chronic back pain: A study of related variables and age differences. *Clinical Journal of Pain*, *9*, 104–114.

Hodgson, J. E., Suda, K. T., Bruce, B. K., & Rome, J. D. (1993, August). Depression in the elderly chronic pain patient. *7th World Congress on Pain*, 1993, Abstr. 287, p. 99.

Hofland, S. L. (1992). Elder beliefs: Blocks to pain management. *Journal of Gerontological Nursing, 18*, 19–24.

Houck, C. S. (1998). The management of acute pain in the child. In M. A. Ashburn & L. J. Rice (Eds.), *The management of pain* (pp. 651–666). New York: Churchill Livingstone.

Izard, C. E., Porges, S. W., Simons, R. F., Haynes, O. M., Hyde, C., Parisi, M., & Cohen, B. (1991). In- fant cardiac activity: Developmental changes and relations with attachment. *Developmental Psychology*, *27*, 432–439.

Jay, S. M., Ozolins, M., Elliott, C. H., & Caldwell, S. (1983). Assessment of children's distress during painful medical procedures. *Health Psychology*, *2*, 133–147.

Jensen, M. P., & Karoly, P. (1992). Self-report scales and procedures for assessing pain in adults. In R. Melzack & D. C. Turk (Eds.), *Handbook of pain assessment* (pp. 135–151). New York: Guilford Press.

Jensen, M. P., Turner, J. A., Romano, J. M., & Karoly, P. (1991). Coping with chronic pain: A critical review of the literature. *Pain, 47,* 249–283.

Johnston, C. C., Stevens, B., Craig, K. D., & Grunau, R. V. E. (1993). Developmental changes in pain expression in premature full-term, 2-month-old and 4-month-old infants. *Pain*, *52*, 201–208.

Katz, B., & Helme, R. D. (2001). Pain problems in old age. In J. Brockelhurst (Ed.), *Textbook of geri- atric medicine and gerontology* (pp. 1423–1430). Oxford: Cambridge Press.

Katz, E. R., Kellerman, J., & Siegel, S. E. (1980). Behavioral distress in children with cancer under- going medical procedures: Developmental considerations. *Journal of Consulting and Clinical Psychology, 48*, 356–365.

Katz, J., & Melzack, R. (1999). Measurement of pain. Surgery Clinics North America, 70, 231–352. Kay, L., Jorgensen, T., & Schultz-Larsen, K. (1992). Abdominal pain in a 70-year old Danish population. Journal Clinical Epidemiology, 45, 1377–1382. Kee, W. G., Middaugh, S. J., & Pawlick, K. L. (1996). Persistent pain in older patient. Evaluation and treatment. In R. J. Gatchel & D. C. Turk (Eds.), Psychosocial factors in pain: Critical perspectives (pp. 371–402). New York: Guilford Press.

Kee, W. G., Middaugh, S. J., Redpath, S., & Hargadon, R. (1998). Age as a factor in admission to chronic pain rehabilitation. *Clinical Journal of Pain, 14*(2), 121–128.

Keefe, F. J., & Block, A. R. (1982). Development of an observational method for assessing pain be-haviour in chronic low back pain patients. *Behavior Therapy, 13*, 363–375.

Keefe, F. J., & Williams, D. A. (1990). A comparison of coping strategies in chronic pain patients in different age groups. *Journal of Gerontology*, 45, P161–165.

Keefe, F. J., Caldwell, D. S., Martinez, S., Nunley, J., Beckham, J., & Williams, D. A. (1991). Analyzing pain in rheumatoid arthritis patients. Pain coping strategies in patients who have had knee replacement surgery. *Pain, 46*, 153–160.

Kendig, H., Helme, R. D., & Teshuva, K. (1996). Health status of older people project: Data from a sur- vey of the health and lifestyles of older Australians. Report to the Victorian Health Promotion Foundation, Melbourne, Australia. 5. PAIN OVER THE LIFE SPAN 147

Kind, P., Dolan, P., Gudex, C., & Williams, A. (1998). Variations in population health status: Re-sults from a United Kingdom national questionnaire survey. *British Medical Journal*, *316*, 736–741.

Klinger, L., & Spaulding, S. J. (1998). Chronic pain in the elderly: Is silence really golden? *Physical and Occupational Therapy in Geriatrics*, 15, 1–17.

Kolter-Cope, S., & Gerber, K. E. (1993, August). Is age related to response to treatment for chronic pain? *7th World Congress on Pain*, Abstr. 290, p. 100.

Konu, V. (1977). Myocardial infarction in the elderly. Acta Medicine Scandanavia, 604, 3–68. Kovach, C. R., Griffie, J., Matson, S., & Muchka, S. (1999). Assessment and treatment of discomfort in people with late-stage dementia. Journal Pain Symptom Management, 18, 412–419. Kremer, E., Atkinson, J. H., & Ignelzi, R. J. (1981). Measurement of pain: Patient preference does not confound pain measurement. Pain, 10(2), 241–248. Krulewitch, H., London, M. R., Skakel, V. J., Lundstedt, G. J., Thomason, H., & Brummel-Smith, K. (2000). Assessment of pain in cognitively impaired older adults: A comparison of pain assess- ment tools and their use by non-professional caregivers. Journal of the American Geriatrics So- ciety, 48, 1607–1622.

Lander, J., & Fowler-Kerry, S. (1991). Age-differences in children's pain. *Perceptual and Motor Skills, 73*, 415–418.

Lavsky-Shulan, M., Wallace, R. B., Kohout, F. J., Lemke, J. H., Morris, M. C., & Smith, I. M. (1985). Prevalence and functional correlates of low in the elderly: The lowa 65+ rural health study. *Journal of American Geriatrics Society, 33*, 23–28.

Lee, J. S. (2001). Pain measurement: Understanding existing tools and their application in the emergency department. *Emergency Medicine*, 13, 279–287.

Leventhal, E. A., Leventha, H., Schaefer, P., & Easterling, D. (1993). Conservation of energy, un-certainty reduction, and swift utilization of medical care among the elderly. *Journal of Geron-tology, 48*, 78–86.

Leventhal, E. A., & Prohaska, T. R. (1986). Age, symptom interpretation, and health behavior. *Journal of the American Geriatrics Society,* 34, 185–191.

Leveille, S. G., Gurlanik, J. M., Ferrucci, L., Simonsick, E., Hirsch, R., & Hochberg, M. C. (1998). Foot pain and disability in older women. *American Journal Epidemiology, 148*, 657–665.

Lewis, M., & Thomas, D. (1990). Cortisol release in infants in response to inoculation. *Child Devel- opment, 61*, 50–59.

Li, Y., & Duckles, S. P. (1993). Effect of age on vascular content of calcitonin gene-related peptide and mesenteric vasodilator activity in the rat. *European Journal Pharmacology, 236*(3), 373–378.

Lichtenberg, P. A., Skehan, M. W., & Swensen, C. H. (1984). The role of personality, recent life stress and arthritic severity in predicting pain. *Journal of Psychosomatic Research*, 28, 231–236.

Liddell, A., & Locker, D. (1997). Gender and age differences in attitudes to dental pain and dental control. *Community Dental and Oral Epidemiology*, 25(4), 314–318.

Lilley, C. M., Craig, K. D., & Grunau, R. E. (1997). The expression of pain in infants and toddlers: Developmental changes in facial action. *Pain, 72,* 161–170.

Linet, M. S., Stewart, W. F., Celentano, D. D., Ziegler, D. K., & Sprecher, M. (1989). An epidemio- logic study of headache among adolescents and young adults. *Journal of the American Medi- cal Association, 261*, 2211–2216.

MacDonald, J. B., Baillie, J., & Williams, B. O. (1983). Coronary care in the elderly. *Age and Ageing, 12*, 17–20.

Machin, P., & Williams, A. C. de C. (1998). Stiff upper lip: Coping strategies of World War II veter- ans with phantom limb pain. *Clinical Journal of Pain, 14*, 290–294.

Magni, G., Marchetti, M., Moreschi, C., Merskey, H., & Luchini, S. (1993). Chronic musculoskeletal pain and depression in the National Health and Nutrition Examination. Pain, 53, 163–168. 148 GIBSON AND CHAMBERS

Maikler, V. E. (1991). Effects of a skin refrigerant/anesthetic and age on the pain responses of in- fants receiving immunizations. *Research Nursing Health, 14*, 397–403.

Mangione, C. M., Marcantonio, E. R., Goldman, L., Cook, E. F., Donaldson, M. C., Sugarbaker, D. J., Poss, R., & Lee, T. H. (1993). Influence of age on measurement of health status in patients un-dergoing elective surgery. *Journal of the American Geriatrics Society, 41*(4), 377–383.

Manne, S. L., Redd, W. H., Jacobsen, P. B., Gorfinkle, K., & Schorr, O. (1990). Behavioral intervention to reduce child and parent distress during venipuncture. *Journal of Consulting and Clini- cal Psychology*, *58*, 565–572.

Matheson, D. H. (1997). The painful truth: Interpretation of facial expression of pain in older adults. *Journal of Nonverbal Behavior, 21*(3), 223–238.

McCracken, L. M. (1998). Learning to live with the pain: Acceptance of pain predicts adjustment in persons with chronic pain. *Pain, 74*, 21–27.

McGrath, P. A. (1994). Psychological aspects of pain perception. Archives of Oral Biology, 39, S55–S62.

McGrath, P. J. (1995). Aspects of pain in children and adolescents. *Journal of Child Psychology and Psychiatry and Allied Disciplines, 36*, 717–730.

McGrath, P. J. (1998). Behavioral measures of pain. In G. A. Finley & P. J. McGrath (Eds.), *Measure- ment of pain in infants and children* (Progress in Pain Research and Management, Vol. 10) (pp. 83–102). Seattle, WA: IASP Press.

McGrath, P. A., & Gillespie, J. (2001). Pain assessment in children and adolescents. In D. C. Turk & R. Melzack (Eds.), *Handbook of pain assessment* (pp. 97–118). New York: Guilford Press.

McMillan, S. C. (1989). The relationship between age and intensity of cancer related symptoms. *Oncology Nursing Forum, 16*, 237–342.

Meier, D. E., Morrison, R. S., & Ahronheim, J. C. (1996). Quantifying pain and discomfort from pro- cedures in hospitalized patients: Validation of a new tool. *Proceedings of the American Geriat- ric Society*, Abstr. 123, p. 127.

Melding, P. S. (1995). How do older people respond to chronic pain? A review of coping with pain and illness in elders. *Pain Reviews, 2*, 65–75.

Merskey, H., & Bogduk, N. (1994). Classification of chronic pain: Descriptions of chronic pain and def- inition of pain terms (2nd ed.). Seattle, WA: IASP Press.

Middaugh, S. J., Levin, R. B., Kee, W. G., Barchiesi, F. D., & Roberts, J. M. (1988). Chronic pain: Its treatment in geriatric and younger patients. *Archives Physical Medicine Rehabilitation, 69*, 1021–1026.

Miller, C., & LeLieuvre, R. B. (1982). A method to reduce chronic pain in elderly nursing home residents. *Gerontologist*, 22(3), 314–317.

Miller, P. F., Sheps, D. S., & Bragdon, E. E. (1990). Aging and pain perception in ischemic heart dis- ease. *American Heart Journal, 120*, 22–30.

Mobily, P. R., Herr, K. A., Clark, M. K., & Wallace, R. B. (1994). An epidemiologic analysis of pain in the elderly. *Journal of Ageing Health, 6*, 139–154.

Morley, S., Doyle, K., & Beese, A. (2000). Talking to others about pain: Suffering in silence. In M. Devor, M. C. Rowbotham, & Z. Wiesenfeld-Hallin (Eds.), *Progress in pain research and manage- ment* (pp. 1123–1129). Seattle, WA: IASP Press.

Mosley, T. H., McCracken, J. J., Gross, R. T., Penzien, D. B., & Plaud, J. J. (1993, August). Age, pain and impairment: Results from two clinical samples. *7th World Congress on Pain*, Abstr. 286, p. 99.

Naish, J. M., & Apley, J. (1951). "Growing pains": A clinical study of non-arthritis limb pains in children. *Archives of Disease in Childhood,* 26, 134–140.

Nicholson, N. L., & Blanchard, E. B. (1993). A controlled evaluation of behavioral treatment of chronic headache in the elderly. *Behavior Therapy, 24*(3), 395–408.

Ochoa, J., & Mair, W. G. P. (1969). The normal sural nerve in man. II. Changes in the axon and schwann cells due to ageing. Acta Neuropathology (Berlin), 13, 217–253. 5. PAIN OVER THE LIFE SPAN 149

Oberle, K., Paul, P., & Wry, J. (1990). Pain, anxiety and analgesics: A comparative study of elderly and younger surgical patients. *Canadian Journal of Ageing*, *9*, 13–19.

Painter, J. R., Seres, J. L., & Newman, R. I. (1980). Assessing benefits of the pain center: Why some patients regress. *Pain, 8*(1), 101–113.

Palermo, T. M. (2000). Impact of recurrent and chronic pain on child and family daily functioning: A critical review of the literature. *Journal of Developmental and Behavioral Pediatrics, 21*, 58–69.

Palermo, T. M., & Drotar, D. (1996). Prediction of children's postoperative pain: The role of presurgical expectations and anticipatory emotions. *Journal Pediatric Psychology*, *21*, 683–698.

Parker, J., Frank, R., Beck, N., Finan, M., Walker, S., Hewett, J. E., Broster, C., Smarr, K., Smith, E., & Kay, D. (1988). Pain in rheumatoid arthritis: Relationship to demographic, medical and psy-chological factors. *Journal of Rheumatology, 15*, 433–447.

Parmelee, P. (1997). Pain and psychological function in late life. In D. I. Mostofsky & J. Lomranz (Eds.), *Handbook of pain and aging* (pp. 207–227). New York: Plenum Press.

Parmelee, P. A. (1994). Assessment of pain in the elderly. In M. P. Lawton & J. A. Tevesi (Eds.), *An- nual Review of Gerontology and Geriatrics*, 14, 281–301.

Perez, C. E. (2000). Chronic back problems among workers. *Health Reports, 12*, 45–60. Perquin, C. W., Hazebroek-Kampschreur, A. A. J. M., Hunfeld, J. A. M., Bohnen, A. M., van

Suijlekom-Smit, L. W. A., Passchier, J., & van der Wouden, J. C. (2000). Pain in children and ad- olescents: A common experience. *Pain,* 87, 51–58.

Perquin, C. W., Hazebroek-Kampschreur, A. A. J. M., Hunfeld, J. A. M., van Suijlekom-Smit, L. W. A., Passchier, J., & van der Wouden, J. C. (2000). Chronic pain among children and ado- lescents: Physician consultation and medication use. *Clinical Journal of Pain, 16*, 229–235.

Portenoy, R. K., & Farkash, A. (1988). Practical management of non-malignant pain in the elderly. *Geriatrics, 43*(5), 29–47.

Powers, S. W. (1999). Empirically supported treatments in pediatric psychology: Procedure- related pain. *Journal of Pediatric Psychology*, 24, 131–145.

Prohaska, T. R., Leventhal, E. A., Leventhal, H., & Keller, M. L. (1985). Health practices and illness cognition in young, middle aged, and elderly adults. *Journal of Gerontology*, *40*, 569–578.

Puder, R. S. (1988). Age analysis of cognitive-behavioral group therapy for chronic pain outpa- tients. *Psychology of Aging, 3*(2), 204–207.

Reid, G. J., Gilbert, C. A., & McGrath, P. J. (1998). The Pain Coping Questionnaire: Preliminary vali- dation. *Pain, 76*, 83–96.

Riley, J. L. III, Wade, J. B., Robinson, M. E., & Price, D. D. (2000). The stages of pain processing across the lifespan. *Journal of Pain, 1*(2), 162–170.

Ruzicka, S. A. (1998). Pain beliefs: What do elders believe? Journal Holistic Nursing, 16, 369–382. Sanders, M. R., & Morrison, M. (1990). Behavioral treatment of childhood recurrent abdominal pain: Relationship between pain, children's psychological characteristics and family func- tioning. Behavior Change, 7, 16–24.

Sanders, M. R., Rebgetz, M., Morrison, M., Bor, W., Gordon, A., Dadds, M., & Shepherd, R. (1989). Cognitive-behavioral treatment of recurrent nonspecific abdominal pain in children: An anal- ysis of generalization, maintenance and side-effects. *Journal of Consulting and Clinical Psychol- ogy, 57*, 294–300.

Savedra, M. C., Tesler, M. D., Holzemer, W. L., Wilkie, D. J., & Ward, J. A. (1990). Testing a tool to assess postoperative pediatric and adolescent pain. In D. C. Tyler & E. J. Krane (Eds.), *Ad-vances in pain research therapy* (pp. 85–93). New York: Raven Press.

Schechter, N. L. (1989). The undertreatment of pain in children. *Pediatric Pain Clinics of North America, 36,* 781–794.

Schellinck, H. M., & Anand, K. J. S. (1999). Consequences of early experience. Lessons for rodent models of newborn pain. In P. J. McGrath & G. A. Finley (Eds.), Chronic and recurrent pain in 150 GIBSON AND CHAMBERS

children and adolescents (Progress in Pain Research and Management, Vol. 13) (pp. 39–55). Seattle, WA: IASP Press.

Scherder, E. J. K., & Bouma, A. (2000). Visual analogue scales for pain assessment in Alzheimer's disease. *Gerontology, 46*, 47–53.

Schludermann, E., & Zubek, J. P. (1962). Effect of age on pain sensitivity. *Perceptual and Motor Skills*, 14, 295–301.

Simons, W., & Malabar, T. (1995). Assessing pain in elderly patients who cannot respond ver- bally. *Journal of Advanced Nursing, 22*, 663–669.

Sorkin, B. A., Rudy, T. E., Hanlon, R. B., Turk, D. C., & Stieg, R. L. (1990). Chronic pain in old and young patients: Differences appear less important than similarities. *Journal of Gerontology: Psychological Sciences*, 45, 64–68.

Sternbach, R. A. (1986). Survey of pain in the United States: The Nuprin pain report. Clinical Jour- nal of Pain, 2, 49–54.

Stevens, B. J., & Franck, L. S. (2001). Assessment and management of pain in neonates. *Paediatric Drugs, 3*, 539–558.

Stevens, B., Johnston, C. C., & Gibbins, S. (2000). Pain assessment in the neonate. In K. J. S. Anand, B. Stevens, & P. J. McGrath (Eds.), *Pain in neonates* (2nd ed., pp. 101–134). Amsterdam: Elsevier.

Stevens, B., Johnston, C., Petryshen, P., & Taddio, A. (1996). Premature Infant Pain Profile: Devel- opment and initial validation. *Clinical Journal of Pain, 12*, 13–22.

Stoller, E. P. (1993). Interpretations of symptoms by older people. *Journal of Aging and Health, 5*, 58–81.

Suzman, R., & Riley, M. W. (1985). Introducing the "oldest old." Milbank Members Fund Q. Health and Society, 63(2), 177–86.

Sweet, S. D., & McGrath, P. J. (1998). Physiological measures of pain. In G. A. Finley & P. J. McGrath (Eds.), *Measurement of pain in infants and children* (Progress in Pain Research and Management, Vol. 10) (pp. 59–81). Seattle, WA: IASP Press.

Sweet, S. D., McGrath, P. J., & Symons, D. (1999). The roles of child reactivity and parenting context in infant pain response. *Pain, 80*, 655–661.

Taddio, A. (1999). Effects of early pain experience: The human literature. In P. J. McGrath & G. A. Finley (Eds.), *Chronic and recurrent pain in children and adolescents* (Progress in Pain Re- search and Management, Vol. 13) (pp. 57–74). Seattle, WA: IASP Press.

Taddio, A., Katz, J., Ilersich, A. L., & Koren, G. (1997). Effect of neonatal circumcision on pain re- sponse during subsequent routine vaccination. *Lancet*, *349*, 599–603.

Taddio, A., Nulman, I., Goldbach, M., Ipp, M., & Koren, G. (1994). Use of lidocaine-prilocaine cream for vaccination pain in infants. *Journal of Pediatrics*, 124, 643–648.

Taddio, A., Stevens, B., Craig, K. D., Rastogi, P., Ben David, S., Shennan, A., Mulligan, P., & Koren, G. (1997). Efficacy and safety of lidocaine-prilocaine cream for pain during circumcision. *New England Journal of Medicine*, *336*, 1197–1201.

Taimela, S., Kujala, U., Salminen, J., & Viljanen, T. (1997). The prevalence of low back pain among children and adolescents: A nationwide, cohort-based questionnaire survey in Finland. *Spine, 22,* 1132–1136.

Tarbell, S. E., Cohen, T., & Marsh, J. L. (1992). The Toddler–Preschool Postoperative Pain Scale: An observational scale for measuring postoperative pain in children aged 1–5. Preliminary report. *Pain, 50,* 273–280.

Thomas, T., Robinson, C., & Champion, D. (1998). Prediction and assessment of the severity of post operative pain and of satisfaction with management. *Pain*, 75, 177–185.

Thorsteinsson, G. (1987). Chronic pain: Use of TENS in the elderly. Gerontology, 42, 75–82. Tibblin, G., Bengtsson, C., Furness, B., & Lapidus, L. (1990). Symptoms by age and sex. Scan- dinavian Journal Primary Health Care, 8, 9–17. Tiplady, B., Jackson, S. H. D., Maskrey, V. M., & Swift, C. G. (1998). Validity and sensitivity of visual analogue scales in young and older healthy subjects. Age and Ageing, 27, 63–73. 5. PAIN OVER THE LIFE SPAN 151

Turk, D. C., Okifuji, A., & Scharff, L. (1995). Chronic pain and depression: Role of perceived im- pact and perceived control in different age cohorts. *Pain*, *61*, 93–101.

Turkat, I. D., Kuczmierczyk, A. R., & Adams, H. E. (1984). An investigation of the aetiology of chronic headache: The role of headache models. *British Journal of Psychiatry, 145*, 665–666.

Varni, J. W., Thompson, K. L., & Hanson, V. (1987). The Varni/Thompson Pediatric Pain Question- naire. I. Chronic musculoskeletal pain in juvenile rheumatoid arthritis. *Pain*, *28*, 27–38.

Verhaak, P. F., Kerssens, J. J., Dekker, J., Sorbi, M. J., & Bensing, J. M. (1998). Prevalence of chronic benign pain disorder among adults: A review of the literature. *Pain*, 77(3), 231–239.

Vigano, A., Bruera, E., & Suarex-Almazor, M. E. (1998). Age, pain intensity, and opioid dose in patients with advanced cancer. Cancer, 83, 1244–1250. von Baeyer, C. L., Baskerville, S., & McGrath, P. J. (1998). Everyday pain in three- to five-year-old children in day care. Pain Research and Management, 3, 111–116. von Baeyer, C. L., Carlson, G., & Webb, L. (1997). Underprediction of pain in children undergoing ear piercing. Behaviour Research and Therapy, 35, 399–404. von Korff, M., Dworkin, S. F., & Le Resche, L. (1990). Graded chronic pain status: An epi- demiologic evaluation. Pain, 40, 279–291. von Korff, M., Dworkin, S. F., Le Resche, L., & Kruger, A. (1988). An epidemiologic comparison of pain complaints. Pain, 32, 173–183.

Walco, G. A., & Harkins, S. W. (1999). Lifepan developmental approaches to pain. In R. J. Gatchel & D. C. Turk (Eds.), *Psychosocial factors in pain: Critical perspectives* (pp. 107–117). New York: Guilford Press.

Walker, L. S., & Greene, J. W. (1991). The Functional Disability Inventory: Measuring a neglected dimension of child health status. *Journal of Pediatric Psychology, 16*, 39–58.

Wall, R. T. (1990). Use of analgesics in the elderly. Clinics in Geriatric Medicine, 6(2), 345–364. Washington, L. L., Gibson, S. J., & Helme, R. D. (2000). Age-related differences in the endogenous analgesic response to repeated cold water immersion in human volunteers. Pain, 89(1), 89–96.

Weiner, D., Peterson, B., & Keefe, F. (1998). Evaluating persistent pain in long term care residents: What role for pain maps? *Pain, 76*, 249–257.

Weiner, D., Peterson, B., & Keefe, F. (1999). Chronic pain-associated behaviors in the nursing home: Resident versus caregiver perceptions. *Pain*, 80(3), 577–588.

Weiner, D., Pieper, C., McConnell, E., Martinez, S., & Keefe, F. (1996). Pain measurement in elders with chronic low back pain: Traditional and alternative approaches. *Pain*, *67*, 461–467.

Weiner, D. K., Peterson, B. L., Logue, P., & Keefe, F. J. (1998). Predictors of pain self-report in nurs- ing home residents. *Aging Clinical and Experimental Research*, 10, 411–420.

Weiner, D. K., & Rudy, T. E. (2000). Attitudinal barriers to effective pain management in the nurs- ing home. In M. Devor, M. C. Rowbotham, & Z. Wiesenfeld-Hallin (Eds.), *Progress in pain re- search and management* (pp. 1097–2003). Seattle, WA: IASP Press.

Werner, P., Cohen-Mansfield, J., Watson, V., & Pasis, S. (1998). Pain in participants of adult day care centers: Assessment by different raters. *Journal of Pain SymptomManagement*, 15, 8–17.

Wijeratne, C., Shome, S., Hickie, I., & Koschera, A. (2001). An age-based comparison of chronic pain clinic patients. *International Journal of Geriatric Psychiatry*, *16*, 477–483.

Wilkinson, C. A., Madhok, R., & Hunter, J. A. (1993). Toleration, side-effects and efficacy of sul- phasalazine in arthritis patients of different ages. *Quarterly Journal of Medicine*, *86*, 501–505.

Williams, A. C. de C. (2001). Outcome assessment in chronic non-cancer pain treatment. *Acta Anaesthesiologica Scandinavia, 45*, 1076–1079.

Williams, D. A., & Thorn, B. E. (1989). An empirical assessment of pain beliefs. Pain, 36, 351–358. Wroblewski, M., & Mikulowski, P. (1991). Peritonitis in geriatric inpatients. Age and Ageing, 20, 90–94. Yong, H.-H., Gibson, S. J., Horne, D. J., & Helme, R. D. (2001). Development of a pain attitudes questionnaire to assess stoicism and cautiousness for possible age differences. Journal of Gerontology: Psychological Services, 56B(5), 279–284. 152 GIBSON AND CHAMBERS

Ysla, R., Rosomoff, R. S., & Rosomoff, H. L. (1986). Functional improvement in geriatric pain pa- tients. *Archives of Physical Medicine Rehabilitation, 67,* 68.

Yunus, M. B., Holt, G. S., Masi, A. T., & Aldag, J. C. (1988). Fibromyalgia syndrome among the eld- erly: Comparison with younger patients. *Journal of American Geriatrics Society, 36*, 987–995.

Zeman, J., & Garber, J. (1996). Display rules for anger, sadness, and pain: It depends on who is watching. *Child Development*, 67, 957–973.

Zheng, Z., Gibson, S. J., Khalil, Z., McMeeken, J. M., & Helme, R. D. (2000). Age-related differences in the time course of capsaicin-induced hyperalgesia. *Pain*, *85*, 51–58.

Zuckerman, B., Stevenson, J., & Bailey, V. (1987). Stomachaches and headaches in a community sample of preschool children. Pediatrics, 79, 677–682. 5. PAIN OVER THE LIFE SPAN 153

Pain is experienced by persons, not groups. Still, researchers go to great ef- fort to study interindividual factors such as sex, age, and culture as they re- late to pain. That is done for a number of reasons: an understanding of pre- dispositions to pain, the features that maintain it, and suggestions for tailored treatments.

The literature on sex and gender differences, for example, is quite size- able now. Investigators have made considerable progress in considering the role of biological sex or gender identity in influencing the prevalence of pain conditions, the response to treatment, and the mechanisms used to cope with challenging pain syndromes. Typically, the majority of pain pa- tients for many disorders is female (Berkley, 1997; LeResche, 1997; Unruh, 1996). This includes such conditions as headache, rheumatoid arthritis, fibromyalgia, irritable bowel disorder, and temporomandibular disorder. The data on prevalence have been supplemented (Fillingim, 2000; Mogil, Chesler, Wilson, Juraska, & Sternberg, 2000; Riley, Robinson, Wise, Myers, & Fillingim, 1998; Rollman & Lautenbacher, 2001) by research on biological, psychological, and sociocultural factors with the goal of understanding the underlying mechanisms, reducing the incidence of the problems, and im- proving the treatment of acute and chronic pain. We know, for example, that certain opioid drugs are more potent in males than in females (Craft & Bernal, 2001), that women have a moderate to large increase in sensitivity to experimentally-induced pain compared to men (Riley et al., 1998), that women are more likely than men to suffer from many forms of clinical pain

CHAPTER6

Ethnocultural Variations in the Experience of Pain

Gary B. Rollman Department of Psychology,

University of Western Ontar io 155

(Unruh, 1996), particularly those involving the musculoskeletal system (Roll- man & Lautenbacher, 2001), and that both biological sex and psychological gender role are significant predictors of pain threshold, tolerance, and rat- ings of unpleasantness (Wise, Price, Myers, Heft, & Robinson, 2002).

In many respects, the rationale for studying ethnocultural differences in pain is identical, but culture is probably the most difficult and controversial of the biopsychosocial factors. This chapter critically examines the litera- ture that suggests the individual's culture makes a critical difference in pain behavior and management.

Research on culture and pain has undergone three important stages. In the first, samples were small and poorly obtained and science often took a back seat to stereotypes. The second stage was marked by greater interest in both theory and methodology, but the validity of the findings was still of- ten questionable. The third stage, which has recently emerged, is character- ized by greater sophistication, larger sample sizes and population distribu- tions, and closer attention to psychosocial factors which may mediate the results.

For reasons of convenience, most early studies of pain and culture took place in the laboratory. Typically, small numbers of persons from one cul- tural group were compared to small numbers of persons from one or two other groups, and sweeping generalizations were made. Wolff (1985) sum- marized a typical conclusion:

Scandinavians are tough and stoic with a high tolerance to pain; the British are more sensitive but, in view of their ingrained "stiff, upper lip," do not com- plain when in pain; Italians and other Mediterranean people are emotional and overreact to pain; and Jews both overreact to pain and are preoccupied with pain and suffering as well as physical health. (p. 23)

Similarly, Sternbach and Tursky (1965) observed, "Old Americans have a phlegmatic, matter-of-fact, doctor-helping orientation; Jews express a con- cern for the implication of pain, and they distrust palliatives; Italians ex- press a desire for pain relief, and the Irish inhibit expression of suffering and concern for the implications of the pain" (p. 241). To draw that conclusion, they asked questions about attitudes to pain and tested pain reactivity in American-born women from four different ethnic groups: Yankee (Protestants of British descent whose parents and grandparents were born in the United States), Irish, Italian, and Jewish (the last three born of parents who emigrated to the United States from Europe). There were sizeable differences in pain tolerance (the level at which participants indicated that the pain had reached the maximum level they wished to experience). The Yan-kee and Jewish subjects withstood significantly higher values than the Ital-ians, with the Irish at an intermediate level. 156 ROLLMAN

These conclusions about the pain reactions of Old Americans, Jews, Ital- ians, and Irish are interesting but unwarranted. Religion, ethnicity, and na- tional origin are mixed. More importantly, 15 Massachusetts homemakers per sample hardly allow one to draw generalizations about either the atti- tudes or the pain responses of an ethnic or cultural group. Individuals vary enormously in their response to experimentally induced pain, and the dif- ferences between groups, even in large studies, is generally quite modest in comparison to the intergroup variability.

The same caveat applies to many clinical studies. Zborowski's book *Peo- ple in Pain*, published in 1969, is often cited because of its early examination of how culture might shape the pain response. His conclusions—Old Ameri- cans are stoic, Italians loudly demand pain relief, and Jews seek relief but worry about the future implications of their disorder—all came from staff re- ports at a single New York Veterans Administration hospital. Likewise, Zola's (1966) study of interethnic differences in pain reporting and attitudes was based on interviews with patients at various outpatient clinics at the Massachusetts General Hospital. He focused on 63 Italians and 81 Irish new admissions of comparable age, education, and social class.

The study found that the Irish were markedly more inclined to locate their problem in the eye, ear, nose, or throat but were also more likely to say that the problem was not painful ("It was more a throbbing than a pain. It feels more like sand in my eye"). Moreover, the Irish described a specific problem. In contrast, the Italians tended to report diffuse discomfort, pre- sented more symptoms, had complaints in more bodily locations, and indi- cated that they had more kinds of dysfunctions.

Zola speculated that "Italian and Irish ways of communicating illness may reflect major values and preferred ways of handling problems within the culture itself" and could be understood in terms of generalized expres- siveness. So, for the Italians, the complaints may relate to "their expansive- ness so often [seen] in sociological, historical, and fictional writing"—a "well seasoned, dramatic emphasis to their lives."

The Irish view of life, in Zola's view, is drab ("long periods of routine fol- lowed by episodes of wild adventure"). It was as if "life was black and long- suffering and the less said the better." Consequently, a patient when asked about her reactions to the pain of her illness stated, "I ignore it like I do most things." This sort of literary analysis is not uninteresting, but it is based on a Freudian perspective. Science is largely absent.

Lipton and Marbach (1984) presented a scholarly review of the literature on ethnicity and pain that had been collected until the early 1980s, noting its many inadequacies. Sometimes, responses from patients were examined in individual ethnic groups (e.g., American, British, Scandinavian, and Ital- ian); at other times, these were simply combined into a single "White" group. Some studies focused deliberately on pain, whereas others included 6. ETHNOCULTURAL VARIATIONS IN PAIN 157

a few pain-related questions as part of a broader study of health beliefs and practices. Some used a short questionnaire, whereas others relied on inter- views or caretaker impressions.

Lipton and Marbach proposed a model based upon three major areas of the pain experience. First was the physical experience—its intensity, qual- ity, duration, and location—and the way in which the patient describes these sensations to others. Second was the patient's behavior in response to his or her pain. They introduced three subcategories here: cognitive in- terpretation (the interpretation and evaluation of the perceived pain), emo- tional responses (fear, anxiety, or depression and whether it is expressed openly or covertly), and function (how the pain affects social interaction and daily activities). The third area was medical intervention, dealing with the individual's action in response to pain and role as a pain patient (com- pliant and trusting or challenging and uncooperative).

Lipton and Marbach then applied this model to 476 consecutive patients of varied ethnic makeup seen at a facial pain clinic in a large hospital, con- centrating on 50 patients in each of five groups: African American, Irish, Ital- ian, Jewish, and Puerto Rican. There were some ethnic differences in pain description, a tendency for Italian and African American patients to attrib- ute their pain to something they had done, the finding that African Ameri- cans and Puerto Ricans were less likely to hide their pain from family and friends, and relatively few ethnic differences in interference with daily func- tioning. The Irish, Italian, and Jewish patients were more likely to have con- sulted "quite a few doctors" before attending the clinic. Still, the similarities were considerably greater than the differences between the groups. The au- thors noted that the patients were all in one city, were often third-gen- eration Americans (both their parents and themselves born in the United States), and generally saw their ethnic identity as American rather than for- eign. As such, they were more likely to have adopted or become accultur- ated to at least some "American" norms for pain behaviors and attitudes. The Puerto Rican patients, who were most likely to have been immigrants, were also most likely to differ from the other groups, showing a high level of distress, strong friendship solidarity, dependency on members of their own ethnic group when sick, an emotionally expressive pain response, and great disruption in daily activities attributable to pain.

Although the earlier literature on medical care had suggested "ethnic group membership influences how one perceives, labels, responds to and communicates various symptoms, as well as from whom one selects to ob- tain care, when it is sought, and the types of treatment received," Lipton and Marbach showed that it is critically important to deconstruct the sociocultural determinants of pain behavior and attitudes. The social factor influences how families or local groups affect behavior and the practition- er-patient relationship, whereas the cultural factor influences an earlier 158 ROLLMAN

stage, how symptoms are interpreted. Both are critical in understanding how individuals report or express their discomfort. Both are likely to change over time, particularly in a multicultural environment.

A related analysis of the cultural context of pain behaviors came from Calvillo and Flaskerud (1991). They presented the view that, "Cross-cultural studies have demonstrated that White Americans of Northern European ori- gin react to pain stoically and as calmly as possible. This response to pain has become the cultural model or norm in the United States. It is the behav- ior expected and valued by health caregivers" (p. 16). In order to better un- derstand such cultural norms, Carvillo and Flaskerud examined Mexican American pain expression, concluding:

Many Mexican-American patients, especially women, moan when uncomfort- able. Consequently, they are often identified by the nursing staff as complain- ers who cannot tolerate pain. In the Mexican culture, crying out with pain is an acceptable expression and not synonymous with an inability to tolerate pain. Crying out with pain does not necessarily indicate that the pain experi- ence is severe or that ... the patient expects the nurse to intervene. (p. 20)

Calvillo and Flaskerud suggested that crying and moaning may help the Mexican patient to relieve the pain rather than function as a request for in- tervention. Health practitioners, operating from the dominant culture model of response to pain, may, improperly, interpret crying and moaning as an indication that the patients are dramatic, emotional complainers with an inability to manage pain. Accordingly, there is an important need to un- derstand culturally determined attitudes and pain reactions.

TREATMENT DISPARITIES

Recent studies have taken an epidemiological turn, studying the composition of patients seen in various medical clinics and, more importantly, whether treatment depends on ethnicity. For example, Todd, Samaroo, and Hoffman (1993) reviewed the charts at a major Los Angeles trauma center where it had been suggested that Hispanic patients were more likely than non-Hispanic White patients to receive no analgesia at all for arm or leg fractures. The evidence supported this impression, leading them to under-take a retrospective cohort study over a 2-year period. Of the 31 Hispanics who met the study criteria, 55% received no analgesic medication, com-pared to 26% of the non-Hispanic Whites. Analyses that controlled for sex, language, and insurance status, as well as severity of injury and physician characteristics, did not substantially change the evidence. Even where anal-gesics were offered, Hispanics tended to receive lower doses and fewer nar- 6. ETHNOCULTURAL VARIATIONS IN PAIN 159

cotics. Although they noted, "we cannot be sure that the injuries in each of the patient groups were equally painful," the authors suggested that physicians and other staff members may fail to adequately "recognize the presence of pain in patients who are culturally different from themselves" (p. 1539).

Ng, Dimsdale, Shragg, and Deutsch (1996) noted the uneven nature of studies on the relationship between ethnicity and pain, even in the 1990s. Most of the reports were based on anecdotal evidence, were based on small groups, and did not use well-validated assessment tools. Few studies controlled for acculturation. Ng et al. (1996) decided to extend the Todd et al. (1993) emergency room study on Hispanic and White patients, focusing on a much larger and more ethnically diverse sample of similar social class who were admitted to a San Diego clinic because of limb fracture and re- quired an open reduction and internal fixation. Given the nature of the sur- gery and the hospitalization that followed, all were offered analgesic medi- cations. Still, Whites received the highest dose of analgesics and a greater number of narcotics, followed by Blacks and Hispanics. They offered vari- ous theories regarding this outcome (the nurse's perception of the patient's pain, differences in the way patients demand pain control or expect pain to be eliminated, and, unlikely, pharmacokinetic differences across the ethnic groups), but concluded, "whether this difference reflects ethnic differences in analgesic requirements or reflects cultural biases in treatment remains to be determined" (p. 128).

One way to further explore this question is to look for ethnic group dif- ferences in the use of analgesics where the attitudes and expectations of the caregiver are not a factor. Patient-controlled analgesia (PCA), where the individual administers a drug such as morphine to himself or herself by pressing a hand switch attached to an infusion pump, provides such an op- portunity. Ng, Dimsdale, Rollnik, and Shapiro (1996) examined the records for nearly 500 patients who were treated with PCA for postoperative pain and discovered that amounts of self-administered narcotics were not signifi- cantly different between Whites, Blacks, Hispanics, and Asians. What did vary was the initial PCA prescription ordered by the physician, so that a higher dose was ordered for Whites and Blacks than Hispanics. They inter- preted their data to indicate that physicians predict Whites will have more pain, and prescribe accordingly, or that cultural factors influence communi- cation (or lack thereof) between physician and patient, profoundly affecting the doctor's treatment plan.

Cleeland et al. (1994) also noted the discriminatory nature of patient care. They studied 1,300 consecutive outpatients who had been diagnosed with recurrent or metastatic cancer, asking both them and their physician to rate their level of pain and its interference with activity and sleep. Forty- two percent of the total group of patients received inadequate analgesia, 160 ROLLMAN

but those seen at centers treating primarily patients representing minority groups were much more likely to have poorly controlled pain.

The data do not provide encouragement about the management of can- cer pain in this sample, but are also an indictment of the treatment of mi- nority patients. A number of letters to the editor followed publication of this provocative article. One (Karnad, 1994) is short enough to print in its entirety: "I do not think the problem of pain control will be solved until we face the fact that much of it stems from our puritanical culture. In the re- cesses of our collective identity, we still embrace the notion that pleasure is bad and suffering is redemptive (no pain, no gain)" (p. 199).

Bonham (2001) carefully examined disparities in health care in the United States, indicating that "racial and ethnic minority groups often re- ceive different and less optimal management of their health care than White Americans" (p. 52). He considered a number of possible reasons for this including stereotypes, language barriers, ineffective communication, a failure to understand the patient's expressions of pain and distress, and so- cioeconomic factors, concluding that adequate pain assessment is the most important step in reducing inadequate patient care.

Rathore et al. (2000) recruited 164 medical students to view one of two case presentations of angina, one involving a 55-year-old Black female pa- tient actor and the other a 55-year-old White male. The scripts were identi- cal, the clinical symptoms were sufficient for a diagnosis of definite angina, and the actors were in identical gowns and filmed in the same room. Stu- dents were less willing to provide a diagnosis of definite angina for the Black female (46%) than for the White male (72%), yet rated her quality of life as lower. The design did not allow a determination of whether this ap- parent bias in diagnosis and health status rating is based on race or sex or a combination of the two, but the data indicated that training in cultural awareness should be a required part of training for medical and other health care personnel.

Insensitivity to the needs of Central American residents of the Boston area is highlighted by three simple case studies presented by Flores, Abreu, Schwartz, and Hill (2000). A 3-year-old girl, who was later found to have a perforated appendix and peritonitis, was repeatedly sent home from a hos- pital emergency department because no interpreter was available and the staff lacked kindness, friendliness, and respect; a 2-year-old girl with shoul- der pain was placed in the custody of the Department of Social Services be- cause the resident thought that the caregiver's comment, "she was struck," meant she had suffered abuse, rather than the intended "she had fallen off her tricycle and struck her shoulder"; and the parents of a neonate with se- vere impairments were not informed of the poor prognosis and mistakenly believed the baby would soon recover and be released. In all cases, "failure to address language and cultural issues resulted in inferior quality of care, 6. ETHNOCULTURAL VARIATIONS IN PAIN 161

adverse outcomes, increased health care costs, and parental dissatisfac- tion" (p. 846).

It is important to test for disparities in health care or undertreatment of some ethnic groups in other societies. Sheiner, Sheiner, Shoham-Vardi, Mazor, and Katz (1999), in an investigation of the childbirth experience of Jewish and Bedouin women living in the Negev section of southern Israel, almost all of whom deliver at a major regional hospital, obtained ratings of pain (from the patient, physician, and midwife) at the initial active phase of labor. There were substantial demographic differences (the Bedouin women were younger, more likely to describe themselves as religious, less likely to be accompanied at labor by their husband, had less formal educa- tion, and did not attend childbirth education classes). Epidural analgesia was offered nearly twice as often to Jewish women as to the Bedouin (who preferred parenteral pethidine, a synthetic opioid analgesic).

The most interesting finding came from the concurrent visual analog scores of the mothers and the care providers. The self-assessments of the Jewish and Bedouin women were nearly identical (8.5 on a 10 point scale), but the ratings of the medical staff (almost all of whom were Jewish) indi- cated that they perceived the Bedouin women to experience less pain (6.9) than the Jewish ones (8.5). These data are different from some of those reported earlier, in that they do not show undertreatment of an eth- nic group. Both groups of women had equal (albeit high) levels of pain at the time of assessment; what differed was the pain level judged by the de- livery staff from the exhibited behavior. It is uncertain whether this differ- ence was due to the behavior of the two groups, a bias on the part of the medical personnel, or their inability to recognize signs of pain in patients of a different culture.

Pain Expression

Diagnosis and treatment of pain are largely dependent on what the patient is willing to tell the health care provider or, for that matter, thinks is suffi- ciently important to report. The ethnocultural background of the practition- er is also likely to interact with that of the patient; a good physician or psy- chologist should examine his or her own attitudes and expectations about pain behavior. Davitz, Sameshima, and Davitz (1976), for example, asked over 500 nurses in the United States, Japan, Taiwan, Thailand, Korea, and Puerto Rico to read descriptions of patients and to judge their pain and psy- chological distress. The descriptions were brief and, in their own language, covered five disease categories, both sexes, three age levels, and two de- grees of severity. The study found that Japanese and Korean nurses be- lieved that their patients suffered a high degree of pain, while American and Puerto Rican nurses rated their patients' pain fairly low. These data run 162 ROLLMAN

counter to the stereotype of Asian stoicism. Davitz et al. suggest that the Asian nurses distinguished between overt and covert expression of pain, so that they inferred far more pain than was observable through verbal or bodily expressions, whereas the U.S. nurses were more likely to assume congruence between pain experience and pain behavior. Consequently, Asian patients treated in North American hospitals might receive less treat- ment than their pain level would warrant. Interestingly, other stereotypes, which could be quite dangerous to the patient, were shared by the nurses in all six cultures. For one, males were seen as in less pain than females for similar degrees of emotional distress. For another, the nurses believed that children suffer far less psychological distress than adults for comparable levels of pain.

A cross-cultural study of both pain attitudes and reactivity to experimen- tally induced discomfort was conducted by Nayak, Shiflett, Eshun, and Le- vine (2000). They explored differences in beliefs about appropriate or nor- mative pain behavior, extending the research of Kodiath and Kodiath (1992), who found that patients in India reported less suffering and anger about lack of pain relief than individuals in the United States with similar levels of pain. Nayak et al. had slightly over 100 undergraduates at universi- ties in the United States and India complete a questionnaire about sex- appropriate public pain responses (grimacing, crying, talking about the pain, etc.) and tested pain tolerance and ratings in the cold pressor task (immersing the arm in a container of circulating ice water). Both males and females in India believed that overt expression of pain is less appropriate than did the U.S. undergraduates. Moreover, the Indian volunteers of both sexes kept their hand in the ice water longer than their American counter- parts. The authors suggested:

The greater willingness to express pain in American society could be due to the belief that pain is bad, need not be endured, and should be quickly elimi- nated. In addition, in American society today, the medical profession has taken on the primary role of pain relief, which, combined with the widespread availability and use of analgesics, provides a powerful reinforcement for pain expression. (p. 146)

Further studies with clinical rather than experimental pain and with a wider range of ages and socioeconomic conditions would be very helpful.

A relatively small sample of dentists and patients from three ethnic groups (Anglo-American, Chinese, and Scandinavian), all living in the greater Seattle area, were interviewed about their ways of coping with pain (Moore, 1990). Anglo-American patients sought pills and injections, denial of pain, and reassuring clinical contacts. Anglo-American dentists preferred to use drugs. In contrast, the Chinese patients preferred salves, oils, creams, and com- 6. ETHNOCULTURAL VARIATIONS IN PAIN 163

presses and nontraditional medicine, although Chinese dentists (and the Scandinavian ones) shared the American preference for using pharmaceuti- cal treatments. Interestingly, although Scandinavian patients did not want to be treated with local anesthetics, many volunteered that they accepted this treatment for their dentist's peace of mind.

Anthropological Studies. It is rare for anthropologists to go into the field in order to study pain behavior within an isolated cultural group. One exception is Sargent's (1984) study, conducted in the mid-1970s, of the Bari- ba, a major group of about 400,000 persons living in Benin and Nigeria who are "notable for consistently demonstrating an 'absence of manifest behav- ior' when confronted with apparently painful stimuli such as childbirth, wounds, or initiation ordeals" (p. 1299). Sargent interviewed 120 women of reproductive age in a small village regarding their behavioral ideals and ac- tual behavior during delivery, spoke to numerous indigenous midwives and village leaders, and attended a number of deliveries. Tellingly, one local physician explained that the Bariba equate pain with cowardice, a source of enormous shame. They pride themselves on the courage of their men in war and their women in childbirth and disparage the behavior of other groups that express pain openly through complaints or behavioral express- sions. Not surprisingly, the Bariba have few words with which to describe pain, although they do distinguish between pain sensation and suffering. Social modeling (Craig, 1986), from childhood, appears to shape the behav- ior of tribal members. Stoicism is not limited to pain; Bariba are expected to suppress grief and other negative emotions.

Honeyman and Jacobs (1996) went into the Australian outback to study pain behavior and beliefs among the members of a small aboriginal commu- nity. They observed that aboriginal children show few signs of distress and that adults minimize any overt pain behaviors. When questioned individu- ally, community members acknowledged pain, including long-term low back pain, but none showed public pain or illness behaviors of the sort seen in Western society. Also, it was extremely rare for any of them to seek medical attention for pain problems. Honeyman and Jacobs proposed that: the concept of illness as a social process, separate from a biological malfunction termed disease, allows us to see these people as acting appropriately to their cultural setting. In this society there are strong community expectations about tolerating and not expressing or displaying pain. This was evidenced by the few public back pain reactions we saw and the reluctance to talk about pain in front of others. (p. 842)

Although back pain was quite common in the community, the inhabitants did not actively complain about it and it rarely appeared in health records. 164 ROLLMAN

The findings emphasize the need for sensitive questioning of patients about their symptoms, particularly when they may come from a group where emotional expression of symptoms is discouraged.

Pediatric Pain. Given the psychosocial perspective on cultural differ- ences in pain, it would be interesting to look for evidence concerning ethno- cultural variation in children's pain. The task is not easy because of problems in assessing pain in young children. Recent years have seen numerous ad- vances in developing physiological measures, behavioral observations, and self-report measures (McGrath, 1995; McGrath et al., 2000; McGrath, Rosmus, Canfield, Campbell, & Hennigar, 1998) including analysis of facial expressions, scales involving faces and colors, and examination of drawings.

Little attention has been paid to the need to validate these scales in dif- ferent cultural settings. Villarruel and Denyes (1991) developed alterna- tive versions of the "Oucher" scale for Hispanic and African American chil- dren. The Oucher comprises a series of six photographs of a 4-year-old White boy showing facial expressions indicating various levels of pain. A pediatric patient is asked to point to the picture that best reflects his or her own level of hurt. Using photographs of Hispanic and African Ameri- can children, taken when they were or were not experiencing pain, the au- thors established an ordering of six photographs that other children could agree represented a progression of pain expression. It remains to be established whether this particular measure will reveal any cross- cultural differences in children's pain levels, whether scales tailored to ethnic origin or race, although culturally sensitive, aid in either pain as- sessment or in strengthening communication between medical practition- ers and children of different cultural groups, and whether culture-free measures (such as a series of face drawings; Chambers & Craig, 1998; Chambers, Giesbrecht, Craig, Bennett, & Huntsman, 1999) can achieve both validity and universality in pain assessment.

Abu-Saad (1984) interviewed Arab American, Asian American, and Latin American school children, asking what caused pain for them, what words they used to describe pain ("like a hurt" was the most common descriptor in each group), how they felt when they are in pain, and how they coped with pain. Given that all lived in the same urban environment, the finding that the similarities among the subjects are considerably greater than the differences is not surprising. Studies of this sort need to be conducted with large numbers of children, of varying age and in a range of countries, in or- der to help us to better understand at what age cross-cultural differences, if any, become apparent and what changes take place during infancy, child- hood, and adolescence. They will also advance our understanding of the speed of cultural diffusion or adaptation. Pfefferbaum, Adams, and Aceves (1990) studied pain and anxiety in 37 Hispanic and 35 Anglo children with 6. ETHNOCULTURAL VARIATIONS IN PAIN 165

cancer at a hospital in Texas. The children were very similar in their behav- ioral responses. It was the parents who differed, with the Hispanic parents reporting significantly higher levels of anxiety than the Anglo ones.

Canadian-born Chinese and non-Chinese infants, receiving routine immu- nization at the age of 2 months, were compared for facial expressions and pain cries (Rosmus, Johnston, Chan-Yip, & Yang, 2000). This study is inter- esting because it provides an early examination of possible cultural differ- ences in socialization. The authors, noting a literature on cross-cultural dif- ferences in infant development and the role of infant-care practices, assessed demographic information, degree of acculturation, the infant's feeding and crying patterns, and video recordings focused on the face dur- ing immunization. All babies exhibited facial and cry expressions, but the Chinese infants exhibited significantly greater brow bulges, duration of cry- ing, and number of cry bursts. Anecdotal evidence indicated that the Chi- nese mothers were more interactive during the waiting period, possibly in- creasing the infants' arousal. The study is admittedly preliminary, but it opens the possibility that mothering patterns may either affect pain reactiv- ity directly or influence the overall arousal response.

International Studies. An interesting cross-cultural study was recently reported by Litcher et al. (2001). The used the Children's Somatization In- ventory, which assesses the frequency and severity of a comprehensive set of physical complaints, to compare children in Nashville with a large group of 10- to 12-year-olds in Kyiv, Ukraine, including many who had been evacu- ated from Chernobyl after the nuclear power plant accident there. The mothers of the children were given a similar questionnaire. Remarkably, the Ukrainian children reported fewer physical symptoms than the Ameri- can ones of the same age, but their mothers reported nearly three times as many symptoms in their own children than those in Nashville. It is uncer- tain, of course, whether this reflects a generalized difference in awareness of bodily symptoms between American and Ukrainian women, developing at a later stage in life, or whether the Chernobyl incident fostered a more vigilant pattern in the latter group.

Another recent cross-cultural study (Levenstein et al., 2001) of symptom reporting compared the concerns of inflammatory bowel disease (IBD) pa- tients in eight countries. Overall concern scores ranged from a high of 51 in Portugal to a low of 19 in Sweden, but the nature of the concerns also showed large inter-nation variability. Israeli patients were particularly con- cerned about pain and suffering whereas the Portuguese subjects worried about social stigma. Given the many behavioral consequences of chronic pain (McCracken, Zayfert, & Gross, 1992; Turk, Okifuji, Sinclair, & Starz, 1996), it is imperative to fully explore the sensory, affective, and cognitive reactions of pain patients, irrespective of ethnic background. 166 ROLLMAN

International studies of pain, particularly ones that focus on supposed ethnic or cultural differences, are influenced by differences in litigation or compensation systems in different countries. Hadjistavropoulos (1999), in a broad review of litigation and compensation, included a number of cross- cultural studies. Carron, DeGood, and Tait (1985), for example, found that back pain patients in the United States used more medication, experienced more disphoric mood states, and were more hampered in social-sexual, rec- reational, and vocational functioning than ones in New Zealand. At the on- set of treatment, 49% of the U.S. sample was receiving pain-related financial compensation, in contrast to and only 17% of the New Zealand patients. In- dividuals in both countries who were receiving pretreatment compensation were less likely to report a return to full activity, although the relationship appeared more pronounced among those in the United States.

Other studies that demonstrate that certain expensive interventions are more likely to reduce acute pain (e.g., Macario, Scibetta, Navarro, & Riley, 2000) or that costly early interventions may reduce long-term disability (Borghouts, Koes, Vondeling, & Bouter, 1999; Hutubessy, van Tulder, Vondeling, & Bouter, 1999) suggest that national health care policies and budgets may influence both the nature and prevalence of pain syndromes.

Single-Society Studies. Many of the published studies of ethnocultural factors and pain have made broad generalizations based upon exceedingly small sample sizes. Thomas and Rose (1991) asked 28 African Caribbean males and females, 28 Anglo-Saxons, and 28 Asians in London, England, who were having an ear pierced with a piercing gun, to complete the McGill Pain Questionnaire. Asian subject scores were nearly twice those of the African Caribbeans, with Anglo-Saxon scores nearly as high, leading them to conclude, "the present results provide clear evidence that there are ethnic dif- ferences in pain experience in this test situation" (pp. 1064–1065).

Sanders et al. (1992) claimed that "American low back pain subjects had significantly higher pain intensity ratings than other cultures did" (p. 319) and that American, New Zealand, and Italian patients reported higher levels of psychosocial impairment than individuals living Japan, Mexico, or Co- lombia. Their subject pool consisted of 10 or 11 chronic low back pain pa- tients from each of the six countries. Likewise, Brena, Sanders, and Moto- yama (1990), evaluating 11 back pain patients from Tokyo and a like number of patients from Atlanta, reported, "Japanese low back pain patients were less psychosocially, vocationally, and avocationally impaired than similar American patients" (p. 122).

Sheffield, Kirby, Biles, and Sheps (1999) evaluated 124 Caucasians and 18 African Americans who had taken an exercise treadmill test which showed certain electrocardiographic abnormalities. Because 9 of the latter but only 34 of the former had angina during testing, they concluded, "African Ameri- 6. ETHNOCULTURAL VARIATIONS IN PAIN 167

cans reported anginal pain at twice the rate of Caucasians" (p. 107). A sub- sequent study of pain perception (Sheffield, Biles, Orom, Maixner, & Sheps, 2000) using a contact thermode to deliver noxious levels of heat to 27 Whites and 24 African Americans, showed that the latter group gave higher ratings than the former to each of 5 temperatures, leading them to indicate that "these data suggest that different pain mechanisms underlie race dif- ferences in pain perception" (p. 521) and to call for studies of acculturation and twin studies to better understand the specific factors.

Edwards and Fillingim (1999), testing 30 Whites and 18 African Ameri- cans, also found that the Whites had a greater thermal pain tolerance and gave lower unpleasantness ratings at the lower two of four temperatures in a scaling study, with no group differences in intensity ratings. There were also no group differences in questionnaire measures of pain reactivity or in pain complaints over the preceding month, although African Americans re- ported greater average pain severity and two pain sites rather than the Whites' number of 1.4. The two unpleasantness rating differences led to the proposal that there are racial differences in the affective-motivational dimension of pain. A significant correlation between pain tolerance and pain symptoms brought the suggestion that ethnic variation in affective-moti- vational judgments may account for the severity and number of pain sites. The authors presented the admittedly speculative suggestion that African Americans may require quantitatively greater degrees of pain treatment than Whites.

In a subsequent study of 68 African Americans and 269 Whites attending an interdisciplinary pain clinic, the African Americans reported significantly greater pain severity and pain-related disability than Whites (Edwards, Doleys, Fillingim, & Lowery, 2001), although no differences in the McGill Pain Questionnaire or measures of pain interference or affective distress. As well, the African Americans had shorter ischemic pain tolerance times for a tourniquet test (about 5 minutes vs. 9 for the White patients). The large difference in the latter, compared to a much smaller difference in clini- cal pain, led to the suggestion that coping styles, attitudes toward pain measurement, or differences in central pain modulating systems may distin- guish the two groups. The inclusion of such diverse putative mechanisms underscores the risk of labeling any of the differences reported in this sec- tion as "racial" rather than "cultural." To the extent that the first term im- plies a genetic causation (a matter, as noted below, of considerable conten- tion) and the second an environmental one, a confound of racial variation and socialization factors arises. This problem is exacerbated by the fact that members of a particular group may differ in both their culturally deter- mined practices and in the manner in which they are treated by members of other groups in their society. 168 ROLLMAN

Some recent papers have started to correct the problem of small sample size. Ho and Ong (2001) used Singapore, a large multiethnic society, to ex- amine the influence of group membership (Chinese, Malay, Indian, and other) on headache morbidity. No significant ethnic differences were found for lifetime or current headache prevalence within a sample of over 2,000 in- dividuals, although there were some group differences in average headache intensity and frequency, with the Chinese lowest. Non-Chinese were also more likely to seek medical attention for their headaches and to have taken medical leave during the preceding year. The data do not allow one to de- termine whether genetic factors may have influenced the outcome of this study.

Allison et al. (2002) assessed musculoskeletal pain within a community sample of over 2,100 adults from the Indian, Pakistani, Bangladeshi, and Af- rican Caribbean communities in the area around Manchester, England, and compared the results to those obtained from a recent study of White resi- dents using the same methodology. For the age range 45–64 years, musculo- skeletal pain prevalence was higher in all ethnic groups (about 70 to 90%) than in White subjects, with the latter being about 53% for both males and females. When asked whether they had pain in "most joints," about 6 to 8% of Whites agreed compared to about 30 to 45% in the ethnic minority groups. There were no group differences, however, in disability scores. The authors cautioned that comparable studies need to be done in other geo- graphical locations, because the data do not permit one to readily distin- guish between differences in pain sensitivity or expression, the effects of change of culture and migration, and mental health issues. With respect to the last point, a study (Nelson, Novy, Averill, & Berry, 1996) with a relatively small sample of Black, White, and Hispanic patients in a southern U.S. com- munity revealed different Minnesota Multiphasic Personality Inventory (MMPI) profiles, but the data also suggested that education level rather than ethnic group membership may be the more relevant characteristic.

McCracken, Matthews, Tang, and Cuba (2001), in one of the few studies of ethnic or racial group differences in the experience of chronic pain, asked 207 White and 57 African American patients seeking treatment at a pain management center about their physical symptoms, depression, dis-ability, health care use, and pain-related anxiety. The two groups did not differ in age, education, or chronicity of their pain complaint. African Ameri- cans rated their pain higher and reported more avoidance of pain and activ- ity, more fearful thinking about pain, and more pain-related anxiety. As well, they were higher on physical symptom complaints and on physical, psycho- social, and overall disability. The authors noted that many factors may ex- plain these findings, including less social support, differences in social circumstances, beliefs about pain, and self-management strategies, and the 6. ETHNOCULTURAL VARIATIONS IN PAIN 169

possibility that African Americans may not seek or be referred for treat- ment unless they are suffering from high levels of distress.

A study by Jordan, Lumley, and Leisen (1998) compared pain control be- liefs, use of cognitive coping strategies, and status of pain, activity level, and emotion among 48 African American and 52 White women with rheuma- toid arthritis, controlling for the potentially confounding influence of in- come, marital status, and education. There were no group differences in pain, but the African American patients were less physically active and more likely to cope with pain by praying and hoping and diverting atten- tion, whereas Whites were more likely to make coping statements and ig- nore the pain. Bill-Harvey, Rippey, Abeles, and Pfeiffer (1989) had earlier noted that 92% of low-income, urban African American arthritis patients used prayer to relieve their pain and discomfort. Cognitive behavior ther- apy and other treatments that encourage the use of increased coping at- tempts and decreased negative thinking can aid African Americans to man- age experimentally induced pain (Gil et al., 1996) and are likely to be of clinical benefit.

Waza, Graham, Zyzanski, and Inoue (1999) found that Japanese patients who had been newly diagnosed with depression reported more total symp- toms, particularly physical ones, than patients in the United States. Twenty seven percent of the Japanese patients reported only physical symptoms, whereas only 9% of the patients in the United States presented in this man- ner. A large proportion of the Japanese had pain complaints (generally ab- dominal pain, headache, and neck pain); comparable figures for the Ameri- can patients were about 60 to 80% less. The authors propose that pain at specific body areas may arise because of cultural influences, possibly to avoid the stigma in Japan associated with emotional disorders. For exam- ple, many Japanese expressions use the term *hara* (abdomen) to verbalize emotion, and digestive-system complaints are the primary reason for out- patient medical visits in that country. Likewise, *katakori* (a pain in the neck) is a major medical complaint. Waza et al. suggested that the physical pres- entation of symptoms by Japanese patients may mean that many cases of depression are misdiagnosed.

Njobvu, Hunt, Pope, and Macfarlane (1999), in a review of pain among in- dividuals from South Asian ethnic minority groups who live in the United Kingdom, observed that they more frequently attend medical clinics and re- port greater musculoskeletal pain. This leads to the question of whether South Asians also suffer greatly from pain in their countries of origin. Hameed and Gibson (1997) provided relevant data in a study of pain com- plaints among Pakistanis living in England and in Pakistan. Those living in England reported more arthritic symptoms and more nonspecific musculo- skeletal pain, particularly among females. There are numerous possible ex- planations including the colder British climate, adjustment to life in a new 170 ROLLMAN

society, and a greater willingness to report pain among the better educated Pakistanis living in Great Britain.

Sabbioni and Eugster (2001) also looked at immigrants, namely, Spanish and Italians living in Switzerland. Earlier studies had found that foreign pa- tients in that country had worse medical outcomes after back injury than Swiss ones, but the migrants often worked in low-paying jobs with in- creased health hazards. There was no difference between groups in pain in- tensity or appraisal, but those immigrants with a high "degree of inclusion" (DI), as measured by type of work permit, age at immigration, and language fluency, were similar to Swiss citizens, and better than immigrants with low DI, with respect to general well-being, functional capacity, and mood.

A population-based study of low back pain (LBP) among about 4,000 Bel- gian adults (Skovron, Szpalski, Nordin, Melot, & Cukier, 1994) found that French Belgians (living in the southern region of Wallonia) had a greater likelihood than Flemish Belgians of ever having had LBP. The authors won- dered whether the data are attributable to "a greater willingness among French speakers to share difficulties with the group in contrast with the more individualistic tendencies of the Flemish population," but they noted that it is also in this region where there are greater economic uncertainties, more heavy industry, and larger companies.

REFLECTIONS

The many studies reviewed here, and the many included in other reviews (Edwards, Fillingim, & Keefe, 2001; Lasch, 2000; Moore & Brodsgaard, 1999; Rollman, 1998), provide a fascinating view of ethnocultural variations in the experience of pain. The scholarly perspectives, nature of pain, research set-tings, variables investigated, and measures employed vary tremendously. Much has been learned, but much is still confusing. The results sometimes go in opposite directions. The samples are often small and based on convenience rather than sound epidemiological principles. Some studies investi- gated laboratory-induced pain whereas others examined acute or chronic clinical pain conditions. Some studies found differences that were statisti- cally significant but likely to be clinically unimportant (such as a pain score of 55.7 for one group and 53.4 for the comparison one), yet they presented their data as confirming the presence of ethnic differences. On a subject as potentially contentious as ethnic or racial differences, it seems best to err on the side of caution.

Only one investigation compared both experimental and endogenous pain in the same individuals, ischemic pain tolerance in African American and White pain clinic patients (Edwards, Doleys, Fillingim, & Lowery, 2001). It is essential to go beyond pain threshold and tolerance measures and look 6. ETHNOCULTURAL VARIATIONS IN PAIN 171

into other measures of pain reactivity and inhibition (Gracely, Petzke, Wolf, & Clauw, 2002; Lautenbacher & Rollman, 1997; Lautenbacher, Rollman, & McCain, 1994; McDermid, Rollman, & McCain, 1996; Staud, Vierck, Cannon, Mauderli, & Price, 2001; Yang, Clark, & Janal, 1991) across ethnic groups.

Many factors, such as the subjects' education, psychological status, and assignment to ethnic categories, varied considerably, as did the train- ing of the interviewers and quality of the assessment tools. The McGill Pain Questionnaire has been carefully validated in numerous languages (e.g., De Benedittis, Massei, Nobili, & Pieri, 1988; Hasegawa et al., 2001; Lazaro et al., 2001; Strand & Ljunggren, 1997), and there have been some interesting uses of the Brief Pain Inventory in various countries (Cleeland et al., 1996), but most other pain and coping measures have not been translated and validated.

Much remains to be learned about the process of acculturation or cul- tural diffusion and how it affects cognitions and behaviors. Bates's (Bates & Edwards, 1992) Ethnicity and Pain Questionnaire, which assesses an individ- ual's ties to his or her ethnic group, indicates that later generations of fami- lies that came to the United States from abroad are likely to have accultur- ated to the culture of the majority group. In her New England sample, Central American, Italian, and Polish groups had the greatest heritage con- sistency, whereas Irish, French Canadians, and, especially, Anglo-Ameri- cans were more assimilated. Bates also assessed the psychological charac- teristics of her sample. Over 80% of the Central American participants reported an external locus of control, in contrast to the Polish group, where only 10% did so. Other studies have also suggested that there may be im- portant cultural differences in responsibility, blame, and other attributional styles which moderate pain expression and suffering (Bachiocco, Credico, & Tiengo, 2002; Eccleston, Williams, & Rogers, 1997).

We assume that pain and emotion mean the same thing in all cultures, but we do not well understand the interaction between semantics and cul- ture. We cannot answer the question, "Even if an Anglo-American has a headache, is the meaning the same as when a Chinese person says he or she has a headache?" (Moore & Brodsgaard, 1999). We are not good at judg- ing facial expressions in other societies. Shioiri, Someya, Helmeste, and Tang (1999) found that Japanese subjects experienced difficulties in recog- nizing some emotional facial expressions and misunderstood others. Rus- sell (1991) provided a detailed review of the literature that indicates both similarities and differences in how emotions are categorized in different lan- guages and cultures.

We should not assume that stoicism is good and expressiveness is bad, although that impression is often taken away from many of the studies reviewed here. One can easily argue the opposite and note that what- ever cultural differences exist are not limited to pain or negative affect 172 ROLLMAN

and that societies that openly express pain also seem to openly express joy or happiness.

We have not clarified the definitions of race and ethnicity, often using them interchangeably. Many scholars challenge the concept of "race-as-biology," arguing that it is, in fact, a social construct (Goodman, 2000). No genetic signature identifies individuals as members of a particular race, and even the term *ethnicity* leads to confusions (Dimsdale, 2000; Morris, 2001). A twin study of laboratory pain sensitivity (MacGregor, Griffiths, Baker, & Spector, 1997) found equally high correlations between both monozygotic and dizygotic twins, leading to the conclusion that "there is no significant genetic contribution to the strong correlation in pressure pain threshold that is observed in twin pairs. These findings reinforce the view that learned patterns of behavior within families are an important determinant of perceived sensitivity to pain" (p. 253).

A recent investigation by Raber and Devor (2002) showed that in rats the characteristics of a cagemate can largely override genetic predispositions to pain behavior, possibly through the influence of stress. They concluded:

Can the presence of social partners affect pain behavior without actually al- tering felt pain? In animals, we have no direct access to information of pain ex- perience except as reflected in behavior. These questions, however, apply equally to humans, including oneself. Could genotype or social convention (including the presence of specific others) change outward pain behavior without actually affecting the "raw feel" of the pain? In humans, the answer is clearly yes, although intuitively one imagines that rodents are less bound by social context (innate or learned), and that pain behavior should therefore more faithfully reflect actual pain sensation. This caveat, however, cannot be ruled out. (p. 149)

Blacks from Africa, the Caribbean, and the United States have markedly different cultural experiences, even within their geographic region. Black, and White, and Asian groups within a single society such as the United States may have enormous differences in child-rearing practices, modeling, and behavioral reinforcement, in addition to whatever genetic factors might distinguish them.

One cannot legitimately lump together individuals from China, Japan, Thailand, the Philippines, Singapore, Korea, Indonesia, and so on and pre-tend that they share a single cultural identity that can be labeled "Asian." Moreover, in our increasingly multicultural societies, we have no easy way to classify the ethnicity of an individual whose parents come from different backgrounds, who has moved from one continent to another, or who has spent critical years being educated abroad.

This is not to say that there are no differences between racial or ethnic groups. Rather, it is to encourage extreme caution in statements based on 6. ETHNOCULTURAL VARIATIONS IN PAIN 173

small numbers in a single community. African Americans living in a major metropolitan area or a university town are not representative of all African Americans and are certainly not representative of all Blacks. We cannot have it both ways with regard to White participants: to proclaim the sup- posed differences between Irish, Italians, Poles, and Scandinavians, and then to randomly lump a cluster of them together as "Whites" or "Cauca- sians" when we need a group to contrast with Blacks or Asians.

It is misleading and potentially detrimental to generalize to all members of one group based on a handful of subjects, often obtained nonrandomly, and who differ from other members of their group in myriad respects. The NIH Guidelines for Inclusion of Women and Minorities as Subjects in Clinical Research (http://grants1.nih.gov/grants/funding/women_min/guidelines_ amended_10_2001.htm) have the laudable goal of ensuring that there is broad inclusion of subjects and "no significant differences of clinical or pub- lic health importance in intervention effect based on sex/gender, racial/eth- nic and/or relevant subpopulation comparisons." This does not mean that a group of researchers conducting a pain study that ends up with 43 White subjects, 9 African Americans, 7 Hispanics, and 5 Asians should present the findings as a study of ethnocultural variations.

To the extent that such research shows that there are ethnocultural dif- ferences in pain or the effects of analgesics or the degree of negative affect or the effects of psychosocial interventions, we have a responsibility to identify the evidence and take appropriate action to modify clinical practice guidelines. At the moment, it seems we are best able to say that all patients should be carefully evaluated and treated with respect. Irrespective of their ethnocultural status, their pain reports must be accepted and all efforts must be undertaken to reduce their pain and distress.

ACKNOWLEDGMENTS

Partial support for the preparation of this chapter came from a research grant from the Natural Sciences and Engineering Research Council of Can- ada. I wish to thank Heather Whitehead for her assistance in obtaining cop- ies of the many papers on the topic of this review.

REFERENCES

Abu-Saad, H. (1984). Cultural group indicators of pain in children. *Maternal-Child Nursing Journal, 13*, 187–196.

Allison, T. R., Symmons, D. P., Brammah, T., Haynes, P., Rogers, A., Roxby, M., & Urwin, M. (2002). Musculoskeletal pain is more generalised among people from ethnic minorities than among white people in Greater Manchester. Annals of the Rheumatic Diseases, 61, 151–156. 174 ROLLMAN

Bachiocco, V., Credico, C., & Tiengo, M. (2002). The pain locus of control orientation in a healthy sample of the Italian population: Sociodemographic modulating factors. *Journal of Cultural Diversity*, *9*, 55–62.

Bates, M. S., & Edwards, W. T. (1992). Ethnic variations in the chronic pain experience. *Ethnicity and Disease, 2*, 63–83.

Berkley, K. J. (1997). Sex differences in pain. Behavioral and Brain Sciences, 20, 371–380. Bill-Harvey, D., Rippey, R. M., Abeles, M., & Pfeiffer, C. A. (1989). Methods used by urban, low-income minorities to care for their arthritis. Arthritis Care and Research, 2, 60–64. Bonham, V. L. (2001). Race, ethnicity, and pain treatment: Striving to understand the causes and solutions to the disparities in pain treatment. Journal of Law, Medicine and Ethics, 29, 52–68. Borghouts, J. A., Koes, B. W., Vondeling, H., & Bouter, L. M. (1999). Cost-of-illness of neck pain in

The Netherlands in 1996. Pain, 80, 629–636. Brena, S. F., Sanders, S. H., & Motoyama, H. (1990). American and Japanese chronic low back pain patients: Cross-cultural similarities and differences. Clinical Journal of Pain, 6, 118–124. Calvillo, E. R., & Flaskerud, J. H. (1991). Review of literature on culture and pain of adults with fo- cus on Mexican-Americans. Journal of Transcultural Nursing, 2, 16–23. Carron, H., DeGood, D. E., & Tait, R. (1985). A comparison of low back pain patients in the United

States and New Zealand: Psychosocial and economic factors affecting severity of disability. *Pain, 21, 17*–89.

Chambers, C. T., & Craig, K. D. (1998). An intrusive impact of anchors in children's faces pain scales. *Pain, 78,* 27–37.

Chambers, C. T., Giesbrecht, K., Craig, K. D., Bennett, S. M., & Huntsman, E. (1999). A comparison of faces scales for the measurement of pediatric pain: Children's and parents' ratings. *Pain, 83*, 25–35.

Cleeland, C. S., Gonin, R., Hatfield, A. K., Edmonson, J. H., Blum, R. H., Stewart, J. A., & Pandya, K. J. (1994). Pain and its treatment in outpatients with metastatic cancer. *New England Journal of Medicine*, *330*, 592–596.

Cleeland, C. S., Nakamura, Y., Mendoza, T. R., Edwards, K. R., Douglas, J., & Serlin, R. C. (1996). Di-mensions of the impact of cancer pain in a four country sample: New information from multi-dimensional scaling. *Pain*, *67*, 267–273.

Craft, R. M., & Bernal, S. A. (2001). Sex differences in opioid antinociception: Kappa and "mixed action" agonists. *Drug and Alcohol Dependence*, 63, 215–228.

Craig, K. D. (1986). Social modeling influences: Pain in context. In R. A. Sternbach (Ed.), *The psy- chology of pain* (2nd ed., pp. 67–95). New York: Raven Press.

Davitz, L. J., Sameshima, Y., & Davitz, J. (1976). Suffering as viewed in six different cultures. *Amer- ican Journal of Nursing, 76*, 1296–1297.

De Benedittis, G., Massei, R., Nobili, R., & Pieri, A. (1988). The Italian Pain Questionnaire. *Pain, 33*, 53–62.

Dimsdale, J. E. (2000). Stalked by the past: The influence of ethnicity on health. *Psychosomatic Medicine, 62*, 161–170.

Eccleston, C., Williams, A. C., & Rogers, W. S. (1997). Patients' and professionals' understandings of the causes of chronic pain: Blame, responsibility and identity protection. *Social Science and Medicine*, 45, 699–709.

Edwards, C. L., Fillingim, R. B., & Keefe, F. (2001). Race, ethnicity and pain. Pain, 94, 133–137. Edwards, R. R., Doleys, D. M., Fillingim, R. B., & Lowery, D. (2001). Ethnic differences in pain toler- ance: Clinical implications in a chronic pain population. Psychosomatic Medicine, 63, 316–323. Edwards, R. R., & Fillingim, R. B. (1999). Ethnic differences in thermal pain responses. Psychoso- matic Medicine, 61, 346–354. Fillingim, R. B. (2000). Sex, gender, and pain: Women and men really are different. Current Re- views of Pain, 4, 24–30. Flores, G., Abreu, M., Schwartz, I., & Hill, M. (2000). The importance of language and culture in pe- diatric care: Case studies from the Latino community. Journal of Pediatrics, 137, 842–848. 6. ETHNOCULTURAL VARIATIONS IN PAIN 175

Gil, K. M., Wilson, J. J., Edens, J. L., Webster, D. A., Abrams, M. A., Orringer, E., Grant, M., Clark, W. C., & Janal, M. N. (1996). Effects of cognitive coping skills training on coping strategies and experimental pain sensitivity in African American adults with sickle cell disease. *Health Psy- chology, 15*, 3–10.

Goodman, A. H. (2000). Why genes don't count (for racial differences in health). *American Jour- nal of Public Health, 90*, 1699–1702.

Gracely, R. H., Petzke, F., Wolf, J. M., & Clauw, D. J. (2002). Functional magnetic resonance imag- ing evidence of augmented pain processing in fibromyalgia. *Arthritis and Rheumatism, 46*, 1333–1343.

Hadjistavropoulos, T. (1999). Chronic pain on trial: The influence of litigation and compensation on chronic pain syndromes. In A. R. Block, E. F. Kremer, & E. Fernandez (Eds.), *Handbook of pain syndromes* (pp. 59–76). Mahwah, NJ: Lawrence Erlbaum Associates.

Hameed, K., & Gibson, T. (1997). A comparison of the prevalence of rheumatoid arthritis and other rheumatic diseases amongst Pakistanis living in England and Pakistan. *British Journal of Rheumatology, 36,* 781–785.

Hasegawa, M., Hattori, S., Mishima, M., Matsumoto, I., Kimura, T., Baba, Y., Takano, O., Sasaki, T., Kanemura, K., Senami, K., & Shibata, T. (2001). The McGill Pain Questionnaire, Japanese ver- sion, reconsidered: Confirming the theoretical structure. *Pain Research and Management*, *6*, 173–180.

Ho, K. H., & Ong, B. K. (2001). Headache characteristics and race in Singapore: Results of a ran-domized national survey. *Headache, 41*, 279–284.

Honeyman, P. T., & Jacobs, E. A. (1996). Effects of culture on back pain in Australian aboriginals. *Spine, 21*, 841–843.

Hutubessy, R. C., van Tulder, M. W., Vondeling, H., & Bouter, L. M. (1999). Indirect costs of back pain in the Netherlands: A comparison of the human capital method with the friction cost method. *Pain, 80*, 201–207.

Jordan, M. S., Lumley, M. A., & Leisen, J. C. (1998). The relationships of cognitive coping and pain control beliefs to pain and adjustment among African-American and Caucasian women with rheumatoid arthritis. *Arthritis Care and Research, 11*, 80–88.

Karnad, A. B. (1994). Treating cancer pain. New England Journal of Medicine, 331, 199. Kodiath, M. F., & Kodiath, A. (1992). A comparative study of patients with chronic pain in India and the United States. Clinical Nursing Research, 1, 278–291. Lasch, K. E. (2000). Culture, pain, and culturally sensitive pain care. Pain Management Nursing, 1, 16–22. Lautenbacher, S., & Rollman, G. B. (1997). Possible deficiencies of pain modulation in fibro- myalgia. Clinical Journal of Pain, 13, 189–196. Lautenbacher, S., Rollman, G. B., & McCain, G. A. (1994). Multi-method assessment of experimen- tal and clinical pain in patients with fibromyalgia. Pain, 59, 45–53. Lazaro, C., Caseras, X., Whizar-Lugo, V. M., Wenk, R., Baldioceda, F., Bernal, R., Ovalle, A.,

Torrubia, R., & Banos, J. E. (2001). Psychometric properties of a Spanish version of the McGill Pain Questionnaire in several Spanish-speaking countries. *Clinical Journal of Pain*, *17*, 365–374.

LeResche, L. (1997). Epidemiology of temporomandibular disorders: Implications for the investi- gation of etiologic factors. *Critical Reviews in Oral Biology and Medicine*, 8, 291–305.

Levenstein, S., Li, Z., Almer, S., Barbosa, A., Marquis, P., Moser, G., Sperber, A., Toner, B., & Drossman, D. A. (2001). Cross-cultural variation in disease-related concerns among patients with inflammatory bowel disease. *American Journal of Gastroenterology, 96*, 1822–1830.

Lipton, J. A., & Marbach, J. J. (1984). Ethnicity and the pain experience. Social Science and Medi- cine, 19, 1279–1298.

Litcher, L., Bromet, E., Carlson, G., Gilbert, T., Panina, N., Golovakha, E., Goldgaber, D., Gluzman, S., & Garber, J. (2001). Ukrainian application of the Children's Somatization Inventory: Psy- 176 ROLLMAN

chometric properties and associations with internalizing symptoms. Journal of Abnormal Child Psychology, 29, 165–175.

Macario, A., Scibetta, W. C., Navarro, J., & Riley, E. (2000). Analgesia for labor pain: A cost model. *Anesthesiology, 92*, 841–850.

MacGregor, A. J., Griffiths, G. O., Baker, J., & Spector, T. D. (1997). Determinants of pressure pain threshold in adult twins: Evidence that shared environmental influences predominate. *Pain, 73*, 253–257.

McCracken, L. M., Matthews, A. K., Tang, T. S., & Cuba, S. L. (2001). A comparison of blacks and whites seeking treatment for chronic pain. *Clinical Journal of Pain.* 17, 249–255.

McCracken, L. M., Zayfert, C., & Gross, R. T. (1992). The Pain Anxiety Symptoms Scale: Develop- ment and validation of a scale to measure fear of pain. *Pain*, *50*, 67–73.

McDermid, A. J., Rollman, G. B., & McCain, G. A. (1996). Generalized hypervigilance in fibro- myalgia: Evidence of perceptual amplification. *Pain, 66,* 133–144.

McGrath, P. A. (1995). Pain in the pediatric patient: Practical aspects of assessment. *Pediatric An- nals, 24*, 126–128.

McGrath, P. A., Speechley, K. N., Seifert, C. E., Biehn, J. T., Cairney, A. E., Gorodzinsky, F. P., Dickie, G. L., McCusker, P. J., & Morrissy, J. R. (2000). A survey of children's acute, recurrent, and chronic pain: Validation of the pain experience interview. *Pain*, *87*, 59–73.

McGrath, P. J., Rosmus, C., Camfield, C., Campbell, M. A., & Hennigar, A. (1998). Behaviours care- givers use to determine pain in non-verbal, cognitively impaired individuals. *Developmental Medicine and Child Neurology, 40*, 340–343.

Mogil, J. S., Chesler, E. J., Wilson, S. G., Juraska, J. M., & Sternberg, W. F. (2000). Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. *Neuro-science and Biobehavioral Reviews, 24*, 375–389.

Moore, R. (1990). Ethnographic assessment of pain coping perceptions. *Psychosomatic Medicine, 52*, 171–181.

Moore, R., & Brodsgaard, I. (1999). Cross-cultural investigations of pain. In I. K. Crombie, P. R. Croft, S. J. Linton, L. LeResche, & M. Von Korff (Eds.), *Epidemiology of pain* (pp. 53–80). Seattle, WA: IASP Press.

Morris, D. B. (2001). Ethnicity and pain. Pain: Clinical Updates, 9, 1–4. Nayak, S., Shiflett, S. C., Eshun, S., & Levine, F. M. (2000). Culture and gender effects in pain beliefs and the prediction of pain tolerance. Cross-Cultural Research, 34, 135–151. Nelson, D. V., Novy, D. M., Averill, P. M., & Berry, L. A. (1996). Ethnic comparability of the MMPI in pain patients. Journal of Clinical Psychology, 52, 485–497. Ng, B., Dimsdale, J. E., Rollnik, J. D., & Shapiro, H. (1996). The effect of ethnicity on prescriptions for patient-controlled analgesia for post-operative pain. Pain, 66, 9–12. Ng, B., Dimsdale, J. E., Shragg, G. P., & Deutsch, R. (1996). Ethnic differences in analgesic consumption for postoperative pain. Psychosomatic Medicine, 58, 125–129. Njobvu, P., Hunt, I., Pope, D., & Macfarlane, G. (1999). Pain amongst ethnic minority groups of

South Asian origin in the United Kingdom: A review. Rheumatology (Oxford), 38, 1184–1187. Pfefferbaum, B., Adams, J., & Aceves, J. (1990). The influence of culture on pain in Anglo and His- panic children with cancer. Journal of the American Academy of Child and Adolescent Psychia- try, 29, 642–647.

Raber, P., & Devor, M. (2002). Social variables affect phenotype in the neuroma model of neuropathic pain. *Pain, 97*, 139–150.

Rathore, S. S., Lenert, L. A., Weinfurt, K. P., Tinoco, A., Taleghani, C. K., Harless, W., & Schulman, K. A. (2000). The effects of patient sex and race on medical students' ratings of quality of life. *American Journal of Medicine*, 108, 561–566.

Riley, J. L. III, Robinson, M. E., Wise, E. A., Myers, C. D., & Fillingim, R. B. (1998). Sex differences in the perception of noxious experimental stimuli: A meta-analysis. *Pain, 74*, 181–187.

Rollman, G. B. (1998). Culture and pain. In S. S. Kazarian & D. R. Evans (Eds.), Cultural clinical psy-chology: Theory, research, and practice (pp. 267–286). New York: Oxford University Press. 6. ETHNOCULTURAL VARIATIONS IN PAIN 177

Rollman, G. B., & Lautenbacher, S. (2001). Sex differences in musculoskeletal pain. *Clinical Jour- nal of Pain, 17*, 20–24.

Rosmus, C., Johnston, C. C., Chan-Yip, A., & Yang, F. (2000). Pain response in Chinese and non- Chinese Canadian infants: Is there a difference? *Social Science and Medicine*. *51*, 175–184.

Russell, J. A. (1991). Culture and the categorization of emotions. *Psychological Bulletin*, 110, 426–450.

Sabbioni, M. E., & Eugster, S. (2001). Interactions of a history of migration with the course of pain disorder. *Journal of Psychosomatic Research*, *50*, 267–269.

Sanders, S. H., Brena, S. F., Spier, C. J., Beltrutti, D., McConnell, H., & Quintero, O. (1992). Chronic low back pain patients around the world: Cross-cultural similarities and differences. *Clinical Journal of Pain, 8*, 317–323.

Sargent, C. (1984). Between death and shame: Dimensions of pain in Bariba culture. Social Sci- ence and Medicine, 19, 1299–1304.

Sheffield, D., Biles, P. L., Orom, H., Maixner, W., & Sheps, D. S. (2000). Race and sex differences in cutaneous pain perception. *Psychosomatic Medicine*, *62*, 517–523.

Sheffield, D., Kirby, D. S., Biles, P. L., & Sheps, D. S. (1999). Comparison of perception of angina pectoris during exercise testing in African-Americans versus Caucasians. *American Journal of Cardiology, 83*, 106–108, A8.

Sheiner, E. K., Sheiner, E., Shoham-Vardi, I., Mazor, M., & Katz, M. (1999). Ethnic differences influence care giver's estimates of pain during labour. *Pain, 81*, 299–305.

Shioiri, T., Someya, T., Helmeste, D., & Tang, S. W. (1999). Misinterpretation of facial expression: A cross-cultural study. *Psychiatry and Clinical Neurosciences*, *53*, 45–50.

Skovron, M. L., Szpalski, M., Nordin, M., Melot, C., & Cukier, D. (1994). Sociocultural factors and back pain. A population-based study in Belgian adults. *Spine*, *19*, 129–137.

Staud, R., Vierck, C. J., Cannon, R. L., Mauderli, A. P., & Price, D. D. (2001). Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. *Pain*, *91*, 165–175.

Sternbach, R. A., & Tursky, B. (1965). Ethnic differences among housewives in psychophysical and skin potential responses to electric shock. *Psychophysiology, 1*, 241–246.

Strand, L. I., & Ljunggren, A. E. (1997). Different approximations of the McGill Pain Questionnaire in the Norwegian language: A discussion of content validity. *Journal of Advanced Nursing.* 26. 772–779.

Thomas, V. J., & Rose, F. D. (1991). Ethnic differences in the experience of pain. Social Science and Medicine, 32, 1063–1066.

Todd, K. H., Samaroo, N., & Hoffman, J. R. (1993). Ethnicity as a risk factor for inadequate emer- gency department analgesia. *Journal of the American Medical Association, 269*, 1537–1539.

Turk, D. C., Okifuji, A., Sinclair, J. D., & Starz, T. W. (1996). Pain, disability, and physical function- ing in subgroups of patients with fibromyalgia. *Journal of Rheumatology*, 23, 1255–1262.

Unruh, A. M. (1996). Gender variations in clinical pain experience. Pain, 65, 123–167. Villarruel, A. M., & Denyes, M. J. (1991). Pain assessment in children: Theoretical and empirical validity. ANS. Advances in Nursing Science, 14, 32–41. Waza, K., Graham, A. V., Zyzanski, S. J., & Inoue, K. (1999). Comparison of symptoms in Japanese and American depressed primary care patients. Family Practice, 16, 528–533. Wise, E. A., Price, D. D., Myers, C. D., Heft, M. W., & Robinson, M. E. (2002). Gender role expecta- tions of pain: Relationship to experimental pain perception. Pain, 96, 335–342. Wolff, B. B. (1985). Ethnocultural factors influencing pain and illness behavior. Clinical Journal of

Pain, 1, 23–30. Yang, J. C., Clark, W. C., & Janal, M. N. (1991). Sensory decision theory and visual analogue scale indices predict status of chronic pain patients six months later. Journal of Pain and Symptom Management, 6, 58–64.

Zborowski, M. (1969). People in pain. San Francisco: Jossey-Bass. Zola, I. K. (1966). Culture and symptoms—An analysis of patients' presenting complaints. Ameri- can Sociological Review, 31, 615–630. 178 ROLLMAN

This chapter explores how individuals respond to pain in the context of the wider social and cultural environment. Individual differences are discussed within the framework of a model of the psychological and social factors im- plicated in the generation and maintenance of a chronically painful illness (Skevington, 1995). This model is described and elaborated in the light of emerging empirical evidence in the field of pain to address the question of what determines how people respond to pain.

The medical model of disease is directed at understanding underlying pathology to obtain a diagnosis. The explanatory power of the medical model is limited when considering the response to tissue damage, which is complex and multifaceted. Fordyce (1976) argued that this model is inap- propriate and ineffective when dealing with chronically painful diseases. Evidence to support this view comes from work showing that magnetic res- onance imaging (MRI) scans show little statistical association with subjec- tive reports of low back pain (Deyo, 1994). Although the case is equivocal, as recent research using fMRI imaging of the brain has shown that it is pos- sible to isolate the brain activity associated with the pain response (e.g., Porro, Cettolo, Francescato, & Baraldi, 1998). Despite these new develop- ments, the work of Deyo supports the notion that pain cannot be under- stood within the limits of the medical model that has tended to ignore the social, psychological, and cognitive variables that affect the way that indi- vidual's respond to pain.

CHAPTER7

Social Influences on Individual Differences in Responding to Pain

Suzanne M. Skevington Victoria L. Mason

Department of Psychology, University of Bath 179

Two areas have dominated the debate about the role of individual differ- ences in understanding and managing pain until quite recently (Skevington, 1995). The first would be personality psychology, where the search for per- sonality dispositions toward pain lasted several decades. Here the ap- proach tended to use standardized questionnaires, like the Minnesota Mul- tiphasic Personality Inventory (MMPI; Hathaway & McKinley, 1943) and its successor, the MMPI-2, to investigate stable dispositions, for example, the pain-prone personality, and to look at relationships between chronic pain and neurosis, and other types of psychopathology. The weakness of this ap- proach was that it provided little information about how best to develop suitable treatments where other approaches, discussed later in this chap- ter, have succeeded. The personality approach also assumes that people have robust and enduring characteristics, which are not readily amenable to therapeutic interventions that require changes in behavior and lifestyle. The success of psychologically based interventions indicates that this as- sumption was unwarranted. Furthermore, it is clear from research and practice that relatively few pain sufferers fit these categories, and that for the majority, a psychiatric approach is quite inappropriate and can even be an impediment to rehabilitation. For example, the MMPI fails to predict self- reported outcomes of chronic lower back pain patients attending a pain management program (Chapman & Pemberton, 1994). Other approaches have had more success: for example, Main (1984) reported that levels of dis-ability, current stress, and illness behavior are better predictors of out- come than either personality traits or pain intensity ratings. Furthermore, the persistent hunt for a personality disposition toward pain—for example, the rheumatoid personality—has hampered the creative process in search- ing for other lines of suitable psychological therapy (Skevington, 1995).

During the time span in which this search for stable personality features was undertaken, the area of individual differences was radically recon- ceptualized. Following the work of Mischel (1973, 1977), the orientation of personality theory changed from an exclusive and focused view of the per- son (or for ecological psychologists, the situation alone), to a much more holistic consideration of the person within their situation. Mischel pro- posed an interactionist model, whereby personality is influenced and mod- erated by a variety of external, environmental influences. He rejected the earlier idea of global personality traits, in favor of the role of person vari- ables in predicting behavior. Indeed, Mischel argued that it was not the ex- istence of individual differences per se that were important but their na- ture, causes, consequences, and utility (Mischel, 1968), mirroring the need to understand the person within the situation. This interactionist perspec- tive of individual differences is utilized in this chapter, and sees the individ- ual not as a slave to the dictates of the personality or simply a product of 180 SKEVINGTON AND MASON

environmental forces but in a more active and dynamic role, integrating di- verse information from these two sources.

The second area of investigation arises from behaviorism, out of which social learning theory was developed. Unlike studies of personality, behav- ioral approaches are process oriented, taking a fleeting glance at people's histories but focusing essentially on the environment in which they live and how their experiences and learning, in particular, shape their behavior as pain sufferers. Principles of reinforcement and punishment initially articu- lated by Fordyce (1976) have been successfully applied and extended in cognitive behavior therapy programs to help those with chronic pain deal with their disability. As family and health professionals are involved in pro- viding reinforcement and punishment for pain behavior, the approach is necessarily "social" in orientation. However, positive reinforcements and punishments form only a small portion of the many events that encompass our social relationships with family, friends, colleagues, and so on. Al- though a neo-behaviorist approach has adopted a rationalist, cognitive style in adapting Fordyce's work, only relatively recently has the model ex- plicitly incorporated and addressed important emotional factors that di- rectly affect the experience, reporting, and management of pain. Likewise, the acknowledgment of social influences on pain behavior is present, but as yet, this is only selectively elaborated within the model, and hence in the model's clinical application.

Critical developments in understanding and managing pain in acute and chronic settings have also arisen from the application of the gate control theory (GCT) of pain (Melzack & Wall, 1965, 1982) and the subsequent dem- onstration of the plasticity of the nervous system. These advances in clari- fying mechanisms and opening new avenues for pain relief are addressed extensively elsewhere (see chap. 1, this volume), but here we view them as representing important historical developments in understanding the bio- logical basis of how and why individuals respond to pain, and in explaining the attenuation and persistence of pain. This perspective provides a foun- dation for understanding the role of the biopsychosocial model in the study of pain and pain treatments (see chap. 2, this volume). This systems theory approach (Engelbart & Vranken, 1984) has been used by health psycholo- gists to develop comprehension and, from this perspective, psychological interventions suited to many different health problems and diseases. A so- cial model of pain based on research evidence can be developed within this framework, by organizing social elements that affect and are affected by pain and then using the model to direct how treatment is conducted. Once the model is established, it can be reused to provide guidance on how ther- apeutic elements can be systematically changed and tested, with the aim of improving outcomes. In short, there is nothing as practical as a good the- ory, as GCT illustrates. 7. SOCIAL INFLUENCES ON PAIN RESPONSE 181

In this systems theory approach, all levels of organization are linked to each other hierarchically, so changes at one level will effect changes at others. This way, micro-level processes, for example, changes in heart rate, are nested in those at a macro level—for example, stereotypic profes- sional views about people with chronic back pain. Consequently, changes at a micro level can have macro-level effects, and vice versa. Because bio- logical processes connected with pain are commonly at the micro level, and psychological and social processes are more likely to be macro-level phenomena, it requires commitment to multidisciplinary thinking to be able to select and use this diverse multivariate information appropriately and effectively in problem solving. Work to date on biopsychosocial mod- els already points to the urgent need to understand and address all three components in these models, if we are to create successful treatments (Taylor, 1999).

We argue here that pain researchers have been very successful with the application of biological approaches to pain relief (McQuay & Moore, 1998), and to some extent with psychological approaches, such as cognitive be- havior therapy. But the contribution of social factors to the study of pain is poorly defined, weakly elaborated, and infrequently conducted, compared to other types of research on pain. It will be necessary to show which social factors directly and significantly affect and exacerbate pain if this approach is to gain acceptance as an important, independent, and equal contributor to the biopsychosocial triad. Important social factors will need to be properly evaluated for their potential to generate new types of treatment or styles of management. On the basis of existing evidence about the effective- ness of the model, it is increasingly clear that an integration of sociocultural factors is essential to achieving positive outcomes, relieving suffering, and diffusing action from the narrow medicalization of pain, in ongoing pro- grams of care.

A MODEL OF THE PSYCHOSOCIAL FACTORS IMPLICATED IN THE ETIOLOGY AND MAINTENANCE OF CHRONICALLY PAINFUL ILLNESS

Although health professionals who work in pain research and practice have become pioneers in the design and running of smoothly functioning multi- disciplinary teams, it is arguable that when examining the key social influ- ences that affect pain and pain behavior, we have been slow to draw on contributions from the wider range of social science disciplines available, and to extend and apply them to improve our understanding of the pain re- sponse and its management. The model we present pays more attention to 182 SKEVINGTON AND MASON

the social factors that affect pain, illness, and treatments, with the aim of il- luminating the inherently complex interaction between a pain sufferer and their psychosocial environment. Furthermore, it is not possible to do this properly without taking a multidisciplinary approach but within the per- spective of a different but overlapping set of disciplines.

The model developed by Skevington (1995) proposes four levels of un- derstanding that provide a framework within which the social aspects of chronic pain may be better appreciated, and this is shown in Fig. 7.1. Level 1 defines the individual processes affected by social influences, such as per- ceived bodily sensations. In contrast, Level 2 characterizes salient interper- sonal behaviors, in particular, that person's relationship with significant others. Level 3 defines group and intergroup behaviors such as group be- liefs, experience, and influences, whereas Level 4 encompasses some of the higher order factors that affect sociopsychological processing, such as health ideology and health politics. Although reductionist, this model aims to understand the processes within each level and the relationships between levels, rather than assuming that each level can be better explained by looking at the level below. The model broadens our conceptualization of chronic pain by removing the individual from his or her social and cultural "black box." For the detailed empirical support for each element of this model, see Skevington (1995). The aim here is to extend the model and elab- orate it through a discussion of individual differences.

Level 1: Individual Behaviors Affected by Social Processes

Individual behaviors affected by social processes include a multitude of subjective factors including perceived bodily sensations, the perceived se- verity of symptoms, lifetime personal and social schema, social and per- sonal emotions, individual representations, and personal motivation. This level of analysis is probably most familiar to those who work on chronic pain, and with pain patients where internal biological and psychological fac- tors have been investigated at a micro level. Although sensations superfi- cially appear to be physiologically determined, there is now extensive cross-cultural evidence to show that pain thresholds and pain tolerance lev- els are influenced by a wide variety of different social and cultural factors (Bates, 1987; McCracken, Matthews, Tang, & Cuba, 2001; Nayak, Shiflett, Eshun, & Levine, 2000; Zborowski, 1969; also see chap. 6, this volume). For instance, in the Hispanic culture, stoicism is highly prized (Juarez, Ferrell, & Bornemann, 1998), whereas in other cultures describing the pain in a vivid and extended detail is much more the norm (Zborowski, 1969). Reporting symptoms is known to be unreliable (Pennebaker, 1982), even when allow- ing for familial and social biasing influences that further explain the cross- 7. SOCIAL INFLUENCES ON PAIN RESPONSE 183

FIG. 7.1. Model of the psychosocial processes and social factors implicated in the generation and maintenance of a chronically painful illness. From Skevington (1995). Psychology of Pain. Chichester: John Wiley and Sons. Copyright © 1995. Adapted with permission. 184

cultural differences observed. Mechanic (1986) underscored this view when he suggested that sociocultural and sociopsychological factors affect the reporting of pain and illness. Indeed, according to Mechanic, cultural differ- ences cannot be explained by learning and personality alone, but also re- quire an appreciation of the sector of society to which people belong. Me- chanic's observation raises interesting questions about how those working in pain might better explore social identity with their patients, and at the same time provides a link to a higher level of analysis in this model.

Pain severity also affects decisions about whether, when, and from whom to seek health care, and consequently has economic as well as social implica- tions for mechanisms of health care delivery (Foster & Mallik, 1998). How- ever, contrary to popular belief, people do not always seek help for their health when they are "sickest," but are more likely to do this when the symp- toms interfere with their lives (Zola, 1973). Indeed, the point at which some- body obtains professional help may in some cases be a factor contributing to the transition from mild to severe pain, if the delay is considerable. Concep- tually, it is worth considering the relationship between acute anxiety and depression, and the perceived severity of symptoms, as this combination is known to be a springboard to seeking help from others, whether this is self- referral to health professionals (Ingham & Miller, 1979), the utilization of lay networks, or help from alternative, spiritual, and other sources.

The way that individual pain patients behave is guided by how they see themselves, the way they organize knowledge about their bodies, the na- ture of the pain, the availability and accessibility of care, and information that determines whether treatments prescribed are acceptable. Abstract concepts, or schemata, are theories that pain patients hold about pain and treatment that influence the ways in which they selectively absorb new knowledge, remember it, and make use of it, to make sense of their painful experience and to inform decision making. Reality is structured and simplified, and these schemata mix and interpret past and present experience. Investigating and systematically recording the nature of these key concepts, and how those about the painful experience are stored and organized in the memory, allows us to better understand how patients think and therefore more readily anticipate what they may or may not do as a consequence. This is particularly important when trying to maximize concordance with medical advice or in outlining pain management strategies. By doing this, the twin goals of increasing self-efficacy and improving outcomes may be better achieved (Jensen, Turner, & Romano, 1991).

Emotions and mood states like depression are influenced by our social surroundings. Social support research shows how complex this process may be (e.g., Jensen et al., 2002). Moods are worth studying not only be- cause they relate to the affective qualities of pain that are more commonly expressed by those in chronic pain (Skevington, 1995) but also because 7. SOCIAL INFLUENCES ON PAIN RESPONSE 185

they are firmly grounded in coping behaviors, or shortage of them. In a study of humor related to pain and disability, Skevington and White (1998) found that patients with chronic arthritis (n= 100) reported they could readily change their own mood and that of others by using humor and jokes to deflect the social unease caused by visible evidence of their pain and disability. Linking into levels 2 and 3, the use of humor sets others more at their ease in this socially uncomfortable situation. Such studies re- veal the potential for people to affect their social environment by adopting particular strategies. These studies could have important implications for managing social relationships while simultaneously managing pain.

Given the large body of literature illustrating the clear link between pain and depression (e.g., Ericsson et al., 2002; Maxwell, Gatchel, & Mayer, 1998; Rudy, Kerns, & Turk, 1988; Turk & Okifuji, 1994), this must also be seen as a key factor in the understanding of individual differences in pain. In a recent systematic review and meta-analysis, Dickens and colleagues looked at the strength of the relationship between rheumatoid arthritis (RA) and depression (Dickens et al., 2002). Examining 12 independent studies comparing depression in RA patients and healthy controls, they found that depression was more common in RA patients and could be at- tributed to the level of pain.

Other important psychological concepts include anxiety and fear avoid- ance (e.g., Fritz, George, & Delitto, 2001; George, Fritz, & Erhard, 2001; Vlaeyen & Linton, 2000), hypervigilance (e.g., Lorenz, 1998; Peters, Vlaeyen, & Kunnen, 2002), catastrophizing (e.g., Vlaeyen, delong, Geilen, Heuts, & van Breukelen, 2001), worry (e.g., Eccleston, Crombez, Aldrich, & Stannard, 2001), and the emotional response to pain that is increasingly being employed (see chap. 2, this volume) to explain observations in the clinic. The fear—avoidance model has received considerable empirical attention recently, particularly in the development and maintenance of chronic mus- culoskeletal pain. Vlaeyen and Linton (2000) extensively reviewed the litera- ture on fear—avoidance, the concept of fear of pain and methods of assess- ing pain-related fear. They concluded that the bulk of evidence pointed toward the importance of pain-related fear in explaining the differences ob- served in physical performance and self-reports of disability. Related to this concept is catastrophizing, where pain is interpreted as threatening. The perception of threat may be a precursor to fearing pain, and the conse- quent hypervigilance to bodily sensations (Vlaeyen & Linton, 2000). In a re- cent study, Sinclair (2001) examined the predictors of catastrophizing in a study of 90 female RA patients. Dispositional pessimism, passive pain cop- ing, venting, and arthritis helplessness were found to predict catastrophizing (Sinclair, 2001). Sullivan and colleagues theoretically examined the concept of catastrophizing and suggested that social factors were impli- cated in the development and subsequent maintenance of catastrophizing 186 SKEVINGTON AND MASON

(Sullivan et al., 2001). Understanding these predictors underscores the sus- ceptibility of different individuals to respond to pain in particular styles.

The images or representations that patients hold about illness and dis- ability are very important in their interpretation of pain sensations. Repre- sentations are a form of mental picture and several versions have been identified. Spatial representations for instance, provide images about how the body is organized in space. Looking at representations held by phan- tom limb patients, Katz and Melzack (1990) found them to be very elabo- rate. For example, amputated fingers felt as though they still had their rings on, many months later. People also have linear representations of events such as a sequential pattern of knowledge about their pain treatment or the history of their family's reaction to their pain, all of which impact on an indi- vidual's understanding of their current pain state. Furthermore, DeVellis and colleagues have shown that people with arthritis hold illness schemas that are relevant and meaningful not only for patients themselves, but also for health professionals (DeVellis, Patterson, Blalock, Renner, & DeVellis, 1997). These shared representations form part of the language used to ex- press painful experience and facilitate communication between patients, health professionals, and significant others.

Among personal processes subject to social influence, there is the indi-vidual motivation to seek relief from suffering, obtain a clear diagnosis, re- duce disability, and find a cure. Pain is a "powerful motivator" (Melzack & Dennis, 1978) and is a common reason for seeking medical help. Patients also prioritize their needs; for example, is the need to have a family holiday right now greater than the need to receive an epidural injection for low back pain, perhaps? Motivation to do something about the pain, however much such actions may lack an evidence base, is still a good predictor of treatment outcome (Grahn, Ekdahl, & Borgquist, 2000). Conceptually, moti-vation is also important in looking at self-efficacy, which explains the confi- dence that individuals have that they will be able to carry out a particular action such as seeking pain relief, or maintaining self-management strate- gies. Self-efficacy is explored in Level 2 of the model.

Although it would be impossible to be comprehensive in this very large and broad-ranging field, there are several other key biopsychosocial factors that we may consider in any analysis of individual differences at Level 1. The identification of characteristics such as the monitoring or blunting of attention, and health locus of control (HLC), have shown promise in under- standing the individual's response to pain. During monitoring, there is a tendency to be highly attentive to threatening information, where the per- son selects salient information and focuses narrowly on bodily sensations. Blunting, in contrast, is used to ignore intruding sensations and to find dis- traction from them. Miller developed the Monitoring and Blunting Style Scale (Miller, 1987), originally to measure what appeared to be a personality 7. SOCIAL INFLUENCES ON PAIN RESPONSE 187

trait but is now better conceptualized as a cognitive style that is situa- tionally based. Concepts of monitoring and blunting have been used exten- sively to understand and explain different responses to pain. Miller, Brody, and Summerton (1988) found that those who were both high monitors and low blunters were highly likely to see their doctors faster, had mild prob- lems, and did not improve much, but had the same level of distress, discom- fort, and dysfunction as other people. So studies of cognitive style provide a somewhat different but equally informative set of explanations for individ- ual reporting behavior than the more usual research on emotions.

Health locus of control (HLC) concerns the extent to which an individual sees health events as controllable by themselves or others (Wallston & Wallston, 1982). Measures of pain locus of control—for example, the Beliefs in Pain Control Questionnaire (Skevington, 1990)—have been standardized to assess under what circumstances a person in pain tends to adopt an in-ternal or external locus of control. Conant has found an association be-tween internal health locus of control and decreased pain perceptions in patients with spinal cord injury (Conant, 1998). HLC has also been used to explain patterns of analgesic use (Reynaert, Janne, & Delire, 1995). More generally, perceptions of control and control of pain are central to the expe-rience of pain and understanding the response to pain. For example, Affleck and his colleagues (Affleck, Tennen, Pfeiffer, & Fifield, 1987) in a study of rheumatoid arthritis patients found that those who perceived that their ill-ness was predictable believed that they were in control of their symptoms and the course of their disease. Furthermore, beliefs about control over specific symptoms were more important than control over the course of the disease, and positive moods were associated with those who felt that they had more control over their symptoms than their physicians. More re-cently, a study of patients undergoing abdominal hysterectomy, by Thom-as, Heath, Rose, and Flory (1995), compared those receiving patient-controlled analgesia (PCA) with those receiving intramuscular injections (IMI). PCA gave significantly greater pain control, particularly among those with high levels of state anxiety. Furthermore, there were some direct cost implications, as PCA patients also required less analgesia and were discharged earlier than IMI patients. This study highlights both the importance of psy-chological variables associated with pain control and the advantages of al-lowing patients to take control of their analgesic use.

The field of psychoneuroimmunology (PNI) has been invaluable in ce-menting together the biopsychosocial model. In particular, it has shed new light on the relationship between emotions and the immune response, crossing the previous gap in the dualistic tradition of the separateness of mind and body. Evidence is emerging for the immunosuppressive effects of pain (Cheever, 1999; Kremer, 1999) that has important implications for the health of individuals with pain and highlights the complex interplay of fac- 188 SKEVINGTON AND MASON

tors that mediate the painful experience. Kiecolt-Glaser and colleagues re- cently reviewed considerable evidence and confirmed that stress delays wound healing (Kiecolt-Glaser, Page, Marucha, MacCullum, & Glaser, 1998). As pain is a prominent stressor, this has implications for the induction and perpetuation of chronic pain at physiological and neurological levels. Other research has shown that interpersonal stress is associated with an increase in disease activity in rheumatoid arthritis patients (Zautra et al., 1997), which points to the role of social factors in the inflammatory process. Taken together, this research highlights that the response to pain and its consequences can be influenced by factors external to the individual, and that this complex relationship has only just begun to be unrayeled.

Aging and pain have also received empirical attention in recent years. Li and colleagues looked at whether pain perception differed between older and younger adults (Li, Greenwald, Gennis, Bijur, & Gallagher, 2001). Pa- tients requiring a painful procedure—in this case, the insertion of an intrave- nous catheter during attendance at an emergency department—were asked to rate their pain on a visual analogue scale. The results showed that adults over 65 years reported significantly less pain than younger people, and this result was not influenced by gender. However, this study is unable to dem- onstrate whether such differences could be explained by a decline in sensitivity to pain or a reduced willingness to complain of pain, which may have implications for treatment. Having identified differences in the response to pain by people of different age groups, it follows that this is an important area of inquiry and should be considered when approaching the manage- ment of pain.

Other influences on the response to pain derive from the complex inter- play of biological, hormonal, molecular, and genetic determinants, which are important at Level 1 of this model for understanding pain (see chap. 1 and chap. 3, this volume). Recently there has been an explosion of interest in the genetic mechanisms underlying pain, although this area of research is beyond the scope and direction of this chapter. Research examining these features of pain is well documented elsewhere; for example, for ge- netic variation see Hakim, Cherkas, Zayat et al. (2002), Mogil and Adhikari (1999), and Kest, Wilson, and Mogil (1999), and on the congenital insensitivity to pain, Indo (2002). Furthermore, these types of research are beginning to indicate that individuals respond differently to analgesics, and there has been some work to elucidate the possible mechanisms involved (Amanzio, Pollo, Maggi, & Benedetti, 2001).

Level 2: Interpersonal Behavior

Current and future expectations about pain, illness, treatments, and a "cure," link Level 1 to Level 2 of the model. Level 2 is characterized by be-liefs about pain and treatment, the context of encounters, and social atmo-7. SOCIAL INFLUENCES ON PAIN RESPONSE 189

sphere and motivation. Beliefs about pain and treatment are socially shared, and include the nature of pain, illness, and disability, attributions about their causation, the efficacy of particular interventions, self-efficacy in implementing treatment, and aspects of pain control, such as choice and predictability. The social context of interpersonal encounters encompasses the social relationships with family, significant others, friends, acquain- tances, workmates, colleagues, health professionals, and alternative practi- tioners. Social motivation incorporates social support, the need for ap- proval of actions to utilize social resources such as family and friends and formal health care resources, and seeking help from alternative therapists.

Numerous beliefs, probably in the hundreds, need to be systematically documented and organized taxonomically to understand which are the most important predictors of the response to pain, illness, and treatment outcomes. Patients' beliefs tend to mirror the general and current views held by the society that they live in, being grounded in that culture. These interpersonal beliefs provides a backdrop for shared group and intergroup understandings at Level 3, and connect with higher order factors such as health culture at Level 4. Beliefs have considerable practical value in under- standing how patients present their condition, and in predicting their re- sponse to advice and compliance with treatment, with erroneous beliefs be- ing particularly prone to perpetuating persistent pain. Identifying several clusters of relevant beliefs, Jensen, Karoly, and Huger (1987) found that pain patients commonly believe that physicians will rid them of pain, that they themselves are not in control of the pain, that others are responsible for helping people in pain, that those in pain are permanently disabled, and that medication is the best form of treatment for pain. These beliefs are conceptualized as reflecting dependency, external health locus of control, absence of positive thoughts about rehabilitation, or catastrophizing, and medicalization, respectively. More recently, Jensen and Karoly (1992) found that among patients reporting low and medium levels of pain, a belief that they were disabled was related to lower activity levels, use of health care services, and poorer psychological functioning. They also found that where patients believed in a medical cure for their pain, this was related to more frequent use of health care services. These results highlight the importance of beliefs in adjustment to chronic pain (Jensen & Karoly, 1992), and it is these types of erroneous beliefs that need to be confronted in psychosocial interventions, such as self-management courses and cognitive behavior therapy, to enable patients to make gains and achieve a sense of control.

Much work has been carried out on the concept of self-efficacy in recent years, and numerous findings support the importance of self-efficacy beliefs in response to pain. For example, Jensen et al. (1991) found that self-efficacy beliefs were strongly related to coping efforts reported in a study of 114 chronic pain patients. Arnstein, Caudill, Mandle, Norris, and Beasley (1999) 190 SKEVINGTON AND MASON

also found that pain intensity and self-efficacy contributed to the develop- ment of disability and depression in patients with chronic pain (*n* = 126). In line with this finding, they suggested that enhancing self-efficacy beliefs is an important therapeutic goal. Lin (1998), studying chronic cancer and low back pain patients, found that for both patient groups, perceived self- efficacy correlated negatively with pain intensity and interference with ev- eryday life. Enhancing perceptions of self-efficacy has yielded significant and clinically meaningful results (Jensen et al., 1991). We return to self- efficacy in discussion of Level 3, where an application of this concept through the use of group processes is addressed.

Social learning theory and early behavior therapy contained a germ of an idea that spouses and "significant others" were playing a role in the maintenance of pain behaviors. It followed that they needed to be included in pain treatment programs, trained to help diminish damaging pain behav- iors and to support the progress of the program at home. In many pain management programs running today, the inclusion of significant others as part of the program has disappeared, usually for reasons of cost, so the spotlight has again refocused on the individual, leaving a regrettable gap in attention to social factors. Fordyce (1976) gave tacit acknowledgment to the principle that health professionals needed to be trained in behaviorist tech- niques to provide the necessary environment for the program to work—that is, to "extinguish" pain behavior and "reinforce" or "reward" positive or health behavior. These social components are still an integral part of cogni- tive behavior therapy programs.

The focus now has shifted from the spouse or significant other to the re- sponse of the family and therefore to family therapy (see Carr, 2000, for re- view). This represents a much better understanding of the response of carers to the pain of a sick spouse. For example, the therapeutic progress of female rheumatoid arthritis patients was found to be substantially impaired when hostility was the predominant response of their husbands to their condition (Manne & Zautra, 1990). Of particular interest here are family ad- justment and adaptation models (Kerns & Weiss, 1994). These emphasize the family as the primary unit of analysis, and the social context as the sa- lient environment in which adaptation or maladaptation occurs. They ex- amine the ways families approach and evaluate the stress of living with someone in a painful condition, and the family's capacity to deal with these challenges. When considering the individual's response to pain, it is impos- sible to ignore the impact of these influences.

This work links into an extensive social support literature (e.g., Newman, Fitzpatrick, Revenson, Skevington, & Williams, 1996). There is conflicting ev- idence about the impact of chronic pain on families; sometimes it is positive or neutral, but it is not always negative (Kerns & Payne, 1996). Sodergren and Hyland (2000) recently developed a Silver Lining scale, which could as- 7. SOCIAL INFLUENCES ON PAIN RESPONSE 191

sess how people rise to the challenge of difficult painful situations. Al- though there are a number of studies about marital and sexual dysfunction, psychophysiological disorders and raised emotional distress, especially de- pression (Ahern, Adams, & Follock, 1985), these are often poorly controlled. Revenson and Majerovitz (1991) concluded on the basis of the available evi- dence that it is not clear whether chronic pain sufferers really do have higher levels of distress compared to others. However, Kerns and Turk (1984) found that support from a spouse is capable of reducing depression among chronic pain patients.

Level 3: Group and Intergroup Behavior

In Level 3 we look at how people in pain as a group, with a common social or cultural heritage, view their pain and how group processes, in turn, can change the way people manage it. This level includes examining social rep- resentations of pain, illness, and coping; group beliefs such as shared opin- ions and consensus about pain, illness and disability, and group experi- ence; and influence including peer pressure, group status, and power. Level 3 also encompasses personal and social categorizations, such as the proc- ess of labeling the condition by self and others. Other aspects of this are personal and social comparisons with self at other times and with similar and dissimilar others. To do this, upward, downward, and lateral compari- sons can be used to compare with those who are better off, worse, or the same as self. Social identification or a "sense of belonging" to a particular group also appears to be influential at the points in time where people recognize themselves as disabled, a "loser," and so on, in identification with similar others.

Shared views and consensus about experiences and beliefs emerge from an examination of groups. Self-management courses designed by Lorig and colleagues during the last 15 years successfully utilize group dynamics, group beliefs, and group experience to help those with chronic illness to help themselves. A major strength of this new intervention arises from a re- orientation in thinking, whereby those with chronic illness are seen as "ex- pert" in their own condition. As such, they must be active decision makers in their own care (not passive recipients), so that they become self-con- fident and less dependent. The psychological components of this group ap- proach include cognitive symptom management, problem solving, resource utilization, communications with professionals, and the formation of a partnership, as well as making lifestyle changes to improve exercise, nutrition, and so on. The program is explicitly orientated toward building self-efficacy in every activity that is undertaken, and it is this psychological process that is of paramount importance; the content is of lesser interest (e.g., Lorig, Gonzalez, Laurent, Morgan, & Laris, 1998). 192 SKEVINGTON AND MASON

In evaluating this intervention, Lorig, Mazonson, and Holman (1993) followed up patients from their self-management programs for 4 years. Even after 4 years, they found that pain was still 20% less than at baseline, physician visits were 40% less frequent, and that the physical disability of this chronic arthritis group had only increased by 9% over the same period. Based on physician fees, they calculated that had the program been imple-mented nationwide, savings of \$648 could be made for each participating rheumatoid arthritis patient, and \$189 in a case of osteoarthritis, amounting to savings of millions of dollars to the U.S. health care budget. These eco-nomic costs were additional to those from wages lost due to work absentee- ism and the incalculable human costs of pain, disability, despair, anger, bitterness, and more. Self-management programs are currently being imple-mented nationally in Britain and the United States.

From many diverse sources of health research, there is now clear evi- dence that giving people information or education about their disease and treatment alone is really not sufficient to make them change their lifestyle to improve their health. Looking laterally, there are, in fact, many common- alities to the problems and concerns faced by those with nonmalignant painful chronic conditions such as arthritis, heart disease, and back pain, as well as those that are more normally pain free, such as diabetes and epi- lepsy, as they have to deal not only with their illness but also with the ef- fects that it has on their lives, particularly their emotions (Lorig et al., 1998; von Korff et al., 1998).

Lorig's self-management groups are lead by lay people with chronic ill- nesses themselves who are properly trained and equipped, and it is known that they can be as effective in leading self-management groups as health professionals. Because the program is user led, leaders from different cul- tures (and subcultures) can reach disadvantaged groups in the community in a culture-sensitive way, so this program provides a unique opportunity to tackle demonstrable inequalities in health and health care. Although the empowerment of patients is central to the success of this endeavor, at the same time, the success of these groups requires changes to health profes- sional attitudes, so that the newly self-confident patient is not seen as a threat (Lorig et al., 1998).

Group members categorize beliefs in meaningful ways—for example, by shared images, beliefs, and labels of those who are disabled. These group processes also impact on the treatment of groups by society as a whole. Some people with painful illness refuse to concede that they are ill; for ex- ample, in a study of rheumatoid arthritis patients, Donovan and colleagues (Donovan, Blake, & Fleming, 1989) found that most arthritis patients who visited a general practitioner said their arthritis was inconvenient, but less than half refused to use the label of being ill. These labels are socially shared with others, and a diagnosis is a good example of a label that pa- 7. SOCIAL INFLUENCES ON PAIN RESPONSE 193

tients share with their physicians. Elder (1973) found that the majority of rheumatoid arthritis patients said they learned the label from their physicians and the rest learned it from lay people, from the television, or said that they just know it. These studies provide examples and evidence of so-cial categorization. However, patients do not always share the same label as their physicians; for example, in painful conditions where there is not a definitive diagnosis, patients and doctors may hold different views about the etiology and the label given. This may generate conflict and frustration, and place a strain on the doctor—patient relationship. Certain groups of patients may also be stigmatized due to the presence of diffuse and unverifiable symptoms, for example, with fibromyalgia (Asbring & Narvanen, 2002).

Bendelow and Williams (1996) used qualitative techniques to examine lay beliefs about "pain clinics," in the United Kingdom. They found that the term *pain clinic* represented the "end of the road" for many participants, that is, the last possible hope of obtaining relief from pain. The authors sug- gested that there was a feeling among participants that medicine had failed them. Studies such as this one highlight the power of beliefs around treat- ment underscored by the medical model, and the power of the medical sys- tem in representing the only possible route to relief. When this medical model fails, there is a strongly held belief that there is no viable alternative. It also fuses a connection between previous comments on patient beliefs at Level 2 and higher order factors from Level 4.

Work has also been carried out using alternative models of understand- ing the beliefs people hold about their medical conditions. Bodily changes pose a threat to the integrity of the self and identity, and Leventhal and col- leagues developed a model outlining several components that underpin lay beliefs about illness and symptoms. There are five clusters of beliefs: First is the identity of the disease or condition that is formulated from the symp- toms and the illness label. Then perceived causes such as germs, accidents, and genetic mutations are considered and derived. Third, the timeline of the disease is of some concern, and is deduced from onset, duration, and recovery time. Fourth, for consequences, people consider death, disability, pain, and social and economic loss. Finally, under the heading of controlla- bility, people consider the intractability of their condition versus their sus- ceptibility to self-treatment, medicine, or surgery (Leventhal, Meyer, & Nerenz, 1980). The content and organization of these attributes vary among individuals, and within individuals as time passes, such as in the transition from an acute to a chronically painful disease (Leventhal, Idler, & Leven- thal, 1999). Leventhal's framework has been applied to numerous medical conditions and helps us to understand the way that people struggle to make sense of an unfolding, and sometimes unpredictable, milieu of symp- toms. Pain and illness may stimulate various coping procedures such as self-treatment, social comparisons (see below) and seeking medical care, 194 SKEVINGTON AND MASON

but not all symptoms activate self-evaluation procedures. The Leventhal et al. (1999) work implies that the presence of pain creates pressure to refor- mulate the self, in response to disabling illness. Where this occurs and can be identified, we suggest that it provides a "window" of opportunity for cli- nicians to make progress with treatment.

Social comparison theory has been an enduring and useful model within which to view people with conditions characterized by pain. Blalock and DeVellis found that making comparisons with others who share similar or dissimilar health affects self-esteem and progress of rehabilitation (Blalock et al., 1988; Blalock, DeVellis, & DeVellis, 1989). Comparisons can be intra- personal, so that you compare yourself now with other memorable times, perhaps when healthy, young, and so on. There can be interpersonal com- parisons, such as with others who have better (upward comparisons) or worse health (downward) than you, or the same (lateral). Those who were ill applied the use of social comparisons strategically, to enhance their own mood if they could, and particularly to boost their self-esteem (Blalock et al., 1988, 1989). Sick people also employed higher order social comparisons based on what more abstract groups like "society," their own sociocultural groups, and the medical profession (as represented by their doctors), ex- pected from someone of their age, sex, stage of illness, and so on (Skev- ington, 1994).

Together, categorization and comparisons lead to identification with a group or isolation from it. Pain has often been associated with feelings of isolation (Rose, 1994) and alienation. Addressing the identities of those in pain at a group level could be a more appropriate and cost effective method than individual consultations. This could be brought about through the use of newsletters, meetings, support groups, and trained lay leaders in self-management groups. In a study looking at how sense is made of the causes of chronic pain, Eccleston and colleagues found that pain challenges the identities of patients and health professionals when responsibility and blame are taken away from the sufferer and healer. These findings clearly have interactive implications for the way that patients and health professionals respond to each other (Eccleston, Williams, & Rogers, 1997).

The media plays a pivotal role in presenting, reflecting, and reinforcing society's message about those in pain. A hard-wired model of how migraine is relieved, presented in a well-known analgesic advertisement in Britain, propagates the erroneous image of a pain mechanism that predates the ad- vances made by the gate control theory of pain and makes it harder to man- age the beliefs of those who seek treatment. It perpetuates the view that medication is the only solution to pain, ignoring other important strategies and influences. The reverse side of media influence has been recently illus- trated in an Australian study (Buchbinder, Jolley, & Wyatt, 2001), where a population based multimedia campaign intervention was designed to alter 7. SOCIAL INFLUENCES ON PAIN RESPONSE 195

beliefs about back pain. Buchbinder et al. found that positive messages im- proved beliefs among the population, and in health professionals about pain, and positively influenced the better management of pain. Studies such as this highlight the power of the media in influencing beliefs about pain and people's response to it.

Level 4: Higher Order Factors

Level 4 represents the higher order factors affecting social and psychological processing that influence the response to pain, such as health culture, history, ideology and politics, quality of life, and economic beliefs about health. For health culture we must ask how particular cultural beliefs foster sickness and wellness in the community. There was a Western cultural tradition of prescribing extended bed rest for all low back pain sufferers until the results of Deyo's seminal study (Deyo, Diehl, & Rosenthal, 1986) showed how this recommendation was contraindicated for those without malignancy or herniated disc and indeed, could be iatrogenic.

In a wider sense of the word, this issue is also about whether culture en- courages or discourages people from, for example, taking up and maintain- ing exercise that would prevent or retard the onset of a painful condition, or enable people to better cope with it when present. In a recent commu- nity study conducted in a town in northern England noted for its high immi- grant population, a health promotion scheme was set up to enable Bangla- deshi women to cultivate vegetables in publicly owned plots. At the end of the project these formerly housebound women had improved physical, psy- chological, and social health and quality of life: in particular, a boost to their confidence relating to self-efficacy, and less depression. This was as a result of regular contact with other Bangladeshi women, participating in culturally acceptable forms of physical exercise through gardening, and im- proving their family's diet by cultivating fresh vegetables suited to Asian dishes, to take home (NHS Health Development Agency, UK, 2001). By pro- viding a rationale for exercise, distraction, and social support, such commu- nity pilot projects have the potential to retard the onset of pain, and where pain and disability are present, to maintain mobility, and other aspects of quality of life including good mental health.

Health history encompasses the sociocultural history of seeking medical care for pain and other problems, and the reactions of health professionals and significant others on each event, not simply the traditional record of previous illnesses. These higher order factors also relate to the apparent legitimacy of a person's complaint and help-seeking behavior, that is, whether or not a person's symptoms are deemed severe enough to justify seeking professional help, particularly when dealing with a phenomenon that other people cannot see. 196 SKEVINGTON AND MASON

Health ideology and politics at an individual differences level have rarely been studied in detail in pain research but are necessarily reflected by the predominant premises adopted by the very different health services deliv- ery systems that have been implemented around the world. Those who be- lieve in a socialist medical system, such as the National Health Service in Britain, may wait uncomplainingly on a waiting list for a physiotherapy ap- pointment or scan, despite having trouble sleeping, walking, and working, because they believe that health care should be free at the point of use— that in the current politico-economic context of limited resources and with the assumption of a fair system, they must necessarily wait their turn. In countries where health care is provided through fee for service or health in- surance, those without financial resources or health insurance often suffer without professional care. An individual assessment of health economics, within the ideology of a patient-centered system, might include an evalua- tion of how people in pain believe the resource should be shared out. There is likely to be a continuum from those who hold highly individualistic views, to those who believe that the resources should be used to benefit the great- est number of those in pain. Here, government policy and funding are pertinent issues and are likely to impact indirectly on how people respond to symptoms, like pain. Policies to withdraw formerly available treatments on the grounds of inconclusive findings of evidence-based medicine may, in the psychological terms of reactance theory (Brehm, 1966; Brehm & Brehm, 1981), make the treatment all the more attractive, and the pain worse as a result of the treatment's newly inaccessible status. Indeed, recent research has shown a link between patient noncompliance and reactance (Fogarty, 1997; Fogarty & Youngs, 2000). Thus, people are inclined to react adversely when told they must do something.

Global inequities in pain relief arising from different governmental policies, have been extensively documented by Stjernsward (1993). This is particularly evident in the field of palliative care concerning the use or withholding of morphine. Recently McQuay argued that politics, prejudice, and ignorance prevent the most appropriate use of opioid analgesics (McQuay, 1999). Fears of addiction have hindered the effective use of strong pharma-ceuticals for pain relief. This has some resonance with the question of individual response to pain, not only at a physiological or biochemical level, but also psychologically, as dominant attitudes toward the prescription of strong analgesics can influence the beliefs, attitudes, and behavior of peo-ple with acute and chronic pain.

We must also include a consideration of the variable impact of pain on quality of life in health. Without knowing how satisfying or problematic the pain and disability can be, and how much it affects many different aspects of life, we can barely begin to evaluate individual problems. Too often re- searchers and clinicians have erroneously subscribed to a deficit theory, in 7. SOCIAL INFLUENCES ON PAIN RESPONSE 197

the erroneous assumption that the greater the pain intensity, the poorer is the quality of life. There is now substantial empirical data for the quality-of- life literature to show that many of the patients who are in intense pain do not necessarily also have very poor quality of life. Similarly, relatively low pain intensity can be extremely troublesome. This is because the meaning of pain is very different for different people; for some, pain is very threaten- ing and debilitating, whereas for others with the same level of intensity, it plays a less significant role and does not appear to greatly impair their well- being or lifestyle. We need to invest in understanding the variables that me- diate this and other important factors and elucidate the impact that living with pain has on a person's quality of life. Ultimately, quality of life is about people's "goals expectations, standards and concerns" (WHOQOL Group, 1995) and how far these are satisfied. A person's quality of life and well- being may impact on his or her response to pain, and vice versa (Skeving- ton, 1998; Skevington, Carse, & Williams, 2001). In addition, beliefs about quality of life may be mediated by these concepts that are heavily culturally determined (WHOQOL Group, 1995), and all the processes identified in the model impact on decision making regarding quality of life.

Before summing up, two additional sections have been added to satisfy different purposes. In the first, we outline an example of a pertinent socio- cultural issue that reflects and is reflected by individual differences, and seek to show how key issues may be addressed in different ways, cutting across all levels of the model. Although no claim is made for the compre- hensiveness of the model's components, such examples illustrate that there is some semblance of gestalt, with the whole being more than the sum of the parts. Gender was chosen as the example because it represents an important issue that has widespread influence on individual differences in terms of pain experience and report. The second section provides some limited observations on methods in this area.

GENDER: AN EXAMPLE OF FEATURES THAT MAY BE ADDRESSED AT ALL LEVELS OF THE MODEL

Central to the debate around gender and pain is epidemiological evidence of more frequent symptom reporting and/or help seeking by women than men (Berkley, 1997; Unruh, 1996), and the greater prevalence of certain con- ditions, like fibromyalgia, in women (Yunus, 2002). Individual differences ex- plained by gender are conceptually important at all levels of the proposed model, although there has been a tendency to focus on a limited number of gender differences at the expense of what are seen as less interesting but more frequently occurring similarities. Gender is biologically determined at Level I. However, as we move through Levels 1 to 4, we see the increasing 198 SKEVINGTON AND MASON

importance of socialized gender patterns and sociocultural expectations of pain reporting and help seeking, which shape the behavior of men and women. At Levels 2 and 3, women are seen as highly social in the ways they seek out social information for decision making and actions relating to pain. In interaction with health professionals, women communicate in different styles and receive different treatments for the same conditions (Verbrugge, 1989; Verbrugge & Steiner, 1984, 1985). Differential perceptions of various aspects of quality of life (WHOQOL Group, 1995), and gendered ideologies, histories, and cultures connected with health and health care, as well as lower income, are indicated as relevant factors at Level 4.

Factors addressing features from all these levels seem to be evident in Bendelow's (1993) in-depth qualitative study, which explored women and men's experience of and beliefs about causes of pain. Both gender groups believed that women were better able to cope with pain, and provided so- phisticated biological and sociocultural explanations for this. Bendelow also found that pain was seen as "normal" for women because of painful ex- periences associated with the reproductive process, particularly childbirth. In contrast, men were not only discouraged from expressing pain but at the same time were encouraged to deny pain and be stoic. More recently, ex- perimental research with the cold-pressor task has shown differences in the perception of and response to coping with pain among men and women. This was particularly evident where sensory- or emotion-focused coping instructions were given (Keogh & Herdenfeldt, 2002). Other evidence points to the role of catastrophizing (Keefe et al., 2000; Sullivan, Tripp, & Santor, 2000) and negative emotions (Keogh & Mansoor, 2001) in explaining apparent gender differences in the response to pain. In general, it appears that women are more vulnerable to pain than men but they have a larger repertoire of ways to deal with it (Berkley & Holdcroft, 1999). The impor- tance of understanding gender issues around pain hinges on the ability of therapists to maximize therapies or interventions designed to relieve or im- prove the management of pain, including a greater understanding of differ- ential patterns of expressing pain. For more on gender and pain, see Berk- ley and Holdcroft (1999).

MEASURING THE RESPONSE TO PAIN AT ALL LEVELS

The literature on measurement of pain (see chap. 8, this volume) and its correlates has burgeoned in recent years, and this has led to a "pick and mix" of measures and instruments, with a claim to assess or quantify some aspect of pain or pain treatment, so it is not possible to provide an exten- sive review here. Increasingly, attention is being paid to the reliability of in- 7. SOCIAL INFLUENCES ON PAIN RESPONSE 199

struments purporting to measure pain and, in particular, to the challenging issue of pain measurement in pediatrics.

The social context of pain measurement has also been studied; for exam- ple, Kelleher and colleagues provided preliminary evidence that pain scores are influenced by the social context in which they are obtained (Kelleher, Rennell, & Kidd, 1998). This provides additional support for the model outlined in this chapter and the importance of including, accounting for, and exploring the social factors that mediate the response to pain.

Countless instruments and indexes are used in the clinic and for re- search into the complex, multifactorial response to pain. For example, based on a cognitive affective model of pain where pain interrupts and de- mands attention (Eccleston & Crombez, 1999), the Pain Vigilance and Awareness Questionnaire (McCracken, 1997) was developed, and this was recently adapted this for use with a subclinical sample, including diagnoses other than low back pain (McWilliams & Asmundson, 2001). In this small cluster of studies we can see how a biopsychosocial theory generated by health psychologists has been applied in the development of a theoretically based measure, and the theory itself is then available to provide guidance and a reference point should the scale require adjustment, and in subsequent adaptations. In this way the articulation of an initial theoretical direction adds value to the practical endeavor of relieving suffering.

Thus, measuring the response to pain is often driven by the need to test a particular theory or set of variables that are hypothesized to impact on, or predict, how individuals and groups will react to perceived pain, with the goal of explaining the largest proportion of variance. Reliable and valid measures for those in pain are important given the unreliability of proxy as- sessment, as, for example, displayed by the discordance between patient and physician ratings of pain (Mantyselka, Kumpusalo, Ahonen, & Takala, 2001). Existing and new measures can be utilized to assess many of the psychosocial processes and social factors outlined in this model of the re- sponse to pain: from the relatively straightforward visual analogue scale ap- propriate to pain intensity or severity in Level 1, to more complex multidi- mensional assessments of quality of life in Level 4. When integrated, these results could provide a holistic outcome assessment that is long overdue.

CONCLUSIONS

The model presented here is a working model that is incomplete. It in-cludes elements representing a body of research that has already been published (see Skevington, 1995, for a resumé) but there may be other im- portant factors that have not yet been identified, or if identified they may 200 SKEVINGTON AND MASON

not as yet, be assessed properly. As we move across the levels from 1 to 4, there is less confidence in the robustness of the evidence about exactly how some of these social factors influence the experience and expression of pain and outcomes of treatment. Level 1 of the model represents the first conceptual level that must be examined to appreciate the individual's unique response to pain. Although grounded in the biological and psycho- logical aspects of the pain experience, it reveals how these factors can be influenced by social processes, as shown by PNI, for instance, and should not be seen in isolation from the other levels. Level 2 represents the com- plex interplay between a person and immediate and salient aspects of their social environment, such as significant others and health care pro- fessionals. Level 3 shows how the individual is deeply embedded in their particular culture, and highlights the importance of aspects of group and intergroup relations for the understanding of responding to a highly indi- vidualized and private experience such as pain. The effect of higher order processes outlined in Level 4 may be quite insidious, and not immediately apparent to the person experiencing pain or the health care professional who is caring for them. However, these aspects are deeply rooted in cul- tural beliefs, norms, and experience, and reflect and are reflected by a long history of being a patient within a particular culture. It seems likely that research into these higher order factors will clarify the emerging pic- ture about the response to pain and help to further understand and ex- plain the existence of sociocultural differences.

We have presented just some of the important social issues that have been raised in the literatures on pain, health and social factors in recent years. Some are well researched by those working in pain research, whereas others have been largely ignored, or "lip service" has been paid to their value. Nevertheless, these factors affect people's response to chronic pain, including the variety of ways in which they respond to treatments and consultations, particularly given the largely interpersonal context of health care interactions. Although a few salient examples have been used to dem- onstrate key issues, empirical evidence can be found in many other sources (e.g., Skevington, 1995). The model shows how each level can mediate indi- vidual differences. Understanding the individual's response to pain has considerable theoretical value, but perhaps more importantly can facilitate re- covery from pain and promote the rehabilitation process. Indeed, a further elucidation of key individual differences is essential if we are to improve the way treatments are delivered to ensure that treatment outcomes are maxi- mized through the inclusion of patient preferences and a consideration of cultural differences. Increased and more extended multidisciplinary work- ing will bring about cross-fertilization of ideas to give a more holistic pic- ture of the experience and treatment of pain to ensure better targeted inter- 7. SOCIAL INFLUENCES ON PAIN RESPONSE 201

ventions to account for patient variability, and the development of more comprehensive treatment programs, in addition to an understanding of pat- terns of concordance and adherence with treatment regimens. Enthusiasm for empirical work in relatively new avenues of inquiry such as psycho- neuroimmunology will add to the understanding of pain and facilitate the development of more comprehensive theory.

We need to take a more holistic view of the patient in his or her social and environmental context, and this requires several actions; in particular, it requires multidisciplinary teamwork. We should be harnessing the en- ergy and ideas of health economists, policymakers, medical sociologists, and anthropologists into pain research in order to better understand indi- vidual well-being, or lack of it. This is already happening in studies of health more generally (e.g., Blaxter, 1990; Bowling, 1993, 1995) and needs to be ap- plied in the study of pain. There is also a need to create gender- and cul- ture-sensitive psychosocial therapies that could take account of individual differences, and that are better tailored to meet the particular needs of the social groups who participate. In addition, we need to account for the vari- ability and complexity of individual differences through developing ways of systematically investigating and assessing all possibilities, to ensure that important factors are not being overlooked.

The structure of the model outlined in this chapter could also be used as an interview framework for a semistructured interview to generate an over- all assessment in a systematic social assessment. Not all elements of the model have yet been properly operationalized; some may need multidimen- sional scales to be developed, rather than answers to single items. Once this is done, we can evaluate the elements of the model collectively, to look at how each factor contributes to overall patient well-being and to a greater understanding of how the individual responds to pain. When this informa- tion is available, we shall be in a better position to say more precisely which factors best predict outcomes for chronic pain patients. The relative importance of these elements may well point to the value of social interven- tions that could be applied simultaneously alongside biological interven- tions, like medication, epidural anesthetic, and psychological interventions, like self-management regimes or cognitive behavior therapy.

ACKNOWLEDGMENTS

Professor Skevington thanks the Irish Pain Society for the opportunity to present an early draft of this chapter at their Inaugural Scientific meeting in Dublin, 2001. 202 SKEVINGTON AND MASON

REFERENCES

Affleck, G., Tennen, H., Pfeiffer, C., & Fifield, J. (1987). Appraisals of control and predictability in adapting to a chronic disease. *Journal of Personality and Social Psychology, 53*, 273–279.

Ahern, D., Adams, A., & Follock, M. (1985). Emotional and marital disturbance in spouses of chronic low back pain patients. *Clinical Journal of Pain*, *1*, 69–74.

Amanzio, M., Pollo, A., Maggi, G., & Benedetti, F. (2001). Response variability to analgesics: A role for non-specific activation of endogenous opioids. *Pain, 90*, 205–215.

Arnstein, P., Caudill, M., Mandle, C. L., Norris, A., & Beasley, R. (1999). Self-efficacy as a mediator of the relationship between pain intensity, disability and depression in chronic pain pa- tients. *Pain, 80,* 483–491.

Asbring, P., & Narvanen, A. L. (2002). Women's experience of stigma in relation to chronic fatigue syndrome and fibromyalgia. *Qualitative Health Research*, 12, 148–160.

Bates, M. S. (1987). Ethnicity and pain: A biocultural model. Social Science &Medicine, 24, 47–50. Bendelow, G. (1993). Pain perceptions, emotions and gender. Sociology of Health and Illness, 15, 273–294. Bendelow, G. A., & Williams, S. J. (1996). The end of the road? Lay views on a pain-relief clinic. So- cial Science & Medicine, 43, 1127–1136. Berkley, K. J. (1997). Sex differences in pain. Behavioral and Brain Sciences, 20, 371–380. Berkley, K. J., & Holdcroft, A. (1999). Sex and gender differences in pain. In P. D. Wall & R. Melzack (Eds.), Textbook of pain (4th ed., pp. 951–965). London: Churchill Livingstone. Blalock, S. J., DeVellis, B. M., & DeVellis, R. F. (1989). Social comparisons among individuals with rheumatoid arthritis. Journal of Applied Social Psychology, 19, 665–680. Blalock, S. J., DeVellis, B. M., DeVellis, R. F., & Sauter, S. H. (1988). Self-evaluation processes and adjustment to rheumatoid arthritis. Arthritis & Rheumatism, 31(10), 1245–1251. Blaxter, M. (1990). Health and lifestyles. London: Tavistock. Bowling, A. (1993). Measuring health. Buckingham: Open University Press. Brehm, J. W. (1966). A theory of psychological reactance. New York: Academic Press. Brehm, S. S., & Brehm, J. W. (1981). Psychological reactance: A theory of freedom and control. New

York: Academic Press. Buchbinder, R., Jolley, D., & Wyatt, M. (2001). 2001 Volvo Award winner in clinical studies: Effects of a media campaign on back pain beliefs and its potential influence on management of low back pain in general practice. Spine, 26, 2523–2542.

Carr, A. (2000). Evidence-based practice in family therapy and systematic consultation II—Adult focused problems. *Journal of Family Therapy, 22*, 273–295.

Chapman, S. L., & Pemberton, J. S. (1994). Prediction of treatment outcome from clinically de-rived MMPI clusters in rehabilitation for chronic low-back-pain. *Clinical Journal of Pain*, 10, 267–276.

Cheever, K. H. (1999). Pain, analgesic use, and morbidity in appendectomy patients. *Clinical Nursing Research*, 8, 267–282.

Conant, L. L. (1998). Psychological variables associated with pain perceptions among individu- als with chronic spinal cord injury pain. *Journal of Clinical Psychological Medicine*, *S5*, 71–90.

DeVellis, R. F., Patterson, C. C., Blalock, S. J., Renner, B. R., & DeVellis, B. M. (1997). Do people with rheumatoid arthritis develop illness-related schemas? *Arthritis Care and Research*, 10, 78–88.

Devo, R. A. (1994). Magnetic-resonance-imaging of the lumbar spine. New England Journal of Med-icine, 331, 1526.

Deyo, R. A., Diehl, A. K., & Rosenthal, M. (1986). How many days of bedrest for acute low back pain? A randomised clinical trial. New England Journal of Medicine, 315, 1064–1070. 7. SOCIAL INFLUENCES ON PAIN RESPONSE 203

Dickens, C., McGowan, L., Clark-Carter, D., & Creed, F. (2002). Depression in rheumatoid arthritis: A systematic review of the literature with meta-analysis. *Psychosomatic Medicine*, *64*, 52–60.

Donovan, J. L., Blake, D. R., & Fleming, W. G. (1989). The patient is not a blank sheet: Lay beliefs and their relevance to patient education. *British Journal of Rheumatology, 28*, 58–61.

Eccleston, C., & Crombez, G. (1999). Pain demands attention: A cognitive-affective model of the interruptive function of pain. *Psychological Bulletin*, *125*, 356–366.

Eccleston, C., Crombez, G., Aldrich, S., & Stannard, C. (2001). Worry and chronic pain patients: A description and analysis of individual differences. *European Journal of Pain, 5*, 309–318.

Eccleston, C., Williams, A. C. D., & Rogers, W. S. (1997). Patients' and professionals' understand- ings of the causes of chronic pain: Blame, responsibility and identity protection. *Social Sci- ence & Medicine, 45*, 699–709.

Elder, R. G. (1973). Social class and lay expectations of the etiology of arthritis. *Journal of Person- ality and Social Psychology, 14*, 28–38.

Engelbart, H. J., & Vrancken, M. A. (1984). Chronic pain from the perspective of health: A view based on systems theory. *Social Science & Medicine*, 19, 1383–1392.

Ericsson, M., Poston, W. S., Linder, J., Taylor, J. E., Haddock, C. K., & Foreyt, J. P. (2002). Depres- sion predicts disability in long-term chronic pain patients. *Disability and Rehabilitation, 24*, 334–340.

Fogarty, J. S. (1997). Reactance theory and patient noncompliance. Social Science & Medicine, 45, 1277–1288.

Fogarty, J. S., & Youngs, G. A. (2000). Psychological reactance as a factor in patient noncompli- ance with medication taking: A field experiment. *Journal of Applied Social Psychology, 30*, 2365–2391.

Fordyce, W. E. (1976). Behavioral methods for chronic pain and illness. St. Louis, MO: Mosby. Foster, S., & Mallik, M. (1998). A comparative study of differences in the referral behaviour pat- terms of men and women who have experienced cardiac-related chest pain. Intensive Critical Care Nursing, 14, 192–202.

Fritz, J. M., George, S. Z., & Delitto, A. (2001). The role of fear-avoidance beliefs in acute low back pain: Relationships with current and future disability and work status. *Pain, 94,* 7–15.

George, S. Z., Fritz, J. M., & Erhard, R. E. (2001). A comparison of fear-avoidance beliefs in patients with lumbar spine pain and cervical spine pain. *Spine*, *26*, 2139–2145.

Grahn, B., Ekdahl, C., & Borgquist, L. (2000). Motivation as a predictor of changes in quality of life and working ability in multidisciplinary rehabilitation. A two year follow-up of a prospective controlled study in patients with prolonged musculoskeletal disorders. *Disability and Reha- bilitation, 22*, 639–654.

Hakim, A. J., Cherkas, L., El Zayat, S., MacGregor, A. J., & Spector, T. D. (2002). The genetic contri- bution to carpal tunnel syndrome in women: A twin study. *Arthritis and Rheumatism*, *47*, 275–279.

Hathaway, S. R., & McKinley, J. (1943). *Minnesota Mutliphasic Personality Inventory*. Minneapolis: University of Minnesota Press.

Indo, Y. (2002). Genetics of congenital insensitivity to pain with anhidrosis (CIPA) or hereditary sensory and autonomic neuropathy type IV. Clinical, biological and molecular aspects of mu- tations in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth fac- tor. *Clinical Autonomic Research*, 12, 120–132.

Ingham, J. G., & Miller, P. M. (1979). Symptom prevalence and severity in a general practice popu- lation. *Journal of Epidemiology and Community Medicine*, 33, 191–198.

Jensen, M. P., Ehde, D. M., Hoffman, A. J., Patterson, D. R., Czerniecki, J. M., & Robinson, L. R. (2002). Cognitions, coping and social environment predict adjustment to phantom limb pain. *Pain*, *95*, 133–142.

Jensen, M. P., & Karoly, P. (1992). Pain-specific beliefs, perceived symptom severity, and adjust- ment to chronic pain. Clinical Journal of Pain, 8, 123–130. 204 SKEVINGTON AND MASON

Jensen, M. P., Karoly, P., & Huger, R. (1987). The development and preliminary validation of an in-strument to assess patients attitudes toward pain. *Journal of Psychosomatic Research*, *31*, 393–400.

Jensen, M. P., Turner, J. A., & Romano, J. M. (1991). Self-efficacy and outcome expectancies: Rela-tionship to chronic pain coping strategies and adjustment. *Pain, 44*, 263–269.

Juarez, G., Ferrell, B., & Borneman, T. (1998). Influence of culture on cancer pain management in Hispanic patients. *Cancer Practice, 6*, 262–269.

Katz, J., & Melzack, R. (1990). Pain 'memories' in phantom limbs: Review and clinical observa- tions. *Pain, 43*, 319–336.

Keefe, F. J., Lefebvre, J. C., Egert, J. R., Affleck, G., Sullivan, M. J., & Caldwell, D. S. (2000). The relationship of gender to pain, pain behavior, and disability in osteoarthritis patients: The role of catastrophizing. *Pain, 87*, 325–334.

Kelleher, D. J. A., Rennell, B., & Kidd, B. L. (1998). The effect of social context on pain measure- ment. *Journal of Musculoskeletal Pain, 6*, 77–86.

Keogh, E., & Mansoor, L. (2001). Investigating the effects of anxiety sensitivity and coping strat- egy on the perception of cold pressor pain in healthy women. *European Journal of Pain, 5*, 11–25.

Keogh, E., & Herdenfeldt, M. (2002). Gender, coping and the perception of pain. *Pain, 97*, 195–201. Kerns, R. D., & Payne, A. (1996). Treating families of chronic pain patients. In R. J. Gatchel & D. C.

Turk (Eds.), Psychological approaches to pain management: A practitioner's handbook (pp. 283-304). New York: The Guilford Press.

Kerns, R. D., & Turk, D. C. (1984). Depression and chronic pain: The mediating role of the spouse. *Journal of Marriage and the Family, 46*, 845–852.

Kerns, R. D., & Weiss, L. H. (1994). Family influences on the course of chronic illness: A cognitive- behavioral transactional model. *Annals of Behavioral Medicine*, *16*, 116–130.

Kest, B., Wilson, S. G., & Mogil, J. S. (1999). Sex differences in supraspinal morphine analgesia are dependent on genotype. *Journal of Pharmacology & Experimental Therapy, 289*, 1370–1375.

Kiecolt-Glaser, J. K., Page, G. G., Marucha, P. T., MacCullum, R. C., & Glaser, R. (1998). Psychologi- cal influences on surgical recovery—Perspectives from psychoneuroimmunology. *American Psychology*, *53*, 1209–1218.

Kremer, M. J. (1999). Surgery, pain and immune function. CRNA, 10, 94–100. Leventhal, H., Idler, E. L., & Leventhal, E. A. (1999). The impact of chronic illness on the self- system. In R. J. Contrada & R. D. Ashmoore (Eds.), Self, social identity and physical health: Interdisciplinary explorations (pp. 185–208). New York: Oxford University Press.

Leventhal, H., Meyer, D., & Nerenz, D. (1980). The common-sense representations of illness dan- ger. In S.Rachman (Ed.), *Medical psychology* (pp. 7–30). New York: Guilford Press.

Li, S. F., Greenwald, P. W., Gennis, P., Bijur, P. E., & Gallagher, E. J. (2001). Effect of age on acute pain perception of a standardized stimulus in the emergency department. *Annals of Emer- gency Medicine, 38*, 644–647.

Lin, C. C. (1998). Comparison of the effects of perceived self-efficacy on coping with chronic can- cer pain and coping with chronic low back pain. *Clinical Journal of Pain, 14*, 303–310.

Lorenz, J. (1998). Hyperalgesia or hypervigilance? An evoked potential approach to the study of fibromyalgia syndrome. *Zeitschrift fur Rheumatologie*, *57*, 19–22.

Lorig, K., Gonzalez, V. M., Laurent, D. D., Morgan, L., & Laris, B. A. (1998). Arthritis self-man- agement program variations: Three studies. *Arthritis Care Research*, *11*(6), 448–454.

Lorig, K. R., Mazonson, P. D., & Holman, H. R. (1993). Evidence suggesting that health education for self-management in patients with chronic arthritis has sustained health benefits while re- ducing health care costs. *Arthritis & Rheumatism, 36*(4), 439–446.

Main, C. J. (1984). *Must we play the MMPI game? Or is the MMPI the only game in town?* Paper pre- sented to the Annual Meeting of the British Pain Interest Group.

Manne, S. L., & Zautra, A. J. (1990). Couples coping with chronic illness: Women with rheumatoid arthritis and their healthy husbands. Journal of Behavioural Medicine, 13, 327–342. 7. SOCIAL INFLUENCES ON PAIN RESPONSE 205

Mantyselka, P., Kumpusalo, E., Ahonen, R., & Takala, J. (2001). Patients' versus general practitio- ners' assessments of pain intensity in primary care patients with non-cancer pain. *British Journal of General Practice*, *51*, 995–997.

Maxwell, T. D., Gatchel, R. J., & Mayer, T. G. (1998). Cognitive predictors of depression in chronic low back pain: Toward an inclusive model. *Journal of Behavioural Medicine*, *21*, 131–143.

McCracken, L. M. (1997). "Attention" to pain in persons with chronic pain: A behavioral ap- proach. Behaviour Therapy, 28, 271–284.

McCracken, L. M., Matthews, A. K., Tang, T. S., & Cuba, S. L. (2001). A comparison of blacks and whites seeking treatment for chronic pain. *Clinical Journal of Pain*, *17*, 249–255.

McQuay, H. (1999). Opioids in pain management. Lancet, 353, 2229–2232. McQuay, H., & Moore, R. A. (1998). An evidence-based resource for pain relief. Oxford: Oxford Uni- versity Press. McWilliams, L. A., & Asmundson, G. J. G. (2001). Assessing individual differences in attention to pain: Psychometric properties of the Pain Vigilance and Awareness Questionnaire modified for a non-clinical pain sample. Personality and Individual Differences, 31, 239–246.

Mechanic, D. (1986). The concept of illness behaviour: Culture, situation and personal predispo-sition. *Psychological Medicine*, 16, 1–7.

Melzack, R., & Dennis, S. G. (1978). Neurophysiological foundations of pain. In R. A. Sternbach (Ed.), *The psychology of pain* (pp. 1–26). New York: Raven Press.

Melzack, R., & Wall, P. D. (1965). Pain mechanisms—A new theory. Science, 150, 971–979. Melzack, R., & Wall, P. D. (1982). The challenge of pain. Harmondsworth: Penguin. Miller, S. M. (1987). Monitoring and blunting—Validation of a questionnaire to assess styles of in- formation seeking under threat. Journal of Personality and Social Psychology, 52, 345–353. Miller, S. M., Brody, D. S., & Summerton, J. (1988). Styles of coping with threat: Implications for health. Journal of Personality and Social Psychology, 54, 142–148. Mischel, W. (1968). Personality and assessment. New York: Wiley. Mischel, W. (1973). Toward a cognitive social learning reconceptualization of personality. Psy- chological Review, 80, 252–283. Mischel, W. (1977). The interaction of person and situation. In D. Magnusson & N. S. Endler (Eds.), Personality at the crossroads: Current issues in interactional psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.

Mogil, J. S., & Adhikari, S. M. (1999). Hot and cold nociception are genetically correlated. *Journal of Neuroscience, 19*, RC25.

NHS Health Development Agency, UK. (2001, July). Great oaks from little acorns grow. Health Development Today, pp. 20–23.

Nayak, S., Shiflett, S. C., Eshun, S., & Levine, F. M. (2000). Culture and gender effects in pain beliefs and the prediction of pain tolerance. *Cross-cultural Research, 34*, 135–151.

Newman, S., Fitzpatrick, R., Revenson, T. A., Skevington, S., & Williams, G. (1996). Social support and family relationships. In *Understanding rheumatoid arthritis* (pp. 140–168). London: Routledge.

Pennebaker, J. W. (1982). The psychology of physical symptoms. New York: Springer-Verlag. Peters, M. L., Vlaeyen, J. W., & Kunnen, A. M. (2002). Is pain-related fear a predictor of soma- osensory hypervigilance in chronic low back pain patients? Behaviour Research Therapy, 40, 85–103.

Porro, C. A., Cettolo, V., Francescato, M. P., & Baraldi, P. (1998). Temporal and intensity coding of pain in human cortex. *Journal of Neurophysiology*, *80*, 3312–3320.

Revenson, T. A., & Majerovitz, S. D. (1991). The effects of chronic illness on the spouse: Social re-sources as stress buffers. *Arthritis Care and Research*, 4, 63–72.

Reynaert, C., Janne, P., & Delire, V. (1995). To central or to be controlled—From health locus of control to morphine control during patient-controlled analgesia. *Psychotherapy and Psycho- somatics, 64*, 74–81.

Rose, K. E. (1994). Patient isolation in chronic benign pain. Nursing Standard, 8, 25–27. 206 SKEVINGTON AND MASON

Rudy, T. E., Kerns, R. D., & Turk, D. C. (1988). Chronic pain and depression: Toward a cognitive- behavioral mediation model. *Pain, 35*, 129–140.

Sinclair, V. G. (2001). Predictors of pain catastrophizing in women with rheumatoid arthritis. *Ar- chive of Psychiatric Nursing, 15*, 279–288.

Skevington, S. M. (1990). A standardized scale to measure beliefs about controlling pain (B.P.C.Q.): A preliminary study. *Psychology and Health, 4*, 221–232.

Skevington, S. M. (1994). Social comparisons in cross cultural research quality of life assess- ment. *International Journal of Mental Health*, 23, 29–47.

Skevington, S. M. (1995). Psychology of pain. Chichester: John Wiley & Sons. Skevington, S. M. (1998). Investigating the relationship between pain and discomfort and quality of life, using the WHOQOL. Pain, 76, 395–406. Skevington, S. M., Carse, M. S., & Williams, A. C. D. (2001). Validation of the WHOQOL-100: Pain management improves quality of life for chronic pain patients. Clinical Journal of Pain, 17, 264–275.

Skevington, S. M., & White, A. (1998). Is laughter the best medicine? *Psychology & Health, 13*, 157–169.

Sodergren, S. C., & Hyland, M. E. (2000). What are the consequences of illness? *Psychology & Health, 15*, 85–97.

Stjernsward, J. (1993). Palliative medicine—A global perspective. In D. Doyle, G. W. C. Hanks, & N. MacDonald (Eds.), *Oxford textbook of palliative medicine* (pp. 803–816). Oxford: Oxford Uni- versity Press.

Sullivan, M. J., Thorn, B., Haythornthwaite, J. A., Keefe, F., Martin, M., Bradley, L. A., & Lefebvre, J. C. (2001). Theoretical perspectives on the relation between catastrophizing and pain. *Clini- cal Journal of Pain, 17*, 52–64.

Sullivan, M. J. L., Tripp, D. A., & Santor, D. (2000). Gender differences in pain and pain behavior: The role of catastrophising. *Cognitive Therapy Research*, 24, 121–134.

Taylor, S. E. (1999). Health psychology (4th ed.). Singapore: McGraw-Hill. Thomas, V., Heath, M., Rose, M., & Flory, P. (1995). Psychological characteristics and the effectiveness of patient-controlled analgesia. British Journal of Anaesthesia, 74, 271–276. Turk, D. C., & Okifuji, A. (1994). Detecting depression in chronic pain patients: Adequacy of self-reports. Behaviour Research Therapy, 32, 9–16. Unrah, A. M. (1996). Gender variations in clinical pain experience. Pain, 65, 123–167. Verbrugge, L. M. (1989). The twain meet: Empirical explanations of sex differences in health and mortality. Journal of Health and Social Behaviour, 36, 282–304. Verbrugge, L. M., & Steiner, R. P. (1984). Another look at physician's treatment of men and women with common complaints. Sex Roles, II, 11–12. Verbrugge L. M., & Steiner, R. P. (1985). Prescribing drugs to men and women. Health Psychology, 4(1), 79–98. Vlaeyen, J. W., deJong, J., Geilen, M., Heuts, P. H., & van Breukelen, G. (2001). Graded exposure in vivo in the treatment of pain-related fear: A replicated single-case experimental design in four patients with chronic low back pain. Behaviour Research Therapy, 39, 151–166.

Vlaeyen, J. W., & Linton, S. J. (2000). Fear-avoidance and its consequences in chronic musculo- skeletal pain: A state of the art. Pain, 85, 317–332. von Korff, M., Moore, J. E., Lorig, K., Cherkin, D. C., Saunders, K., Gonzalez, V. M., Laurent, D., Rutter, C., & Comite, F. (1998). A randomized trial of a lay person-led self-management group intervention for back pain patients in primary care. Spine, 23, 2608–2615.

Wallston, K. A., & Wallston, B. S. (1982). Who is responsible for your health? The construct of health locus of control. In G. S. Sanders & J. Suls (Eds.), *Social Psychology of health and illness* (pp. 65–95). Hillsdale, NJ: Lawrence Erlbaum Associates.

WHOQOL Group. (1995). The World Health Organisation Quality of Life Assessment (the WHOQOL): Position paper from the World Health Organisation. Social Science & Medicine, 41, 1403–1409. 7. SOCIAL INFLUENCES ON PAIN RESPONSE 207

Yunus, M. B. (2002). Gender differences in fibromyalgia and other related syndromes. *Journal of Gender Specific Medicine, 5*, 42–47.

Zautra, A. J., Hoffman, J., Potter, P., Matt, K. S., Yocum, D., & Castro, L. (1997). Examination of changes in interpersonal stress as a factor in disease exacerbations among women with rheumatoid arthritis. *Annals of Behavioural Medicine*, *19*, 279–286.

Zborowski, M. (1969). People in pain. San Francisco, CA: Jossey-Bass. Zola, I. K. (1973). Pathways to the doctor—From person to patient. Social Science & Medicine, 7, 677–689. 208 SKEVINGTON AND MASON

When patients suffering with pain are referred to a mental health profes- sional, there are a number of specific questions that need to be addressed related to the purpose of the assessment. A primary care physician may simply conduct a mental status assessment to assist in routine treatment planning and to identify any significant emotional problems that need to be addressed. Referral questions might be initiated by a governmental agency related to disability determination or vocational issues. A specific referral question from a third-party payer may focus on the issue of malingering. The referral question might be related to decisions that will influence initia- tion of a particular treatment. For example, a surgeon might refer a patient for assessment in order to determine whether the patient is a good candi- date for a particular surgery or neuroaugmentation procedure (i.e., implan- tation of a spinal cord stimulator or implantable drug delivery system). Al- ternatively, a physician may seek advice concerning whether there are any contraindications for initiating a course of chronic opioid therapy. Another referral question may concern the appropriateness of a patient for enroll- ment in a rehabilitation program that involves self-management.

Each of the referral questions and purposes pose some unique features that need to be covered. However, there is a core set of areas that need to be addressed for all chronic pain patients, regardless of the referral question. In addition to responding to referral questions, for patients who are being treated, there is a need for ongoing assessment to evaluate progress. Methods for process assessment are also included in our discussion.

CHAPTER8

Assessment of Chronic Pain Sufferers

Dennis C. Turk Elena S. Monarch Arthur D. Williams

Department of Anesthesiology University of Washington 209

In this chapter we describe a comprehensive approach to the assessment of the person with chronic pain. We also include discussion and recommen- dations for methods, procedures, and measures that address the more spe- cific questions. We begin by presenting a general model of assessment based on a biopsychosocial perspective. Description of this perspective is essential as it serves as an outline for the composition of a comprehensive assess- ment. We highlight the set of psychosocial factors (i.e., cognitive, affective, and behavioral) that appear to contribute significantly to the experience of pain and suggest ways to include each of these factors in brief screenings and, when indicated, in comprehensive assessments. We include a specific guide, with procedures, methods, and instruments (and their limitations), for assessing chronic pain sufferers based on research findings. We note meth- ods to address the different referral questions posed. An underlying theme of our approach is that we need to consider and assess the person, within his or her social context, who reports pain, and not just the pain and underlying physical pathology. Throughout our discussion, we describe how to use as- sessment data to generate recommendations and guide treatment planning. Finally, we discuss the importance of ongoing assessment for these patients and suggest ways to approach reassessment.

BIOPSYCHOSOCIAL MODEL OF PAIN ASSESSMENT

The biopsychosocial model (see also chap. 2, this volume) proposes that dynamic and reciprocal interactions between biological, psychological, and sociocultural variables shape the experience of pain (Turk, 1996a; Turk & Monarch, 2002). According to the biopsychosocial model, the pain experi- ence usually begins when peripheral nociceptive stimulation produces phy- siological changes, although there may be central mechanisms involved in the initiation of pain, and the experience is thoroughly modulated by a per- son's unique genetic endowment, learning history, individual difference characteristics, affective state, and behavior.

Given the same nociceptive stimulations, two people may respond very differently. People's reports of pain severity and impact will vary depending on a range of contributions and will not be solely the result of physical pa- thology or perturbations within the nervous system. One person may ignore the pain and continue working, socializing, and engaging in previous levels of activity, whereas another may leave work, refrain from all activity, become emotionally distressed, and assume the "sick role." In both instances, the noxious input may be identical but the experience and response are colored by the unique characteristics of the each person. The biopsychosocial per- spective forces an evaluator to consider not only the nature, cause, and char- acteristics of the noxious stimulation but the presence of the sensations re- 210 TURK, MONARCH, WILLIAMS

flected against a history that preceded symptom onset. These unique characteristics will determine the person's total experience.

The biopsychosocial model incorporates cognitive-behavioral concepts in understanding chronic pain. For example, proponents of this model sug- gest that both the person and the environment reciprocally determine be- havior. People not only respond to their environment but elicit environ- mental responses by their behavior. In a very real sense, people create their environments. The person who becomes aware of a physical event (e.g., shooting pain in the neck) and decides the symptom requires attent ion from a health care provider initiates a set of circumstances different from the individual with the same symptom who chooses to self-manage symptoms. Another assumption of the cognitive-behavioral perspective is that people are active agents and capable of change. People with chronic pain, no matter how severe, despite their common beliefs to the contrary, are not helpless pawns of fate. The passive role many patients have in tradi-tional physician-patient relationships often reinforces their beliefs that they have minimal ability to impact their own recovery. In the cognitive- behavioral perspective, people are active participants in learning and car-rying out more effective modes of responding to their environment and their plight.

Chronic pain sufferers often develop negative expectations about their own ability to exert any control over their pain. From a biopsychosocial perspective, maladaptive appraisals about one's condition, situation, and personal efficacy in controlling the pain experience may lead to overreac- tion to nociceptive stimulation, reduced perseverance in the face of diffi- culty, and diminished activity. Negative expectations may also lead to psy- chological distress such as feelings of frustration and demoralization. Together, negative cognitions and emotional distress can lead pain suffer- ers to further maladaptive behaviors and adoption of passive coping strat- egies such as inactivity, medication use, or substance abuse. They also may absolve themselves of personal responsibility for managing their pain and, instead, rely on family and health care providers. Research stud- ies show that these potentially controllable factors (e.g., passivity) con- tribute to the exacerbation, attenuation, and maintenance of pain, pain be- haviors, affective distress, and dysfunctional adjustment to chronic pain (Jensen, Romano, Turner, Good, & Wald, 1999; Jensen, Turner, Romano, & Lawler, 1994). The specific thoughts and feelings that people experience prior to, during, or after an episode of pain, will greatly influence the expe- rience of pain. Thus, each of these factors is considered in a biopsycho- social pain assessment.

From the biopsychosocial perspective, the physical factors that initiated the original report of pain play a diminishing role in disability over time; secondary problems associated with deconditioning may exacerbate and 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 211

maintain the problem. We believe that inadequate assessment of biopsy- chosocial factors, particularly ones described in more detail later, can im- pede successful rehabilitation.

The Challenge of Assessing the Person with Chronic Pain

When patients report pain, health care professionals have the important and challenging task of assessment. Seasoned clinicians, particularly those working in multidisciplinary settings, know that assessing a patient's pain is not solely a matter of attempting to uncover the physical etiology of the pain. Regardless of the etiology, converging threads of evidence suggest that numerous factors contribute to the experience of pain in addition to physical pathology. In fact, pain symptoms and experiences are not tightly linked to degree of physical pathology. This is why the biopsycho- social model has such heuristic appeal. A thorough evaluation of a patient involves assessing the myriad of psychosocial and behavioral factors that contribute to the experience and report of pain. The importance of evaluations the range of potentially important contributing factors cannot be overstated, as successful outcomes rest on how adequately these factors are addressed.

Inadequate assessment of pain problems may stem from the fact that patients and health care professionals alike often ignore the distinction between nociception and pain. Nociception is limited to a sensory event beginning with noxious peripheral chemical, thermal, or mechanical energy. Pain is a subjective perceptual experience. Although pain is likely to follow from nociception, nociception does not necessarily precede the subjective experience of pain. Cognitive and emotional processes moderate and modulate the experience of pain. The International Association for the Study of Pain (Merskey, 1986) recognized the distinction between nociception and pain by defining pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage" (emphasis added, p. S217).

In the majority of cases, biomedical factors lead to initial reports of pain. In chronic pain (i.e., extending over many months and years) other factors, particularly psychosocial and behavioral ones, are capable of maintaining and exacerbating pain, influencing adjustment, and contributing to exces- sive disability. Because research shows that these non-biomedical factors, including fear, anxiety, anger, beliefs, and contextual influences, can con- tribute to the experience of pain (e.g., Turk & Okifuji, 2002), they should be considered integral parts of the assessment of any patient reporting persis- tent pain and related symptoms. 212 TURK, MONARCH, WILLIAMS

In fact, psychosocial factors have been shown to be significant predic- tors of pain, distress, treatment seeking, disability, and response to any treatment (e.g., Boothby, Thorn, Staud, & Jensen, 1999; Pfingsten, Hilde- brandt, Leibing, Carment, & Saur, 1997). For example, many chronic back pain sufferers view back surgery as a necessary treatment for back pain re- lief. One might believe that back surgery is a drastic step taken because it is the only road toward recovery. Unfortunately, however, some back-surgery patients do not improve. In one study, 39% of patients who underwent cir- cumferential lumbar fusions because of chronic low back pain reported that, in retrospect (at least 2 years postsurgery), they would not go through it again for the same outcome, with half of those patients stating that they felt the same or worse than before their surgeries (Slosar et al., 2000). The reason patients may respond differently to treatments may be accounted for, in part, by pretreatment psychosocial differences.

By and large, researchers and clinicians are increasingly adopting the view that every individual who becomes a pain patient has a unique set of circumstances that will affect his or her prognosis. Thus, our assessments of pain patients need to encompass a wide range of areas and, at times, need to be tailored toward the individual patient. For example, Gatchel (2001) recommended taking a "stepwise approach" when conducting bio- psychosocial assessments, noting that assessments can have greater im- pact when the order of the steps are arranged to meet the needs of each specific patient.

Although chronic pain is a major health care problem in the United States and has enormous individual, social, and economic consequences, there is currently no treatment that totally eliminates pain problems for the majority of chronic pain sufferers. As a consequence, people will likely continue to experience pain for years, even decades, despite the best ef- forts of health care providers. The longer pain persists, the more impact it will have on the pain sufferer's life and the more psychosocial variables will play a role.

PSYCHOLOGICAL ASSESSMENT OF CHRONIC PAIN SUFFERERS

Optimal treatment cannot begin without appropriate assessment, and ap- propriate assessment must attend to cognitive, affective, and behavioral factors. This assessment can be a brief psychological screening or a com- prehensive psychological evaluation. The overall objectives of both types of assessment (described next) are to determine the extent to which cogni- tive, emotional, or behavioral factors are exacerbating the pain experience, interfering with functioning, or impeding rehabilitation. 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 213

Initial Screening

In some settings, such as hospitals, health professionals are asked to conduct bedside pain evaluations or provide pain consultation service for physicians treating patients with complicated symptoms or on rehabilitation units. Under these circumstances, a brief psychological screening may be all that is feasible. This screening should supplement the routine assessment of pain that has become a requirement of the Joint Commission on the Accreditation of Rehabilitation Facilities (JCAHO) in the United States and the U.S. Veterans Administration (VA). In those instances, patients are routinely queried as to pain severity, location, and characteristics. In addition, the VA recommends that, when feasible, patients should be asked about the impact of pain on their activities (e.g., socializing, eating, ambulating), current and past treat- ments for pain, and patients' expectations for pain relief. In addition, behav- ioral manifestations of pain should be observed (e.g., limping, protective body postures, moaning) and changes in these should be noted.

A first consideration is the purpose for the screening (e.g., "Is this patient significantly depressed?" "Why is the patient noncompliant?" "Why is the patient being so uncooperative?"). The evaluator must be responsive to the referral question; however, one of the main objectives of any psycho- logical screening is to determine whether a comprehensive pain assess- ment is warranted. In many instances, initial screenings can be conducted by physicians, nurses, or other health professionals with the understanding that if particular concerns are detected, they should refer the patient to a pain psychologist for a comprehensive evaluation.

Under ideal circumstances, psychological screenings can take as little as 15 minutes, particularly if patients complete paper-and-pencil question- naires ahead of time. We discuss the use of surveys, inventories, and ques- tionnaires in a later section.

Physicians and other health care providers should conduct a brief screening with all chronic pain patients to determine whether they require a more comprehensive psychological evaluation. Table 8.1 includes areas that should be examined and some sample questions. When a patient dem- onstrates problems in response to 6 of the 16 areas included in the inquiry or shows a particularly worrisome response to any one of the questions in- cluded in Table 8.1, we recommend referral for a comprehensive psycholog- ical assessment. We next expand on several of the areas covered in Table 8.1 to provide additional clarification.

Inappropriate Medication Use/Substance Abuse

A significant percentage of people with chronic pain treated in primary care are prescribed one or more analgesic medications with a substantial per- centage receiving prescriptions for opioid medication (Clark, 2002). Patients 214 TURK, MONARCH, WILLIAMS

seeking pain relief may inadvertently become psychologically dependent on prescription medications. Adherence to prescribed medications should be explored. In addition to asking about what analgesic medications have been prescribed, the evaluator should inquire about the frequency of medi- cation use, whether the patient alters the recommended schedule of medi- cation use, what the patient does when he or she has an exacerbation of pain, and what the patient does if he or she uses up the supply of available medication. When patients make frequent requests for increased or stron- 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 215

TABLE 8.1 Screening Questions

If a combination of more than 6 "Yes" to the first 13 questions and "No" to the last 3 questions be- low or if general concerns in any one area, consider referral for psychological assessment. 1. Has the patient's pain persisted for three months or longer despite appropriate interven- tions and in the absence of progressive disease? [Yes] 2. Does the patient repeatedly and excessively use the health care system, persist in seeking in- vasive investigations or treatments after being informed these are inappropriate, or use opioid or sedative-hypnotic medications or alcohol in a pattern of concern to the patient's physician (e.g., escalating use)? [Yes] 3. Does the patient come in requesting specific opioid medication (e.g., dilaudid, oxycontin)? [Yes] 4. Does the patient have unrealistic expectations of the health care providers or the treatment offered ("Total elimination of pain and related symptoms")? [Yes] 5. Does the patient have a history of substance abuse or is he or she currently abusing mind al-tering substances? [Yes] Patients can be asked, "Have you ever found yourself taking more medication than was prescribed or have you used alcohol because your pain was so bad?" or "Is anyone in your family concerned about the amount of medication you take?" 6. Does the patient display a large number of pain behaviors that appear exaggerated (e.g., gri- macing, rigid or guarded posture)? [Yes] 7. Does the patient have litigation pending? [Yes] 8. Is the patient seeking or receiving disability compensation? [Yes] 9. Does the patient have any other family members who had or currently suffer from chronic pain conditions? [Yes] 10. Does the patient demonstrate excessive depression or anxiety? [Yes]. Straightforward ques- tions such as, "Have you been feeling down?" or "What effect has your pain had on your mood?" can clarify whether this area is in need of more detailed evaluation. 11. Can the patient identify a significant or several stressful life events prior to symptom onset or exacerbation? [Yes] 12. If married or living with a partner, does the patient indicate a high degree of interpersonal conflict? [Yes] 13. Has the patient given up many activities (recreational, social, familial, in addition to occupa- tional and work activities) due to pain? [Yes] 14. Does the patient have any plans for renewed or increased activities if pain is reduced? [No] 15. Was the patient employed prior to pain onset? [No] If yes, does he or she wish to return to that job or any job? [No] 16. Does the patient believe that he or she will ever be able to resume normal life and normal functioning? [No]

ger medications, rely solely on medications for relief, or when there are in-dications that the patient may be overmedicated (e.g., the patient can no longer do his or her job because of being too sedated), urine screening and a thorough psychological evaluation may be warranted.

Patients may also make use of alcohol and illicit drugs to palliate their symptoms. A particular concern is that of substance abuse. Patients with histories of substance abuse may be at particular risk for becoming psy- chologically dependent on and abusing pain medications. Reviewing the chart and conducting a detailed history of previous and current prescription and substance use may help ascertain whether this area warrants fur- ther inquiry.

Excessive Physical, Work, Family, or Social Dysfunction

Patients who abandon their exercise routines, employment, family, and so- cial activities are at greater risk for problems associated with persistent pain. Lack of physical activity can lead to weakened and more vulnerable muscles, which are more susceptible to exacerbation of pain. Physical de- conditioning through further reduction in activity can lead to even greater loss of muscle strength, flexibility, and endurance.

Disengagement from family, social activities, or employment can have a number of repercussions, such as leading the patient to greater isolation and diminished self-esteem, and ultimately greater disability. If pain pa- tients demonstrate poor social and physical functioning, particularly in light of their degree of objective physical pathology, a comprehensive eval- uation may clarify their situation, and help to identify areas to be ad- dressed in a comprehensive treatment plan. One way to assess patient functioning is to inquire, "Are there things that you used to do that you no longer do because of your pain?" The clinician should note whether the pa- tient has modified activities in healthful ways (e.g., switching from a karate class to a yoga class) or has completely abandoned them.

Involvement in Litigation/Disability Compensation

Financial compensation from litigation or disability payments can serve as positive reinforcement for reports of pain. Financial compensation, espe- cially when combined with other factors, such as those listed above, may contribute to disability. In order to briefly address this area in a screening, patients can be asked direct questions such as, "Have you hired an attorney to assist you?" "What are your monthly disability payments?" "What per- cent of your previous salary is covered by disability payments?" 216 TURK, MONARCH, WILLIAMS

Beliefs About Current and Future Pain and Functioning

Finally, the way patients think about their pain can exacerbate their symp- toms. When patients have catastrophic beliefs about their situation or ex- press hopelessness about their future, they should be referred for a com- prehensive evaluation. Clinicians can also ask patients questions about their beliefs, such as, "What do you believe is the cause of your pain?" and "Do you believe that your pain will improve?" Alternatively, they may ad- minister self-report questionnaires such as the Survey of Pain Beliefs and Attitudes (Jensen, Karoly, & Huger, 1987) or the Pain Beliefs and Percep- tions Inventory (Williams & Thorn, 1989).

In addition to gathering information through an interview, health care professionals can administer any of a number of standardized self-report measures in addition to the ones we mentioned. These instruments are ef-ficient means for obtaining relevant detailed information. Some of these measures require psychological expertise for interpretation; however, a number of instruments require little training (see Turk & Melzack, 2001). Note that many of these instruments were not developed specifically for chronic pain patients. As a result, it is always best to corroborate informa- tion gathered from the instruments with other sources, such as interviews with the patient and significant others, and chart review. An important ca- veat: The results of such brief screening should not be used to diagnose but rather to determine whether a more comprehensive psychological evaluation is warranted.

PURPOSES OF A COMPREHENSIVE PSYCHOLOGICAL EVALUATION

When health care professionals suspect that cognitive, emotional, or behav- ioral factors play a role in patients' suffering (six or more items identified in Table 8.1 or a particularly concerning area identified during the initial screen- ing), a comprehensive psychological evaluation is appropriate. Experienced health psychologists are best able to perform these evaluations. A thorough psychological evaluation will reveal aspects of the patient's history that are relevant to the current situation. For example, the psychologist will gather in- formation about psychological disorders, substance abuse or dependence, vocational difficulties, and family role models for chronic illness. In terms of current status, topics covered include recent life stresses, vocational, social and physical functioning, sleep patterns, and emotional functioning. The pur- pose of the evaluation is to examine whether historical or current factors are influencing the way the patient perceives and copes with pain.

The psychological evaluation cannot provide definitive information about the cause(s) of pain and other symptoms. Moreover, if psychological 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 217

factors are identified as contributing to pain and disability, this does not preclude the possibility of physical pathology, just as the presence of posi- tive physical findings does not necessarily preclude the possibility that psy- chological factors are contributing to the patient's pain.

PREPARATION OF PATIENTS FOR PSYCHOLOGICAL EVALUATIONS

Many patients with persistent pain may not see the relevance of a psycho- logical evaluation. They tend view their symptoms as physical and they are not accustomed to a biopsychosocial approach. Many believe that identifi- cation and treatment of the physical cause of their pain is the only road to- ward finding relief for their symptoms. When compensation or litigation is- sues are involved, patients may be particularly sensitive to the implications of a psychological evaluation. They may wonder, "Is this psychologist try- ing to figure out if I am exaggerating my symptoms?" Another concern they may have is that their health care providers believe they are "crazy" or that their pain is "all in their head."

When health care providers refer patients for a psychological evaluation, they can save the patient considerable grief and enhance patient cooperation by engaging in a brief discussion about why they were referred for such an evaluation. Specifically, the provider can inform the patient that an evaluation helps his or her providers ensure that factors in the person's life, such as stress, are not interfering with their treatment and not contributing to suf- fering. Patients can then be told that, used in conjunction with other treatments, patients with persistent pain have found that psychological tech- niques can reduce their symptoms and help them better manage their pain and their lives. Table 8.2 includes a transcript with some guidance for dis- cussing a referral to a psychologist. Although it is not ideal, when referral agents do not prepare patients for psychological evaluations, pain psycholo- gists can provide the rationale for the evaluation themselves. One way to establish rapport with these patients is to begin the evaluation with less "psychologically charged" questions. Instead, begin by asking patients to de- scribe their pain and its onset. The transcript included in Table 8.2 can be modified for a psychologist to use during the introduction to the assessment.

COMPONENTS OF A PSYCHOLOGICAL EVALUATION

A comprehensive psychological evaluation covers the same information as screening but in much greater depth and breadth. Results of comprehen- sive psychological evaluations can be combined with physical and voca- 218 TURK, MONARCH, WILLIAMS

TABLE 8.2 Preparation for Referral for a Psychological Evaluation Acknowledge that you believe the patient's experience of pain is real. Inform them that they are being referred to a psychologist because when pain persists it begins to affect all aspects of life. Note that the purpose of the referral is to help formulate a comprehensive treatment plan that addresses both the physical factors involved with pain and the impact of pain on the patient's life. Inform them that information provided to a psychologist will be confidential and shared only with other health care professionals. If third-party payers are to obtain information the patient will be alerted to this. Limitations of confidentiality, as required by law, need to be stated.

The following is a transcript of an interaction where a health care provider is preparing a patient for a referral for a psychological evaluation. "When people have persistent pain, fatigue, and other distressing symptoms and they have been referred for a psychological evaluation, they often think, 'Does my doctor think that my symptoms are all in my head (imaginary)?' 'Does he or she think I am exaggerating or, making ev- erything up, faking?' 'Does my doctor think I am a hopeless case and is he or she trying to get rid of me?' Others may think, 'I'm not depressed, why do I need to see a psychologist?' "There is no question that your pain and other symptoms are real. I'm referring you to a psy- chologist because I understand you have been having unremitting symptoms for a long time and I know that this can affect all areas of your life. Psychologists do not just deal with people who have severe emotional problems. They also work with patients who have to adapt to a disorder with distressing symptoms. As you know all too well, living with pain is difficult, can create many problems, and interfere with all aspects of your life—household activities, work, marital, family, and social relations, work, and more. There is no question that pain and associated symptoms cause a lot of stress. Do you agree? It is not surprising that people with pain become irritable, an- gry, frustrated, worried, and yes, depressed. To provide you with the best treatment, then, re- quires that we understand your situation and work with you as a whole person (not just a set of body parts that are broken) and provide you with a comprehensive treatment. "Some of the things that a psychologist might ask you about include how chronic pain has af- fected your life and how you have been coping with the many symptoms. Based on the psycho- logical evaluation, the psychologist may recommend ways to help you adjust your life style to re- duce pain and disability, relaxation methods to help you control your body, a number of stress management skills and ways to help you cope with your physical symptoms and your distress, and methods to help you improve your marital, family, and social relations. I hope I have ad- dressed some of your concerns about my recommending a psychological evaluation. Do you have any questions?"

Note. From "Psychological Evaluation of Patients with Fibromyalgia Syndrome: A Compre- hensive Approach," by D. C. Turk, E. S. Monarch, & A. D. Williams, 2002, Rheumatic Disease Clinics of North America, 28, 219–233. Copyright 2002 by W. B. Saunders Company. Reprinted with permis- sion. 219

tional evaluations conducted by physicians or physical therapists and voca- tional counselors, respectively, or can stand alone.

Interview

A central component of a psychological evaluation is the interview. A num- ber of topics roughly fitting within 10 general areas are covered in the inter- views.

Description of Symptoms. Pain psychologists are interested in how patients experience their pain, what types of things exacerbate or alleviate the symptoms, and what thoughts and feelings they have about their pain. For example, does the patient believe that they have no control over symptoms? Are they able to detect any patterns in their pain experience? Or do they notice that their behaviors influence their symptoms to some extent and that there are predictable patterns with respect to their pain?

It is also useful to ask patients to rate their pain on a 0–10 scale (e.g., 0 equals no pain at all and 10 equals the most intense pain possible). They might be asked to rate their pain "right now," "over the past weeks," "usual or average pain," "most severe pain," and how much their pain affects their regular activities. These ratings can be informative in generating hypothe- ses and might also be used to evaluate progress during treatment. A patient who assigns very low ratings but grimaces and limps while moving about the clinic may be underreporting his or her pain. On the other hand, a pa- tient who assigns a 10 as the lowest pain experienced may be making a plea for help. The patients might also be asked about the location and changing (spreading) of pain, the characteristics of pain (e.g., burning, aching), the ef- fect of pain on activities, and what they do when their pain is particularly severe, as well as how they typically control their pain. These questions can be presented orally or patients can be asked to complete a question- naire addressing these topics. There is no simple way to assess a person's pain level, but *how* a patient describes his or her pain might be as useful as knowing the pain level itself.

Difficulties sleeping frequently accompany chronic pain and can create a vicious circle of suffering. Lack of sleep can contribute to pain, and experi- encing pain can make it more difficult to sleep soundly. In a comprehensive evaluation, patients should be asked about their sleep—specifically, do they have any difficulty initiating or maintaining sleep? Do they feel rested when they awaken? If the patient endorses any of these difficulties, psychologists can probe further and help determine whether there are (often easy) changes that can be made. For example, does the patient discontinue caf- feine consumption eight hours and alcohol four hours before bedtime? 220 TURK, MONARCH, WILLIAMS

What does the patient do when he or she wakes up in the middle of the sleep cycle?

Prior Treatments. Patients should be asked about what treatments they have tried in the past and are using presently. How effective were (are) these treatments? Also, are they or health care providers considering additional treatments in the future, such as surgery for their pain? If there is a pending treatment, what does the patient know about the procedure(s) being considered, what are the patient's expectations about the likely results, how confident are they in the potential of this treatment? How worried are they about the treatments being considered, what do their significant others think about the treatment(s) being contemplated? Answers to these questions are useful in evaluating whether patients have already assumed a self-management role or whether they see themselves as reliant on others for all their care.

Compensation and Litigation Status. When patients with persistent pain seek compensation for lost wages or are involved in litigation, these processes can add an additional layer of distress. Keeping up with paper- work, phone calls, visits to physicians and hospitals, and meetings with attorneys are often undesirable activities. They may have realistic con- cerns about the potential outcomes of the assessment. Moreover, patients involved in litigation are usually in the awkward position of having to "prove" how disabled they are as a result of an injury. The more they at- tend to their limitations, the less they attend to their improvements. Yet an important part of rehabilitation is taking note of capabilities and maximiz- ing a "wellness" role. Psychologists should ask patients about these areas in order to assess whether compensation or litigation statuses might inad- vertently be contributing to and maintaining the patients' symptoms. The psychologist needs to be vigilant for the potential of secondary gains color- ing the patient's presentation.

A number of studies (e.g., Rohling, Binder, & Langhinrichen-Rohling, 1995) have demonstrated that litigation and compensation can influence reports of pain and response to treatment. This cannot, however, be taken as an indication that those involved with litigation and receiving disability compensation are dissimulating or exaggerating. There are a number of factors (e.g., the process of litigation, the nature of work of those seeking compensation) that may influence their responses. Moreover, although the studies suggest that litigation and compensation are predictors of dis- ability these factors are only relative predictors. That is, not every patient who is involved with litigation or who is receiving compensation will ipso facto respond poorly to treatment or report higher levels of pain (Turk, 1997). The clinician must be cautious not to overemphasize the role of 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 221

these factors in his or her evaluation of chronic pain sufferers and in treat- ment recommendations.

Patients' Responses to Their Symptoms and Responses From Signifi- cant Others. This part of the interview is particularly important. How has the patient changed his or her life as result of the pain? Has the patient ceased engaging in favorite activities? Has a significant other taken over household responsibilities? When the patient experiences an increase in pain, does he or she complain about it to significant others? How do signifi- cant others respond?

From a biopsychosocial perspective, antecedents and consequences of pain symptoms and associated behaviors can potentially shape future ex- periences and behaviors. Pain psychologists use this information to formu- late hypotheses about what behavioral factors in a person's life may serve to maintain or exacerbate the pain experience. It is helpful to gather this in- formation through interviews with patients and significant others together as well as separately. During conjoint interviews the psychologist should observe interactions between the significant others and responses by sig- nificant others to patients expressions of pain and suffering.

Coping Efforts. People who feel that they have a number of successful methods for coping with pain may suffer less than those who behave and feel helpless, hopeless, and demoralized. Thus, assessments should focus on identifying factors that exacerbate and ameliorate the pain experience. Does the patient continue to engage in enjoyable activities? Does he or she have a history of coping well with stressors? Is he or she so overwhelmed by pain and other stressors that he or she has little resources left to cope with his symptoms? Does emotional stress increase his or her perceived pain level? If so, he or she may meet the criteria for a pain disorder associated with both psychological factors and a general medical condition (if diagnosed by a physician) in the Diagnostic and Statistical Manual (American Psychiatric Association, 1994). Does the patient have problems with pacing activities, so that he or she does more when the patient feels better, which leads to increased pain and subsequent sedentary behavior? Do relaxation techniques reduce the pain level? Is reliance on pain medication the pri- mary way pain is reduced?

The psychologist should not only focus on deficits and weakness in cop- ing efforts and coping repertoire but also strengths. What has the patient tried and what has been helpful? How has the patient coped with other problems (illnesses, stress) in the past? How successful does the patient feel he or she was in coping with problems prior to pain onset? What is the extent of his or her coping repertoire? 222 TURK, MONARCH, WILLIAMS

Educational and Vocational History. Does the patient have a history of achievement, consistent work, and adequate income? Patients without these may be at a further disadvantage in terms of future successes (Dwor- kin, Richlin, Handlin, & Brand, 1986). What was (is) the nature of the pa- tient's work? What are the physical demands required? Does the patient be- lieve that he or she will be able to return to previous occupation? How did the patient get along with coworkers, supervisors, and employees? Did the patient like his or her job and does he or she wish to return to the same or a related job? What plans has the patient made regarding return to work or to resumption of usual activities? If psychologists learns that these factors may impede progress, they can include recommendations for referral to a vocational counselor.

Social History. Did anyone in the patient's family of origin live with chronic pain? If so, what did the patient learn from that? Does the patient currently have a supportive network of family or friends? Do significant oth- ers unwittingly reinforce pain behaviors? Is his or her marriage or home life chaotic? Has it changed since the onset of pain? A comprehensive evalua- tion and subsequent report can guide recommendations about these is- sues. Severe difficulties in these areas may warrant a referral to a psycho- therapist or family counselor.

History and Current Alcohol and Substance Use. Has the patient coped with difficulties in the past by turning to alcohol? Is the patient self-medi- cating? Does his or her substance use interfere with his ability to manage symptoms? It is helpful to use an interview such as the Structured Clinical Interview for the DSM-IV (SCID; American Psychiatric Association, 1997) (described later) to determine if the patient meets the criteria for sub- stance abuse or dependence. Patients who are reliant on substances will need additional services for proper treatment.

Psychological Dysfunction. It is important to assess whether patients have a prior history of psychiatric illness. Are they currently being treated for psychological problems? If yes, did treatment begin prior to pain onset, or is treatment related to current pain? How helpful does the patient feel psychological treatments have been (are)? Are there any additional factors from the patient's history that may impede rehabilitation? Is the patient so overwhelmed by his or her current situation that he or she has become sui- cidal? Patients with psychological dysfunction may benefit from additional support, therapy, or consultation with a psychiatrist for psychotropic medi- cations. Information acquired during the SCID may help determine if the pa- tient meets DSM-IV criteria for several diagnostic categories. The interview 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 223

may also differentiate if depression is a primary factor or is secondary to chronic pain.

The SCID—I and SCID—II (1997) can be used to determine whether the patient suffers from any Axis I (primary psychiatric diagnosis) or Axis II (per- sonality disorder) *DSM—IV* diagnoses (American Psychiatric Association, 1994). It is helpful to differentiate if depression or anxiety predated the on- set of pain symptoms, is related to a primary psychiatric diagnosis, such as major depressive disorder, or is secondary to chronic pain. Significant de- pressive symptoms secondary to chronic pain may meet the criteria for de- pressive disorder not otherwise specified. It is also necessary to determine whether the patient's symptoms meet the *DSM—IV* criteria for a pain disor- der associated with psychological factors (code 307.80) or a pain disorder associated with both psychological factors and a general medical condition (code 307.89) (which would need to be diagnosed by a medical doctor) (American Psychiatric Association, 1994). For example, the pain may be ex- acerbated by maladaptive responses to stress.

The SCID-I for Axis I disorders also includes a comprehensive set of questions regarding substance use. If a patient is abusing or is dependent on substances, this may adversely affect his or her ability to adaptively manage pain.

Concerns and Expectations for the Future and Treatments. Patients should be asked about their beliefs and expectations about the future of their pain problem. Are they convinced that they will not be cured unless they have a surgery? What would they do if their pain were eliminated? What would be the first sign that they were on the road to recovery? These questions are meant not only to assess the patient's thoughts (beliefs, ex- pectations, attitudes) surrounding their pain problem but also to assess whether the patient has considered that rehabilitation is possible. To what extent have they internalized the disability role? Are they expecting to im- prove?

Table 8.3 describes each of these areas in some more detail and provides additional examples of helpful questions. It is important to note that the categories are listed as if they are independent. Actually they are interre- lated and, ultimately, will allow the evaluators to identify specific areas for rehabilitation.

Observation. Observation of patients' behaviors (ambulation, body postures, facial expressions) can occur while they are being escorted to interview, during the interview, and when exiting interview (observation check-lists are available to assist in assessing pain behaviors; Keefe, Williams, & Smith, 2001; Richards, Nepomuceno, Riles, & Suer, 1982). Observation of significant others' responses to patients can occur at the same time. 224 TURK, MONARCH, WILLIAMS

TABLE 8.3 Areas Covered in Comprehensive Interview

Experience of Pain and Related Symptoms Location and description of pain (e.g., "sharp", "burning") Onset and progression Perception of cause (e.g., trauma, virus, stress) What have they been told about their symptoms and condition? Do they believe that what they have been told is accurate? Exacerbating and relieving factors (e.g., exercise, relaxation, stress, massage). "What makes your pain worse?" "What makes your pain better?" Pattern of symptoms (e.g., symptoms worse certain times of day or following activity or stress) Sleep habits (e.g., difficulty falling to sleep or maintaining sleep, sleep hygiene) Thoughts, feelings, and behaviors that precede, accompany, and follow fluctuations in symptoms

Treatments Received and Currently Receiving Medication (prescribed and over-the-counter). How helpful have these been? Pattern of medication use (prn [as needed], time-contingent), changes in quantify or schedule Physical modalities (e.g., physical therapy). How helpful have these been? Exercise (e.g., Do they participate in a regular exercise routine? Is there evidence of deactivation and avoidance of activity due to fear of pain or exacerbation of injury?). Has the pattern changed (increased, decreased)? Complementary and alternative (e.g., chiropractic manipulation, relaxation training). How help- ful have these been? Which treatments have they found the most helpful? Compliance/adherence with recommendations of health care providers Feelings about previous health care providers

Compensation/Litigation Current disability status (e.g., receiving or seeking disability, amount, percent of former job in- come, expected duration of support) Current or planned litigation (e.g., "Have you hired an attorney")

Responses by Patient and Significant Others Typical daily routine ("How much time do you spend sitting, standing, lying down?") Changes in activities and responsibilities (both positive and obligatory) due to symptoms ("What activities did you use to engage in prior to your symptoms?" "How has this changed since your symptoms began?") Changes in significant other's activities and responsibilities due to patient's symptoms Patient's behavior when pain increases or flares up ("What do you do when your pain is bother- ing you?" "Can others tell when your pain is bothering you?" "How do they know?") Significant others' responses to behavioral expressions of pain ("How can significant others tell when your pain is bad?" "What do your significant others do when they can tell your pain is both- ering you?" "Are you satisfied with their responses?") What does the patient do when pain is not bothering him or her (uptime activities, well behav- iors)? Significant other's response when patient is active ("How does your significant other respond to your engaging in activities?") Impact of symptoms on interpersonal, family, marital, and sexual relations (e.g., changes in de- sire, frequency, or enjoyment) Activities that patient avoids because of symptoms Activities continued despite symptoms Pattern of activity and pacing of activity (can use activity diaries that ask patients to record their pattern of daily activities [time spent sitting, standing, walking, and reclining] for several days or weeks) (Continued) 225

TABLE 8.3 (Continued)

Coping How does the patient try to cope with his or her symptoms? (e.g., "What do you do when your pain worsens?" "How helpful are these efforts?"). Does patient view himself or herself as having any role in symptom management? "What role?" Current life stresses Pleasant activities ("What do you enjoy doing?")

Educational and Vocational History Level of education completed (any special training) Work history How long at most recent job? How satisfied with most recent job and supervisor? What do they like least about most recent job? Would they like to return to most recent job? If not what type of work would they like? Current work status (including homemaking activities) Vocational and avocational plans

Social History Relationships with family or origin History of pain or disability in family members History of substance abuse in family members History of, or current, physical, emotional, and sexual abuse. Was the patient a witness to abuse of someone else? Marital history and current status? Quality of current marital and family relations.

Alcohol and Substance Use History and current use of alcohol (quantity, frequency) History and current use of illicit psychoactive drugs History and current use of prescribed psychoactive medications Consider the CAGE questions as a quick screen for alcohol dependence (Mayfield, McLeod, &

Hall, 1987). Depending on response consider other instruments for alcohol and substance abuse (Allen & Litten, 1998).

Psychological Dysfunction Current psychological symptoms/diagnosis (depression including suicidal ideation, anxiety disorders, somatization, posttraumatic stress disorder). Depending on responses, consider conducting formal SCID (American Psychiatric Association, 1997). Is the patient currently receiving treatment for psychological symptoms? If yes, what treatments (e.g., psychotherapy or psychiatric medications). How helpful? History of psychiatric disorders and treatment including family counseling Family history of psychiatric disorders

Concerns and Expectations Patient concerns/fears (e.g., Does the patient believe he/she has serious physical problems that have not been identified? Or that symptoms will become progressively worse and patient will be- come more disabled and more dependent? Does the patient worry that he or she will be told the symptoms are all psychological?) Explanatory models ("What have you been told is the cause of your symptoms?" "Does this expla- nation make sense?" "What do you think is the cause of your pain now?") Expectations regarding the future and regarding treatment (will get better, worse, never change) Attitude toward rehabilitation versus "cure." Treatment goals

Note. From "Psychological Evaluation of Patients with Fibromyalgia Syndrome: A Comprehensive Approach," by D. C. Turk, E. S. Monarch, & A. D. Williams, 2002, Rheumatic Disease Clinics of North Amer- ica, 28, 219–233. Copyright 2002 by W. B. Saunders Company. Reprinted with permission. 226

SIGNIFICANT OTHER INTERVIEW

Because significant others may unwittingly contribute to pain expression and disability, whenever possible a chronic pain evaluation should include an interview with a significant other. It is best to interview the significant other (e.g., spouse, partner, family member, close friend) individually, be- cause he or she might feel more comfortable discussing details of the pa- tient's situation. The rationale offered to the patient is that by interviewing a significant other, the treatment team can learn more about the patient and ultimately can provide better treatment. It is also helpful to mention that significant others are frequently affected by the patient's persistent pain and appreciate the opportunity to express their feelings and concerns.

When possible, it is also helpful to interview the patient and significant other together. As mentioned previously, it is useful to observe patient and significant other interactions, noting any behaviors that might be related to the patient's disability. For example, are there indications that the signifi- cant other inadvertently reinforces pain behaviors? How does the signifi- cant other respond to the patient as he or she describes the pain and dis- tress (e.g., reaches out to touch the patient, frowns, or contradicts)?

CASE EXAMPLE

A 34-year-old truck driver, Mr. C, injured his back while unloading boxes at work one year earlier. He experienced immediate lower back pain that he rated as a 9 on an 11-point scale (0–10, with 10 representing the worst pain possible). At present he reports that his pain is at level 7 most of the day and is worst in the morning.

Mr. C reports he has difficulty falling asleep due to discomfort and re- curring worry about his future. He states that he goes to bed at 11:00 p.m. but does not fall asleep until around 2:00 a.m. Mr. C indicates that he wakes up three to four times per night every night due to pain. When he wakes up, he notes that he watches television or "surfs" the Internet. Mr. C reports that he awakens for the day at 5:30 a.m. feeling tired. He notes that he takes 2-hour naps in the afternoon most days. He acknowledges that he smokes one pack of cigarettes per day, the last one being immedi- ately before going to bed. He then smokes one to two cigarettes when he awakens during the night. Mr. C reports that he consumes five cups of cof- fee per day, the last being about 2 hours before going to bed. He describes poor sleep hygiene and would benefit from interventions to help him fall asleep and maintain his sleep. He indicates that he has been depressed since his injury. Chronic sleep deprivation and a disrupted sleep cycle can lead to increased pain, increased stress, depressed or anxious mood, decreased concentration, and irritability. 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 227

Mr. C notes that he drinks four beers per day and this has been his pat- tern since he was 21. He has his last "night cap" close to bedtime. He may be using alcohol to reduce his perceived pain. He acknowledges that he had one arrest for driving while intoxicated when he was 20.

Mr. C displayed the following pain behaviors during the interview: hold- ing his lower back, wincing periodically, moaning when sitting down and getting up out of the chair, and changing position frequently. His wife ex- presses sympathy verbally and helps him to get out of the chair. She re- ports that she feels sorry for him and gives him massages several times a week. Both Mr. C and his wife admit that he is irritable and that his wife has had to take over many of the household chores he used to do prior to his injury. Mrs. C acknowledges that she is getting frustrated with her husband as he "orders me around and does little to help me or himself."

Mr. C indicates that he has difficulty with most physical activities of daily living, such as lifting, bending, pushing, pulling, and carrying. Pain in-creases with these activities as well as emotional stress. He appears to have difficulty pacing his activities, tending to do more when he feels better. This leads to increased pain, which in turn leads to decreased activity.

The *DSM*_//VAxis I diagnoses would be: Pain disorder associated with both psychological factors (and a general medical condition [code 307.89], which would need to be diagnosed by a medical doctor), and depressive disorder not otherwise specified (code 311), because the depressive symp- toms are secondary to the pain disorder.

STANDARDIZED SELF-REPORT INSTRUMENTS

A large number of psychological instruments have been used to assess do- mains relevant to patients with chronic pain. A word of caution about psy- chological measures is in order. Many of these instruments were not devel- oped on patients with medical problems. For example, Piotrowski (1998) conducted a survey of psychologists who were engaged in the assessment of chronic pain patients and reported that the most frequently used meas- ures in order of frequency of use included the Minnesota Multiphasic Per- sonality Inventory (MMPI; Hathway & McKinley, 1967; Hathway, McKinley, & Butcher, 1989), Beck Depression Inventory (BDI; Beck, Ward, Mendelson, Mock, & Erbaugh, 1961), McGill Pain Questionnaire (MPQ, Melzack, 1975), and SCL-90R (Derogatis, 1983), and the Multidimensional Pain Inventory (MPI; Kerns, Turk, & Rudy, 1985). Only the MPQ and MPI were specifically developed for use with chronic pain sufferers.

Data gathered from measures not specifically developed or normed on a chronic pain sample should be interpreted with caution as the patient's medical condition may influence some of the responses. Items such as "I 228 TURK, MONARCH, WILLIAMS

have few or no pains," "I am in just as good physical health as my friends," and "I am about as able to work as I ever was" (from the original MMPI) il- lustrate the concern (Pincus, Callahan, Bradley, Vaughn, & Wolfe, 1986). It is reasonable to assume that the sensitivity of these measures may be rela- tively low and there may be a tendency of "overpathologize" patients.

Cutoffs for depression on standard measures, such as the Beck Depres- sion Inventory, do not apply to chronic pain patients (Novy, Nelson, Berry, & Averill, 1995). In addition, it is unclear how pain medications might affect the way patients respond to psychological instruments. As mentioned ear- lier, it is best to corroborate findings from psychological measures with other sources of information, such as the patient or significant other inter- view or medical records. In some cases, it will not be possible to corrobo- rate information and interpretations should be made cautiously.

Decisions regarding which measures to select will depend, at least to some extent, on the information obtained during the interview and data de- rived from the initial psychological screening instruments. Still, standard- ized assessment instruments can provide an alternate source of informa- tion about areas that appear to be influencing patients' adaptation to their pain and their response to treatment. For example, if a high level of marital distress was identified during the interview, the psychologist may request that a patient and his or her spouse both complete a marital adjustment in- ventory (e.g., Spanier, 1976) to identify areas of conflict and congruence be- tween the two partners. If a patient demonstrates a high degree of defen- siveness and unusual personality characteristics during the interview, the examiner may request that he or she complete the MMPI/MMPI-2 to cor- roborate the clinical impression obtained during the interview.

It is beyond the scope of this chapter to review all of the assessment measures that have been developed to assess people with chronic pain (for a comprehensive review see Turk & Melzack, 2001). Mikail, DeBreuil, and D'Eon (1993) attempted to delineate a core assessment battery for use with chronic pain patients. They factor-analyzed nine self-report measures commonly used to assess chronic pain patients. Based on this analysis they concluded that a core assessment should evaluate general affective distress, social support, pain descriptions, and functional capacities. De Gagne, Mikail, and D'Eon (1995) followed up on the Mikail et al. (1993) study and suggested that a set of measures including the MPI, BDI, and MPQ would be adequate to cover the four domains and suggest this set should form the core assessment. Similarly, Bernstein, Jaremko, and Hink- ley (1995) reported that scales of the MPI correlated highly with measures of psychosocial adjustment including the SCL–90R (Derogatis, 1983) and physical functioning, suggesting that there is no need to add an additional measure of psychological adjustment or a measure of functional activities to the MPI. Nevertheless, Burton and colleagues (1999) suggest that the 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 229

Basic Personality Inventory (Jackson, 1989) would be a useful complemen- tary tool to the MPI.

We suggest supplementing the set recommended by De Gagne et al. (1995) with a functional activity scale such as the Oswestry Disability Index (Fairbank, Couper, Davies, & O'Brien, 1980), as it includes much more spe- cific activities of daily living, whereas the MPI assess more general activities. This set of instruments should require less than 1 hour for a patient to complete. We consider adding a personality measure as a supplement to the core battery if there were some reason to believe that this information would be of value in addressing a specific referral question or if we identified concerns during the interview.

Cognitive Testing

Patients can be queried about their ability to complete tasks that require cognitive and motor skills, such as driving (e.g., "Are you able to drive?" "Have you been in any car accidents since your pain began?" "Are you able to follow recipes when cooking?"). After considering the information to- gether (subjective report, brief cognitive tests, and queries about activities of daily living), if psychologists suspect cognitive impairments, they can re- fer patients for further neuropsychological testing. In addition, they can suggest that medical professionals ensure that the patient has understood treatment guides and instructions. In addition to questions included in the interview, there are a number of formal neuropsychological tests available. There are some data regarding the appropriateness and sensitivity of these measures for chronic pain patients (Hart, Martelli, & Zasler, 2000). We re- turn to discuss some of these when we address specific referral questions regarding disability and impairments later in this chapter.

Ongoing Assessment and Reassessment

Once areas of concern are identified from the evaluation, it is important to develop a plan for how to assess progress. Because conducting repeat com- prehensive evaluations will often not be feasible, one way to reassess pa- tients is to use the psychological screening described earlier. The screening should be supplemented with questions about the particular areas of con- cern that were detected in the prior comprehensive evaluation. In general, however, psychologists should look for signs that the patients' psycho- social, physical, and behavioral functioning have improved or declined. Several brief measures have been developed that may be used during proc- ess ratings (Pain Disability Index [Tait, Chibnall, & Krause, 1990], 8 items; Short Form of the MPI [von Korff, 1992], 8 items; Brief Pain Inventory—Short Form, 15 items [Cleeland, 1989]). 230 TURK, MONARCH, WILLIAMS

Patients may also be asked to complete diaries in which they report (daily, several times a day) the activities they performed (e.g., number of hours sitting, standing, walking), their mood (e.g., fear, anxiety, depres- sion), medication usage, thoughts, use of coping strategies, and sleep qual- ity. Be advised that patients may not comply with the requested frequency. For example, instead of completing ratings three times a day, they may fill in all ratings at the end of the day or fill in the data that was supposed to be recorded daily at the end of the week.

There are additional reasons to be cautious, however, in the selection of measures. If too little time has elapsed since the original evaluation, results of the measures may not be valid. Also, some psychological measures, such as the MMPI, were not designed to assess state variables. Instead, most per- sonality inventories are designed to measure traits and traits should not be expected to change over the course of pain treatment. Hence, they should not be used as indicators of progress. Finally, frequent recording may draw attention to pain and emotional distress when the treatment may be en- couraging distraction from symptoms. Thus, the responses may be reactive. There are several solutions to these problems. For example, the patient may complete and mail individual pages each day. Hand-held computers with paging capability can prompt patient responses and lock out access to previous ratings (e.g., Stone, Briderick, Porter, & Kaell, 1997). There are strengths and weaknesses of each approach; however, it is in- cumbent on those who are treating patients to make efforts to evaluate progress during the course of the treatment.

PSYCHOLOGICAL ASSESSMENT PRIOR TO INVASIVE AND INITIATION OF LONG-TERM OPIOID TREATMENT

At this time, many surgeons and interventional anesthesiologists strongly advocate pretreatment psychological assessments (e.g., Carragee, 2001; Prager & Jacobs, 2001) prior to operations and implantation of spinal cord stimulators and drug delivery systems. Some suggest that a comprehensive psychological assessment should be performed before initiating long-term opioid therapy (Robinson et al., 2001). Treatment providers are noting the advantages of psychological pre-assessment as a way to improve their out-comes as there are sufficient studies demonstrating wide variability in re- sponse to ostensibly identical treatments (Turk, 2002). This is becoming more important with the emphasis on evidence-based medicine and the re- quirement to demonstrate clinical effectiveness and cost-effectiveness of any treatment in order to obtain reimbursement.

Psychosocial variables have been shown to be among the strongest pre- dictors of spinal surgery outcome (Schade, Semmer, Main, Hora, & Boos, 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 231

1999). Psychologists are being asked to help physicians and surgeons pre- dict which candidates are poor risks for controversial, invasive, and often costly treatments. The comprehensive assessment protocol we described earlier is appropriate for addressing this referral question. Psychologists should not provide a simple yes—no response, as the evidence is not ade- quate to warrant definite statements. Rather, psychologists should indicate whether there are any apparent impediments to initiating the treatment and also what might be done either prior to treatment or following treat- ment to improve the outcomes. For example, a psychologist might suggest that a patient be treated for substance abuse prior to implantation of a spi- nal cord stimulator. A patient might be scheduled to meet with a psychologist and physical therapist following surgery to help the patient with his fear of certain activities. The psychologist might recommend family coun- seling to coincide with initiation of chronic opioid therapy.

Despite our general cautionary tone, there do appear to be some relative indicators of poorer outcomes for the types of invasive treatments and long-term opioids. Some of these are intuitive and based on clinical experi- ence (e.g., Nelson, Kennington, Novy, & Squitieri, 1996; and see Turk, 1996b, for a listing of guidelines for use of chronic opioid therapy). Table 8.4 con- tains the suggested exclusion criteria for patients being considered for im- plantation of spinal cord stimulators. This list is based on clinical experi- ence and has not been validated.

Epker and Block (2001) suggest that three general areas have been shown to have an influence on lumbar surgery: personality-emotional, cog- nitive-behavioral, and environmental-historical. These areas may be equally relevant for implantation of spinal cord stimulators (Prager & Jacobs, 2001) and long-term opioid therapy (Robinson et al., 2001). Epker and Block (see also Robinson & Riley, 2001, for a review) recommended the use of the MMPI and particularly emphasize elevations of scales 1 (Hypochondriasis), 2 (Depression), 3 (Hysteria), 4 (Psychopathic Deviate), and 7 (Psychas- thenia) as risk factors for the personality domain. In the coping domain 232 TURK, MONARCH, WILLIAMS

TABLE 8.4 Proposed Exclusion Criteria for Implantation of a Spinal Cord Stimulator (Nelson et al., 1996) Active psychosis Active suicidality Active homicidality Untreated or poorly treated major mood disorders such as major depression An unusually high-level somatization or other somatoform disorders Substance abuse disorder Unresolved workers' compensation or litigation cases Lack of appropriate social support Cognitive defects that compromise adequate reasoning and memory

they note that the Coping Strategies Questionnaire (Rosensteil & Keefe, 1983) may be a useful predictor. They suggest that patients who engage in more active coping strategies are more likely to have better responses to surgery. In terms of environmental influences, they suggest that patients with significant others who reinforce pain behaviors may have poorer out- comes. Epker and Block also noted the role of litigation and compensation status as an indicator of treatment response. Based on the available litera- ture they suggested that those patients with litigation pending or receiving compensation are poorer risks. In general they suggested that the presence of a psychiatric diagnosis predicts relatively poorer results. Marital rela- tions and history of substance abuse round out the set of factors associated with poorer prognosis. Some combination of these factors should be used to contribute to the psychologist's recommendation regarding the likeli- hood of a successful outcome to surgery.

A history of childhood physical and sexual abuse has been reported to be prevalent in chronic pain patients (e.g., Linton, 1997). Schofferman, An- derson, Hines, Smith, and White (1992) tested for an association between childhood traumas in general and outcome following lumbar spine sur- gery. Patients who had three or more of a possible five serious childhood traumas (which included abuse) had an 85% likelihood of an unsuccessful surgical outcome compared to a 5% failure rate for those without a trauma history. Although a high percentage of patients with early trauma had un- successful surgical outcomes, not all patients with abuse histories have poor surgical outcomes. It may well be that no one factor by itself is suffi- cient but combinations of factors identified by Epker and Block (2001) may be implicated.

Although there is some evidence for the importance of the factors out- lined by Epker and Block (2001) and a history of abuse, there are limited data to support the predictive validity. Moreover, we need to realize that these predictors are of *relatively* better or poorer outcome. Data reported are based on groups and there is no guarantee that all people with the poor prognostic factors will have an equally poor treatment outcome. Such actu- arial data combined with other information may, at least, alert the referring surgeon to potential problems, some of which may be treatable and lead to improved outcomes.

IMPAIRMENT, DISABILITY, AND VOCATIONAL ASSESSMENT

Decisions regarding impairment and disability associated with pain are a difficult area, as pain is a subjective experience and there are no objective signs that can validate reports of pain. Thus, physicians and psychologists 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 233

have to rely on base-rate information regarding functioning in response to particular physical impairments, in conjunction with history, physical ex- amination (in the case of physicians), observations, collateral information, and importantly self-reports. Four areas of functioning are particularly rele- vant in deciding the impact of pain (disability), namely, activities of daily living; social functioning; concentration, persistence, and pace; and adapt- ability to stress. Activities of daily living include the following areas: self- care, physical activities (e.g., ability to sit, stand, walk, lift, have sex, bathe, write, dress, cook, clean), cognition (e.g., attention, memory, concentration), sensory functions (e.g., see, hear), sleep, and basic interpersonal and social activities.

In addition to the functional activities outlined, the abilities to under- stand, remember, and perform work procedures, follow instructions, and persist at tasks are central. The patient's ability to request assistance, re- spond to criticism; get along with coworkers; and maintain socially appro- priate behavior and along with job satisfaction have been found to be related to return to work following work-related injuries (Turk, 1997). Psy- chologists can inquire about some of these areas during an interview. In ad- dition, the clinician can make use of standardized measures and may request a functional capacity evaluation from a trained occupational thera- pist to supplement report.

In addition to some of the measures described, there are other instru- ments that can be used to assess functional activities. For example, re- cently an instrument labeled the Impairment Impact Inventory (13; Turk, Robinson, Cocchiarella, & Hunt, 2001) was developed for use in assessment pain-related impairment. This measure was designed for use with the fifth edition of American Medical Association's *Guides to the Evaluation of Perma- nent Impairment* (Cocchiarella & Andersson, 2001). Preliminary data on the reliability, validity, and ability to detect exaggerated responding suggest this may be a promising measure (Robinson, Turk, & Aulet, 2002; Turk, Rob- inson, & Aulet, 2002).

For vocational evaluations, it is helpful to know how the patient re- sponds to changes at work and is aware of typical hazards. Many patients with chronic pain report having difficulties related to cognitive functioning. Review of the studies reveals that some chronic pain patients, who have not suffered from traumatic brain injuries or neurological disorders, dis- play deficits in attentional capacity, processing speed, and psychomotor speed (Hart et al., 2000). A gross assessment of mental status can be ob- tained with very brief measures such as the Mini-Mental State Examination (Folstein, Folstein, & McHugh, 1975). When a pain patient performs below expected levels on cognitive tests, however, results need to be interpreted in light of their pain medication use, potentially disrupted sleep, emotional factors, and other symptoms. 234 TURK, MONARCH, WILLIAMS

Malingering

For some referral sources there are concerns about malingering. This is a contentious issue. Many third-party payers believe that in the absence of sufficient objective physical pathology, reports of pain are motivated by secondary gains, especially financial compensation. The actual base rate for malingering in chronic pain is believed to be quite low (e.g., Mendelson, 1986). Dramatic cases, however, are very salient and induce high levels of suspicion. Of course, the real incidence is unknown. As a consequence, the low base rate and unknown incidence make the task even more difficult for the clinician and only extreme circumstances can conclusions be drawn with any confidence.

When asked to address the question of malingering, the clinician will need to rely on multiple converging sources of information including archi- val data (previous history), collateral sources of information, knowledge of incentives, litigation status, responsiveness to previous treatments, evi- dence of physical pathology, performance of tasks of physical functioning, observable behavior in the interview and other unobtrusive situations (e.g., observation of patient in waiting room, as exiting the office), facial expres- sions, and self-report (i.e., content, quality, and clarity of information pro- vided during the interview, responses to self-report questionnaires that can be compared to appropriate comparison groups or that include "validity scales"). Each of these sources of information and the consistency among them contribute to the clinician's determination of the credibility of the pa- tient's report.

Given the psychometric limitations of tests of malingering and the inher- ent difficulty with finding appropriate criterion groups for research in this area, it is best to rely on behavioral decision rules. Williams (1998) sug- gested that psychologists should use three major areas in which discrepan- cies occur to construct a malingering index for traumatic brain injury. Some of these concepts are also relevant to chronic pain patients. The first is the relationship of injury severity to cognitive functioning. The severity of the injury is directly related to the severity of the expected impairment. The second area involved noting the interrelationship of the tests and subtests. Williams opined, "Inconsistencies are expressed as scores that are sufficiently disparate that they violate the known relationships between the tests" (p. 122). The third area involved the relationship between pre- injury status and current test results and, by extension, current functioning. In a forensic report the psychologist may point out inconsistencies but leave the determination of veracity to the "trier of fact."

Conscious dissimulation is possible with any self-report measure. This dissimulation is often referred to as response bias. Response biases may also occur unwittingly as when the response is influenced by poor memory. 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 235

Conscious dissimulation is particularly a concern when there is an incentive such as disability compensation based on performance deficits. Highly contentious situations often surround assessment of pain-related impair-ment and disability such as worker compensation, social security disability, veterans' disability compensation, civil litigation related to accidental injuries (e.g., automobile accident, product liability), and access to controlled substances. The validity scales of instruments such as the MMPI and the Eysenck Personality Inventory (Eysenck & Eysenck, 1975) and the variable response scale for the MPI (Bruehl, Lofland, Sherman, & Carlsom, 1998) are at times use in an effort to detect possible biases in patients' responses. In a preliminary study, Lofland, Semenchuk, and Cassisi (1995) concluded the MPI "appears to be a good screening measure to detect patients who are exhibiting symptom exaggeration." It is important to reiterate, that the ex- aggeration detected may or may not be conscious.

There have been numerous attempts to identify specific psychological profiles of litigation and compensation patients. There is, however, no con-clusive evidence that specific characteristics differentiate those who are lit- igating or who are receiving disability compensation from those who are not (Kolbison, Epstein, & Burgess, 1996).

Recently, Turk et al. (2002) conducted a preliminary study comparing three groups of people with chronic pain to determine whether a group be- ing evaluated by physicians performing an independent medical examination (IME) who completed a self-report measure assessing pain, emotional dis- tress, and functional limitations (I3; Turk et al., 2001) responded differently than groups of chronic pain patients being treated in rehabilitation facilities (a group of fibromyalgia syndrome patients and a heterogeneous group of chronic pain patients attending an interdisciplinary pain clinic). The authors found no difference in the responses to any of the three sections of the instrument—pain severity, emotional distress, and functional activities. The au- thors concluded that clinicians should not assume that patients who poten- tially have something to gain by poor performance (disability seeking) will inevitably exaggerate the burden of their pain and the resultant disability.

Waddell and colleagues (Waddell, McCulloch, Kummel, & Venner, 1980) developed a system of behavioral signs designed to determine the validity of a psychological basis for a given patient's pain report. Presumably, those patients showing a higher number of nonanatomic (nonorganic) signs with their pain report have a high degree of psychological factors contributing to their pain report. Other investigators have examined facial expressions of pain: the ability of observers to distinguish exaggerated pain expressions from healthy subjects and pain sufferers' "real" expressions of pain (Craig, Hyde, & Patrick, 1991; Poole & Craig, 1992).

Physical tests to evaluate suboptimal performance have also been used to detect malingering (Robinson, O'Connor, Riley, Kvaal, & Shirley, 1994). 236 TURK, MONARCH, WILLIAMS

Some efforts are made to ask patients to repeat standard physical tasks and use discrepancy of performance ("index of congruence") as an indication of motivated performance. Reviewing efforts to detect deception led Craig, Hill, and McMurtry (1999) to the following conclusion: "Definitive, empiri- cally validated procedures for distinguishing genuine and deceptive report are not available and current approaches to the detection of deception re- main to some degree intuitive" (p. 41).

There is a growing body of information concerning the ability of neuro- psychological tests to detect malingering (Inman & Berry, 2002). Additional research is needed, however, before strong conclusions should follow from performance on these measures. At best performance on neuropsycho- logical test should be combined with other confirmatory information.

LINKING ASSESSMENT WITH TREATMENT

During any assessment, it is helpful to think about how the data gathered will be used in treatment and, ultimately, how a patient's assessment might be related to his or her outcome. Being mindful of treatment implications can assist the pain psychologist in asking better questions during the as- sessment. Additionally, psychologists need to ensure that their evaluations have addressed the referral question(s), that their reports are informative, and that they have made reasonable, appropriate, and helpful recommen- dations.

Patient Differences and Treatment Matching

There is a common assumption among many health care providers that pa- tients who have the same medical diagnosis require identical treatment. Some have suggested that there should be a general diagnosis of "chronic pain syndrome." Clinicians are perplexed when the outcomes for patients with the same diagnosis vary widely. One explanation is that there are im- portant variables beyond the common medical diagnosis that differentiate patients. To psychologists this may be intuitively obvious, as they are taught to be concerned about individual variation. However, even some psychologists tend to treat chronic pain patients with one or a few ap- proaches from the number that are available. The selection of treatment is likely based more on training then attention to unique patient differences. Do all chronic pain patients with the same medical diagnosis require the same treatment? Recent research efforts are beginning to show that data gleaned from comprehensive assessments might be used to facilitate pa- tient-treatment matching. It appears that particular treatment strategies 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 237

are more effective for patients with particular characteristics (Turk, Okifuji, Sinclair, & Starz, 1998a).

There is some evidence that patients respond differentially to treatment based on their pretreatment assessment. Although psychological treat- ments appear to be effective, not all patients benefit equally. A number of studies have identified subgroups of patients based on psychosocial and behavioral characteristics (e.g., Mikail, Henderson, & Tasca, 1994; Turk & Rudy, 1988, 1990). Dahlstrom and colleagues (Dahlstrom, Widmark, & Carls- son, 1997) found that when patients were classified into different subgroups based on their psychosocial and behavioral responses during assessment, they responded differentially to treatments. Similarly, Turk, Okifuji, Sinclair, and Starz (1998b) noted differential responses to a common treatment for patients with distinctive psychological characteristics but identical physical diagnoses.

Chronic pain syndromes are made up of heterogeneous groups of peo- ple, even if they have the same medical diagnosis (Turk, 1990). Patients with diseases and syndromes as diverse as metastatic cancer, back pain, and headaches show similar adaptation patterns, whereas patients with the same diagnosis can show marked variability in their degrees of disability (Turk et al., 1998). Research studies looking only at group effects may mask important issues related to the characteristics of patients who successfully respond to a treatment.

Only a handful of studies have actually begun to demonstrate that matching treatments to patient characteristics, derived from assessments, is of any benefit (e.g., Turk, Rudy, Kubinski, Zaki, & Greco, 1996; Turk, Okifuji, Sinclair, & Starz, 1998b). More studies targeted toward matching in- terventions to specific patient characteristics are needed (Turk, 1990). De- veloping treatments that are matched to patients' characteristics should lead not only to improved outcomes but also to greater cost-effectiveness.

In order to advance the area of pain assessment, additional studies of how these assessments can inform and improve treatments are desirable. Moreover, as we learn more about patient-treatment matching, pain as- sessment procedures should reflect this progress.

CONCLUSION

Symptoms of chronic pain are extremely distressing and many times there is no cure or treatment capable of substantially reducing all symptoms. At the present time, rehabilitation, including improvement in emotional func- tioning, physical functioning, and quality of life, is the goal. Rehabilitation in spite of pain is a daunting task even for patients with ample coping skills.

The high levels of emotional distress, disability, and reduced quality of life noted in many chronic pain patients suggest that psychological screening is 238 TURK, MONARCH, WILLIAMS

essential; in the majority of cases, a thorough psychological evaluation is called for. Biopsychosocial assessment allows health care professionals to tailor treatment to meet individual needs and preferences. A comprehensive assessment is a complex task, involving an exploration of broad range of ar- eas, and should be administered by an experienced health psychologist. The importance of psychologists in the assessment and treatment of chronic pain has been accepted by a number of agencies and governmental bodies in the United States, Canada, and England (e.g., U.S. Veterans Administration; U.S. Social Security Administration, Ontario Workplace Safety and Insurance Board). In fact, the Commission on the Accreditation of Rehabilitation Facil- ities in the United States *requires* involvement of psychologists in treatment for multidisciplinary treatment programs to be certified.

In contrast to acute pain where the focus of assessment and treatment is on cure, in chronic pain the focus is often on self-management. However, self- management requires many skills. A thorough psychological assessment al- lows health care professionals to examine what factors in a patient's history and current situation, including emotional well-being, social support, and behavioral factors, might interfere with their functioning. Strengths identi- fied during assessment may inform treatment planning. The information ob- tained should assist in treatment planning, specifically the matching of treatment components to the needs of individual patients. Once the whole person is evaluated, treatment can focus on an individual's unique needs and characteristics.

ACKNOWLEDGMENTS

Preparation of this chapter was supported in part by grants from the Na- tional Institute of Arthritis and Musculoskeletal and Skin Diseases (AR/ AI44724, AR47298) and the National Institute of Child Health and Human De- velopment/National Center for Medical Rehabilitation Research (HD33989) awarded to Dennis C. Turk.

REFERENCES

Allen, J. P., & Litten, R. Z. (1998). Screening instruments and biochemical screening. In A. W. Gra- ham, T. K. Schultz, & B. B. Wilford (Eds.), *Principles of addiction medicine* (pp. 263–272). Chevy Chase, MD: American Society of Addiction Medicine.

American Psychiatric Association. (1994). *Diagnostic and statistical manual of mental disorders* (4th ed.). Washington, DC: American Psychiatric Association Press.

American Psychiatric Association. (1997). User's guide for the Structured Clinical Interview for DSM–IV axis I disorders SCID–1: Clinician version. Washington, DC: American Psychiatric Association. 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 239

Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measur- ing depression. *Archives of General Psychiatry*, 4, 561–571.

Bernstein, I. H., Jaremko, M. E., & Hickley, B. S. (1995). On the utility of the West Haven–Yale Mul- tidimensional Pain Inventory. *Spine*, *20*, 956–963.

Boothby, J. L., Thorn, B. E., Stroud, M. W., & Jensen, M. P. (1999). Coping with pain. In R. J. Gatchel & D. C. Turk (Eds.), *Psychosocial factors in pain: Critical perspectives* (pp. 343–359). New York: Guilford Press.

Bruehl, S., Lofland, K. R., Sherman, J. J., & Carlson, C. R. (1998). The variable responding scale for detection of random responding on the Multidimensional Pain Inventory. *Psychological As- sessment, 10,* 3–9.

Burton, H. J., Kline, S. A., Hargadon, R., Cooper, B. S., Shick, R. D., & Ong-Lam, M. C. (1999). As-sessing patients with chronic pain using the basic personality inventory as a complement to the multidimensional pain inventory. *Pain Research and Management*, 4, 121–139.

Carragee, E. J. (2001). Psychological screening in the surgical treatment of lumbar disc herni- ation. *Clinical Journal of Pain, 17*, 215–219.

Clark, J. D. (2002). Chronic pain prevalence and analgesic prescribing in a general medical population. *Journal of Pain and Symptom Management*, 23, 131–137.

Cleeland, C. S. (1989). Measurement of pain by subjective report. In C. R. Chapman & J. D. Loeser (Eds.), *Issues in pain assessment* (pp. 391–403). New York: Raven Press.

Cocchiarella, L., & Andersson, G. B. J. (2001). *Guides to the evaluation of permanent impairment* (5th ed.). Chicago Illinois: American Medical Association.

Craig, K. D., Hill, M. L., & McMurtry, B. W. (1999). Detecting deception and malingering. In A. R. Block, E. F. Kremer, & E. Fernandez (Eds.), *Handbook of pain syndromes* (pp. 41–58). Mahwah, NJ: Lawrence Erlbaum Associates.

Craig, K. D., Hyde, S., & Patrick, C. J. (1991). Genuine, suppressed, and faked facial behavior dur- ing exacerbation of chronic low back pain. *Pain*, *46*, 161–172.

Dahlstrom, L., Widmark, G., & Carlsson, S. G. (1997). Cognitive-behavioral profiles among differ- ent categories of orofacial pain patients: Diagnostic and treatment implications. *European Journal of Oral Science*, 105, 377–383.

De Gagne, T. A., Mikail, S. F., & D'Eon, J. L. (1995). Confirmatory factor analysis of a 4-factor model of chronic pain evaluation. *Pain, 60*, 195–202.

Derogatis, L. (1983). The SCL-90-R: II: Administration, scoring and procedure. Baltimore, MD: Clini- cal Psychometric Research.

Dworkin, R. H., Richlin, D. M., Handlin, D. S., & Brand, L. (1986). Predicting treatment response in depressed and non-depressed chronic pain patients. *Pain, 24,* 343–353.

Epker, J., & Block, A. R. (2001). Presurgical psychological screening in back pain patients: A re- view. *Clinical Journal of Pain, 17,* 200–205.

Eysenck, H. J., & Eysenck, S. B. G. (1975). *The manual of the Eysenck Personality Questionnaire*. London: Hodder & Stoughton.

Fairbank, J. C. T., Couper, J., Davies, J. B., & O'Brien, J. P. (1980). The Oswestry Low Back Pain Dis-ability Questionnaire. *Physiotherapy*, 66, 271–273.

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "Mini-Mental State": A practical method for grading the cognitive of patients for the clinician. *Journal of Psychiatric Research*, *12*, 189–198.

Gatchel, R. J. (2001). A biopsychosocial overview of pretreatment screening of patients with pain. Clinical Journal of Pain, 17, 192–199.

Hart, R. P., Martelli, M. F., & Zasler, N. D. (2000). Chronic pain and neuropsychological function- ing. *Neuropsychology Review, 10*, 1231–1249.

Hathaway, S. R., & McKinley, J. C. (1967). *The Minnesota Multiphasic Personality Inventory manual*. New York: Psychological Corporation.

Hathaway, S. R., McKinley, J. C., & Butcher, J. N. (1989). The Minnesota Multiphasic Personality–2: Manual for administration. Minneapolis: University of Minnesota Press. 240 TURK, MONARCH, WILLIAMS

Inman, T. H., & Berry, D. T. R. (2002). Cross-validation of indicators of malingering. A comparison of nine neuropsychological tests, four tests of malingering, and behavioral observations. *Ar- chives of Clinical Neuropsychology, 17*, 1–23.

Jackson, D. N. (1989). *The Basic Personality Inventory: BPI manual* (pp. 1–80). Port Huron, MI: Re- search Psychologists Press.

Jensen, M. P., Karoly, P., & Huger, R. (1987). The development and preliminary validation of an in-strument to assess patients' attitudes toward pain. *Journal of Psychosomatic Research*, *31*, 393–400.

Jensen, M. P., Turner, J. A., Romano, J. M., & Lawler, B. K. (1994). Relationship of pain-specific be-liefs to chronic pain adjustment. *Pain, 57,* 301–309.

Jensen, M. P., Romano, J. M., Turner, J. A., Good, A. B., & Wald, L. H. (1999). Patient beliefs predict patient functioning: Further support for a cognitive-behavioral model of chronic pain. *Pain*, *81*, 95–104.

Keefe, F. J., Williams, D. A., & Smith, S. J. (2001). Assessment of pain behaviors. In D. C. Turk & R. Melzack (Eds.), *Handbook of pain assessment* (2nd ed., pp. 170–190). New York: Guilford Press.

Kerns, R. D., Turk, D. C., & Rudy, T. E. (1985). The West Haven–Yale Multidimensional Pain Inven- tory (WHYMPI). *Pain, 23*, 345–356.

Kolbison, D. A., Epstein, J. B., & Burgess, J. A. (1996). Tempormandibular disorders, headaches, and neck pain following motor vehicle accidents and the effects of litigation: Review of the literature. *Journal of Orofacial Pain, 10,* 101–125.

Linton, S. J. (1997). A population-based study of the relationship between sexual abuse and back pain: Establishing a link. *Pain, 73*, 47–53.

Lofland, K. R., Semenchuk, E. M., & Cassisi, J. E. (1995, November). *The Multidimensional Pain In- ventory and symptom exaggeration in chronic low back pain patients*. Paper presented at the 14th Scientific Meeting of the American Pain Society, Los Angeles.

Mayfield, D., McLeod, G., & Hall, P. (1987). The CAGE questionnaire. American Journal of Psychia-try, 131, 1121–1123.

Melzack, R. (1975). The McGill Pain Questionnaire: Major properties and scoring methods. *Pain, 1,* 277–299.

Mendelson, G. (1986). Chronic pain and compensation: A review. Journal of Pain and Symptom Management, 1, 135–144.

Merskey, H. (1986). International Association for the Study of Pain, Subcommittee on Taxonomy, chronic pain syndromes and definitions of pain terms. *Pain, Suppl 3*, S1–S226.

Mikail, S. F., DuBreuil, S., & D'Eon, J. L. (1993). A comparative analysis of measures used in the as- sessment of chronic pain patients. *Psychological Assessment: Journal of Consulting and Clinical Psychology, 5*, 111–120.

Mikail, S. F., Henderson, P. R., & Tasca, G. A. (1994). An interpersonally based model of chronic pain: An application of attachment theory. *Clinical Psychology Review, 14*, 1–16.

Nelson, D. V., Kennington, M., Novy, D. M., & Squitieri, P. (1996). Psychological selection criteria for implantable spinal cord stimulators. *Pain Forum, 5*, 93–103.

Novy, D. M., Nelson, D. V., Berry, L. A., & Averill, P. M. (1995). What does the Beck Depression In- ventory measure in chronic pain? A reappraisal. *Pain, 61*, 261–270.

Pfingsten, M., Hildebrandt, J., Leibing, E., Carment, F., & Saur, P. (1997). Effectiveness of a multimodal treatment program for chronic low-back pain. *Pain, 73, 17*–85.

Piotrowski, C. (1998). Assessment of pain: A survey of practicing clinicians. *Perceptual and Motor Skills*, 86, 181–182.

Pincus, T., Callahan, L. F., Bradley, L. A., Vaughn, W. K., & Wolfe, F. (1986). Elevated MMPI scores for hypochondriasis, depression, and hysteria in patients with rheumatoid arthritis reflect disease rather than psychological status. *Arthritis and Rheumatism, 29*, 1456–1466.

Poole, G. D., & Craig, K. D. (1992). Judgments of genuine, suppressed, and faked expressions of pain. Journal of Personality and Social Psychology, 63, 797–805. 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 241

Prager, J., & Jacobs, M. (2001). Evaluation of patients for implantable pain modalities: Medical and behavioral assessment. *Clinical Journal of Pain*, 17, 206–214.

Richards, J. S., Nepomuceno, C., Riles, M., & Suer, Z. (1982). Assessing pain behavior: The UAB Pain Behavior Scale. *Pain, 14*, 393–398.

Robinson, J. P., Turk, D. C., & Aulet, M. R. (2002). Impairment Impact Inventory (I3): Preliminary psychometric evaluation. *Journal of Pain,* 3(suppl. 1), 657.

Robinson, M. E., O'Connor, P. D., Riley, J. L., Kvaal, S. A., & Shirley, F. R. (1994). Variability of iso-metric and isotonic leg exercise: Utility for detection of submaximal efforts. *Journal of Occu- pational Rehabilitation, 4*, 163–169.

Robinson, M. E., & Riley, J. L. III. (2001). Presurgical psychological screening. In D. C. Turk & R. Melzack (Eds.), *Handbook of pain assessment* (2nd ed., pp. 385–399). New York: Guilford Press.

Robinson, R. C., Gatchel, R. J., Polatin, P., Deschner, M., Noe, C., & Gajraj, N. (2001). Screening for problematic prescription opioid use. *Clinical Journal of Pain, 17*, 220–228.

Rohling, M. L., Binder, L. M., & Langhinrichsen-Rohling, J. (1995). Money matters: A meta-analytic review of the association between financial compensation and the experience and treatment of chronic pain. *Health Psychology, 14*, 537–547.

Rosenstiel, A. K., & Keefe, F. J. (1983). The use of coping strategies in low-back pain patients: Rela-tionship to patient characteristics and current adjustment. *Pain, 17,* 33–40.

Schade, V., Semmer, N., Main, C. J., Hora, J., & Boos, N. (1999). The impact of clinical, morphologi- cal, psychosocial and work-related factors on the outcome of lumbar discectomy. *Pain, 80*, 239–249.

Schofferman, J., Anderson, D., Hines, R., Smith, G., & White, A. (1992). Childhood psychological trauma correlates with unsuccessful lumbar spine surgery. *Spine*, 176 suppl.), S138–144.

Slosar, P. J., Reynolds, J. B., Schofferman, J., Goldthwaite, N., White, A. H., & Keaney, D. (2000). Pa-tient satisfaction after circumferential lumbar fusion. *Spine*, *25*, 722–726.

Spanier, G. B. (1976). Measuring dyadic adjustment: New scales for assessing the quality of mar- riage and similar dyads. *Journal of Marriage and the Family, 38*, 15–28.

Stone, A. A., Briderick, J. E., Porter, L. S., & Kaell, A. T. (1997). The experience of rheumatoid ar- thritis pain and fatigue: Examining momentary reports and correlates over one week. *Arthri- tis Care and Research, 10,* 185–192.

Tait, R. C., Chibnall, J. T., & Krause, S. (1990). The Pain Disability Index: Psychometric properties. *Pain, 40*, 171–182.

Turk, D. C. (1990). Customizing treatment for chronic patients who, what, and why. *Clinical Jour- nal of Pain, 6*, 255–270.

Turk, D. C. (1996a). Biopsychosocial perspective on chronic pain. In R. Gatchel & D. C. Turk (Eds.), *Psychological approaches to chronic pain management: A practitioners' handbook* (pp. 3–33). New York: Guilford Press.

Turk, D. C. (1996b). Clinician attitudes about prolonged use of opioids and the issue of patient heterogeneity. *Journal of Pain and Symptom Management*. 11, 218–230.

- Turk, D. C. (1997). Transition from acute to chronic pain: Role of demographic and psychosocial factors. In T. S. Jensen, J. A. Turner, & Z. Wiesenfeld-Hallin (Eds.), *Proceedings of the 8th World Congress on Pain, Progress in pain research and management* (pp. 185–213). Seattle, WA: IASP Press.
- Turk, D. C. (2002). Clinical effectiveness and cost effectiveness of treatments for chronic pain patients. *Clinical Journal of Pain, 18*, 355–365.
- Turk, D. C., & Melzack, R. (Eds.). (2001). *Handbook of pain assessment* (2nd ed.). New York: Guilford Press.
- Turk, D. C., & Monarch, E. S. (2002). Biopsychosocial perspective on chronic pain. In D. C. Turk & R. J. Gatchel (Eds.), Psychological approaches to chronic pain management: A practitioners' handbook (2nd ed., pp. 3–29). New York: Guilford Press. 242 TURK, MONARCH, WILLIAMS
- Turk, D. C., Monarch, E. S., & Williams, A. D. (2002). Psychological evaluation of patients diagnosed with fibromyalgia syndrome: Comprehensive approach. *Rheumatic Disease Clinics of North America*, 28, 219–233.
- Turk, D. C., & Okifuji, A. (2002). Psychological factors in chronic pain: Evolution and revolution. *Journal of Consulting and Clinical Psychology*, 70, 678–690.
- Turk, D. C., Okifuji, A., Sinclair, J. D., & Starz, T. W. (1998a). Interdisciplinary treatment for fibromyalgia syndrome: Clinical and statistical significance. *Arthritis Care and Research*, *11*, 186–195.
- Turk, D. C., Okifuji, A., Sinclair, J. D., & Starz, J. D. (1998b). Differential responses by psychosocial subgroups of fibromyalgia syndrome patients to an interdisciplinary treatment. *Arthritis Care and Research*, *111*, 397–404.
- Turk, D. C., Robinson, J. R., & Aulet, M. R. (2002). Impairment Impact Inventory (I3): Comparison of responses by treatment-seekers and claimants undergoing independent medical examina- tions. *Journal of Pain, 3*(suppl. 1), 1 [602].
- Turk, D. C., Robinson, J. R., Cocchiarella, L., & Hunt, S. (2001). Pain. In L. Cocchiarella & S. Lord (Eds.), *Master the AMA Guides 5th, A medical and legal transition to the Guides to the Evaluation of Permanent Impairment* (pp. 277–325). Chicago: AMA Press.
- Turk, D. C., & Rudy, T. E. (1988). Toward an empirically-derived taxonomy of chronic pain patients: Integration of psychological assessment data. *Journal of Consulting and Clinical Psy- chology, 56*, 233–238.
- Turk, D. C., & Rudy, T. E. (1990). Robustness of an empirically derived taxonomy of chronic pain patients. *Pain, 43*, 27–36.
- Turk, D. C., Rudy, T. E., Kubinski, J. A., Zaki, H. S., & Greco, C. M. (1996). Dysfunctional TMD pa- tients: Evaluating the efficacy of a tailored treatment protocol. *Journal of Consulting and Clini- cal Psychology, 64*, 139–146.
- Turk, D. C., Sist, T. C., Okifuji, A., Miner, M. F., Florio, G., Harrison, P., Massey, J., Lema, M. L., & Zevon, M. A. (1998). Adaptation to metastatic cancer pain, regional/local cancer pain and non-cancer pain: Role of psychological and behavioral factors. Pain, 74, 247–256. von Korff, M. (1992). Epidemiologic and survey methods: Chronic pain assessment. In D. C. Turk & R. Melzack (Eds.), Handbook of pain assessment (pp. 391–408). New York: Guilford Press.

Waddell, G., McCulloch, J. A., Kummel, E., & Venner, R. M. (1980). Nonorganic physical signs in low-back pain. Spine, 5, 117–125.

Williams, D. A., & Thorn, B. E. (1989). An empirical assessment of pain beliefs. Pain, 36, 351–358. Williams, J. (1998). The malingering of memory disorder. In C. Reynolds (Ed.), Detection of malin- gering during head injury litigation (pp. 127–143). New York: Plenum Press. 8. ASSESSMENT OF CHRONIC PAIN SUFFERERS 243

The importance of optimizing the clinical management of acute pain has been increasingly recognized (Carr & Goudas, 1999). For example, in the context of surgery, providing adequate acute pain control minimizes length of stay and improves outcomes (Kiecolt-Glaser, Page, Marucha, MacCallum, & Glaser, 1998; Ballantyne et al., 1998). Several factors may account for these beneficial effects. Postsurgical pain and associated psychological stress can have negative effects on the immune system and endocrine function that impact on recovery (Kiecolt-Glaser et al., 1998). Moreover, uncontrolled nociceptive input may over time result in pathological changes in the central nervous system that could contribute to pain chronicity (e.g., Gracely, Lynch, & Bennett, 1992). This central sensitization phenomenon may help explain findings that greater acute pain severity predicts transition to chronic pain (Murphy & Cornish, 1984), and that earlier aggressive management of acute pain may reduce the incidence of postsurgical chronic pain (Senturk et al., 2002). Overall, the results just described underscore the fact that effective management of acute postsurgical pain can have a significant impact on outcomes. Adequacy of pain control may also be an important issue to consider with regard to less invasive painful medical procedures. Optimal acute pain control in this latter context may increase tolerability of necessary procedures and impact on willingness to engage in similar procedures in the future (e.g., Wardle, 1983).

Although some clinical acute pain stimuli clearly call for pharmacologi- cal intervention due to their severity (surgery), for other clinical sources of

CHAPTER9

Psychological Interventions for Acute Pain

Stephen Bruehl Ok Yung Chung

Department of Anesthesiology, Vanderbilt University School of Medicine 245

acute pain, such as injections and painful diagnostic procedures, exclusive reliance on pharmacological interventions may not be considered neces- sary or desirable given the brief duration of the pain, risk of side effects, or need for patients' conscious awareness (e.g., Faymonville et al., 1995). Vari- ous psychologically based pain management interventions have been de- scribed for use in common clinical situations that result in acute pain (e.g., burn debridement, labor, medical diagnostic procedures, venipuncture, dental procedures, and surgery). Although not intended to be an exhaus- tive review of the literature, this chapter describes a number of the tech- niques available and will overview evidence for their efficacy based on con- trolled clinical trials. Studies examining use of these interventions in comparison to or in conjunction with pharmacological analgesia will be summarized. Finally, issues involved in the practical use of such interven- tions in the clinical setting will be addressed.

TYPES OF INTERVENTIONS

Substantial research following the gate control theory of pain described by Melzack and Wall (1965) has confirmed the presence of descending neuro- physiological pathways through which psychological states can either ex- acerbate or inhibit afferent nociceptive input and the experience of pain. Al- though extreme emotional distress may be associated with stress-induced analgesia (Millan, 1986), at less extreme levels, greater emotional distress is generally associated with increased acute pain intensity (Graffenreid, Adler, Abt, Nuesch, & Spiegel, 1978; Litt, 1996; Sternbach, 1974; Zelman, Howland, Nichols, & Cleeland, 1991). Psychological strategies for managing acute pain therefore often intervene at the cognitive and physiological level to reduce distress and arousal that may lead to heightened experience of acute pain (Bruehl, Carlson, & McCubbin, 1993). In addition, the simple fact that a specific pain management technique has been provided is likely to in- crease patients' perceived sense of control, which also appears to be an im- portant factor in reducing negative responses to painful stimuli (Litt, 1988; Weisenberg, 1987). Available psychological techniques for management of acute pain can be broadly categorized into information provision, relax- ation and related techniques, and cognitive strategies (e.g., VanDalfsen & Syrjala, 1990). Although some interventions, such as information provision, are primarily preemptive and designed to minimize pain by preparing the patient for what will be experienced, others such as relaxation techniques may be useful both preemptively and for reducing acute pain as the patient is experiencing it. Common psychological pain management techniques are summarized in Table 9.1. 246 BRUEHL AND CHUNG

Information Provision

Two common information provision strategies target the sensations (e.g., "stinging," "sharp") and the specific procedures that patients will experi- ence during the painful stimulus. Both strategies are based on a presump- tion that providing accurate information in advance regarding the sensa- tions and procedures that will be experienced will prevent development of inaccurate and fearful expectations that would otherwise elicit excessive anxiety and lead to increased pain sensations (Ludwick-Rosenthal & Neu- feld, 1988). Frequently, such interventions are conducted via videotape. For 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 247

TABLE 9.1 Psychological Interventions for Acute Pain

Type of intervention Intervention Comments

Information provision Sensory information Intended to reduce unrealistic anxiety-provoking expecta- tions that increase pain. Ef- fectively administered by vid- eotape.

Procedural information

Relaxation related Breathing relaxation Simplest relaxation technique to implement.

Progressive muscle relaxation Effective but may require re- peated training/practice ses- sions.

Imagery Can use scripted, patient- developed, or memory-based relaxing imagery. Most effec- tive if it involves multiple senses.

Hypnosis Combines elements of relax- ation and imagery + sugges- tions of analgesia or sensory transformation.

Cognitive Positive coping self-statements (e.g., "I can handle this, it will be over soon, just relax")

Focused on reducing cata- strophic cognitions that lead to elevated distress and pain.

Distraction Includes visual or auditory stimuli, or mental and behav- ioral tasks that divert atten- tion away from pain. Easy to implement routinely.

Sensory focus Encourages focus on the sensa- tions of the procedure being experienced. Prevents activa- tion of emotional schema that may increase pain sensation.

example, videotaped information provision interventions may portray the process of a real patient undergoing and coping well with the medical pro- cedure of interest (Doering et al., 2000; Shipley, Butt, & Horwitz, 1979). Scripted in-person presentations may also be used to describe the proce- dures and sensations the patient will be undergoing (Reading, 1982). To be effective, information provision interventions must be specific to the partic- ular clinical procedure that the patient will be undergoing.

Relaxation and Related Techniques

A variety of relaxation-related techniques are available that may have a positive impact on the pain experience. Although these techniques may be used to reduce anticipatory distress prior to the onset of pain and thereby diminish subsequent pain responsiveness, they are most effective when pa- tients are able to practice them successfully during exposure to the painful stimulus. If training and practice time are too limited, clinical experience in- dicates that anxiety and acute pain itself may interfere with patient's ability to utilize the intervention. Various relaxation-related interventions differ in the amount of preparation time required.

Deep, slow, and/or patterned breathing is one of the simplest methods of relaxation, and is designed to decrease somatic input (e.g., muscle tension), autonomic arousal, and anxiety (Cogan & Kluthe, 1981; Harris et al., 1976). For example, patients may receive instruction in use of breath counting as a means of pacing respiration to a lower rate (e.g., six breaths per minute; Bruehl et al., 1993). Slowing respiration rate has been shown to diminish au- tonomic arousal and anxiety (Harris et al., 1976). Adoption of an abdominal breathing pattern rather than a high chest pattern is also often incorpo- rated into this type of relaxation strategy. Breathing-focused relaxation has the advantage of being brief and easy for patients to learn.

Other traditional relaxation techniques may require more instruction and practice time to be effective. Progressive muscle relaxation (PMR) has been shown to be a useful technique for reducing physiological arousal and anxiety, and appears to be effective even in somewhat abbreviated form (Carlson & Hoyle, 1993). PMR, which can be provided in person or using an audiotaped protocol, involves systematic and sequential tensing and re- leasing of specific muscle groups throughout the body (Jacobson, 1938). An initial in-person session of PMR training with follow-up practice using audio- taped PMR procedures appears to be an efficient and effective means of providing this intervention (Carlson & Hoyle, 1993). For example, three ses- sions of PMR lasting approximately 25 minutes per session (one in person and two audiotaped) have been shown to be sufficient to permit individuals to apply the relaxation technique and successfully reduce physiological re- 248 BRUEHL AND CHUNG

sponses under stress (McCubbin et al., 1996). Interestingly, this latter work indicates that PMR may exert its stress buffering effects in part through en- dogenous opioid mechanisms, which may also be associated with analgesia (McCubbin et al., 1996; Millan, 1986).

Another option for inducing a relaxed state is imagery-based interven-tions. As with PMR, a guided imagery intervention can be conducted using audiotaped instructions. Imagery instructions are usually designed to help patients develop a detailed mental image of a relaxing place on which to fo- cus their attention during the painful procedure. The imagery can be pro- vided by the therapist, or patients may be assisted in developing their own unique imagery, with the latter technique preferable. Imagery is likely to be most effective at eliciting relaxation when it incorporates multiple senses (i.e., visual, auditory, olfactory, tactile; Turk, Meichenbaum, & Genest, 1983). A related relaxation strategy is the use of memory-based positive emotion induction procedures (Bruehl et al., 1993). This brief technique anchors a patient's imagery in a memory of a specific event that is associated with a positive emotional state, and also involves as many senses as possible. All imagery-based strategies are likely to incorporate aspects of distraction as well as producing a relaxed, positive emotional state.

Various hypnotic techniques have also been applied to management of acute pain. These techniques incorporate aspects of both traditional relax- ation procedures and imagery training, in combination with suggestions. Suggestions may be intended to induce analgesia ("your hand is insensitive, like a piece of rubber") or to transform the pain to a non-painful sensation, such as warmth or heaviness (Farthing, Venturino, Brown, & Lazar, 1997; Wright & Drummond, 2000). Hypnotic interventions are generally adminis- tered by a trained therapist rather than by audiotape. Nursing and other staff can be trained to administer this type of intervention, although a sig- nificant initial investment in time may be required, including classroom in- struction, role playing, and supervised practice (Lang et al., 2000).

Cognitive Strategies

Several acute pain management interventions derive from cognitive behav- ioral theory (Turk et al., 1983). Catastrophizing cognitions regarding pain (e.g., "I can't stand it!" or "This is horrible!") have been shown to be associ- ated with greater perceived pain intensity (Buckelew et al., 1992; Jacobsen & Butler, 1996; Sullivan, Rodgers, & Kirsch, 2001). Recent research on pain expectancies suggests that catastrophizers tend a priori to underestimate the level of acute pain they will experience, possibly as a means of minimiz- ing anticipatory distress (Sullivan et al., 2001). One mediator of the relation- ship between catastrophizing and pain may therefore be that this underes- 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 249

timation of the impending pain stimulus results in a failure to mobilize coping resources in advance of pain onset (Sullivan et al., 2001). This may result in an excessive focus on the unexpectedly intense pain sensations when they are experienced (Sullivan et al., 2001). Another mediator of the relationship between catastrophizing and pain is presumed to be the in- creased emotional distress elicited by catastrophizing cognitions (Buck- elew et al., 1992; Rosenstiel & Keefe, 1983). By altering appraisal of the pain- provoking situation through use of coping self-statements both prior to and during the pain stimulus, catastrophic and magnifying cognitions that in- crease pain, distress, and arousal can be reduced or prevented. Coping self- statement interventions educate patients regarding the negative impact of catastrophizing cognitions, and teach as an alternative the conscious en- gagement in positive coping self-statements during acute pain (e.g., "I can handle this," "The discomfort will go away quickly," "Just relax").

Sensory focus is another cognitive strategy that has been applied to acute pain. This strategy is based on theoretical work indicating that the cognitive schema used in interpreting pain stimuli can be either sensation focused or emotion focused, with activation of the latter type of schema more likely to lead to a more intense pain experience (Leventhal, Brown, Shacham, & Enquist, 1979). Based on this theory, sensory focus interventions encourage patients to focus exclusively on the sensations they are experiencing, thereby preventing activation of the emotional schema and re-sulting in a less intense pain experience (Logan, Baron, & Kohut, 1995).

Distraction is another common cognitive strategy used for management of acute pain. Distraction techniques may include listening to music (Lee et al., 2002; Fratianne, Presner, Huston, Super, & Yowler, 2001), attending to distracting visual stimuli such as a kaleidoscope (Cason & Grissom, 1997; Frere, Crout, Yorty, & McNeil, 2001), immersion in a virtual reality environ- ment (Hoffman, Patterson, & Carrougher, 2000; Hoffman, Patterson, Car-rougher, & Sharar, 2001), or engaging in any other distracting activity, such as blowing on a party blower, finger tapping, or playing a video game (Cogan & Kluthe, 1981; Corah, Gale, & Illig, 1979; Manne et al., 1990). Distraction techniques consume part of an individual's limited capacity for attention, thereby reducing the attentional resources that can be directed at the painful stimulus (McCaul & Malott, 1984). Review of the distraction literature indicates that it is more likely to be effective for brief and lower intensity pain, and become less effective as the stimulus becomes longer lasting or more intense (McCaul & Malott, 1984). Moreover, distraction techniques that require more attentional capacity appear to inhibit the experience of pain more than techniques requiring less attentional capacity (McCaul & Malott, 1984). For brief clinical pain of relatively low intensity, regular implementation of distraction techniques may be pragmatically appealing, given the low degree of effort required to provide them. 250 BRUEHL AND CHUNG

CONTROLLED TRIALS

Laboratory Studies

Studies using controlled laboratory stimuli as an analog of acute clinical pain have evaluated the efficacy of psychological acute pain interventions presumably under ideal conditions—intervention procedures are well stan- dardized with no limitations on amount of time and effort that can be in- vested in implementing the techniques. Laboratory studies indicate that specific psychological interventions including distraction (Clum, Luscomb, & Scott, 1982; Fanurik, Zeltzer, Roberts, & Blount, 1993; Farthing et al., 1997), relaxation (Anseth, Berntzen, & Gotestam, 1985; Clum et al., 1982; Cogan & Kluthe, 1981), positive emotion induction (Bruehl et al., 1993; Zelman et al., 1991), and positive coping self-statements (Avia & Kanfer, 1980) can reduce responsiveness to acute pain. Early qualitative reviews of the efficacy of various psychological techniques under controlled laboratory conditions indicate that there is at least modest support for the efficacy of such inter- ventions (Tan, 1982; Weisenberg, 1987). Definitive conclusions from this lit- erature are limited by the variety of interventions, acute pain stimuli used (e.g., cold pressor, ischemic, finger pressure), and different outcome meas- ures employed (Tan, 1982). Although laboratory studies suggest that psy- chological interventions *can* be effective for reducing acute pain, they may tell little about whether these interventions *will* be effective in the clinical context due to the limited generalizability of laboratory analog studies. Se- lection of interventions for use in the clinical environment should therefore be based primarily on results of clinical trials.

Clinical Trials in Adults

Empirically supported generalizations regarding the efficacy of specific psy- chological interventions for clinical acute pain are made difficult by the number of different techniques used alone or in a variety of combinations, the multitude of clinical acute pain stimuli differing substantially in inten- sity, and the relatively small number of studies examining any one tech- nique for use with any given type of clinical situation. For these and a vari- ety of methodological reasons, truly integrative reviews of the clinical literature have been limited. For example, a qualitative review of random- ized controlled trials (RCTs) of relaxation techniques (limited to those stud- ies in which relaxation was not combined with other techniques) for use in postsurgical and procedural acute pain settings identified only seven such studies that reported on pain outcomes (Seers & Carroll, 1998). An equal number of studies were found that reported only on distress-related out- comes, which do not necessarily correspond directly with pain outcomes 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 251

(Seers & Carroll, 1998). Results of this review indicated only weak evidence for efficacy of relaxation techniques in such settings, with only three of seven studies detecting significant pain-reducing effects of relaxation train- ing (Seers & Carroll, 1998). Negative results do not appear to be unique to relaxation interventions, given that work examining combined interven- tions incorporating relaxation, distraction, and imagery (for knee arthro- gram pain) has also described negative results (Tan & Poser, 1982). An im- portant conclusion drawn from the review by Seers and Carroll (1998) is that small sample sizes are a common problem in relaxation-related RCTs, a conclusion that aptly describes the broader literature on psychological in- terventions as well. Therefore, lack of statistical power may often account for the negative results obtained. Despite findings such as those just de- scribed that might suggest that psychological interventions for acute pain are of questionable efficacy, other RCTs suggest that psychological inter- ventions may be useful for some types of acute clinical pain. Results of sev- eral RCTs are next reviewed, organized by type of clinical setting.

Labor Pain

One of the earliest clinical applications of psychologically based inter- ventions for acute pain was the use of the Lamaze technique for labor pain. The Lamaze approach incorporates elements of sensory and procedural in- formation provision in addition to training in controlled breathing for pur- poses of relaxation and distraction. Controlled trials indicate that this tech- nique is effective for reducing the pain associated with delivery (Leventhal, Leventhal, Shacham, & Easterling, 1989; Scott & Rose, 1976), and that it re- duces analgesic requirements during childbirth (Scott & Rose, 1976). Work by Leventhal et al. (1989) indicates that repeated encouragement to focus on the sensations of labor contractions (a sensory focus intervention) may also contribute to reduced pain and distress during childbirth.

Burn Management

Studies in patients undergoing burn debridement, which can be associ- ated with intense pain, suggest that very different psychological interven- tions may be effective (Fratianne et al., 2001; Wright & Drummond, 2000). An intervention combining music distraction with controlled breathing instruc- tions resulted in significant reductions in self-reported pain during debride- ment relative to a same-subject control condition (Fratianne et al., 2001). Sim- ilarly, a hypnotic intervention including elements of relaxation, imagery, and suggestions of analgesia resulted in significantly lower ratings of pain during burn debridement compared to a "usual care" control group (Wright & Drummond, 2000). The significant treatment effects in the latter study were 252 BRUEHL AND CHUNG

obtained even though the "rapid induction analgesia" intervention required only a single 15-minute session to implement (Wright & Drummond, 2000). In both of the studies just mentioned, routine analgesic medications (e.g., mor- phine sulfate) were administered to all patients prior to debridement. Results such as these indicate that even when acute pain is relatively intense, brief combined psychological interventions may have significant pain-reducing ef- fects beyond that provided by standard analgesic regimens.

Physical therapy in burn patients may also be associated with significant acute pain. A novel application of virtual reality (VR) for pain reduction dur- ing physical therapy in such patients has recently been described (Hoffman et al., 2000, 2001). Although results to date are based on only a small num- ber of patients, this technique appears to be encouraging. For example, a randomized crossover trial in 12 burn patients revealed that patients expe- rienced significantly less pain during physical therapy while immersed in a computer-generated VR environment than when not experiencing VR (Hoff- man et al., 2000). The magnitude of this effect was notable, with reductions in pain-related cognitions during physical therapy from 60/100mm (on a vi- sual analog scale) in the no-intervention condition to 14/100mm during VR (Hoffman et al., 2000). Other similar work by these researchers (in seven burn patients) has confirmed the efficacy of this VR intervention, and fur- ther suggests that its efficacy does not diminish significantly with repeated use (Hoffman et al., 2001). As access to VR technology improves, these promising results suggest that further investigation of VR interventions may be worthwhile.

Nonsurgical Medical Procedures

Psychological interventions have demonstrated some evidence in RCTs of utility for controlling the acute pain associated with several medical diag- nostic procedures. In one such study, an audiotaped relaxation interven- tion resulted in significantly lower self-reported pain intensity and signifi- cantly less analgesic medication requested during femoral angiography compared to both no-treatment controls and a music distraction control group (Mandle et al., 1990). Pain ratings for the music distraction group in this study were no different than those reported by no-intervention con- trols (Mandle et al., 1990). An RCT conducted in patients undergoing painful electromyographic examination also indicated that relaxation training (combining PMR and deep breathing), a positive coping statement interven- tion, and the combination of these interventions resulted in significantly lower pain, distress, and physiological arousal than exhibited by patients in a no-treatment control condition (Kaplan, Metzger, & Jablecki, 1983). This study indicated that both the relaxation and coping statement interven- tions were equally effective (Kaplan et al., 1983). 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 253

Acute pain that is less severe and of briefer duration, such as that associ- ated with phlebotomy, may also be amenable to modification with simple psychological interventions. Cason and Grissom (1997) reported that sim- ple distraction through use of a kaleidoscope was sufficient to reduce the intensity of phlebotomy-associated pain significantly compared to a no- intervention control group.

Other studies of pain associated with medical procedures reveal mixed results. Although no effect was observed on pain intensity, results of an RCT of a combined music distraction/relaxation intervention for patients undergoing colonoscopy indicated that the intervention resulted in significantly less self-administration of sedative medication compared to a group receiving self-administered medication alone (Lee et al., 2002). In contrast, a relatively large-scale RCT reported by Gaston-Johansson et al. (2000) re- vealed no apparent beneficial effects of psychological intervention for pain associated with autologous bone marrow transplantation. A combined intervention including information provision, relaxation, imagery, and positive coping self-statements demonstrated no significant effects on pain or distress compared to a no-intervention control condition (Gaston-Johans- son et al., 2000). These negative results occurred despite having a sample size larger than in many such studies (total n = 110). Moreover, results were negative despite what appears to be a thorough intervention, including in- person relaxation and imagery training, information provision, and use of an audiotape for home relaxation practice, all provided well before the scheduled procedure to allow adequate practice time (Gaston-Johansson et al., 2000). The fact that fatigue and nausea were both significantly reduced by the intervention suggest that the lack of effect on pain experienced was not due to failure to utilize the intervention. In light of the generally positive results of other RCTs, the lack of efficacy of the combined intervention in this study is somewhat surprising. These results indicate that interventions that should be effective sometimes fail for unclear reasons, possibly related to the specific nature of the acute pain stimulus, patient population (i.e., breast cancer patients in this study) or an interaction of the type of inter- vention with patient variables (see below).

Dental Procedures

Psychological interventions for acute pain have also been applied to the discomfort associated with dental procedures. As in other clinical settings, relaxation techniques and distraction interventions (playing videogames) have been shown in RCTs to reduce the discomfort associated with dental procedures (Corah et al., 1979; Corah, Gale, Pace, & Seyrek, 1981). Other types of interventions may have efficacy in dental patients as well. Croog and colleagues (Croog, Baume, & Nalbandian, 1994) conducted a controlled 254 BRUEHL AND CHUNG

trial of patients undergoing repeated periodontal surgery. A coping self- statement intervention designed to increase perceived control over the aversive sequelae of the surgery resulted in significantly lower reports of pain following surgery relative to a no-intervention control group (Croog et al., 1994). Other work indicates that provision of sensory information about dental procedures, but not a visual distraction intervention, resulted in sig- nificantly decreased discomfort during "routine dental treatment" com- pared to a no-intervention control group (Wardle, 1983).

Other types of psychological interventions may have utility in the dental arena as well. Logan et al. (1995) and Baron, Logan, and Hoppe (1993) re- ported that a sensory focus intervention resulted in significantly reduced pain during root canal procedures compared to no-intervention controls. Provision of procedural information alone did not result in decreased pain intensity (Logan et al., 1995). A similar RCT by these researchers examined the efficacy of a combined intervention, including controlled breathing, vid- eotaped modeling of successful coping, and control-enhancing statements, finding that the intervention resulted in lower pain levels compared to a neutral videotape control condition in patients undergoing various dental procedures (Law, Logan, & Baron, 1994). It is important to note that the pain-ameliorating effects in each of these three studies occurred only among patients with a high desire for control and a low level of perceived control (Baron et al., 1993; Law et al., 1994; Logan et al., 1995).

Postsurgical Pain

Of the various clinical sources of acute pain described in this chapter, in- terventions focused on postsurgical pain may have the potential for the greatest health impact. Even minor surgery can be perceived as a highly threatening experience (Kiecolt-Glaser et al., 1998), and the often intense acute pain accompanying surgical procedures is a major source of stress for recovering patients. Inadequately controlled pain and stress during the postsurgical period may interfere significantly in the recovery process (Ballantyne et al., 1998; Carr & Goudas, 1999; Kiecolt-Glaser et al., 1998). RCTs of psychological interventions suggest that such interventions may have beneficial effects in some post-surgical settings.

Several studies have examined the use of psychological interventions for the pain associated with colorectal surgery. An RCT of an audiotaped inter- vention including relaxation instructions and positive coping imagery/sug- gestions indicated that the intervention significantly reduced pain, distress, and analgesic use in patients undergoing colorectal surgery (Manyande et al., 1995). In a similar study, an audiotaped intervention combining relaxing imagery with calming music reportedly result in a nonsignificant trend (p .07) towards decreased pain relative to standard care among patients un- 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 255

dergoing colorectal surgery (Renzi, Peticca, & Pescatori, 2000). Duration of exposure to the intervention may be one key to successful use of such tech- niques. Tusek and colleagues (Tusek, Church, & Fazio, 1997) reported that in a sample of colorectal surgery patients, an audiotaped intervention com- bining relaxing imagery with calming music, which was provided 3 days preoperatively, intraoperatively, and 6 days postoperatively, resulted in a significant reduction in postoperative pain intensity and a nearly 50% de- crease in analgesic requirements during the postoperative period com- pared to a standard care group.

Interventions that prove effective for one type of surgical situation are not necessarily always effective for other surgical situations. In contrast to the positive results above regarding colorectal surgery, RCTs of interven- tions including relaxation techniques, distraction, and coping self-state- ments suggest that such techniques are of limited benefit in patients under- going coronary artery bypass graft surgery (Ashton et al., 1997; Miller & Perry, 1990; Postlethwaite, Stirling, & Peck, 1986). Result of these studies re- vealed significant reductions in analgesic requirements in only one of the three studies (Ashton et al., 1997), and no differences in rated pain intensity in any study compared to no-intervention controls (Ashton et al., 1997; Miller & Perry, 1990; Postlethwaite, Stirling, & Peck, 1986). An RCT of an audiotaped relaxation intervention in patients undergoing total knee or hip replacement revealed similar negative results, producing no decrease in re- ported pain or analgesic requirements compared to patients getting surgi- cal education information (Daltroy, Morlino, Eaton, Poss, & Liang, 1998). The authors of this latter study noted problems in being able to provide pa- tients with the relaxation instructions sufficiently in advance of surgery to allow practice of the skills: Only 65% of patients reported practicing the technique at least once prior to surgery (Daltroy et al., 1998). This level of noncompliance may be a common occurrence in surgical situations in which minimally supervised audiotaped interventions are used.

Results of several RCTs in various other surgical settings do provide some support for use of adjunctive psychological interventions for acute pain. For example, a large-scale RCT (n = 500) comparing audiotaped relax- ation (jaw relaxation and controlled breathing), music, and combined relax- ation/music to a no-intervention control among patients undergoing major abdominal surgery reported positive results (Good et al., 1999). Patients in all three treatment groups reported lower pain intensity and distress than controls across both postsurgical days examined (Good et al., 1999). In an- other large-scale study (n = 241), patients undergoing percutaneous vascu- lar and renal surgical procedures who received a combined intervention including relaxing imagery, muscle relaxation, and positive coping self-statements reported significantly less pain and used significantly less anal- gesic medication than did standard care controls (Lang et al., 2000). The in- 256 BRUEHL AND CHUNG

tervention in the Lang et al. (2000) study was administered in person during the procedure by trained therapists, rather than through audiotaped in- structions alone as in the Good et al. (1999) study. It may be of clinical rele- vance that both interventions significantly reduced pain despite differing substantially in the amount of staff time required. RCTs of patients undergo- ing various other types of surgery (e.g., cholecystectomy, herniorrhaphy, nephrectomy, laparotomy, hysterectomy) further confirm that various re- laxation techniques (muscle relaxation, controlled breathing, relaxing imag- ery) can reduce postoperative pain and analgesic consumption (Daake & Gueidner, 1989; Flaherty & Fitzpatrick, 1978; Miro & Raich, 1999).

In contrast to the numerous studies of relaxation-related and cognitive interventions in the surgical context, information provision interventions have received fewer controlled tests with regard to postsurgical pain out- comes. However, similar results have been reported in two such RCTs (Doering et al., 2000; Reading, 1982). An information provision intervention- (sensory and procedural) delivered in person to patients undergoing gyne- cological laparoscopic surgery did not reduce pain levels postsurgically compared to no-intervention controls (Reading, 1982). Despite this lack of effect on pain reports, a behavioral effect was observed, with intervention-group patients requesting significantly fewer analgesic medications (Read- ing, 1982). More recently, Doering and colleagues examined the efficacy of a procedural information videotape intervention in patients undergoing hip replacement surgery (Doering et al., 2000). Results of this RCT also revealed no significant effects on pain intensity ratings, although like the Reading (1982) study, significant reductions in analgesic requirements were ob- served (Doering et al., 2000). Results of studies such as these indicate some potential postsurgical benefit of information provision interventions.

Clinical Trials in Children

Although not a primary focus of this chapter, it is important to note that psychological interventions appear to have benefit in the control of acute pain associated with medical procedures in children as well as adults. A meta-analysis (total of 19 studies) of the effects of techniques including dis- traction, relaxation, and imagery on acute pain experienced during medical procedures in children indicated a significant overall clinical effect, with children receiving interventions on average reporting pain levels 0.6 stan- dard deviations below those reported by no-intervention controls (Kleiber & Harper, 1999).

Children required to undergo repeated lumbar punctures or bone-mar- row aspirations as part of cancer treatment have been the focus of a num- ber of the available RCTs. These studies indicate the efficacy of combined interventions, including breathing relaxation, imagery, and distraction, for 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 257

reducing the pain associated with such procedures (Jay, Elliott, Katz, & Siegel, 1987; Jay, Elliott, Woody, & Siegel, 1991; Jay, Elliott, Fitzgibbons, Woody, & Siegel, 1995; Kazak et al., 1996; Kazak, Penati, Brophy, & Himel- stein, 1998). These pain reductions appear to be clinically meaningful: Children receiving such a combined intervention reported 25% less pain than children in an attentional control group (Jay et al., 1987).

Psychological interventions may also be effective for less intense but more common sources of acute clinical pain in children. For example, a sim- ple distraction intervention (use of a kaleidoscope) resulted in significantly reduced pain and distress associated with venipuncture relative to a group given simple comforting responses by clinicians (Vessey, Carlson, & McGill, 1994). Despite positive results such as these, other studies examining dis- traction and controlled breathing interventions for venipuncture pain indi- cate selective effects, reducing emotional distress during venipuncture but not affecting pain intensity significantly (Blount et al., 1992; Manne et al., 1990). As a whole, controlled trials in children do suggest some benefit to the use of psychological interventions for acute pain.

COMPARISONS WITH PHARMACOLOGICAL PAIN MANAGEMENT

The results of several of the outcome studies just reviewed indicate that psychological interventions used in conjunction with pharmacological ap- proaches may reduce the amount of such analgesic medications required (Ashton et al., 1997; Doering et al., 2000; Lang et al., 2000; Lee et al., 2002; Mandle et al., 1990; Manyande et al., 1995; Reading et al., 1982; Scott & Rose, 1976; Tusek et al., 1997). Direct comparisons of psychological to pharmaco- logical techniques for acute pain management are rare and frequently suffer methodological limitations, making interpretation difficult (Geden, Beck, Anderson, Kennish, & Mueller-Heinze, 1986; Kolk, van Hoof, & Dop, 2000; Schiff, Holtz, Peterson, & Rakusan, 2001).

In the context of relatively mild acute pain associated with venipuncture, evidence for the benefits of distraction interventions compared to topical anesthetic interventions is mixed. Work by Arts et al. (1994) indicated that children receiving a cream containing a eutectic mixture of local anesthet- ics (EMLA) reported significantly lower pain than did children receiving a music distraction intervention. A similar study also suggested no specific benefit (in terms of pain ratings) for a distraction intervention compared to a "standard care" condition, which frequently included EMLA cream (Kleiber, Craft-Rosenberg, & Harper, 2001). Other findings have been more positive. For children all of whom were provided with a distraction inter- vention, no differences in pain ratings were reported between those receiv-258 BRUEHL AND CHUNG

ing EMLA versus those receiving placebo cream, suggesting no additive benefit of EMLA beyond distraction (Lal, McClelland, Phillips, Taub, & Beat- tie, 2001). Lack of statistical power does not account for the differences be- tween these studies, as the study with the largest sample size (n = 180) re- ported the most negative results (Arts et al., 1994). These studies do not indicate whether other psychological strategies, such as brief relaxation or imagery, may have been more effective than distraction relative to the pharmacological approach. However, these studies suggest that for brief, low-intensity procedures in which simple pharmacological interventions with minimal side effects (e.g., EMLA) are likely to be effective, the incre- mental benefit of brief psychological techniques alone or in combination with pharmacological interventions appears questionable.

Several of the most methodologically sound controlled trials, all con- ducted in children, comparing psychological interventions with a pharma- cological intervention have been reported by Jay and colleagues (1987, 1991, 1995). In the first such study (Jay et al., 1987), children undergoing re- peated bone-marrow aspirations, serving as their own controls, underwent these procedures receiving a randomized sequence of three interventions: attention control, 0.3 mg/kg Valium only, and psychological intervention only (combining emotional imagery, breathing relaxation, and modeling of positive coping). Results indicated that the psychological intervention re- sulted in lower pain, distress, and physiological arousal than either the Val- ium or control conditions (Jay et al., 1987). A similar follow-up RCT by these researchers revealed identical effects on pain and arousal whether patients received a psychological intervention alone or in combination with Valium (Jay et al., 1991). Jay et al. (1995) also compared this same psychological in- tervention to light general anesthesia (halothane and nitrous oxide) in chil- dren undergoing repeated bone-marrow aspirations. Results indicated that general anesthesia was associated with less procedural distress, but no dif- ferences between interventions were observed regarding self-ratings of pain provided postprocedure. Subjects, all of whom received both types of pain intervention in the within-subject design, did not indicate a significant preference for one versus the other type of intervention, and it was noted that the psychological intervention required less time (Jay et al., 1995). As a whole, results of these well-controlled studies indicate that psychological interventions are of at least comparable efficacy to standard pharmacologi- cal approaches for management of the pain associated with bone-marrow aspiration in children.

It is important to note that such findings are not likely to generalize to all types of clinical acute pain. Clearly, procedures associated with more in- tense acute pain, such as even "minor" surgery, require pharmacological analgesia. However, the results reported earlier indicate that combining psychological and pharmacological approaches may have significant bene- 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 259

fits to patients. This recommendation is consistent with controlled work by Kazak et al. (1996, 1998) suggesting that a behavioral intervention including breathing, distraction, and imagery combined with standard pharmacological interventions resulted in significantly reduced distress compared to standard pharmacological treatment alone in children undergoing repeated lumbar punctures or bone-marrow aspirations.

MODERATORS OF RESPONSES TO PSYCHOLOGICAL INTERVENTIONS

Spontaneous Coping Strategies

Many individuals implement their own spontaneous pain coping strategies when faced with acute pain (Spanos et al., 1984; Zelman et al., 1991). The possibility that externally imposed interventions may interfere with pa-tients' implementation of effective pain control strategies already in their behavioral repertoire cannot be ruled out. Although some studies suggest that these spontaneous coping strategies may be effective for pain reduction (Spanos et al., 1984), other controlled laboratory work suggests that structured interventions may be more effective than these spontaneous strategies (Bruehl et al., 1993).

Coping Style

Patients' preferred style of coping with stress, whether Monitoring or Blunting in character, may be relevant to understanding the efficacy of spe- cific psychological acute pain interventions. Monitors, also referred to as Sensitizers or Vigilants, prefer to cope with stressful situations by seeking out information about the stimulus, and by monitoring and trying to mitigate their responses to the stimulus (Schultheis, Peterson, & Selby, 1987). Blunters, also termed Repressors, Avoiders, Distractors, or Deniers, prefer to cope with stressful situations through avoidance and by denial of the stressor (Schultheis et al., 1987).

A number of studies have hypothesized that psychological acute pain in- terventions work best if they match an individual's naturally preferred cop- ing style. For example, providing a sensory focus intervention to a Blunter would be considered a mismatched intervention, whereas a relaxing imag- ery strategy would be considered a matched intervention for such an indi- vidual (Fanurick et al., 1993). Laboratory acute pain studies have provided some evidence indicating that interventions matched to preferred coping style result in more effective reductions in acute pain responsiveness (e.g., Fanurick et al., 1993; Rokke & al'Absi, 1992). 260 BRUEHL AND CHUNG

Clinical studies regarding this issue are mixed, but generally negative. Shipley and coworkers (Shipley et al., 1979) examined interactions between coping style and an information provision intervention for patients under- going gastrointestinal endoscopy. Although there were no interaction ef- fects regarding pain experienced during the procedures, Monitors were found to experience less distress in the information provision condition whereas Blunters experienced greater distress (Shipley et al., 1979). These results are consistent with the matching hypothesis. Studies performed in the context of more severe acute clinical pain, on the other hand, are more negative. In a study of general surgery patients, efficacy of information pro- vision, relaxation, and no intervention was compared as a function of Moni- toring and Blunting coping styles (Scott & Clum, 1984). Blunters reported less pain and used less analgesics when provided with no intervention, which appear at least not inconsistent with the matching hypothesis. How- ever, contrary to the matching hypothesis, Monitors appeared to do best with breathing relaxation as opposed to information provision (Scott & Clum, 1984). Work by Wilson (1981) also in general surgery patients found that Blunters did not experience exacerbated pain following an information provision intervention, again failing to support the matching hypothesis. More recent work in surgical patients also indicated that efficacy of a relax- ation intervention did not differ depending on the degree to which patients preferred a Monitoring coping style (Miro & Raich, 1999). Differences in the measures used to assess coping style, types of interventions employed, and other procedural details make comparisons across studies more difficult. However, clinical support for a coping style by intervention type matching hypothesis is at best weak. Moreover, the absence of validated clinical pro- cedures for determining preferred coping style for purposes of selection of intervention type (e.g., empirically validated cutoffs on specific measures) makes coping style by intervention-type interactions more of an academic than a clinical issue.

Other Potential Moderators

As noted previously, there is evidence from several studies that interventions including sensory focus, breathing relaxation, and use of control- enhancing statements reduce the discomfort of dental procedures only among those with a high desire for control and a low level of perceived control prior to intervention (Baron et al., 1993; Law et al., 1994; Logan et al., 1995). Given the importance of perceived control in determining satisfaction with acute pain management (Pellino & Ward, 1998), these findings suggest that if resources for providing psychological acute pain interventions are limited, it may be most appropriate to focus these resources on individuals who express a desire for greater control over the acute pain experience. 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 261

Other authors have suggested that hypnotizability may also be an impor- tant moderator of treatment efficacy. Laboratory acute pain research has indicated that imagery, analgesia suggestions, and distraction were effec- tive for reducing acute pain only among individuals high in hypnotizability (Farthing et al., 1997). This might not be considered surprising given that individuals high in hypnotizability may be more capable of developing vivid mental imagery (Farthing et al., 1997). As with coping style, validated clinical criteria for making treatment decisions based on assessment of hypno- tizability are not available. Therefore, the practical clinical utility of this moderator variable is questionable.

BARRIERS TO EFFECTIVE CLINICAL USE OF PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN

If psychological interventions for acute pain can be clinically useful in some circumstances, as appears to be the case, what are the barriers to their use? A study by Jiang and colleagues (Jiang, Lagasse, Ciccone, Jakubowski, & Kitain, 2001) of hospital acute pain management practices indicated wide- spread underutilization of nonpharmacological techniques. A primary fac- tor contributing to this underutilization was resource availability (Jiang et al., 2001). With the current focus on reduction of health care costs nation- wide, cost containment becomes a major barrier to providing the trained personnel and staff time to implement many psychological pain management strategies in situations in which they have proven effective. Clearly, as described earlier, there are potential risks associated with inadequate control of acute post-surgical pain (e.g., delayed recovery, development of chronic pain; Kiecolt-Glaser et al., 1998; Murphy & Cornish, 1984; Senturk et al., 2002). Provision of psychologically based interventions in the context of an overall program for management of postsurgical pain may therefore be cost-effective in the long term. However, the short-term nature of the dis- tress and pain associated with brief but painful medical and dental proce- dures may simply not be viewed as justifying the time and personnel costs needed to implement many psychological interventions for acute pain (Lud- wick-Rosenthal & Neufeld, 1988). Moreover, the absence of a psychiatric di- agnosis to justify provision of a psychological intervention, which is typi- cally a requirement for purposes of insurance reimbursement, may be a practical barrier to having psychological acute pain interventions be ad- ministered by psychologically trained staff. Brief and simple techniques that can be implemented quickly either through automated procedures (e.g., audio or videotapes) or by staff already interacting with the patient (e.g., nursing staff) are those most likely to be of use clinically. For example, 262 BRUEHL AND CHUNG

a memory-based positive emotion induction requiring less than 5 minutes of time has been shown to diminish acute pain sensitivity and pain-related physiological arousal, and could be carried out by nursing staff with limited training (Bruehl et al., 1993). Distraction techniques also require little effort to implement, and therefore may be more widely useful.

Our clinical experience indicates that unless significant skills acquisition and practice time are available prior to exposure to the acute pain situa- tion, the benefits of using more elaborate interventions (e.g., progressive muscle relaxation training) are likely to be modest. Ideally, there would be sufficient contact time with the patient on a separate day prior to exposure to the pain stimulus for mutual selection of an acceptable intervention, for the intervention to be taught, and for patients to practice the skills on their own prior to the pain (using taped intervention instructions if appropriate). Such a situation may unfortunately be rare. If less time is available, it is important to select interventions that are reasonable for the patient to learn and practice adequately in the time that is available. Information provision and distraction interventions are most amenable to limited practice time, followed in (approximate) ascending order of difficulty by coping self- statement interventions, breathing relaxation, imagery techniques, hypno- sis, progressive muscle relaxation, and combined approaches.

Patient acceptance and adherence may be another barrier to effective use of psychological interventions. Passive distraction techniques such as listening to relaxing music are likely to be accepted easily by patients. How- ever, unless patients are provided with a compelling rationale for use of in- terventions that require active practice (e.g., relaxation training), they are unlikely to utilize the intervention approach during acute pain exposure even if training is provided. Even when intervention skills have been learned, results of a large-scale efficacy study of relaxation for postsurgical pain indicate that reminders to practice the technique are required for ben- eficial effects to be achieved (Good et al., 1999).

CONCLUSIONS

Results of controlled clinical trials testing the efficacy of psychological in- terventions for acute pain associated with burn management, labor, medi- cal diagnostic procedures, venipuncture, dental procedures, and surgery suggest that these interventions are often effective for pain reduction and do not appear to be harmful. However, controlled trials have rarely tested the efficacy of individual strategies, but rather have examined various com- binations of information-provision, relaxation-related, and cognitive strate- gies. It is therefore not possible to make determinations as to the clinical superiority of one type of intervention over another based on available tri- 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 263

als. Audiotaped relaxation-related interventions do appear to be effective in some situations, although "live" intervention delivery by trained staff for the initial session is likely to optimize results if time and resources permit. There is little evidence to justify the use of psychological interventions as an alternative to standard pharmacological approaches, although there is much evidence that they have significant clinical utility in conjunction with pharmacological approaches. Although there are some indications that individual difference variables may impact on efficacy of various types of psychological interventions, there are insufficient data available to use individual difference variables for selection of optimal intervention types in routine clinical decision-making. Given the limitations of the available research, factors such as time constraints, resources, and patient preference are likely to be the most useful in selection of interventions.

ACKNOWLEDGMENT

The authors gratefully acknowledge the assistance of Pamela Ward in the preparation of this chapter.

REFERENCES

Anseth, E., Berntzen, K., & Gotestam, G. (1985). A comparison of the effects of flupentixol and re- laxation on laboratory pain: An experimental study. *Acta Neurologica Scandinavica*, *71*, 20–24.

Arts, S. E., Abu-Saad, H. H., Champion, G. D., Crawford, M. R., Fisher, R. J., Juniper, K. H., & Ziegler, J. B. (1994). Age related response to lidocaine-prilocaine (EMLA) emulsion and effect of mu- sic distraction on the pain of intravenous cannulation. *Pediatrics*, *93*, 797–801.

Ashton, C., Whitworth, G. C., Seldmridge, J. A., Shapiro, P. A., Weinberg, A. D., Michler, R. E., Smith, C. R., Rose, E. A., Fisher, S., & Oz, M. C. (1997). Self hypnosis reduces anxiety following coronary bypass surgery. *Journal of Cardiovascular Surgery, 38*, 69–75.

Avia, M. D., & Kanfer, F. H. (1980). Coping with aversive stimulation: The effects of training in a self-management context. *Cognitive Therapy and Research*, *4*, 73–81.

Ballantyne, J. C., Carr, D. B., deFerranti, S., Suarez, T., Lau, J., Chalmers, T. C., Angelillo, L. F., & Mosteller, F. (1998). The comparative effects of postoperative analyses of randomized controlled trials. *Anesthesia and An- algesia*, *86*, 598–612.

Baron, R. S., Logan, H., & Hoppe, S. (1993). Emotional and sensory focus as mediators of dental pain among patients differing in desired and felt dental control. *Health Psychology*, *12*, 381–389.

Blount, R. L., Bachanas, P. J., Powers, S. W., Cotter, M. W., Franklin, A., Chaplin, W., Mayfield, J., Henderson, M., & Blount, S. D. (1992). Training children to cope and parents to coach them during routine immunizations: Effects on child, parent, and staff behaviors. *Behavior Ther- apy, 23*, 689–705.

Bruehl, S., Carlson, C. R., & McCubbin, J. A. (1993). Two brief interventions for acute pain. Pain, 54, 29–36. 264 BRUEHL AND CHUNG

Buckelew, S. P., Conway, R. C., Shutty, M. S., Lawrence, J. A., Grafing, M. R., Anderson, S. K., Hewett, J. E., & Keefe, F. J. (1992). Spontaneous coping strategies to manage acute pain and anxiety during electrodiagnostic studies. *Archives of Physical Medicine and Rehabilitation*, 73, 594–598.

Carlson, C. R., & Hoyle, R. H. (1992). Efficacy of abbreviated progressive muscle relaxation train- ing: A quantitative review of behavioral medicine research. *Journal of Consulting and Clinical Psychology, 61*, 1059–1067.

Carr, D. B., & Goudas, L. C. (1999). Acute pain. Lancet, 353, 2051–2058. Cason, C. L., & Grissom, N. L. (1997). Ameliorating adults' acute pain during phlebotomy with dis-traction intervention. Applied Nursing Research, 10, 168–173. Clum, G. A., Luscomb, R. L., & Scott, L. (1982). Relaxation training and cognitive redirection strat- egies in the treatment of acute pain. Pain, 12, 175–183. Cogan, R., & Kluthe, K. B. (1981). The role of learning in pain reduction associated with relaxation and patterned breathing. Journal of Psychosomatic Research, 25, 535–539. Corah, N. L., Gale, E. N., & Illig, S. J. (1979). The use of relaxation and distraction to reduce psy-chological stress during dental procedures. Journal of the American Dental Association, 98, 390–394.

Corah, N. L., Gale, E. N., Pace, L. F., & Seyrek, S. K. (1981). Relaxation and musical programming as means of reducing psychological stress during dental procedures. *Journal of the American Dental Association, 103*, 232–234.

Croog, S. H., Baume, R. M., & Nalbandian, J. (1994). Pain response after psychological prepara- tion for repeated periodontal surgery. *Journal of the American Dental Association, 125*, 1353–1360.

Daake, D. R., & Gueldner, S. H. (1989). Imagery instruction and the control of postsurgical pain. Applied Nursing Research, 2, 114–120.

Daltroy, L. H., Morlino, C. I., Eaton, C. I., Poss, R., & Liang, M. H. (1998). Preoperative education for total hip and knee replacement patients. *Arthritis Care and Research*, *11*, 469–478.

Doering, S., Katzberger, F., Rumpold, G., Roessler, S., Hofstoetter, B., Schatz, D. S., Behensky, H., Krismer, M., Luz, G., Innerhofer, P., Benzer, H., Saria, A., & Schuessler, G. (2000). Videotape preparation of patients before hip replacement surgery reduces stress. *Psychosomatic Medi- cine*, *62*, 365–373.

Fanurik, D., Zelter, L. K., Roberts, M. C., & Blount, R. L. (1993). The relationship between chil-dren's coping styles and psychological interventions for cold pressor pain. *Pain*, *52*, 213–222.

Farthing, G. W., Venturino, M., Brown, S. W., & Lazar, J. D. (1997). Internal and external distraction in the control of cold pressor pain as a function of hypnotizability. *International Journal of Clinical Experimental Hypnosis*, 45, 433–446.

Faymonville, M. E., Fissette, J., Mambourg, P. H., Roediger, L., Joris, J., & Lamy, M. (1995). Hypno- sis as adjuct therapy in conscious sedation for plastic surgery. *Regional Anesthesia*, *20*, 145–151.

Flaherty, G. G., & Fitzpatrick, J. J. (1978). Relaxation technique to increase comfort level of post- operative patients: A preliminary study. *Nursing Research*, *27*, 352–355.

Fratianne, R. B., Presner, J. D., Huston, M. J., Super, D. M., & Yowler, C. J. (2001). The effect of mu- sic based imagery and musical alternate engagement on the burn debridement process. *Journal of Burn Care and Rehabilitation*, 22, 47–53.

Frere, C. L., Crout, R., Yorty, J., & McNeil, D. W. (2001). Effects of audiovisual distraction during dental prophylaxis. *Journal of the American Dental Association*, *132*, 1031–1038.

Gaston-Johansson, F., Fall-Dickson, J. M., Nanda, J., Ohly, K. V., Stillman, S., Krumm, S., & Ken- nedy, M. J. (2000). The effectiveness of the comprehensive coping strategy program on clini- cal outcomes in breast cancer autologous bone marrow transplantation. *Cancer Nursing*, 23, 277–285.

Geden, E. A., Beck, N. C., Anderson, J. S., & Kennish, M. E. (1986). Effects of cognitive and pharma- cologic strategies on analogued labor pain. Nursing Research, 35, 301–306. 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 265

Good, M., Stanton-Hick, M., Grass, J. A., Anderson, G. C., Choi, C., Schoolmeesters, L. J., & Salman, A. (1999). Relief of postoperative pain with jaw relaxation, music and their combination. *Pain*, *81*, 163–172.

Gracely, R. H., Lynch, S. A., & Bennett, G. J. (1992). Painful neuropathy: Altered central process- ing maintained dynamically by peripheral input. *Pain, 51*, 175–194.

Graffenried, B., Adler, R., Abt, K., Nuesch, E., & Spiegel, R. (1978). The influence of anxiety and pain sensitivity on experimental pain in man. *Pain, 4*, 253–263.

Harris, V. A., Katkin, E. S., Lick, J. R., & Habberfield, T. (1976). Paced respiration as a technique for the modification of autonomic response to stress. *Psychophysiology*, *13*, 386–390.

Hoffman, H. G., Patterson, D. R., & Carrougher, G. J. (2000). Use of virtual reality for adjunctive treatment of adult burn pain during physical therapy: A controlled study. *Clinical Journal of Pain, 16*, 244–250.

Hoffman, H. G., Patterson, D. R., Carrougher, G. J., & Sharar, S. R. (2001). Effectiveness of virtual reality-based pain control with multiple treatments. *Clinical Journal of Pain.* 17, 229–235.

Jacobson, E. (1938). Progressive relaxation. Illinois: University of Chicago Press. Jacobsen, P. B., & Butler, R. W. (1996). Relation of cognitive coping and catastrophizing to acute pain and analgesic use following breast cancer surgery. Journal of Behavioral Medicine, 19, 17–29.

Jay, S. M., Elliott, C. H., Fitzgibbons, L., Woody, P., & Siegel, S. (1995). A comparative study of cog-nitive behavioral therapy versus general anesthesia for painful medical procedures in chil-dren. *Pain*, *62*, 3–9.

Jay, S. M., Elliott, C. H., Katz, E., & Siegel, S. E. (1987). Cognitive-behavioral and pharmacologic in- terventions for children's distress during painful medical procedures. *Journal of Consulting and Clinical Psychology*, *55*, 860–865.

Jay, S. M., Elliott, C. H., Woody, P. D., & Siegel, S. E. (1991). An investigation of cognitive behavior therapy combined with oral Valium for children undergoing medical procedures. *Health Psy- chology, 10*, 317–322.

Jiang, H. J., Lagasse, R. S., Ciccone, K., Jakubowski, M. S., & Kitain, E. M. (2001). Factors influenc- ing hospital implementation of acute pain management practice guidelines. *Journal of Clini- cal Anesthesia*, 13, 268–276.

Kaplan, R. M., Metzger, G., & Jablecki, C. (1983). Brief cognitive and relaxation training increases tolerance for a painful clinical electromyographic examination. *Psychosomatic Medicine*, *45*, 155–162.

Kazak, A. E., Penati, B., Boyer, B. A., Himelstein, B., Brophy, P., Waibel, M. K., Blackall, G. F., Daller, R., & Johnson, K. (1996). A randomized controlled prospective outcome study of a psycho- logical and pharmacological intervention protocol for procedural distress in pediatric leuke- mia. *Journal of Pediatric Psychology, 21*, 615–631.

Kazak, A. E., Penati, B., Brophy, P., & Himelstein, B. (1998). Pharmacologic and psychologic inter- ventions for procedural pain. *Pediatrics, 102*, 59–66.

Kiecolt-Glaser, J. K., Page, G. P., Marucha, P. T., MacCallum, R. C., & Glaser, R. (1998). Psychology influences on surgical recovery. *American Psychologist, 52*, 1209–1218.

Kleiber, C., & Harper, D. C. (1999). Effects of distraction on children's pain and distress during medical procedures: A meta-analysis. *Nursing Research, 48,* 44–49.

Kleiber, C., Craft-Rosenburg, M., & Harper, D. C. (2001). Parents as distraction coaches during IV insertion: A randomized study. *Journal of Pain and Symptom Management*, 22, 851–861.

Kolk, A. M., van hoof, R., & Dop, M. J. C. F. (2000). Preparing children for venepuncture. The effect of integrated intervention on distress before and during venepuncture. *Child: Care, Health and Development, 26*, 251–260.

Kuttner, L. (1989). Management of young children's acute pain and anxiety during invasive medi-cal procedures. *Pediatrician, 16*, 39–44.

Lal, M. K., McClelland, J., Phillips, J., Taub, N. A., & Beattie, R. M. (2001). Comparison of EMLA cream versus placebo in children receiving distraction therapy for venepuncture. Acta Paediatrica, 90, 154–159. 266 BRUEHL AND CHUNG

Lang, E. V., Benotsch, E. G., Fick, L. J., Lutegendorf, S., Berbaum, M. L., Berbaum, K. S., Logan, H., & Spiegel, D. (2000). Adjunctive non-pharmacological analgesia for invasive medical proce-dures: A randomised trial. *Lancet*, 355, 1486–1490.

Law, A., Logan, H., & Baron, R. S. (1994). Desire for control, felt control, and stress inoculation training during dental treatment. *Journal of Personality and Social Psychology*, *67*, 926–936.

Lee, D. W. H., Chan, K., Poon, C., Ko, C., Chan, K., Sin, K., Sze, T., & Chan, A. C. W. (2002). Relaxation music decreases the dose of patient-controlled sedation during colonoscopy: A prospective randomized controlled trial. *Gastrointestinal Endoscopy, 55*, 33–36.

Leventhal, E. A., Leventhal, H., Shacham, S., & Easterling, D. V. (1989). Active coping reduces re-ports of pain from childbirth. *Journal of Consulting and Clinical Psychology*, *57*, 365–371.

Leventhal, H., Brown, D., Shacham, S., & Enquist, G. (1979). Effect of preparatory information about sensations, threat of pain and attention on cold pressor distress. *Journal of Personality and Social Psychology*, *37*, 688–714.

Litt, M. D. (1988). Self-efficacy and perceived control: Cognitive mediators of pain tolerance. *Jour- nal of Personality and Social Psychology*, *54*, 149–160.

Litt, M. D. (1996). A model of pain and anxiety associated with acute stressors: Distress in dental procedures. *Behavioral Research Therapy*, *34*, 459–476.

Logan, H. L., Baron, R. S., & Kohout, F. (1995). Sensory focus as therapeutic treatments for acute pain. *Psychosomatic Medicine, 57*, 475–484.

Ludwick-Rosenthal, R., & Neufeld, R. W. J. (1988). Stress management during noxious medical procedures: An evaluative review of outcome studies. *Psychological Bulletin*, *104*, 326–342.

Mandle, C. L., Domer, A. D., Harrington, D. P., Laserman, J., Bozadjian, E. M., Friedman, R., & Benson, H. (1990). Relaxation response in femoral angiography. *Radiology*, *174*, 737–739.

Manne, S. L., Redd, W. H., Jacobsen, P. B., Gorfinkle, K., Schorr, O., & Rapkin, B. (1990). Behavioral intervention to reduce child and parent distress during venipuncture. *Journal of Consulting and Clinical Psychology*, *58*, 565–572.

Manyande, A., Berg, S., Gettins, D., Stanford, S. C., Phil, D., Mazhero, S., Marks, D. F., & Salmon, P. (1995). Preoperative rehearsal of active coping imagery influences subjective and hormonal responses to abdominal surgery. *Psychosomatic Medicine*, *57*, 177–182.

McCaul, K. D., & Malott, J. M. (1984). Distraction and coping with pain. *Psychological Bulletin, 95*, 516–533.

McCubbin, J. A., Wilson, J. F., Bruehl, S., Ibarra, P., Carlson, C. R., Norton, J. A., & Colclough, G. (1996). Relaxation training and opioidergic inhibition of blood pressure response to stress. *Journal of Consulting and Clinical Psychology*, *64*, 593–601.

Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 150, 971–979. Millan, M. J. (1986). Multiple opioid systems and pain. Pain, 27, 303–347. Miller, K. M., & Perry, P. A. (1990). Relaxation technique and postoperative pain in patients un-dergoing cardiac surgery. Heart and Lung, 19, 136–146. Miro, J., & Raich, R. M. (1999). Effects of a brief and economical intervention in preparing patients for surgery: Does coping style matter? Pain, 83, 471–475. Murphy, K. A., & Cornish, R. D. (1984). Prediction of chronicity in acute low back pain. Archives of

Physical Medicine and Rehabilitation, 65, 334–337. Pellino, T. A., & Ward, S. E. (1998). Perceived control mediates the relationship between severity and patient satisfaction. Journal of Pain and Symptom Management, 15, 110–116. Postlethwaite, R., Stirling, G., & Peck, C. L. (1986). Stress inoculation for acute pain: A clinical trial. Journal of Behavioral Medicine, 9, 219–227. Powers, S. (1999). Empirically supported treatments in pediatric psychology: Procedure-related pain. Journal of Pediatric Psychology, 24, 131–145. Reading, A. E. (1982). The effects of psychological preparation on pain and recovery after minor gynecological surgery: A preliminary report. Journal of Clinical Psychology, 38, 504–512. 9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 267

Renzi, C., Peticca, L., & Pescatori, M. (2000). The use of relaxation techniques in the periop- erative management of proctological patients: Preliminary results. *International Journal of Colorectal Disease, 15*, 313–316.

Rokke, P. D., & al'Absi, M. (1992). Matching pain and coping strategies to the individual: A pro- spective validation of the cognitive coping strategy inventory. *Journal of Behavioral Medi- cine*, 15, 611–625.

Rosenstiel, A. K., & Keefe, F. J. (1983). The use of coping strategies in chronic low back pain pa- tients: Relationship to patient characteristics and current adjustment. *Pain*, *17*, 33–44.

Schiff, W. B., Holtz, K. D., Peterson, N., & Rakusan, T. (2001). Effect of an intervention to reduce procedural pain and distress for children with HIV infection. *Journal of Pediatric Psychology, 26*, 417–427.

Schultheis, K., Peterson, L., & Shelby, V. (1987). Preparation for stressful medical procedures and person x treatment interactions. *Clinical Psychology Review, 7*, 329–352.

Scott, J. R., & Rose, N. B. (1976). Effect of Psychoprophylaxis (Lamaze preparation) on labor and delivery in primiparas. *New England Journal of Medicine*, *27*, 1205–1207.

Scott, L. E., & Clum, G. A. (1984). Examining the interaction effects of coping style and brief inter- ventions in the treatment of postsurgical pain. *Pain. 20.* 279–291.

Seers, K., & Carroll, D. (1998). Relaxation techniques for acute pain management: A systemic re- view. *Journal of Advanced Nursing, 27*, 466–475.

Senturk, M., Ozcan, P. E., Tal, G. K., Kiyan, E., Camci, E., Ozyalcin, S., Dilege, S., & Pembeci, K. (2002). The effects of three different analgesia techniques on long-term post-thoracotomy pain. *Anesthesia and Analgesia*, 94, 11–15.

Shipley, R. H., Butt, J. H., & Horwitz, E. A. (1979). Preparation to reexperience a stressful medical examination: Effect of repetitious videotape exposure and coping style. *Journal of Consulting and Clinical Psychology, 47*, 485–492.

Spanos, N. P., Hodgins, D. C., Stam, H. J., & Gwynn, M. (1984). Suffering for science: The effects of implicit social demands on response to experimentally induced pain. *Journal of Personality and Social Psychology, 46*, 1162–1172.

Sternbach, R. A. (1974). Pain patients: Traits and treatment. New York: Academic Press. Sullivan, M. J., Rodgers, W. M., & Kirsch, I. (2001). Catastrophizing, depression, and expectancies for pain and emotional distress. Pain, 91, 147–154. Sullivan, M. J., Thorn, B., Haythornthwaite, J. A., Keefe, F., Martin, M., Bradley, L. A., & Lefebvre,

J. C. (2001). Theoretical perspectives on the relation between catastrophizing and pain. Clini- cal Journal of Pain, 17, 52–64.

Tan, S. (1982). Cognitive and cognitive-behavioral methods for pain control: A selective review. *Pain, 12*, 201–228.

Tan, S., & Poser, E. G. (1982). Acute pain in a clinical setting: Effects of cognitive-behavioural skills training. *Behavioral Research and Therapy*, 20, 535–545.

Turk, D. C., Meichenbaum, D., & Genest, M. (1983). Pain and behavioral medicine. New York: Guilford Press.

Tusek, D., Church, J. M., & Fazio, V. W. (1997). Guided imagery as a coping strategy for periop- erative patients. *AORN Journal, 66*, 644–649.

VanDalfsen, P. J., & Syrjala, J. L. (1990). Psychological strategies in acute pain management. *Criti- cal Care Clinics, 6*, 421–431.

Vessey, J., Carlson, K. L., & McGill, J. (1994). Use of distraction with children during an acute pain experience. *Nursing Research, 43*, 369–372.

Wardle, J. (1983). Psychological management of anxiety and pain during dental treatment. *Jour- nal of Psychosomatic Research, 27*, 399–402.

Weisenberg, M. (1987). Psychological intervention for the control of pain. Behavioral Research and Therapy, 25, 301–312. 268 BRUEHL AND CHUNG

Wilson, J. F. (1981). Behavioral preparation for surgery: Benefit or harm? Journal of Behavioral Medicine, 4, 79–102.

Wright, B. R., & Drummond, P. D. (2000). Rapid induction analgesia for the alleviation of proce-dural pain during burn care. *Burns, 26*, 275–282.

Zelman, D. C., Howland, E. W., Nichols, S. N., & Cleeland, C. S. (1991). The effects of induced mood on laboratory pain. Pain, 46, 105–111.

9. PSYCHOLOGICAL INTERVENTIONS FOR ACUTE PAIN 269

The use of psychological interventions in the management of nonmalignant chronic pain, such as low back pain, headaches, and arthritis, is no longer considered treatment of last resort. Previously, psychologists were involved only after other biologically based methods had failed (Turk & Flor, 1984). Today, psychological interventions are often delivered concurrently with many biologically based interventions, such as physiotherapy and exercise therapy. Treatment can be offered within a multidisciplinary context, but also as an independent or separate service. Treatment may occur as an out- patient or inpatient and may be offered individually or in a group context with or without the involvement of family members or significant others.

Therapy goals are highly variable and at times may be poorly specified by the patient beyond pain reduction and returning to abandoned activities and roles. Comprehensive assessment may reveal multiple treatment tar- gets of interest, such as pain or symptom management (e.g., development of active coping strategies, reduction of pain behavior and avoidance, moti- vation enhancement, improved sleep habits, medication adherence), stress and psychological symptom management (e.g., resolution of anxiety, de- pression, anger, medical uncertainty, fear of pain), and/or resolution of interpersonal (e.g., family conflict, sexual difficulties, communication problems) and vocational concerns (e.g., job stress, job dissatisfaction, voca- tional planning). Goals of the patient, referrer, and staff who deliver the treatment may diverge or conflict, as may those of the employer, family, or others in the patient's environment. Goals at times will depend on the treat-

CHAPTER 10

Psychological Interventions and Chronic Pain

Heather D. Hadjistavropoulos Department of Psychology

University of Regina

Amanda C. de C. Williams INPUT Pain Management Unit, St. Thomas' Hospital, London 271

ment approach that is taken—for instance, whether it is operant, respon- dent, cognitive, cognitive-behavioral, family, or psychodynamic therapy.

The purpose of this chapter is to provide a succinct overview of psycho- logical approaches commonly used among chronic pain patients. Empirical evidence pertaining to their efficacy (e.g., comparison of outcomes between intervention and a control condition) and effectiveness (e.g., examination of social and clinical benefits in naturalistic settings) is highlighted. Compari- sons among psychological interventions are made when appropriate, al- though this is complicated by the fact that the interventions have overlap- ping features and are often offered in combination within the context of multidisciplinary treatment. Very little research is available comparing psychological interventions to biologically based interventions, such as sur- gery, physiotherapy, and exercise therapy.

OPERANT CONDITIONING

Background and Description

Fordyce (1976) was the first to describe the application of operant conditioning to chronic pain and proposed that observable pain behaviors, such as medication consumption, limping, grimacing, and resting, although likely initially triggered by an antecedent event (e.g., injury, disease), are gov- erned by their contingent consequences. He asserted that overt pain behav- iors are maintained through systematic positive reinforcement (e.g., atten- tion) and/or avoidance of negative consequences (e.g., unpleasant work) (Turner & Chapman, 1982a). He recommended that operant conditioning be used with chronic pain patients to reduce one or more overt pain behaviors (e.g., use of medication, bed rest) or to facilitate increase in those more adaptive well behaviors (e.g., activity). Fordyce appears to have been react- ing to the then dominant psychogenic pain models that assumed that pain signals that resulted with little or no associated pathology were the result of psychological disturbance (see Fordyce, 1973). Treatment was character- istically offered within a controlled inpatient environment in order to pro- vide consistent contingencies. A multidisciplinary team typically delivered treatment, with patients also attending sessions with physicians, vocational counselors, physical therapists, occupational therapists, and others.

In a relatively recent review chapter, Sanders (1996) summarized the es- sential elements of the operant approach. The first component begins prior to the initiation of treatment and involves a functional behavioral analysis to identify relevant overt pain and well behaviors, and, as far as possible, antecedent stimuli and contingent consequences contributing to pain be- havior. At this stage, patients are frequently encouraged to monitor and re- 272 HADJISTAVROPOULOS AND WILLIAMS

cord their behavior (e.g., up and down time, walking, medication). Thereaf- ter, operant treatment is described as involving several ingredients includ- ing: (a) response prevention for escape/avoidance behaviors; (b) positive and negative reinforcement (e.g., encouragement) to increase well behav- iors from baseline (e.g., physical exercise, up time), with gradual reduction in this to a variable schedule once well behaviors are on the rise; (c) shap- ing or gradual change of well behaviors, which includes exercising to quota rather than exercising to tolerance; (d) elimination or reduction of factors that may maintain the overt pain behaviors outside the treatment environ- ment, such as economic reinforcers, social attention, and avoidance of re- sponsibilities; and (e) time-contingent delivery of medication while reduc- ing the amount of medication per day.

With respect to medication, the physician determines the drug needs. The psychologist, however, may play an important role in monitoring these needs. According to Fordyce (1973), medications are at first provided to pa- tients on a prescribed-as-needed (PRN) basis for 2 to 4 days to establish the medication baseline. Baseline doses are then delivered on a fixed time schedule such that if patients had previously requested medication every 5 hours, medication would be delivered instead every 4 hours. With this method, medication is not contingent on soreness and therefore does not serve as positive reinforcer for pain or pain behavior; gradually over time medication is ultimately withdrawn. The role of the psychologist in time- contingent medication is to assist with monitoring of medication prior to adjustment and then with positive reinforcement and encouragement of ad- herence to the regimen.

The operant methods are applied to each overt pain and well behavior across as many different conditions as possible, and when possible the pa- tient and family are encouraged to directly apply operant conditioning methods to behavior change (Sanders, 1996). Unique to operant condition- ing, the operant treatment principles are applied by all health care provid- ers involved in care, not exclusively the psychologist (van Tulder et al., 2000).

Evidence

The earliest evidence in support of operant conditioning for chronic pain came, not surprisingly, from Fordyce and colleagues in the form of a case study (Fordyce, Fowler, Lehmann, & DeLateur, 1968). In 1973, Fordyce and colleagues (Fordyce et al., 1973) described pre—post treatment findings based on operant conditioning with 36 chronic pain patients. In their study, pain medications were provided on a time-contingent rather than PRN basis in or- der to decrease the association of pain behavior and relief. Furthermore, nursing staff withheld social reinforcement when patients displayed pain be- 10. PSYCHOLOGICAL INTERVENTIONS AND CHRONIC PAIN 273

haviors, and provided extensive praise when patients showed well behav- iors. Positive treatment effects were observed following the inpatient pro- gram and at 22-month follow-up, including report of increased activity level and exercise tolerance, and decreased medication usage and pain ratings.

Since the time of these earliest observations, several studies have been conducted along with reviews of operant therapy that have generally been encouraging (e.g., Fordyce, Roberts, & Sternbach, 1985; Keefe & Bradley, 1984; Linton, 1982, 1986; Turner & Chapman, 1982a; van Tulder et al., 2000). In an effort to improve the practice of psychotherapy, a number of task forces have reviewed the research literature and identified empirically sup- ported treatments. Chambless and Ollendick (2001) summarized the work of these task forces and reported that operant behavior therapy for hetero- geneous chronic pain patients has category II support, meaning that there is at least one RCT supporting the treatment, showing it as superior to a control condition or an alternative treatment.

Our review of this area of research generally reveals that there are few research studies that address operant conditioning directly, and those that are carried out do not often follow the prototypical approach advocated by Fordyce (1976). Although there are a number of studies that address cogni- tive-behavioral treatment, or behavioral treatment that also includes relax- ation training, randomized control studies focused exclusively on operant conditioning are rare. Furthermore, because the operant approach involves numerous components it is difficult to clarify the extent to which psycho- logical intervention is crucial versus other components such as occupa- tional therapy and physiotherapy (Turk & Flor, 1984).

Commentary

The lack of studies addressing operant conditioning alone is perhaps a re-flection of our own direct experiences that, in practice, in clinical settings the prototypical operant approach is rarely used. Although this observation is not made explicitly in the literature, systematic attempts at assess-ment of well behaviors and illness behaviors as well as contingencies be-tween overt pain behaviors and positive and negative reinforcers are infrequent in practice. Instead, clinicians routinely assume that certain pain behaviors are positive (e.g., exercising, distraction, positive coping self-statements) and others are negative (e.g., guarding) (LaChapelle, Hadjistav-ropoulos, & McCreary, 2001). Furthermore, it is often assumed that certain contingencies are always negative (e.g., disability benefits, medical staff at-tention, family support). Evidence is emerging that even some of the appar- ently simple relationships that were previously observed between pain be-havior and spouse solicitous behavior and facilitative behavior (Romano et al., 1992) are more complex than was previously understood (Romano et al., 1995). Romano and colleagues (1995) reported, for instance, that spouse so- 274 HADJISTAVROPOULOS AND WILLIAMS

licitous responses are predictive of pain behavior only among patients with high levels of pain and low mood.

With respect to treatment protocol, in practice, we also expect that ethi- cal considerations largely prevent extensive use of response prevention for escape/avoidance behaviors. Treatment requires the full cooperation of the patient. It is a mistaken belief that operant conditioning methods can be used to modify the behavior of the most resistant patients without their co- operation (Keefe & Bradley, 1984). Furthermore, although positive and neg- ative reinforcement may be used to increase supposed well behaviors and decrease pain behaviors, we question the degree to which this is employed as systematically as recommended by Fordyce (1976). This may in part be because staff members feel uncomfortable with the approach, but also be- cause of the time demands that exist in a busy clinical setting. The elimina- tion of factors that are hypothesized to maintain pain (e.g., economic incen- tive, family support) is also not as realistic as the treatment descriptions provided by Sanders (1996) suggest and may have serious decremental con- sequences for the patient's quality of life. Finally, although it is stated that operant methods should be applied across as many overt and well behav- iors as possible, in practice this is most commonly applied to the extent that it is important and relevant to the patient.

It is misleading to assume that operant conditioning, as proposed by Fordyce, is routinely employed in practice. In reality, some operant conditioning strategies are used with other psychological interventions and physical/medical treatments within a multidisciplinary treatment program. What appears to be one of the most useful aspects of the operant approach is the identification of a broad range of behaviors that are associated with pain, rather than a focus on simply pain intensity (Keefe, Dunsmore, & Bur- nett, 1992). Furthermore, as a result of operant conditioning approaches, it appears that there has been much greater attention on reducing inactivity, and the negative side effects associated with it, and on goal setting in gen- eral (Fordyce, 1988). Finally, the operant approach also has served to em- phasize that chronic pain occurs in a social context (Fordyce, 1976). As such, therapists today are more likely to involve family members in treat- ment (Keefe et al., 1992) and also to recognize a role for other health care providers in the administration of psychological treatment strategies (van Tulder et al., 2000).

RESPONDENT THERAPY

Background and Description

Diverse pain management strategies deriving from the respondent formula- tion of pain are commonly used to treat chronic pain, such as progressive muscle relaxation and biofeedback. The rationale identifies the pain-ten- 10. PSYCHOLOGICAL INTERVENTIONS AND CHRONIC PAIN 275

sion cycle as contributing to the pain experience, and thus reduction of muscle tension is the characteristic goal of treatment (Linton, 1982). Central to this view is that pain elicits a response of increased muscle tension, which itself produces more pain, and contributes directly to secondary problems such as sleep disturbance, immobilization, and depression (Lin- ton, 1982). Therapy includes educating patients regarding the association between tension and pain, and learning to replace muscle tension with an incompatible response, namely, relaxation (Turk & Flor, 1984).

Relaxation therapy involves teaching patients to achieve a physiological sense of relaxation. Beyond physically reducing muscle tension, and thus pain, relaxation can have other aims, including anxiety reduction, assisting with sleep disturbance and fatigue, increasing well-being, and perhaps most importantly improving a sense of control. Progressive muscle relaxation is undoubtedly the most common form of relaxation training, and involves systematically tensing and the relaxing major muscle groups throughout the body (Turner & Chapman, 1982b).

Biofeedback also involves relaxation of muscles, but is achieved through monitoring bodily responses, typically through a computer or apparatus, and providing patients visual or auditory feedback about their physiologi- cal responding. With intense scrutiny and examination, it is hoped that the patient will be able to learn how to control certain physiological responses related to pain (Arena & Blanchard, 1996). Many forms of biofeedback exist, but electromyographic (EMG) feedback, aimed to reduce muscle tension, is by far the most common with chronic pain patients. The focus has also largely been on headaches, although other conditions such as low back pain (Arena & Blanchard, 1996; van Tulder et al., 2000) and temporoman- dibular joint pain (Crider & Glaros, 1999) have also been treated with bio- feedback.

At times, relaxation and biofeedback strategies are used on their own, but most commonly they are used in combination with each other as well as with the other treatment approaches described in this chapter. The ex- ception to this is with headache sufferers where biofeedback and relaxation are not infrequently used as sole treatment strategies (Arena & Blanchard, 1996). Treatment is most often offered on an outpatient basis in a group or individual format (Blanchard, 1992). These techniques help the patient to recognize and alter pain behavior patterns. As such responsibility for treat- ment rests largely with the patient (Keefe & Bradley, 1984). Home practice is often encouraged with these techniques, as is application to stressful sit- uations and events. One interesting finding that has emerged with respect to headache is that home practice appears to be important with relaxation, but not necessarily with biofeedback (Blanchard, 1992).

In addition to relaxation strategies and biofeedback, imagery and hypno- sis are also used to achieve similar effects with chronic pain patients 276 HADJISTAVROPOULOS AND WILLIAMS

(Arena & Blanchard, 1996). To the extent that they rely on effective relax- ation, respondent theory is relevant to them. Imagery involves the purpose- ful use of visual images to strengthen distraction and/or to transform as- pects of the pain experience. Hypnosis involves suggestion for decreasing discomfort or transforming or altering pain into less noxious sensations (Syrjala & Abrams, 1996).

Evidence

A number of reviews of the effects of relaxation therapy and biofeedback have been carried out with headache (e.g., Blanchard, 1992; Compas, Haaga, Keefe, Leitenberg, & Williams, 1998), low back pain (e.g., van Tulder et al., 2000), temporomandibular joint pain (e.g., Crider & Glaros, 1999; Sherman & Turck, 2001), and mixed chronic pain patients (Chambless & Ollendick, 2001; Morley, Eccleston, & Williams, 1999). There is evidence in support of both biofeedback and relaxation therapy. The research, however, is ham- pered by a number of problems, including differences among studies re- lated to procedures, patient groups, and duration of treatment (Turk & Flor, 1984).

Relaxation therapy alone has been found to be effective for headache (Blanchard, 1992; Compas et al., 1998), temporomandibular disorders (Sher- man & Turk, 2001), low back pain (van Tulder et al., 2000), and mixed chronic pain patients (Morley et al., 1999). It is not easy to separate specific effects of biofeedback from those of relaxation, with which it is used in treatment. Despite the encouraging reviews just cited, there are some nega- tive studies that led Compas et al. (1998) to conclude that biofeedback can- not be classified as an efficacious treatment for chronic pain patients, ex- cept for headache. Turner and Chapman (1982b) suggested that much of the interest in biofeedback has resulted from the efforts of commercial equipment suppliers. From an efficiency perspective alone, relaxation ther- apy is often preferred.

With respect to imagery, although there is significant research support for usage of this technique with acute pain patients (e.g., Fernandez & Turk, 1989), much less research exists on the effects of imagery with chronic pain. Nevertheless, these techniques are commonly part of treatment of chronic pain patients. Similarly, much of the evidence that is used to support the us- age of hypnosis (e.g., Patterson, Everett, Burns, & Marvin, 1992; Tan & Leucht, 1997) rests with acute pain (see chap. 9, this volume), and there are few controlled studies on the use of hypnosis with chronic pain (Hay- thornthwaite & Benrud-Larson, 2001). Perhaps some preliminary support for use of hypnosis with chronic pain patients comes from a study by Haanen et al. (1991). This group of researchers compared hypnosis with physical therapy (but primarily massage and relaxation therapy) for pa- 10. PSYCHOLOGICAL INTERVENTIONS AND CHRONIC PAIN 277

tients suffering from fibromyalgia, and reported that the former treatment resulted in greater reductions in pain, sleep difficulties, and fatigue than the latter.

Commentary

In general, although there is evidence in support of respondent tech- niques with patients, the evidence in support of the respondent theory it- self is much lower. There is very little evidence for muscle tension under voluntary control causing pain (e.g., Knost, Flor, Birbaumer, & Schugens, 1999). On the other hand, there is evidence for greater muscle activity in the sites distal to the primary pain location among patients compared to healthy controls (Flor, Birbaumer, Schugens, & Lutzenberger, 1992). For instance, Flor and colleagues (1992) used anxiety or personally relevant stress induction techniques with healthy controls and individuals with chronic pain conditions (including low back pain, temporomandibular pain, and tension-type headache), and found significantly increased activ- ity in the musculature specific to the person's pain complaints among pain patients as compared to healthy controls. There is also research on simple back movements like bending forward. This research shows very slow return to baseline of muscles after they have tensed, making for a painful and effortful movement (Watson, Booker, Main, & Chen, 1997). Finally, centrally mediated deep muscle tension around the spine has been found to occur in response to pain and instability; this then puts un-manageable demands on superficial muscle, and these mechanisms are hard to bring under voluntary control (Simmonds, 1999). The respondent theory has been criticized most strongly for being an oversimplification of the nature of chronic pain problems and especially the involvement of psychological factors in pain (Turner & Chapman, 1982b).

Self-efficacy appears crucial to understanding the effects of respondent techniques, especially relaxation and biofeedback. Holroyd and colleagues (Holroyd et al., 1984) conducted one of the most compelling studies in this regard. This research group demonstrated that it makes little difference whether subjects learn to increase or decrease their muscle tension in terms of experiencing improvements in chronic head pain. On the other hand, participants who were told that they were successful in their at- tempts to alter their muscle tension, whether they were increasing or de- creasing it, reported greater improvement in headache compared to those who were told they were only moderately successful with the technique. Blanchard and his group (Blanchard, Kim, Hermann, & Steffek, 1993) found similar results with relaxation procedures among chronic headache suffer- ers. In other words, those who perceive themselves to be successful with 278 HADJISTAVROPOULOS AND WILLIAMS

relaxation report greater improvement in their headaches, whether they are in actual fact successful or not.

COGNITIVE-BEHAVIORAL THERAPY

Background and Description

Cognitive-behavioral therapy (CBT) for chronic pain evolved from the be- havioral interventions described above, but with the addition of cognitive methods. Both the focus and some of the behavioral techniques have changed since the early 1980s when CBT was first described (Turk, Meichen- baum, & Genest, 1983). The early formulations drew substantially on stress management methods from mainstream psychological treatment, and this was compatible more with respondent and relaxation methods than with operant programs. The model emphasized the reciprocal influence of cog- nitive content (schemata and beliefs), cognitive processes (automatic thoughts, appraisals of control), behavior, and its interpersonal conse- quences; all were the proper target of intervention. Although Beck's work was cited (e.g., Beck, 1976), the psychological intervention did not approxi- mate to cognitive therapy along Beckian lines, with only very brief mention of affect; instead, early CBT was concerned with self-control and the acqui- sition of coping skills. Some cognitive strategies such as distraction and relabeling were imported from successful use in acute (particularly proce- dural) pain, although never satisfactorily demonstrated to be effective for moderate to severe chronic pain.

In a 1992 review, Keefe and colleagues (Keefe et al., 1992) identified im-proved outcome methodology and the first preventive programs as recent advances, but no other notable innovations in treatment were noted. In contrast, they identified spouse behavior (Romano et al., 1991) and the identification of the mediation of the pain-depression link by impact of pain (Rudy, Kerns, & Turk, 1988) as two of the most important contributions in the field. They also pointed out the confusion developing in the cognitive arena due to multiple overlapping instruments measuring overlapping con- structs that are studied using correlation and thus cast little light on causal processes. A contemporaneous review, Turk and Rudy (1992), used an in- formation-processing model to describe patients with low expectations of control over pain or their situations, and as thereby inactive and demoral- ized. Emotion was an implicit rather than explicit target of intervention.

Since these reviews in 1992, there have been exciting developments in cognitive therapy, with some concepts, predominantly catastrophizing, emerging as key variables from diverse studies in several countries (e.g., Eccleston & Crombez, 1999; Jensen, Turner, & Romano 2001; Sullivan et al., 10. PSYCHOLOGICAL INTERVENTIONS AND CHRONIC PAIN 279

2001). There has also been a recent reformulation of fear and avoidance (Lethem, Slade, Troup, & Bentley, 1983) by Vlaeyen and colleagues (Vlaeyen & Linton 2000) that is securely grounded in psychological theory of fear and phobia, and accompanied by careful modeling of change. This takes over from broader (and unsatisfactory) concepts of control and coping. The in- terest is now in specific fear rather than general neuroticism/anxiety, and avoidance as a purposeful strategy rather than an incidental event for man- aging fears of pain and injury. There is also a more confident approach to emotion and to intervention in emotion using Beckian and other techniques, and revised models are under development (e.g., see Pincus & Morley, 2001).

CBT programs today are diverse and (unsurprisingly) none of the de- scriptions of "ingredients" coincides exactly with practice. In the absence of demonstration that each is essential to outcome (this question and at- tempts to answer it are addressed later with efficacy), one might reason- ably expect each ingredient to be based securely either in theory or in mainstream psychology practice, but it is not always so. The following are generally regarded as core components of CBT: Education on pain, the distinction of chronic from acute pain, the disso- ciation of the pain experience from physical findings accessible to current in- vestigations, the integral place of psychology and behavior in the pain expe- rience, and the rationale for the pain management or rehabilitation model used in treatment may be delivered by medical or psychology personnel, or others. Education aims to combat demoralization and feelings of victimiza- tion and to motivate patients to take an active role in treatment (Turk & Rudy, 1989). Exercise and fitness training, to reverse deconditioning due to reduced activity, and to address directly patients' fears about certain movements or physical demands on their bodies, is usually guided by physiotherapists. Programs differ in the extent to which they attempt corrective hands-on physiotherapy, with some explicitly teaching nothing that the patient cannot do him- or herself at home or in a suitable sports facility. Most CBT programs focus on skills acquisition and rehearsal (Bradley, 1996). Relaxation, described earlier, is a core component of this and may be integrated to a greater or lesser extent with physical rehabilitation, and/or with management techniques described later, such as activity pacing, at- tention diversion, and stress management; it may also be applied to sleep problems. Behavioral change by contingency management—operant methods— was described earlier. Many programs describe contingent relationships and encourage patients to self-reinforce "well behaviors" and to involve 280 HADJISTAVROPOULOS AND WILLIAMS

those close to them in similar selective reinforcement. However, this is far from the carefully observed and formulated consistent contingency manage- ment described by Fordyce. A particular aspect of behavioral change ad- dressed in many programs is the reduction of analgesic drug use, but targets and endpoints vary considerably. Although some programs substitute nonopioid for opioid analgesics, and supply antidepressants, others aim to reduce all drug intake to nil (Keefe et al., 1992). Goal setting, by the patient with varying degrees of guidance by staff, identifies short- and long-term goals, skills deficits, and methods for achiev- ing those goals. Most involve activity scheduling, or pacing, where, starting from a modest baseline of any challenging or demanding physical activity or position, patients build by small increments their blocks of activity, inter- spersed with rest and/or change of position or activity. Blocks of activity may be defined by time or another quantum, and for many patients, taking regular breaks requires that they challenge previously unquestioned rules and standards by which they lived. Cognitive therapy is the cornerstone of CBT, but the most variable in content and extent of all the components. It can involve any or all of the at- tention diversion methods (see Fernandez & Turk 1989), and often is used with relaxation, problem-solving strategies, and cognitive restructuring fa- miliar to cognitive therapists. Although this is sometimes described in terms of coping skills training (Keefe et al., 1996), it is in fact cognitive therapy, in that it addresses patients' elicited concerns, addresses emotional material, and teaches the identification of catastrophizing cognitions and the means to challenge and change them. By contrast, some programs offer such brief intervention, apparently mostly didactic, that although described as cogni- tive therapy, it cannot be deemed to approximate it. Generalization and maintenance are increasingly emphasized, with many studies referring to the relapse prevention model (Marlatt & Gordon, 1980), although it is far harder to identify a state of relapse when multiple be- haviors are involved and are only loosely connected, Identification of yulner- able states or situations (e.g., increased depression or pain), and prepara- tion to deal effectively with them, are widely practiced. Essentially, patients are encouraged to anticipate setbacks and plan for good management. Like operant and respondent treatment, CBT is often delivered to groups, over a fixed time and number of sessions, with insession and be- tween-session rehearsal and application to individual goals (Keefe et al., 1996). Patients with chronic pain, even if they all differ in site of pain and his- tory of previous treatments, share sufficient problems in managing pain that groups can be mixed or have a single condition. Many programs also provide additional individual sessions for specific psychological problems, for indi- vidual applications (such as work), or for unspecified reasons. Given that the format of the groups involves didactic teaching, sharing of experience, and 10. PSYCHOLOGICAL INTERVENTIONS AND CHRONIC PAIN 281

experiential learning, it is not clear to what extent the processes of group therapy, and its benefits, apply. Nevertheless, on a practical basis, group sharing serves to normalize the experience of isolated patients; it validates both their difficulties and their efforts to manage them; and it provides vicar- ious learning as other group members start to use pain management meth- ods taught. In CBT groups it may be more difficult to elicit emotional material from members of the group if they are not a cohesive group, but there is still the opportunity for learning from the disclosures of those who are more forthcoming with emotionally charged experiences.

Multicomponent programs necessitate a range of professionals with appropriate training; key members are physicians, clinical psychologists, and physiotherapists or physical therapists; occupational therapists, and therapists with particular focus on vocational concerns may also be involved. A little-addressed aspect of multidisciplinary treatment is the extent to which the team members of different disciplines really work in an integrated way, or alternatively operate independently, and potentially with incompatibilities between them. Treatment on an outpatient basis provides the greatest opportunities for the patient to apply and generalize pain management techniques learned on the program to his or her own environments, but intensive (usually inpatient) programs may be required to enable change in more severely disabled and distressed patients (Williams et al., 1996).

Evidence

The Division of Clinical Psychology of the American Psychological Association (APA) published a list of 25 empirically validated psychological treatments for various disorders (APA, Division of Clinical Psychology, 1995). CBT for chronic pain was included in this list, based mainly on evidence examined by Keefe et al. (1992). A recent systematic review and meta-analysis of 25 randomized control trials (RCTs) of CBT for chronic pain except head-ache by Morley et al. (1999) concluded that the available data demonstrate that CBT is effective across a range of outcomes when compared with mini-mal control conditions (waiting list and treatment as usual) and as good as or better than other active psychological treatments. Effect sizes were modest (many around 0.5), but respectable in terms of psychological treatment of an intractable problem, and many studies were underpowered, risking Type 1 error. This summary represents an optimistic picture, qualified somewhat by concerns that these RCTs probably represented the better end of the spectrum of treatment, and by the recognition of enormous di-versity among them, to the extent that subgroup analyses or dose-response effects could not be addressed despite the large n. 282 HADJISTAVROPOULOS AND WILLIAMS

Two other systematic reviews have appeared since, both concerned only with chronic low back pain. van Tulder et al. (2000) found on meta- analysis good outcome from seven studies comparing CBT with minimal control conditions in pain and in "behavioral" outcomes that included cog- nitive and emotional measures, but not in function (i.e., disability). For the comparison of CBT with alternative treatment (such as physical therapy), six studies showed no significant improvement in any of the three outcome areas. Guzmán, Esmail, Karjalainene, Irvin, and Bombardier (2001) con- cluded from 10 studies that only intensive (longer, rather than brief) multi- disciplinary treatment with a CBT approach reduced pain and improved function when all were compared with treatment as usual (a conclusion also borne out by Williams et al., 1996). They thus recommended careful at- tention to treatment content by referrers. A recent narrative review (Com- pas et al., 1998) adds to this and suggests some treatment variability among conditions. Among patients with rheumatoid arthritis, CBT was the only form of psychological intervention that was found to be efficacious; among patients with headache, CBT was actually no more effective than simpler re- spondent techniques (Compas et al., 1998).

Only one study appears to have addressed the question of inpatient ver- sus outpatient treatment. Williams et al. (1996) found that both inpatient and outpatient CBT results in improvement, but that at 1-year follow-up pa- tients receiving inpatient CBT maintained gains better and used less health care than those who received treatment on an outpatient basis.

The research literature to date has not been able to answer the question of whether CBT adds significantly to medical interventions provided in multidisciplinary pain clinics. Although overall there is considerable evi- dence for the effectiveness of multidisciplinary pain clinics, at this time it is not possible to identify or isolate active ingredients within the pain clinics that contribute to outcomes (Fishbain, 2000).

There is disappointingly little research to guide the practitioner on size and constitution of CBT groups, or on process (Keefe, Jacobs, & Under- wood-Gordon, 1997). Group versus individual treatment is not a major re- search issue, given the efficacy of CB group programs and the increased costs of treating patients individually. There is a move toward patient-led and self-management groups, of which the work of Lorig and colleagues (Lorig, Lubeck, Kraines, Seleznick, & Holman, 1985) is an important early ex- ample. They trained lay leaders, who then led large groups of arthritic pa- tients (and family or friends where they wished to attend) in largely experi- ential learning for six weekly 2-hour groups. Gains in pain and activity frequency were comparable to those from similar CBT programs; changes in depression, low at the outset, were modest, and there were none in self- rated disability. Although this is now a widely replicated model, and there are doubtless deficits in knowledge and strategies to be remedied among 10. PSYCHOLOGICAL INTERVENTIONS AND CHRONIC PAIN 283

chronic pain patients, the model cannot be extrapolated unquestioningly to populations of patients who are frequent users of health care and are signif- icantly distressed and disabled. Although it has been demonstrated by some control conditions (e.g. Bradley et al., 1987; Nicholas, Wilson, & Goyen, 1992) that a sympathetic group that shares experience but has no expert introduction of information and pain management methods can pro- duce high satisfaction ratings, and some short-term improvement in subjective state, there are typically no gains in function. Attending support groups over a 1-year period shows no enhanced treatment gains in terms of sick leave, function, and pain (Linton, Hellsing, & Larsson, 1997). Together the just cited studies suggest support groups may have a place as an adjunct approach among chronic pain patients, but provide evidence against reducting the level of expertise and time and resources put into CBT group pain management programs.

Commentary

In 1992, Keefe and colleagues expressed widely held hopes that research us- ing larger sample sizes would demonstrate the "active ingredients" of CBT treatment packages; discover how to improve maintenance of treatment gains; and extend CBT to other patient groups, such as those with osteo- arthritis, rheumatoid arthritis, and sickle-cell disease. The intervening 10 years have perhaps only met the last prediction. Meanwhile, extensive CBT programs have been subject to cost cutting, thereby reducing the quality and quantity of established treatment facilities. Research has been limited largely to small volunteer studies, making it particularly hard to model change in treatment (and maintenance after treatment) or to carry out stud- ies with sufficient sample size to do justice to the many interacting vari- ables affecting outcome.

The questions identified by many clinicians and researchers (Turk, 1990), and to which some anticipate answers from large treatment studies or meta-analyses, are, "Which are the right and wrong patients?" and "Which are the right and wrong treatment components?" Unfortunately, the prop- er prospective tests on patient selection—where all are assessed and all treated—can never be done. Meanwhile, no consistent findings have emerged from many component dismantling trials (see Morley et al., 1999, Morley & Williams, 2002). This is not so remarkable given that all investiga- tions are subject to local peculiarities of referral, funding, and acceptance and rejection criteria. We can, however, draw some practical suggestions from mainstream psychology: People with major depressive disorder are unlikely to engage or participate until they have more hope and sense of a tolerable future, so immediate treatment of depression is indicated; pho- 284 HADJISTAVROPOULOS AND WILLIAMS

bias of groups or health care settings may preclude common methods and settings for delivery.

As for "essential ingredients," the implicit model of component disman-tling studies of additive, independent, and specific component-outcome re-lationships is too far from reality to provide an adequate model for analy-sis. One can no more ask which are the essential ingredients of a cake—butter, sugar, flour, or eggs. The absence of any, or serious compromises of quality, will result in a different and inedible end product; minor variations in one or another or the addition of cocoa or currants does not render it in-edible. The interaction of components (the mixing and cooking process) is crucial, yet team processes and program integration are rarely described. At a risk of stretching the analogy too far, the skills of the cook are also rele-vant, and cost-cutting pressures on programs are likely to reduce efficacy. As NASA engineers profess: "Faster (briefer), better, cheaper: you can have any two of these, but not all three."

The classification of components of CBT used earlier is a simplification of the components derived from 30 treatment studies included in the systematic review by Morley et al. (1999). What is curious is the extent to which discontinuities were evident (beyond those included in the systematic review) in studies' rationales, treatment methods, and outcomes chosen. Almost all study introductions invoke costs and demands on health care and loss of work; few measure either. At least half do not make clear whether they expect pain ratings to change, although these are universally measured and reported. Perhaps because of editorial restrictions, the factors affecting the choice of components, their order, timing, and processes, are rarely described. The use of manuals is still very rare. Whether these apparent confusions in accounts of treatment reflect real contradictions embedded in treatment methods and processes is an open question. It is of some concern that beyond its basic assumptions—that thoughts, emotions and behavior influence one another, that behavior is determined both by the interaction of individual and his or her environment, and that individuals can change their thoughts, emotion, and behavior (Keefe et al., 1997)— the variety of methods by which those basic assumptions are realized has not led to the evolution of demonstrably better practice.

What are some of the issues requiring clarification? On education, argu- ably, psychologists and their colleagues unnecessarily restrict themselves to the initial gate control model (Melzack & Wall, 1965), underusing the rich neurophysiological research which has resulted from the initial proposal of that model. There is a dearth of models described in terms that are accessi- ble to the lay public of central nervous system plasticity developing subse- quent to pain, and of the nonconscious psychological processes that influ- ence the processing of pain at spinal and supraspinal levels. Emotion is still poorly integrated with this, perhaps because of the lack of adequate overall 10. PSYCHOLOGICAL INTERVENTIONS AND CHRONIC PAIN 285

models and the shortage of data on nonconscious processes (Keefe et al., 1997).

The findings of sophisticated and large-scale studies of cognitive therapy in mainstream psychology (Chambless & Ollendick, 2001) are rarely ad- dressed in the pain field, yet they provide testable models for particular components of treatment and for more examination of processes of change. To an extent, we are constrained by our measurement instruments: For in- stance, cognitive strategies are measured in terms of frequency, which may be important for some but neglects appropriateness of content and timing, which are crucial in a more integrated model of mind and body. Well- focused study of particular mechanisms (see Vlaeyen & Linton, 2000, re- view) offers more secure building blocks for examining multicomponent treatment than do components as currently described.

Another area is the determination of goals. Patients may be overambi- tious or overcautious in identifying them, or restrict themselves to duties to the exclusion of more pleasant and reinforcing activities; the experience of staff can enrich the range of goals and increase the likelihood of estimating an appropriate time span and size of increment. However, a patient's goals (and that of those close to him or her) may differ substantially from those of treatment staff and of the funders and referrers who impress their expectations on staff. Return to (unsatisfying) work, foregoing compensation due after accidental injury, abstinence from all analgesic and psychotropic drug use, and taking regular exercise are areas where more seems to be expected of pain patients than is achieved by the general (pain-free) population, and staff and patient may differ on what is a reasonable goal. Although prosaic, it could be that failure to maintain treatment gains lies partly in the choice of goals, and the extent to which they express the patients' desires and hopes. Further issues in maintenance and generalization may concern the extent to which patients feel "expert" at the end of treatment. Traditional therapeutic relationships can counteract the development of patients' confidence in their own expertise, rather than respect for staff members' knowledge and skills. Although booster sessions are often invoked as the solution, none has shown lasting benefit (Turk, 2001). We still know very little about the processes that undermine treatment gains, given that they are probably as diverse and complex as are patients' circumstances, and the use of mean data at follow-up (following an implicit model of natural decay of treatment gains) is unlikely to disclose any.

There remain also hints of the pejorative terminology and patronizing representation of pain patients, explicit in early studies and descriptions of chronic pain populations, and now expressed more in the implication that they have no skills, take no responsibility, and aspire only to recline in the bosom of their enslaved families for their remaining decades. It is notable, but rarely commented on, that although in all other areas of health and ill- 286 HADJISTAVROPOULOS AND WILLIAMS

ness social support is identified (by theoretical and empirical work) as a po- tent factor promoting health, help provided to pain patients by those around them is often characterized as contributing to disability. A study by Feldman, Downey, and Schaffer-Neitz (1999) is a notable exception, and found social support to have both main and buffering effects against dis- tress associated with pain; an unrelated study by Jamison and Virts (1990) showed good family support (as reported by the patient) to be associated with better outcome of rehabilitation. Most of the work under the rubric of social support comes from patient—spouse interaction and largely corre- lational studies. These were originally thought to support the operant for- mulation, by demonstrating the association of spouse solicitousness and patient disability. However, even these studies and further replications show relationships between patient and spouse behavior to be mediated by gender, state of the relationship, and mood: The picture is substantially more complicated than suggested by the dominant study paradigms and measures of the 1980s and 1990s (Newton-John & Williams, 2000).

FAMILY AND MARITAL THERAPY

Background and Description

Family and or marital therapy is also used as an adjunct to the treatment of chronic pain in adults, and more directly in relation to pain and related be- havior in children and adolescents, but much less is written regarding the topic (Kerns & Payne, 1996). The interest in treating the family of the chronic pain patient comes from recognition that not only the patient but also the spouse and other family members suffer the impact of pain. All family members are likely to experience reductions in leisure activities, changes in responsibilities and roles, and changes in how emotions are ex- pressed (Turk et al., 1983).

Family therapy can take on many different forms. Some therapists take a traditional family systems approach and focus on how the family may or may not be using or developing resources and capacities to meet the de-mands of chronic pain (Patterson & Garwick, 1994). With this approach, the therapist attempts to restore a comfortable balance in the family system in light of the pain (Moore & Chaney, 1985). Alternatively, a family therapist may take an operant approach as described earlier. Fordyce (1976) in his early writings recommended that in some cases patients be refused treat-ment without spouse involvement, although today this would be regarded as ethically unacceptable. In this approach, the focus is on how pain behav- iors are maintained by contingent social reinforcement (Fordyce, 1976) and draws on evidence showing that pain behavior can be influenced by 10. PSYCHOLOGICAL INTERVENTIONS AND CHRONIC PAIN 287