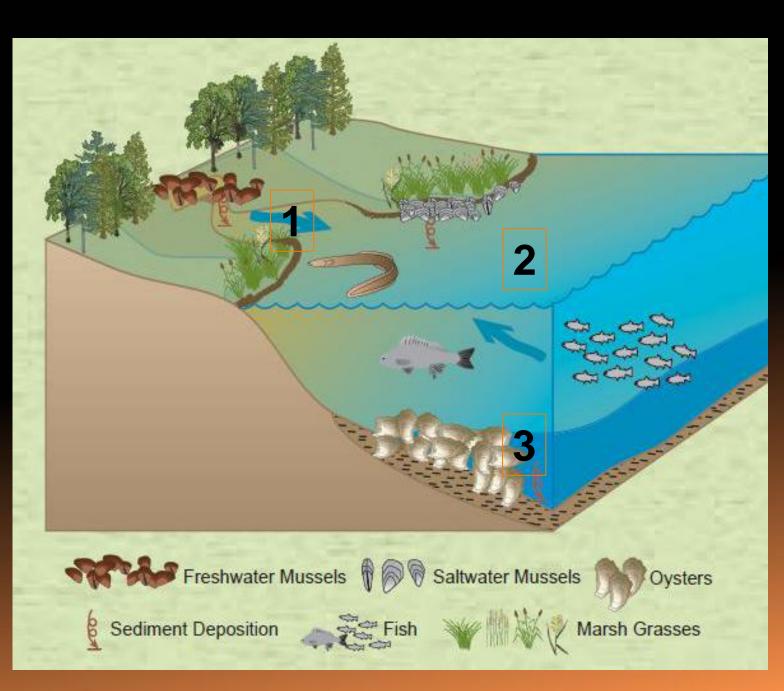
Importance of Freshwater Mussels for Water Quality in the Tidal Delaware River

Danielle Kreeger, Melanie Mills, Lance Butler, Priscilla Cole, and Roger Thomas

Delaware Estuary Science & Environmental Summit January 29, 2013


THE ACADEMY OF NATURAL SCIENCES of DREXEL UNIVERSITY

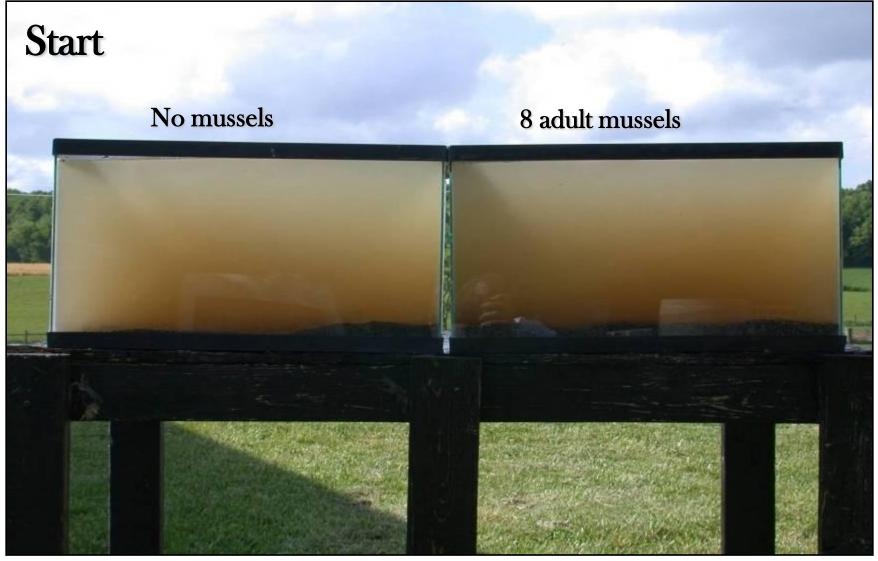
Headwaters to Ocean Shellfish Restoration

- 1. Non-tidal
- 2. Intertidal
- 3. Subtidal

Nature's Benefits

Bivalve Shellfish are "Ecosystem Engineers

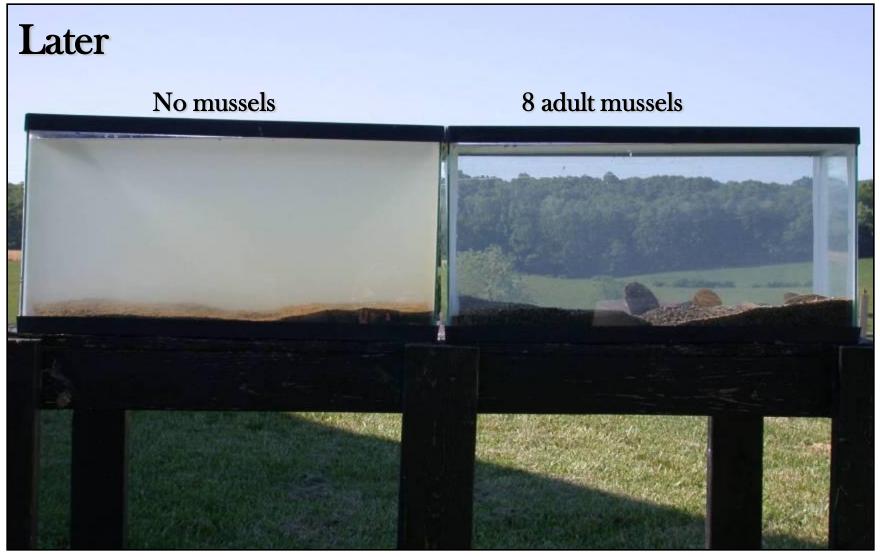
Mussel Beds


CTUIR Freshwater Mussel Project

Oyster Reefs

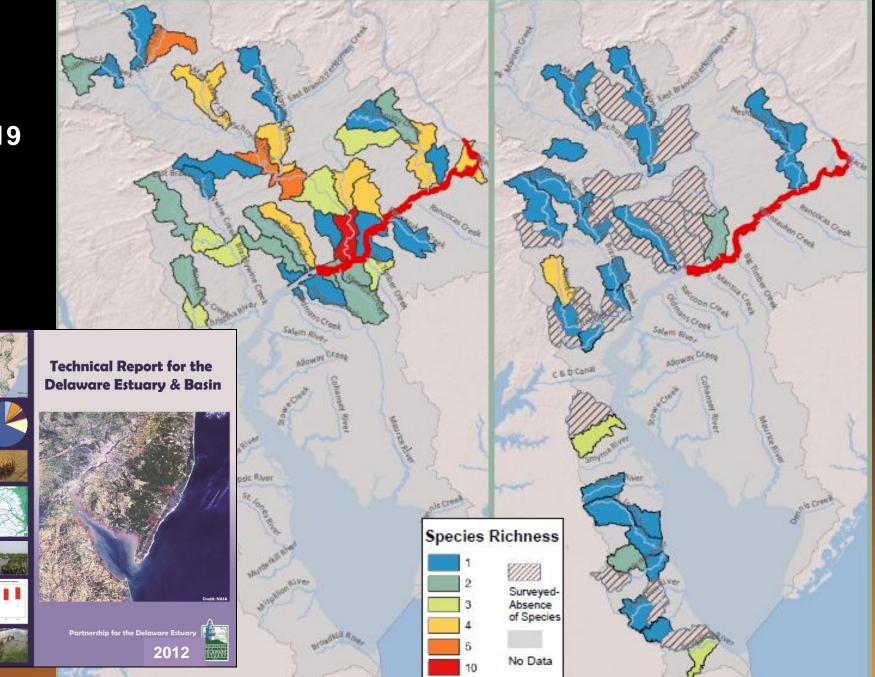
U.S. Fish and Wildlife Service

Biofiltration Potential



Slide from Dick Neves, VA Tech

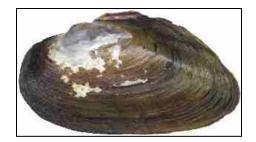
U.S. Fish and Wildlife Service


Biofiltration Potential

Slide from Dick Neves, VA Tech

Since

Delaware River Basin


Patchy, Impaired

Rare

Extirpated

		State Conservation Status					
Scientific Name	Scientific Name	DE	NJ	PA			
ALASMIDONTA HETERODON	DWARF WEDGEMUSSEL	Endangered	Endangered	Critically Imperiled			
ALASMIDONTA UNDULATA	TRIANGLE FLOATER	Extirpated ?	Threatened	Vulnerable			
ALASMIDONTA VARICOSA	BROOK FLOATER	Endangered	Endangered	Imperiled			
ANODONTA IMPLICATA	ALEWIFE FLOATER	Extremely Rare	no data	Extirpated ?			
ELLIPTIO COMPLANATA	EASTERN ELLIPTIO	common	common	Secure			
LAMPSILIS CARIOSA	YELLOW LAMPMUSSEL	Endangered	Threatened	Vulnerable			
LAMPSILIS RADIATA	EASTERN LAMPMUSSEL	Endangered	Threatened	Imperiled			
LASMIGONA SUBVIRIDIS	GREEN FLOATER	no data	Endangered	Imperiled			
LEPTODEA OCHRACEA	TIDEWATER MUCKET	Endangered	Threatened	Extirpated ?			
LIGUMIA NASUTA	EASTERN PONDMUSSEL	Endangered	Threatened	Critically Imperiled			
MARGARITIFERA MARGARITIFERA	EASTERN PEARLSHELL	no data	no data	Imperiled			
PYGANODON CATARACTA	EASTERN FLOATER	no data	no data	Vulnerable			
STROPHITUS UNDULATUS	SQUAWFOOT	Extremely Rare	Species of Concern	Apparently Secure			

Freshwater Mussel Discoveries

Tidal Delaware River:

Lots of animals 7 Species

Genetically Appropriate

Promise for Restoration

Health Science

MONDAY, JANUARY 17, 2011

The Philadelphia Inquiver

WWW.PHILLY.COM

DATE IN WATCHE I BUT PROPERTY Threader muchent shells — a species of muserix — found along the Delaware River in 1893, displayed at the Academy of Natural Sciences.

Surprising survivors

In an urban stretch of the Delaware River, a researcher found imperiled species of freshwater mussels, valuable as aquatic vacuum cleaners.

By Sandy Basers southers story wutten f not for the heat of a summer day, one of the major biological finds in the Delawure River in recent years might not have occurred.

It was June, and researchers were scouring the banks and shallows of the river between Theraton and Philadelphia for evidence of freshwater massels, important waterfiltering organisms that are becoming increasingly hard to find in the region's streams.

Danielle Kreeger, science director of the nonprofit Partnership for the Delaware Estuary, had spotted shells along the bards during a wetlands project, and she wanted to see

Parawara to the decision Entrany. Researcher Danielle Kreeger unexpectedly found seven species of mussels — two thought to be locally uninct — in the river. if live mussels were in the river nearby. So far, no luck.

But Kreeger, who was out on the river in a boat, got hut. Putting on her mask and snorkel, she slipped into the river and swam through the murky water toward the bottom. Suddenly, she saw them. The riverbed was studded with massels. They weren't the edible kind, but it was better still — a seven species mother lode including two species thought to be locally estinut. One, the tidewater nucleor, haart been seen in this area for more than half a century. The discovery bodes well for the mussels and the river itself.

"I stayed underwater for quite a while, See MUSSELS on D2

The newfound mussel species include (from left) creeper; yellow tempmussel; and elliptic

Questions:

How many mussels exist here?

How much water do they filter?

What happens to filtered material?

Do current populations benefit water quality?

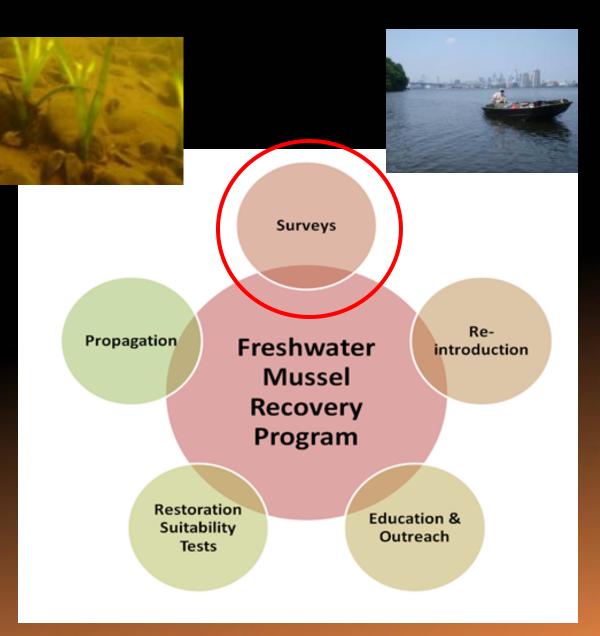
Can mussel restoration improve water quality?

To Understand EcoServices, Need...

Ecology

Physiology

Population Surveys


Wonitoring, Variability

Kreeger

Surveys

- Determine current mussel population status
- Identify sources for restoration
- Areas with Mussels: Prioritize for Conservation
- Areas without Mussels: Prioritize for Restoration

Qualitative vs. Quantitative Surveys

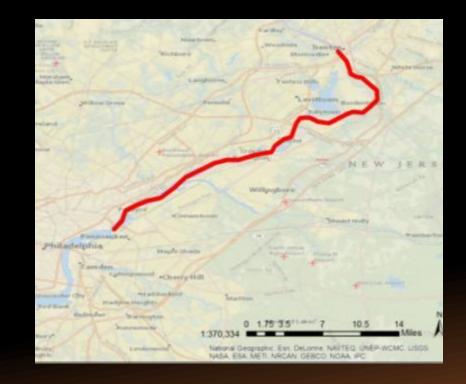
<u>Qualitative</u>:

- Opportunistic methods
- Timed searches
- Data on presence/absence, catch per unit effort
- Assess large areas
- Most common, cost effective

<u>Quantitative</u>:

- Intensive methods
- Transects and quadrats
- Data on densities, sizes, richness
- Smaller areas
- Rare, more costly
- > Only way to assess ecosystem benefits

2012 Quantitative Surveys


Tidal Delaware River

Shallow Subtidal Shorelines

Native Mussel Assemblages

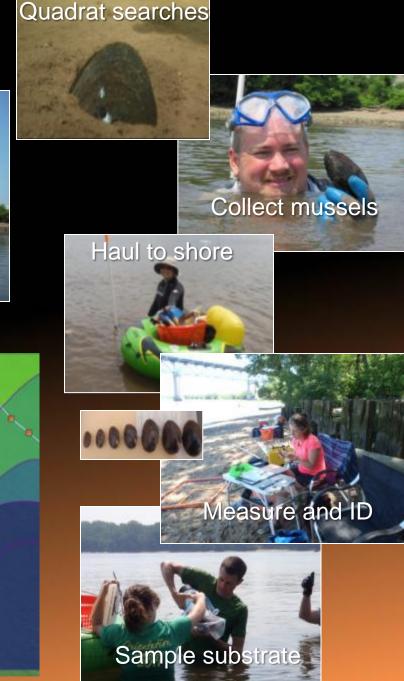
<u>Goals</u>:

- 1. Quantify mussel species richness and density
- 2. Examine relationships with:
 - **Depth** (see Mills poster)
 - Substrate (see Butler talk)
- 3. Estimate Potential Water Filtration per Bed

Methods

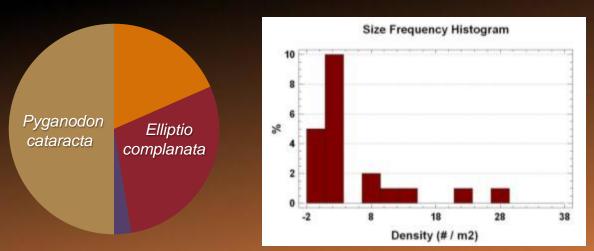
Four Sites

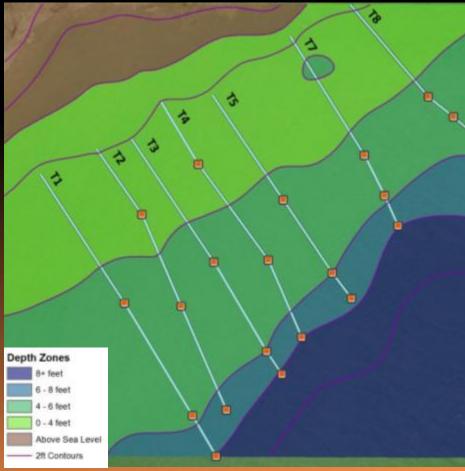

Shallow subtidal zone (0-8 feet below mean low water)


Transects: 8 per site

Quadrats: 3-4 per transect, stratified by depth

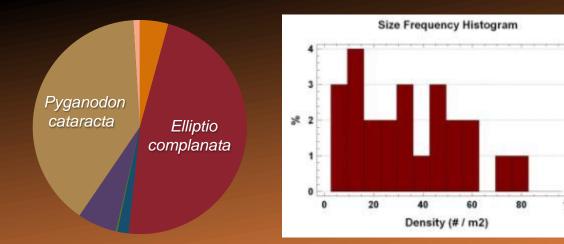
Quadrat = $1m^2$ steel frame

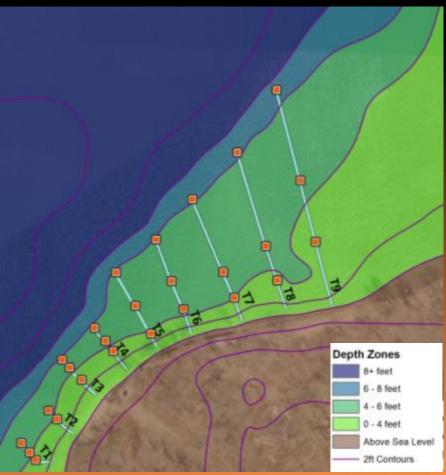


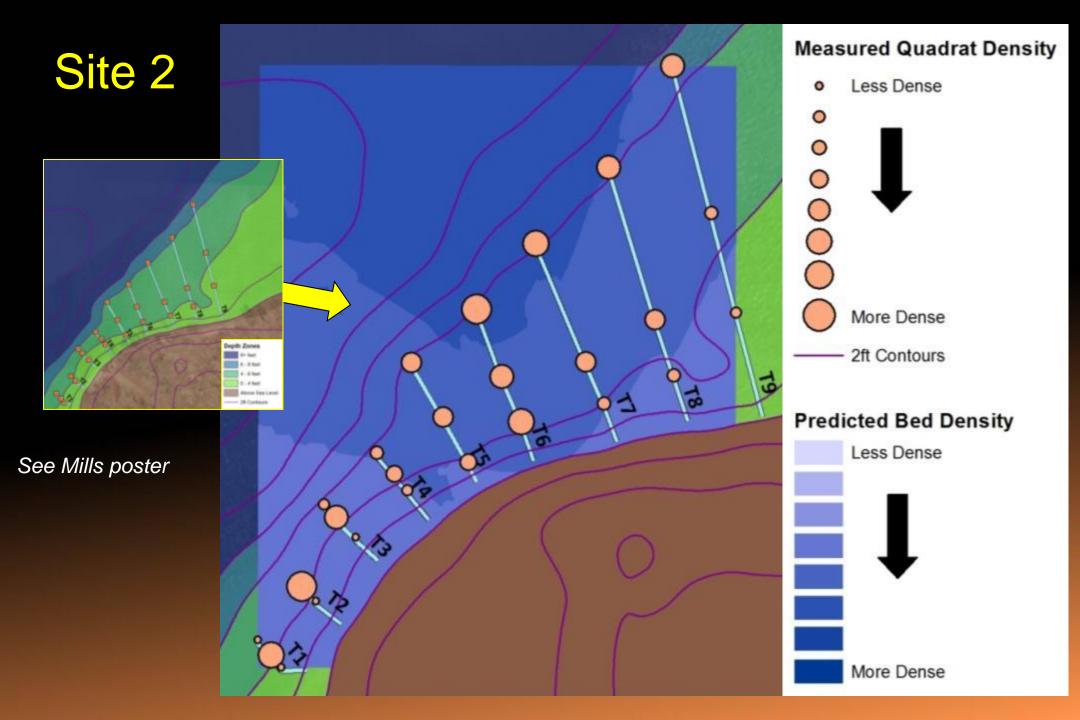


- Four mussel species
- Richness = 1.4 species m^{-2}
- Density: range = 0 – 29 mussels m⁻² mean = 5.5 mussels m⁻²

See Mills and Butler presentations for depth and substrate relationships, respectively



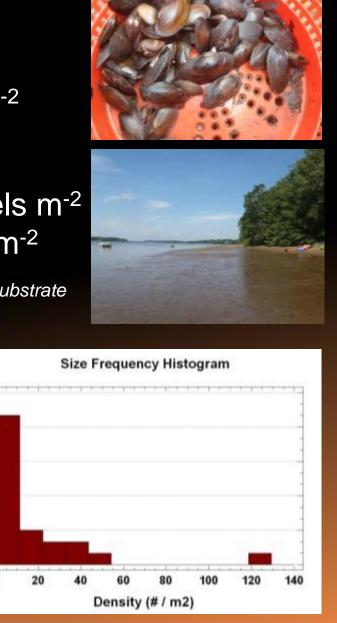


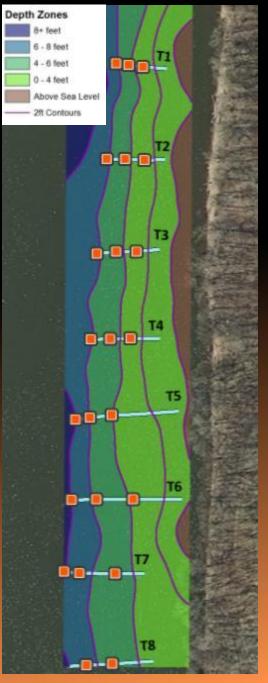

- Six mussel species
- Richness = 3.4 species m⁻²
- Density: range = 0 - 80 mussels m⁻² mean = 30.1 mussels m⁻²

See Mills and Butler presentations for depth and substrate relationships, respectively

- Five mussel species
- Richness = 2.4 species m⁻²
- Density: range = 0 - 129 mussels m⁻² mean = 17.6 mussels m⁻²

See Mills and Butler presentations for depth and substrate relationships, respectively


Elliptio

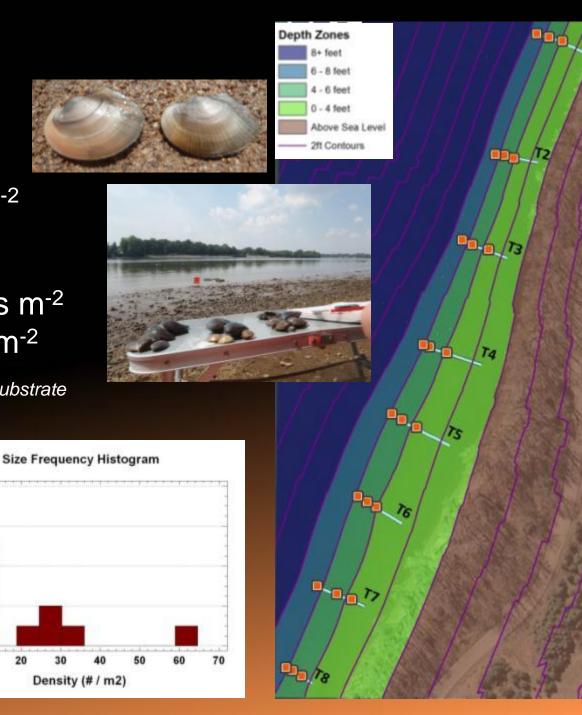

complanata

12

3

%

- Five mussel species
- Richness = 2.4 species m⁻²
- Density: range = 0 - 64 mussels m⁻² mean = 10.8 mussels m⁻²


See Mills and Butler presentations for depth and substrate relationships, respectively

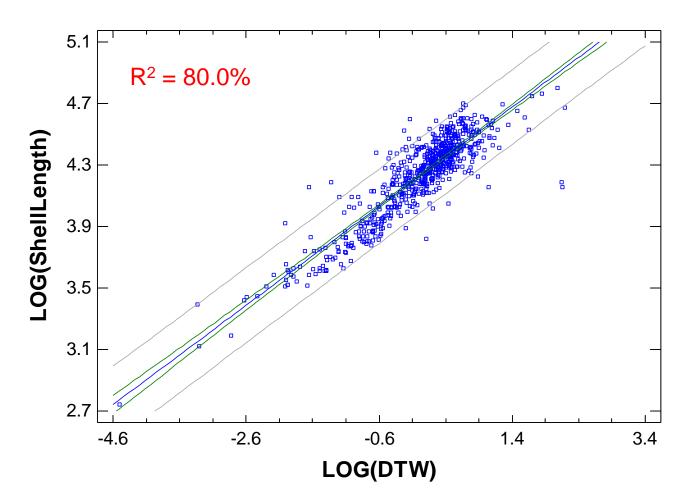
% 4

2

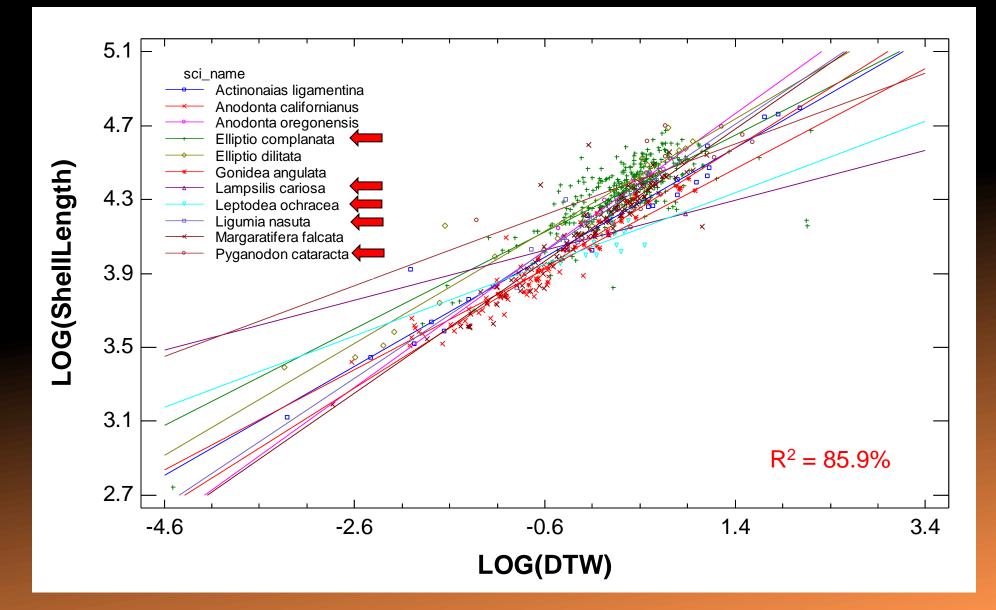
Elliptio

complanata

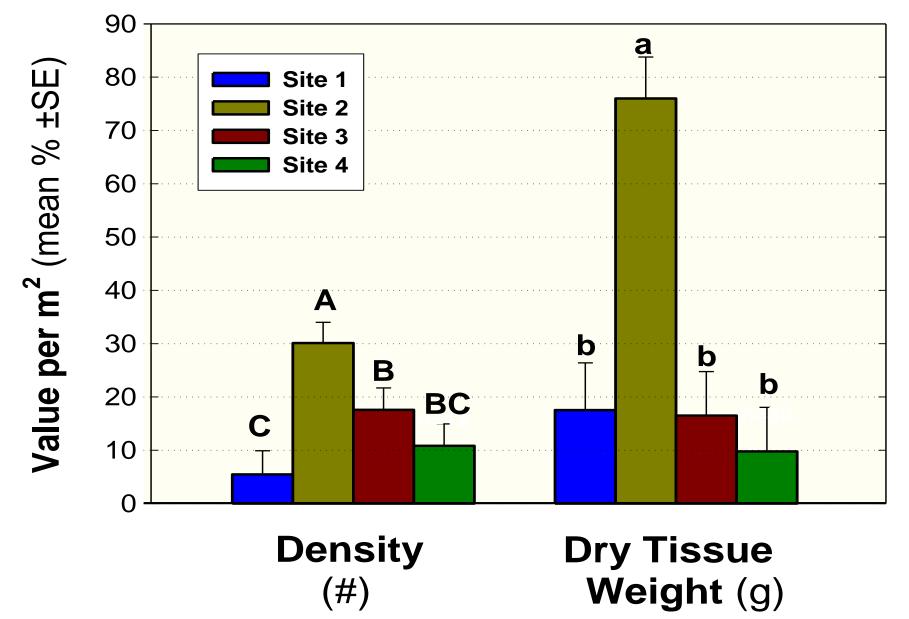
How much do they weigh?

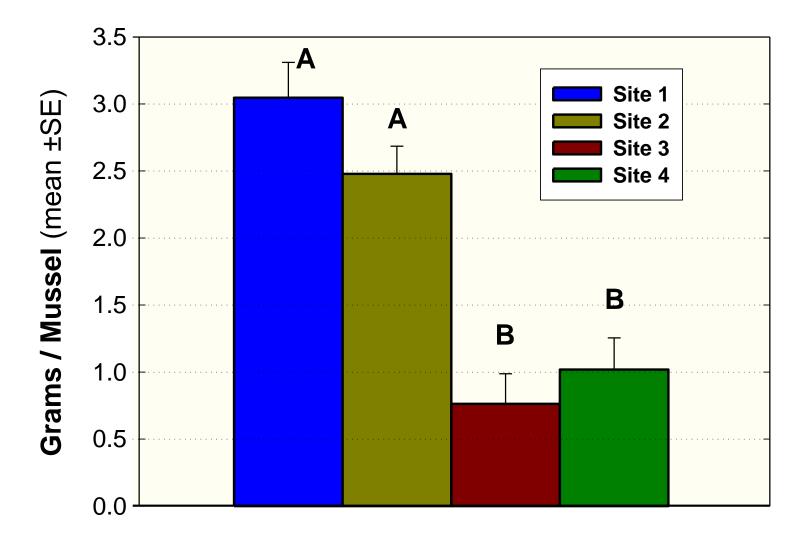

No animals sacrificed in 2012

Dry tissue weights estimated from from earlier studies


11 species of freshwater mussels

653 animals (harvested 2000-2011)


LOG(ShellLength) = 4.22566 + 0.322226*LOG(DTW)

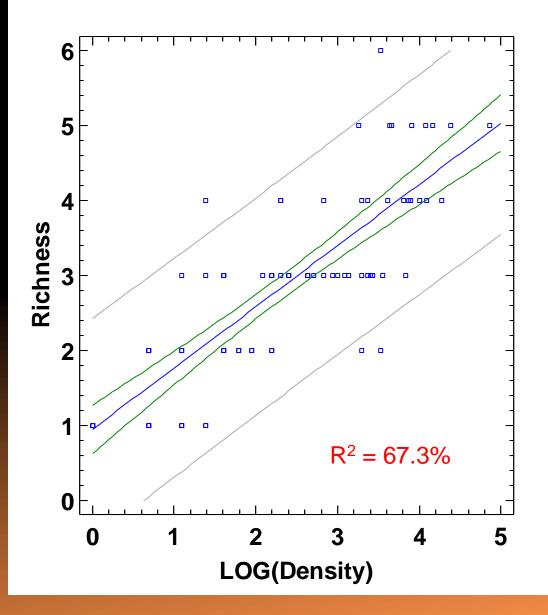

Species-specific weight estimates

Mussel Density and Total Weight by Site

Mussel Size by Site

Dry Tissue Weight / Density

Other Findings


Species richness was positively related to density

Rarest species was *Ligumia nasuta*, eastern pondmussel – healthy size range from juveniles to old adults

Tidewater muckets were abundant

Juvenile mussels were abundant at 2 of 4 sites, suggesting reproduction is occuring

Richness = 0.948775 + 0.816763*LOG(Density)

Total Mussel Population Size

Densities Extrapolated to Survey Areas

	Quads (n)	Mussels (# r Average	per Quad m ⁻²) Std. Error (pooled)	Survey Area (m²)	Mussel Number
Site 1	21	5.5	4.4	4,230	23,163
Site 2	27	30.1	3.9	9,504	286,175
Site 3	24	17.6	4.1	13,983	245,863
Site 4	24	10.8	4.1	10,658	115,458
4 Bed Totals>	96	16.8		38,375	670,660

2012 Abundance Surveys

Estimated Population Biomass per Site

	Quads (n)	Mussels pe m ⁻		#	-	Weight per (g m ⁻²)	Survey rea (m²)	Mussel Numbe		
		Average	Std. Erro (pooled		Average	Std. Error (pooled)				(g)
Site 1	21	5.5	4.4		17.5	8.8	4,230	23,163		74,210
Site 2	27	30.1	3.9		76.0	7.8	9,504	286,175		722,145
Site 3	24	17.6	4.1		16.5	8.3	13,983	245,863	3	230,725
Site 4	24	10.8	4.1		9.8	8.3	10,658	115,458	3	104,226
4 Bed Totals>	96	16.8			31.8		38,375	670,660)	1,131,307

How much do they filter?

---- D-+- D-

App Revi

			Clearance
	Number of		Rate
Study	Species	Diet	(L h ⁻¹ g ⁻¹)
Kryger and Riisgard (1988)	4	lab algae	1.11
Pusch et al. (2001)	2	field seston	0.38
Gatenby (2000)	3	lab algae	1.72
Silverman et al. (1995, 1997)	5	lab bacteria	0.77
Patterson (1984)	1	lab algae	0.38
Vanderploeg et al. (1995)	1	lab algae	1.45
Gatenby & Kreeger (2003)	6	field seston, lab algae	0.23
Kreeger (2011)	3	field seston	0.96
		Mean >	0.875

PARTNERSHIP FOR THE DELAWARE ESTUARY. INC.

Kreeger

9L

Estimated Water Filtration

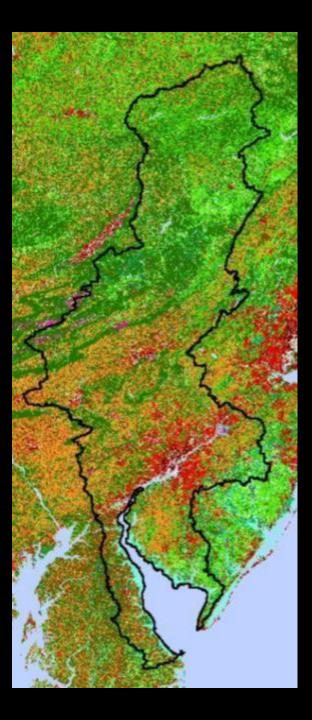
						-			
			Bed Clearance Rate	Typical TSS Filtration					
	Quads	Mussels per (# m ⁻²)	(gal day ⁻¹)	(metrictons DW day ⁻¹)	el Dry it	Typical Clearance Rate	Typical Clearance Rate	Bed Clearance Rate	T
	(n)	St Average (p	411,867	0.54		(L hr⁻¹ g DTW⁻¹)	(gal day⁻¹ g DTW⁻¹)	(gal day⁻¹)	(r
Site 1	21	5.5	4 007 005	5.20	D			411,867	
Site 2	27	30.1	4,007,906	5.29	15	0.875	5.55	4,007,906	
ite 3	24	17.6	(galday ⁻) st 411,867 4,007,906 1,280,524	1.69	25			1,280,524	
te 4	24	10.8	1,200,324	1.05	<u>!6</u>			578,456	
ed Totals>	96	16.8	578,456	0.76	07			6,278,754	
			6,278,754	8.29					

Observations

- Potential filtration of 6.3 million gallons per day for these 4 beds is: 2.5% of freshwater inflow from the Delaware River; and 1.6% of drinking water withdrawals for Philadelphia
- Estimated suspended solids removal of 8.3 metric tons per day is: 121 times that by mussels in 6-mile reach of Brandywine River
- More beds exist, especially in New Jersey
- Study is limited to shallow subtidal shorelines, mussel densities increased with depth to limit of sampling
- Water processing potential may not reflect actual water filtration
- Many expected suitable sites had few or no mussels, especially where bed stability appeared compromised; habitat restoration would benefit mussel populations and ranges

Summary

- Freshwater mussels are the most imperiled animals nationally and locally
- Current freshwater mussel populations in the tidal Delaware River are abundant enough to measurably help sustain water quality
- For these reasons, critical habitat for mussels needs to be mapped and protected
- Populations are far below historic levels basin-wide, and mussel restoration would promote water quality and other benefits
- More research is needed on physiological ecology of mussels identify fates of filtered material and improve ecosystem service models



Thanks to Our Funder: Pennsylvania Coastal Zone Management Program

www.DelawareEstuary.org

Extra Slides

Desired Watershed Condition:

A diverse and robust assemblage of native bivalves living in abundance in all available tidal and non-tidal ecological niches and providing maximum possible natural benefits.

Kreegei

>60 Species of Bivalves in the Delaware Estuary Watershed

Elliptio complanata

Geukensia demissa

Crassostrea virginica

11 Other Species of Freshwater Unionid Mussels

Corbicula fluminea

Mya arenaria

Mytilus edulis

Ensis directus

Mercenaria mercenaria

Freshwater Mussel Recovery Program

1. Surveys

- Establish current range and density for historically present species
- Identify candidate areas to be conserved and/or restored
- Qualitative (rapid) and Quantitative (intensive)
- Delineate critical habitat to be protected

2. Restoration Suitability Tests

• Assess if candidate restoration sites can sustain healthy mussel assemblages

3. Reintroduction

- Transplant gravid broodstock from healthy extant populations nearby
- Monitor success

4. Propagation


• Produce genetically appropriate seed mussels in hatcheries for restocking

5. Education

- Build awareness for mussel conservation and holistic restoration
- 6. Promote Habitat and Water Quality Improvement (e.g. dam removal)

Freshwater Mussel Recovery Program

Goals Based on Ecosystem Services

