Pilot Study of Polycyclic Aromatic Hydrocarbons in Delaware Estuary Using Passive Diffusion Sampling Technology

William Burton Versar, Inc.

Dr. Richard Greene
Gregory DeCowsky
Department of Natural Resources
& Environmental Control

Introduction

- Delaware Estuary highly industrialized
- Numerous petrochemical plants
- Legacy oil spills and runoff left PAH residues in the system
- Ecological risk to aquatic life & human consumption of fish
- PAH residues complicate Natural Resource Damage Assessments

2010 Deepwater Horizon Spill

- A 2011 National Aquarium Symposium on the Gulf oil spill submitted a recommendation to a US Senate subcommittee identifying the need for better baseline data and alternative approaches to obtain pre-spill conditions in aquatic ecosystems.
- Most of the grab samples analyzed for the BP oil spill revealed that concentrations of PAHs were below the analytical detection limits
- However, PAH values below detection limits and below predetermined benchmark values doesn't mean that PAHs are absent or present at levels which are not harmful.

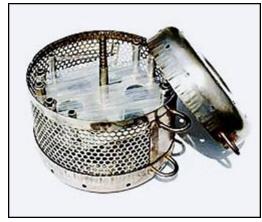
Background (cont.)

- The symposium identified that passive sampling technology was a promising approach to determine extremely low concentrations of organic petroleum when conventional methods of sampling are not effective
- The symposium concluded that passive samplers, placed in the sediments and water column, could provide a representative picture of levels of pollutants over a period of time from days to months

The Project

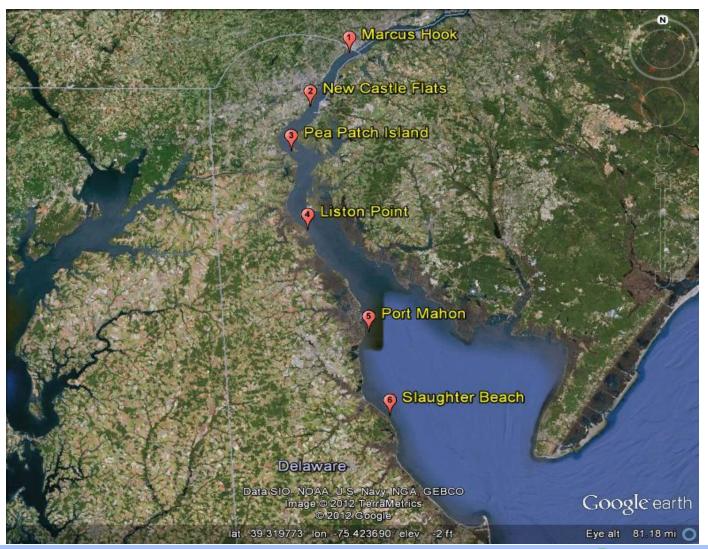
On behalf of DNREC's, Site Investigation and Restoration Section, Versar conducted a pilot study on the effectiveness of passive samplers (Semipermeable Membrane Devices) to measure freely dissolved PAHs in the sediments and water column of the Delaware Estuary.

Study Objective


 Study primarily intended to be used as a pilot/proof-of-concept towards establishing PAH baseline levels for Delaware Estuary for oil spill NRDAs

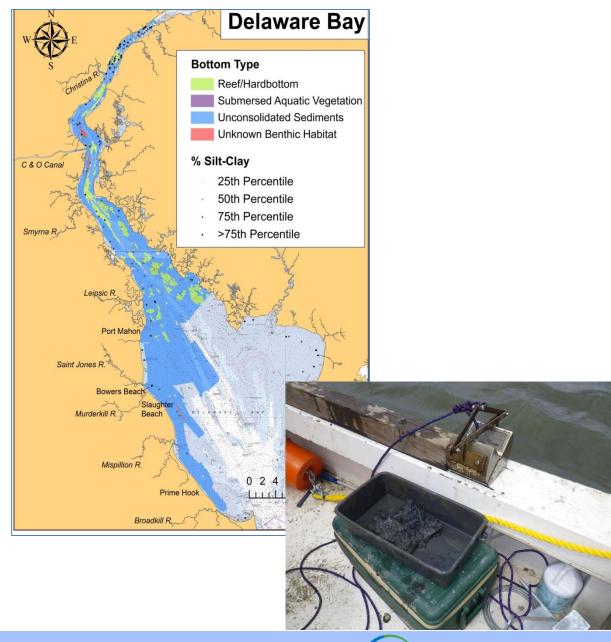
Test the effectiveness of Semi-permeable
 Membrane Devices (SPMD) and potentially expand
 the program to characterize PAH baseline for the
 entire estuary

SPMD



- Commercially produced by EST, St. Louis, Missouri
- Flat tubing filled with lipid gel
- 10 Angstrom transport corridors
- Absorbs PAHs much like fatty tissues but no metabolism
- After a deployment period PAHs extracted by EST and ampules sent to analytical lab
- Never used in the Delaware Estuary

Selected a range of stations from high to low contaminant levels



Selected stations with high silt/clay content using Delaware Bay Benthic Mapping Data

>75% silt/clay sites targeted

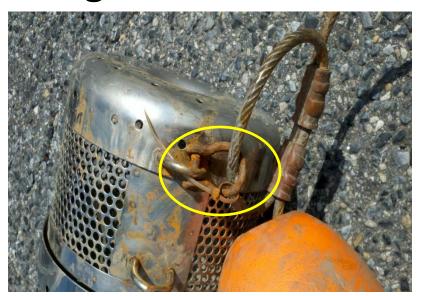
Benthic grabs to confirm sed type upon deployment

Bottom and 1-meter above bottom SPMD canisters deployed for 1 month in August 2012

Bulk sediment sampling also conducted half way through the deployment

Parent and Alkylated PAH Analysis conducted on SPMD and Bulk Sediment

1,1'-Biphenyl	C1-Dibenzothiophenes	C3-Phenanthrenes/Anthracenes
1-Methylnaphthalene	C1-Fluoranthenes/pyrene	C4-Chrysenes
1-Methylphenanthrene	C1-Fluorenes	C4-Dibenzothiophenes
2,3,5-Trimethylnaphthalene	C1-Naphthalenes	C4-Naphthalenes
2,6-Dimethylnaphthalene	C1-Phenanthrenes/Anthracenes	C4-Phenanthrenes/Anthracenes
2-Methylnaphthalene	C2-Chrysenes	Chrysene
Acenaphthene	C2-Dibenzothiophenes	Dibenz(a,h)anthracene
Acenaphthylene	C2-Fluoranthenes/Pyrene	Dibenzothiophene
Anthracene	C2-Fluorenes	Fluoranthene
Benzo[a]anthracene	C2-Naphthalenes	Fluorene
Benzo[a]pyrene	C2-Phenanthrenes/Anthracenes	Indeno[1,2,3-cd]pyrene
Benzo[b]fluoranthene	C3-Chrysenes	Naphthalene
Benzo[e]pyrene	C3-Dibenzothiophenes	Perylene
Benzo[g,h,i]perylene	C3-Fluoranthenes/Pyrene	Phenanthrene
Benzo[k]fluoranthene	C3-Fluorenes	Pyrene
C1-Chrysenes	C3-Naphthalenes	Total compounds 47

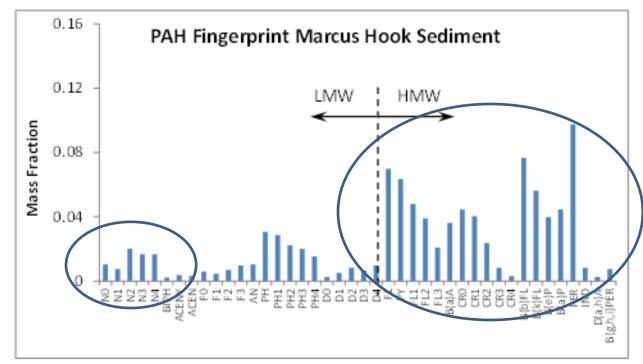

Data Analysis

- Dissolved PAH concentrations calculated from SPMD results using USGS estimator spreadsheet
 - Accounts for deployment days, loss using PRCs, and uses equilibrium coefficients
- Dissolved PAH concentrations in sediment pore water also calculated using bulk sediment results & Equilibrium Partitioning (EqP) accounting for TOC and black carbon absorption
- SPMD & Sediment EqP results for total dissolved PAH compared
 - ½ DL used for non-detected compounds
- Fingerprints also compared

Old Man Delaware.....will get you every time

5 of the 6 water column samplers lost due to galvanic corrosion

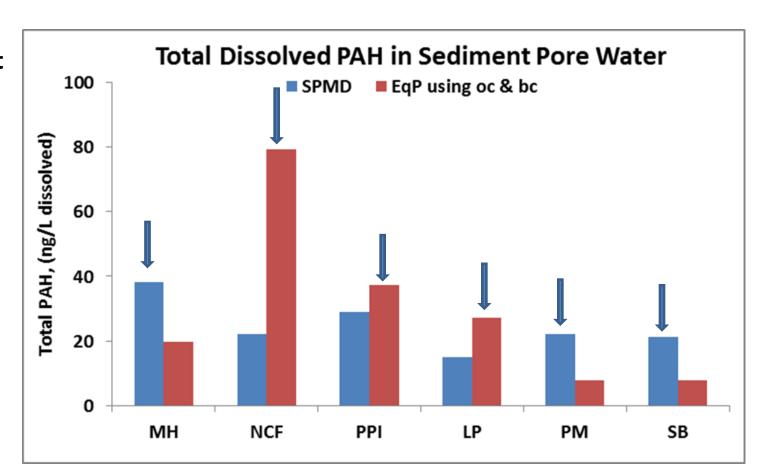
Marcus Hook water column canister recovered and all six sediment samplers recovered


Total PAH concentrations found sediment SPMDs and bulk sediment analysis

				New Castle		Pea Patch							
		Marcus Hook		Flats		Island		Liston Point		Port Mahon		Slaughter Beach	
	Unit	Rep 1	Rep 2	Rep 1	Rep 2	Rep 1	Rep 2	Rep 1	Rep 2	Rep 1	Rep 2	Rep 1	Rep 2
Total	ng/mL	5738	5288	3405	2955	3544	3633	2626	2698	2802	2824	1680	1690
Ave	ng/mL	5,513		3,180		3,589		2,662		2,813		1,685	
# of SPMD non- detects	(3	4	5	6	6	5	7	7	12	9	18	17
Sediment PAH Total	μg/Kg	1,4	69	3,9	987	2,7	704	1,4	108	4:	73		548
# of sediment non- detects				()		0		2		6		6

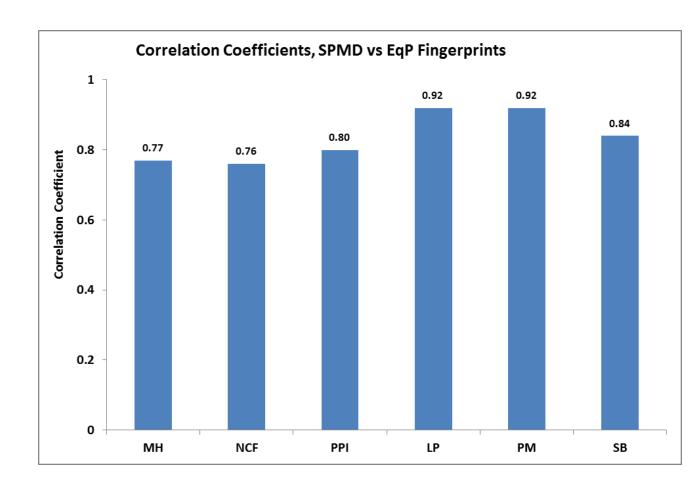
Bulk sediment
PAH fingerprints
dominated by
pyrogenic PAHs,
although
naphthalenes
(petrogenic) also
present at all
stations

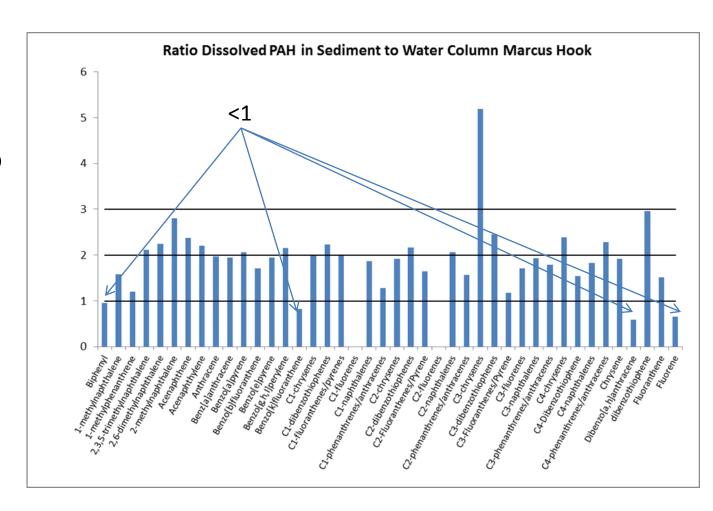
Fingerprints are highly correlated among the 6 stations


		New	Pea			
	Marcus	Castle	Patch	Liston	Port	Slaughter
	Hook	Flats	Island	Point	Mahon	Beach
Marcus Hook	1					
New Castle Flats	0.89	1				
Pea Patch Island	0.97	0.95	1			
Liston Point	0.99	0.91	0.98	1		
Port Mahon	0.94	0.93	0.96	0.97	1	
Slaughter Beach	0.89	0.98	0.95	0.91	0.94	1

Good agreement overall

Ave diff. = 2.3 (1.3 min, 3.6 max)


No systematic bias between the two approaches


Not only are total dissolved PAH concentrations in good agreement between SPMD & EqP, the fingerprints are also well correlated

Hence, the 2 methods yield consistent results

Slight flux from the sediments to the overlying water column suggested at Marcus Hook

Conclusions

- Total dissolved pore water PAH concentration estimated from SPMDs and sediment EqP were similar
- Good agreement between the fingerprints calculated from the two different approaches
- Sediment SPMDs had higher frequency of nondetections
- Sediment pore water may best be estimated using bulk data
- Water column uses of SPMDs promising but needs further evaluation

Follow on Work

- Plan to repeat the study using better attachment hardware in 2013
- May add 1-meter above bottom and 1-meter below surface to further investigate sediment water column fluxes
- Include the sediment SPMDs
- Additional mooring sites in more sensitive habitats or different sediment types

