A novel approach to estimating monthly salt marsh contributions to
 oxygen deficit in the Murderkill
 Estuary from hourly sensor data

Anthony K. Aufdenkampe, SWRC
William J. Ullman, UD

16-18 July, 2007

16-18 October, 2007

31 March - 2 April, 2008

Parameters

- Dissolved
- Nitrate + Nitrite
- Ammonium
- Total Dissolved N (TDN, DON by difference)
- Phosphate
- Total Dissolved P (TDP)
- Organic C (DOC)
- Inorganic C (DIC)
- Alkalinity
- Particulate (Fine \& Coarse)
- Organic Carbon
- Nitrogen
- Phosphorus
- Stable Isotopes
- $\delta^{15} \mathrm{~N} \& \delta^{13} \mathrm{C}$ on as many species as possible

Mixing Curve Approach

Conservative index of mixing
(a)

WATER RESEARCH CENTER

Mixing Curve Approach

Blue = upstream into marsh
Red = downstream out of marsh shaded proportional to discharge

Mixing Curve Approach

Blue = upstream into marsh
Red = downstream out of marsh shaded proportional to discharge

Mixing Curve Approach

- Marsh
appears to export small amounts of nitrate
(in July 2007)

Blue = upstream into marsh
Red = downstream out of marsh shaded proportional to discharge

Mean Flux (g/h)	MKA Jul	MKB Oct	MKC Apr	MKD May	MKE Aug	Average
Positive Downstrem	Jul. 16-18, 2007	ct. 17-18, 2007	Apr. 1-2, 2008	May 2008	Aug. 2008	Excl. D
per $0.64 \mathrm{~km}^{2}$ marsh	$\mathrm{g} / \mathrm{m}^{2} / \mathrm{y}$					
Total \mathbf{N} ($\mathrm{g} \mathrm{N} / \mathrm{hr}$)	$5.6 \pm 19 \%$	$0.5 \pm 187 \%$	$-3.7 \pm 41 \%$	$13.3 \pm 45 \%$	$2.2 \pm 48 \%$	$1.2 \pm 201 \%$
$\mathrm{NO} 3+\mathrm{NO} 2$	$0.4 \pm 13 \%$	$-0.1 \pm 92 \%$	$-2.3 \pm 28 \%$	$-4.7 \pm 19 \%$	$-0.2 \pm 14 \%$	- 5-123\%
NH4	$1.2 \pm 6 \%$	$0.3 \pm 40 \%$	$0.9 \pm 4 \%$	$2.1 \pm 130 \%$	$-0.3 \pm 41 \%$	$0.5 \pm 38 \%$
DON	$4.1 \pm 19 \%$	$0.1 \pm 1438 \%$	$2.1 \pm 57 \%$	$17.0 \pm 28 \%$	$2.0 \pm 49 \%$	2.1
FPON	$-1.0 \pm 69 \%$	$0.2 \pm 72 \%$	$-4.1 \pm 13 \%$	$-2.0 \pm 106 \%$	$0.2 \pm 166 \%$	- - 0
CPON	$0.9 \pm 15 \%$	$0.0 \pm 140 \%$	$-0.2 \pm 14 \%$	$1.0 \pm 65 \%$	$0.5 \pm 6 \%$	$0.3 \pm 52 \%$
Total P (g P/hr)	$0.6 \pm 16 \%$	$1.0 \pm 7 \%$	$0.2 \pm 23 \%$	$1.8 \pm 4 \%$	$2.5 \pm 3 \%$	$1.1 \pm 13 \%$
PP, total	$0.1 \pm 104 \%$	$0.0 \pm 114 \%$	$0.0 \pm 0 \%$	$0.6 \pm 56 \%$	$0.0 \pm 164 \%$	$0.0 \pm 299 \%$
PO4	$0.6 \pm 13 \%$	$0.5 \pm 10 \%$	$0.1 \pm 19 \%$	$0.1 \pm 84 \%$	$1.0 \pm 15 \%$	$0.5 \pm 32 \%$
TDP (PO4+DOP	$0.5 \pm 9 \%$	$0.4 \pm 4 \%$	$0.1 \pm 23 \%$	$1.1 \pm 39 \%$	$1.5 \pm 27 \%$	$0.7 \pm 64 \%$
Total OC (gC/hr)	$33.4 \pm 16 \%$	$5.0 \pm 44 \%$	$-20.8 \pm 23 \%$		$13.2 \pm 22 \%$	
DOC	$11.4 \pm 3 \%$	$2.9 \pm 69 \%$	$5.3 \pm 31 \%$	$225.2 \pm 11 \%$	$8.5 \pm 24 \%$	
FPOC	$9.0 \pm 54 \%$	$2.2 \pm 33 \%$	$-23.2 \pm 19 \%$	01 \#世"r\#\#	$1.0 \pm 215 \%$	$7+20 \%$
CPOC	$13.1 \pm 15 \%$	$-0.1 \pm 319 \%$	-2.9 $\pm 10 \%$	$2.7 \pm 64 \%$	$3.7 \pm 9 \%$	$3.4 \pm 60 \%$
DO (gO2/hr)	$-23.9 \pm 6 \%$	$-16.6 \pm 8 \%$	$12.5{ }^{\text {¹ }} \pm 15 \%$	$-217.0 \pm 33 \%$	$-39.7 \pm 6 \%$. $\pm 21 \%$
free CO2 (gC/hr)	$27.9 \pm 26 \%$	$16.6 \pm 8 \%$	$1.6 \pm 79 \%$	$21+10$	$19.8 \pm 8 \%$	
Chla, total (g/hr)	$-0.3 \pm 4 \%$	$-0.1 \pm 14 \%$	$-0.2 \pm 19 \%$	$-0.7 \pm 25 \%$	$-0.1 \pm 13 \%$	-0.2 $\pm 27 \%$
FSS	$119.3 \pm 56 \%$	$43.5 \pm 71 \%$	$-628.2 \pm 12 \%$	$-15.1 \pm 1990 \%$	$33.6 \pm 110 \%$	$-107.9 \pm 104 \%$
CSS	$111.6 \pm 3 \%$	$-0.7 \pm 576 \%$	$-11.6 \pm 27 \%$	$122.6 \pm 60 \%$	$36.2 \pm 7 \%$	$33.9 \pm 20 \%$

Continuous DO

IKUUD
Water Research Center

Monthly DO Anomalies

Monthly DO Anomalies

Marsh DO Deficit Load

 calculated from continous USGS data from Aug. 8, 2007 to Aug 18, 2008.| time interval | kgO2/m2/d | gO2/m2/yr |
| :---: | :---: | :---: |
| Aug-07 | -1.51E-04 | -54.97 |
| Sep-07 | -6.40E-05 | -23.35 |
| Oct-07 | -1.32E-04 | -48.32 |
| Nov-07 | -9.59E-06 | -3.50 |
| Dec-07 | -2.41E-05 | -8.78 |
| Jan-08 | 3.57E-06 | 1.30 |
| Feb-08 | -2.65E-06 | -0.97 |
| Mar-08 | -3.54E-05 | -12.93 |
| Apr-08 | -1.39E-04 | -50.85 |
| May-08 | -1.99E-04 | -72.48 |
| Jun-08 | -1.08E-04 | -39.32 |
| Jul-08 | -1.16E-04 | -42.17 |
| Aug-08 | -1.27E-04 | -46.49 |
| average | -8.49E-05 | -30.99 |
| annual average | -8.04E-05 | -29.34 |

Monthly DOC Anomalies

Filtered out DO anomaly > - 0.3 due to phase shift for 1 period

Monthly DOC Anomalies

time interval	$\mathrm{kgDOC} / \mathrm{m} 2 / \mathrm{d}$	$\mathrm{gDOC} / \mathrm{m} 2 / \mathrm{yr}$
Aug-07	$1.61 \mathrm{E}-04$	58.85
Sep-07	$5.19 \mathrm{E}-05$	18.96
Oct-07	$1.33 \mathrm{E}-04$	48.51
Nov-07	$4.47 \mathrm{E}-06$	1.63
Dec-07	$2.25 \mathrm{E}-05$	8.21
Jan-08	$1.43 \mathrm{E}-06$	0.52
Feb-08	$1.95 \mathrm{E}-05$	7.13
Mar-08	$4.21 \mathrm{E}-05$	15.37
Apr-08	$1.34 \mathrm{E}-04$	48.84
May-08	$1.96 \mathrm{E}-04$	71.61
Jun-08	$1.21 \mathrm{E}-04$	44.28
Jul-08	$1.28 \mathrm{E}-04$	46.77
Aug-08	$1.25 \mathrm{E}-04$	45.62
average $8.77372 \mathrm{E}-05$	32.02	
annual average $8.31227 \mathrm{E}-05$	30.34	

Considerations regarding the use of grab sample DO concentrations for calibrating water quality model

Anthony K. Aufdenkampe, SWRC
William J. Ullman, UD

Calibrating Model

RUN0708-044_RUN0708-043 - new bay BC
Station 206231, Murderkill River at Confluence of Kent County WWTF

Calibrating Model

Grab vs. Continuous Data

rederica (blue; dots $=$ hourly, dash $=25 \mathrm{~h}$ ave, circle $=$ station 206091), Bowers (green dash $=25 \mathrm{~h}$ ave), stations $206231 \& 206711$ (red cirlces

Grab vs. Continuous Data

rederica (blue; dots $=$ hourly, dash $=25 \mathrm{~h}$ ave, circle $=$ station 206091), Bowers (green dash $=25 \mathrm{~h}$ ave), stations $206231 \& 206711$ (red cirlces

Grab vs. Continuous Data

rederica (blue; dots $=$ hourly, dash $=25 \mathrm{~h}$ ave, circle $=$ station 206091), Bowers (green dash $=25 \mathrm{~h}$ ave), stations $206231 \& 206711$ (red cirlces

Grab vs. Continuous Data

rederica (blue; dots $=$ hourly, dash $=25 \mathrm{~h}$ ave, circle $=$ station 206091), Bowers (green dash $=25 \mathrm{~h}$ ave), stations $206231 \& 206711$ (red cirlces

Thank You

Funded by: Kent County, DE

