Influences on Subtidal Salinity Variability and Change in the Delaware Estuary

Andrew Ross and Raymond Najjar The Pennsylvania State University

Delaware Estuary Science and Environmental Summit January 28, 2013

Outline

Introduction

Statistical models

Influences on salinity

Projected change

Summary

Salinity variability makes estuaries unique

- Tidal and subtidal fluctuations in salinity are a unique feature of estuaries.
- Changes in salinity levels have a wide range of effects on the ecosystem.
- Oyster disease (Powell et al., 1992)
- Ammonia-oxidizing bacteria (Bernhard et al., 2005)
- Phytoplankton blooms (Gallegos and Jordan, 2002)
- Changes caused by climate change and other influences have the potential to influence estuarine salinity.
- Streamflow
- Sea level
- Wind stress
- Oceanic salinity

These variables have been measured throughout the Estuary

- Streamflow: USGS
- Salinity: USGS, NOAA/NOS
- Sea level: PSMSL (Woodworth and Player, 2003)
- Oceanic salinity: Gulf Stream Index (Taylor, 1995)
- Wind stress: North American Regional Reanalysis (Mesinger et al., 2006)

Sea level is rising

Streamflow is increasing

How is salinity responding?

Influences can be determined with statistical models

- Multiple linear regression:

$$
\mathbb{E}\left(S_{i}\right)=\beta_{0}+\beta_{1} Q_{i}+\beta_{2} H_{i}+\beta_{\text {Month }}
$$

Influences can be determined with statistical models

Generalized additive mixed model:

$$
\mathbb{E}\left(S_{i}\right)=\beta_{0}+f_{Q}\left(Q_{i}\right)+f_{H}\left(H_{i}\right)+f_{M}\left(\text { Month }_{i}\right)
$$

- $f_{Q}(), f_{H}(), f_{M}()$: Smooth functions that relate streamflow, sea level, and month to salinity.
$f_{Q}(), f_{H}(), f_{M}()$: Smooth functions that relate streamflow, sea level, and month to salinity.

$$
\mathbb{E}\left(S_{i}\right)=\beta_{0}+f_{Q}\left(Q_{i}\right)+f_{H}\left(H_{i}\right)+f_{M}\left(\text { Month }_{i}\right)
$$

The model handles autocorrelated errors

- Residual lag-1 autocorrelation is roughly 0.4.
- Among other effects, autocorrelation results in decreased degrees of freedom for the smooth functions.
- We assume an $\operatorname{AR}(1)$ autocorrelation model.

The model closely fits the observed salinity
Black: observed Reedy Island salinity. Green: modeled Reedy Island salinity.

- The fits upstream in the Estuary are not as good.

Streamflow has the largest effect

Reedy Island Jetty

- The results are similar at the other locations.

Sea level is also important

Reedy Island Jetty

Sea level is also important

Other locations

Ship John Shoal

Fort Mifflin

Chester

Ben Franklin Bridge

Alongshore wind stress may be important

Reedy Island Jetty

- Similar result at Ship John Shoal.
- Not significant at upstream locations.

Oceanic salinity is not important

- Oceanic salinity does not have a significant effect at any location, and the signs of the slope of the modeled effect vary.
- This makes sense, since oceanic salinity probably only has an influence over longer time scales.

Sea level will rise significantly

- For the A2 emissions scenario, Vermeer and Rahmstorf (2009) project that mean sea level in 2100 will be $0.98-1.55 \mathrm{~m}$ above 1990 MSL with a model mean of 1.24 m above 1990 MSL.
- At Atlantic City, this translates to sea level rising from 7.1 m to $8.3 \mathrm{~m}(8.0-8.6 \mathrm{~m})$.

Salinity will increase as a result of sea level rise

Streamflow changes are uncertain

- On average, models predict an increase in precipitation, leading to a $15 \pm 20 \%$ change in streamflow by the end of the century for the A2 scenario (Najjar et al., 2009).
- However, a warming of $4^{\circ} \mathrm{C}$ results in a $15-40 \%$ decrease in streamflow due to increased evapotranspiration (Najjar et al., 2009)
- We consider three scenarios:

1. 20% increase (to $540 \mathrm{~m}^{3} \mathrm{~s}^{-1}$)
2. 20% decrease (to $360 \mathrm{~m}^{3} \mathrm{~s}^{-1}$)
3. 45% decrease (to $247 \mathrm{~m}^{3} \mathrm{~s}^{-1}$)

Salinity responds weakly to streamflow change

Summary

- Streamflow has the largest effect on monthly variability of salinity.
- The magnitude of the response to streamflow is relatively weak, so the long term trend in salinity may be dominated by sea level.
- Alongshore wind stress may be important, particularly downstream in the Estuary and Bay.
- Mean salinity will decrease slightly if mean streamflow increases and will increase slightly if mean streamflow decreases.
- Mean salinity will increase significantly if sea level rises as projected.

References

Bernhard, A. E., T. Donn, A. E. Giblin, and D. A. Stahl, 2005: Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environmental Microbiology, 7, 1289-1297.
Gallegos, C. and T. Jordan, 2002: Impact of the Spring 2000 Phytoplankton Bloom in Chesapeake Bay on Optical Properties and Light Penetration in the Rhode River, Maryland. Estuaries and Coasts, 25 (4), 508-518.

Mesinger, F., et al., 2006: North American Regional Reanalysis. Bulletin of the American Meteorological Society, 87, 343-360.

Najjar, R., L. Patterson, and S. Graham, 2009: Climate simulations of major estuarine watersheds in the Mid-Atlantic region of the US. Climatic Change, 95 (1-2), 139-168.
Powell, E. N., J. D. Gauthier, E. A. Wilson, A. Nelson, R. R. Fay, and J. M. Brooks, 1992: Oyster disease and climate change. Are yearly changes in Perkinsus marinus parasitism in oysters (Crassostrea virginica) controlled by climatic cycles in the Gulf of Mexico? Marine Ecology, 13, 243-270.
Taylor, A., 1995: North-South shifts of the Gulf Stream and their climatic connection with the abundance of zooplankton in the UK and its surrounding seas. ICES Journal of Marine Science, 52 (3-4), 711-721.
Vermeer, M. and S. Rahmstorf, 2009: Global sea level linked to global temperature. Proceedings of the National Academy of Sciences of the United States of America, 106 (51), 21 527-32.

Woodworth, P. and R. Player, 2003: The Permanent Service for Mean Sea Level : An Update to the 21st Century. Journal of Coastal Research, 19 (2), 287-295.

