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Tidal Range Change 
• Astronomical ocean tides 

change with cyclic changes in 
constituent forcing. These tides 
are also influenced by 
changing bathymetry and 
therefore should change on 
longer temporal scales. 

 

• Tidal range can be used as a 
measure of changing tides. 

   

• Future scenarios: 

– Inundation levels (high tide) 

– Harbor depths (low tide) 

– Currents 

 

• Past conditions: 

– Factor into sea level rise  

estimates from Holocene  

index points. 
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Project Goals 
Delaware Bay 

– Create bathymetric grids for time slices before and after present. 

 

– Model Holocene tidal range changes to factor into SLR estimates 

and explore behavior.  

 

– Model Future tidal range change scenarios to explore effects of a 

global sea level rise. 



Methods 
- Model:   ADCIRC 2D-DI model, fully nonlinear, ‘wetting and drying’ enabled.          

Conducted harmonic analysis to extract tidal constituents which were used to 

calculate datums and GT (MHHW-MLLW). 

 

-    Forcing:  Present day constituents from TPXO model, along 60th meridian 

open boundary, variable in space but constant in time to focus on local 

bathymetry changes. 



Methods: Grid Generation 
Holocene Run Grid  
383,972 nodes, 745,137 elements 

Future Run Grid 
517,237 nodes,  
1,027,746 elements 
 

 
Stitched to Mukai 
et al. (2002) grid 

Delaware Bay Grid 
101,075 nodes, 196,039 elements 

Added topographic data 

Present day 
baseline 
conditions 



Methods: Grid Verification 

Constituent Amplitude, % Difference from 

NOAA Gauge 



Methods: Grid Transformations 
- Applied a spatially variable GIA factor to  

    depth values based on ICE-6G VM5b 

    model; 10ka to present (Engelhart et al.  

    2009). 

 

- Future runs at +0.1 and +0.3 kyr were  

    also given a eustatic rise component  

   (1.01m and 3.5m, respectively from  

    Rhamstorf et al. 2011 ). 

 

- Does not model changes to the basin shape 

    due to smaller time-scale estuarine morphology. 

 

- Delaware Bay: 

 

- Subsidence forward  in time.  Spatially variable changes. 

 

- Dry prior to 7ka. Focused on 3ka to 0ka+0.3kyr. 

 

(Hall et al., in press) 



Results: Local 

(Hall et al., in press) 



Results: Local 
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Comparison 

Flick et al. (2003) tide gauge observation GT change rates 

– 2 gauges analyzed in Delaware Bay; decreasing GT 

• Trends agree with Future case rates, magnitudes similar 

• Trends disagree with Holocene rate (500 years ago to present) 

Measured (Flick 

et al. 2003)

Modeled 0-

0.1kyr

Modeled 0-

0.3kyr

Modeled 0.5-

0ka

10 Cape May, NJ

(mm/100yr) -51 -22 -24 8

(%/100yr) -3 -1.4 -1.5 0.5

11 Lewes, DE

(mm/100yr) -33 -32 -40 5

(%/100yr) -2 -2.2 -2.8 0.4

MHHW-MLLW Change Rate

Location



Implementation 
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Implementation 

Nikitina et al. (in press) 
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Conclusions 

Modeled tidal ranges (GT) 
change in the Delaware Bay. 

 

• GT in the upper bay has 
increased 80% since 3ka.  
GT in the lower bay has 
remained relatively 
constant.  This difference 
may help account for 
differences in past SLR 
estimates in these locations. 
 

• Future GT decrease agrees 
with tidal gauge data trend.  
Changes are small relative 
to SLR. 

(Hall et al., in press) 
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Additional Material 



Accuracy 

• Grid verifications 
 
– Verified constituents 

with gauge locations 
 

– Future Run Grid 
showed higher error 

• Gauge locations 
in/out of grid 
coverage 

• Parameters tuned to 
Holocene grid 

• USGS topo vs. NGDC 
bathy 

 

Holocene Run Grid  

Future Run Grid 
 



Accuracy 

• Potentially significant processes not modeled: 
– River inflow 
– Estuarine evolution 
– Smaller temporal scale geomorphology (i.e. shoreline change) 
– Other human induced changes (dredging, coastal protection, 

etc.) 
– Baroclinic effects (i.e. changes in salinity) 

 

• Use of GIA represents greater sophistication than models of 
estuaries using uniform changes in depth 
 

• Highest temporal and spatial resolution 
 



Comparison 

• Leorri et al. (2011) model of Delaware Bay 

– Their 4ka = 3ka in this study based on avg. depth 
change 

– Results similar for same depth changes 

– Spatially variable sea level change in this study vs. 
constant in theirs; different depth changes = 
different rates at same time 

GT Ratio

Leorri et al. (2011) This Study This Study

% of Present Day 4 to 0ka 3 to 0ka 3 to 0ka

Upper Bay 0.50 0.51 0.53

Lower Bay 1.20 1.09 1.09

M2 Amplitude Ratio



Comparison 

• Leorri et al. (2011) model of Delaware Bay 

– Their 4ka = 3ka in this study based on avg. depth 
change 

– Results similar for same depth changes 

– Spatially variable sea level change in this study vs. 
constant in theirs; different depth changes = 
different rates at same time 

– M2 amplitude ratio ~ GT ratio 

GT Ratio

Leorri et al. (2011) This Study This Study

% of Present Day 4 to 0ka 3 to 0ka 3 to 0ka

Upper Bay 0.50 0.51 0.53

Lower Bay 1.20 1.09 1.09

M2 Amplitude Ratio



Resonance 

3ka 0ka 

 
 
 
 
 

Depth 
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Bay Shape 

• Rise in upper bay GT 3 to 0ka 

– Funnel shape 

• Higher tides in the narrow region 

• Delaware Bay 0ka tidal behavior estimated using 
exponentially decreasing width model (Parker 1991) 

• 3ka shape had more uniform width 
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Discussion: Future Impacts 

• Tidally driven sediment transport 
 
 
 
 
 
 
 
 
 

• Two SLR scenarios, nonlinear response to different levels  



Discussion: Non-Linear Response 



Discussion: Non-Linear Response 



Local, Past 


