



### High Resolution Numerical Models of Tidal Marshes in the Delaware Bay

#### Ramona Stammermann

Dept. of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA

#### **Michael Piasecki**

Dept. of Civil Engineering, City College New York, New York City, NY



### Content



- Delaware Bay marshes
- Objectives
- Challenges
- Methods
- Model applications
  - Bombay Hook
  - Blackbird Creek
- Summary

















# Importance of Delaware Bay Wetlands

- Wetlands influence health and function of adjacent water bodies and provide habitat for flora and fauna
  - "Kidneys" of the Delaware Bay  $\rightarrow$  filters harmful materials
  - Home of a variety of animals including mussels, crabs, fish, birds
  - One of the biggest and most important resting places for migratory birds on the US East Coast
  - Provide a coastal defense line against stormsurges
  - Provide recreational space for everybody





# **Delaware Bay Wetlands**

- some wetlands are deteriorating
  - erosion
  - Sudden wetland dieback
- Reasons mostly not entirely understood
  - Starvation >> not enough sediment input from the bay?
  - Change in composition of ecosystem
    - Diffferent types of vegetation
    - Decrease of bottom stabilizing mussel colonies
- >> numerical models to learn more about processes in marsh systems





# **Research Objectives**

Num. Modeling of transport processes in tidal marshes

- influence of marsh geometry on hydrodynamics and transport processes
- influence of sediment availability in Delaware Estuary on sediment distribution patterns on tidal flats and in tidal channels of adjacent marsh systems
- influence of storm events on erosion and deposition patterns





### Model system Marina

#### Pre processor software

Janet: grid generation ; Gismo: GIS for Modeling (DTM etc.)



\* By Smile Consult GmbH, Hannover, Germany

#### Post processor software

Davit: visualization, analysis



### Model Area – Delaware Estuary



### Create Boundary Conditions for Marsh Model





# Challenges for high resolution marsh modeling



- Marshes are large and very inaccessible
  - makes field measurements difficult, costly and time consuming
  - not much data for initial and boundary conditions available
  - need to develop methods to compensate for lack of data
- Methods
  - no high resolution bathymetry
    - >> cross sectional measurements to determine general shape and depths of tidal channels
    - >> use model to iterativeley swing in and smooth bathymetry
  - LiDAR data with high vertical error above dense vegetation
    > RTK points as reference data to determine an adjustment factor for topography
  - > No high resolution sediment inventory
    - >> use model itself to iteratively determine grain size distribution





# Extraction of tidal channels







### Grid Generation

### Triangulation







### Bombay Hook – Model grid





### **Reference Stations**























### Mud flats 2010









### Hydrodynamics change of channel geometry – with channel







### Hydrodynamics change of channel geometry – no channel









# Tracer Experiment Block

#### overview



Drexel



### Tracer Experiment Block original geometry

























### Tracer Experiment Block Block 1 & 2







# Blackbird Creek Model Grid



#### Bathymetry

**Model Grid** 





### Initial sediment distribution Blackbird Creek

#### • Procedure

- Simulate hydrodynamics only
- Extract shear stress
- Determine D<sub>50</sub> with inverse Shields equation

#### Results

- Coarser sediment in channels
- Extreme coarse in areas where assumptions of initial bathymetry are wrong
- Further adjustment of initial bathymetry





# Sediment composition









### Sediment Transport Erosion and Deposition after 3 days



With vegetation

-0.5



Without vegetation

0.5



# after improving initial conditions

Delaware Estuary Science & Environmental Summit 2013,

Cape May, NJ



## Summary



- Tracer experiments useful to determine general transport paths
- High grid resolution in combination with many processes (hydrodynamic, sediment transport, heat transport, salt transport) results in low model efficiency
  - important to find balance between spatial accuracy and efficiency
- Importance of accurate topographic data
  - Height of tidal flats determines when flooding starts
- Erosion/deposition patterns show
  - importance of good initial bathymetry data
    - here: bathymetry based on interpolation between cross sectional measurements
      - >> in first days of model run bathymetry reacts strongly to hydrodynamic conditions and adjusts
  - Importance of vegetation
    - without vegetation high velocities resulting in larger unrealistic erosion/deposition patterns on tidal flats





### Acknowledgements





National Estuarine Research Reserve Graduate Research Fellowship



Graduate Research Assistantship

This research was supported, in part, under National Science Foundation Grants CNS-0958379 and CNS-0855217 and the City University of New York High Performance Computing Center.















- suspended sediment concentration dependent on sediment composition on the ground
  > the finer the d<sub>50</sub> the higher the concentration
  - need to adjust initial d<sub>50</sub> to reach desired sediment concentration in water column for sensitivity studies
  - **Problem:** the finer the  $d_{50}$  the more erosion >> unrealistic
    - limiting the erodable layer cuts off supply at some point
    - >> no long term results yet that show significant deposition on tidal flats
- settling velocity calculated based on d<sub>50</sub> >> consistently too high

>> material settles completely during slack tide



### Elevation Adjustment Vegetation error



