High Resolution Numerical Models of Tidal Marshes in the Delaware Bay

Ramona Stammermann
Dept. of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA

Michael Piasecki
Dept. of Civil Engineering, City College New York, New York City, NY
Content

- Delaware Bay marshes
- Objectives
- Challenges
- Methods
- Model applications
 - Bombay Hook
 - Blackbird Creek
- Summary
Importance of Delaware Bay Wetlands

- Wetlands influence health and function of adjacent water bodies and provide habitat for flora and fauna
 - „Kidneys“ of the Delaware Bay → filters harmful materials
 - Home of a variety of animals including mussels, crabs, fish, birds
 - One of the biggest and most important resting places for migratory birds on the US East Coast
 - Provide a coastal defense line against stormsurges
 - Provide recreational space for everybody
Delaware Bay Wetlands

- Some wetlands are deteriorating
 - Erosion
 - Sudden wetland dieback

- Reasons mostly not entirely understood
 - Starvation >> not enough sediment input from the bay?
 - Change in composition of ecosystem
 - Different types of vegetation
 - Decrease of bottom stabilizing mussel colonies

>> Numerical models to learn more about processes in marsh systems
Research Objectives

Num. Modeling of transport processes in tidal marshes

• influence of marsh geometry on hydrodynamics and transport processes
• influence of sediment availability in Delaware Estuary on sediment distribution patterns on tidal flats and in tidal channels of adjacent marsh systems
• influence of storm events on erosion and deposition patterns
Model system Marina

Pre processor software
Janet: grid generation; Gismo: GIS for Modeling (DTM etc.)

Marina2D

- **SaltTransportModel2D**
 - Salinity

- **HeatTransportModel2D**
 - Temperature

CurrentModel2D
- Hydrodynamics

WaveHypModel
- Waves

SedimentTransportModel2D
- Morphodynamics

Post processor software
Davit: visualization, analysis

By Smile Consult GmbH, Hannover, Germany
Model Area – Delaware Estuary
Create Boundary Conditions for Marsh Model

Location of Blackbird Creek Marsh

15726 nodes
28831 elements
min L = ~ 50 m
max L = ~5500 m
Challenges for high resolution marsh modeling

• Marshes are large and very inaccessible
 ➢ makes field measurements difficult, costly and time consuming
 ➢ not much data for initial and boundary conditions available
 ➢ need to develop methods to compensate for lack of data

• Methods
 ➢ no high resolution bathymetry
 >> cross sectional measurements to determine general shape and depths of tidal channels
 >> use model to iterativeley swing in and smooth bathymetry
 ➢ LiDAR data with high vertical error above dense vegetation
 >> RTK points as reference data to determine an adjustment factor for topography
 ➢ No high resolution sediment inventory
 >> use model itself to iteratively determine grain size distribution
Extraction of tidal channels

DTM Flooded contours: $-0.5m < z < 0.5m$

export outline as polygons

extract significant channels

- channels that can be resolved with
 ≥ 3 elements with $\geq 3m$ side length
Grid Generation

Triangulation

Polygons

Basic Triangulation

After Advancing Front Refinement

Detail
Bombay Hook – Model grid

695,390 elements
max L = 1000 m
min L = 3.0 m

Bathymetry

Model Grid
Reference Stations
Water Levels

Water level at Leatherberry Flats

Water level at Dock Site
Mud flats 2005
Mud flats 2010
Hydrodynamics
change of channel geometry – with channel
Hydrodynamics

change of channel geometry – no channel
Tracer experiment
Start in marsh
Tracer experiment
Start in bay
Tracer Experiment Block overview
Tracer Experiment Block
original geometry
Tracer Experiment Block
Block 1
Tracer Experiment Block

Block 2
Tracer Experiment Block
Block 1 & 2
Blackbird Creek Model Grid

Bathymetry

Model Grid

260,547 Elements
Max L = 285 m
Min L = 3.5 m
Initial sediment distribution
Blackbird Creek

• Procedure
 ➢ Simulate hydrodynamics only
 ➢ Extract shear stress
 ➢ Determine D_{50} with inverse Shields equation

• Results
 ➢ Coarser sediment in channels
 ➢ Extreme coarse in areas where assumptions of initial bathymetry are wrong
 ➢ Further adjustment of initial bathymetry
Sediment composition

\[\alpha = \frac{d_{90} - d_{10}}{d_{50}} \]

- Low variability of grain sizes in shallow areas
 >> mainly fine sediments (silt/clay/fine sand)
 >> \(a = 0.4 \) in depths < 2m

- Higher variability in deeper areas
 >> mix of sediments (silt – coarse sand)
 >> \(a = 0.4 - 2 \) in depths > 2m

Delaware Estuary Science & Environmental Summit 2013,
Cape May, NJ
Sediment Transport
Erosion and Deposition after 3 days

With vegetation

Without vegetation

after improving initial conditions
Summary

• Tracer experiments useful to determine general transport paths
• High grid resolution in combination with many processes (hydrodynamic, sediment transport, heat transport, salt transport) results in low model efficiency
 ➢ important to find balance between spatial accuracy and efficiency
• Importance of accurate topographic data
 – Height of tidal flats determines when flooding starts
• Erosion/deposition patterns show
 – importance of good initial bathymetry data
 ➢ here: bathymetry based on interpolation between cross sectional measurements
 ➢ in first days of model run bathymetry reacts strongly to hydrodynamic conditions and adjusts
 – Importance of vegetation
 ➢ without vegetation high velocities - resulting in larger unrealistic erosion/deposition patterns on tidal flats
Acknowledgements

National Estuarine Research Reserve Graduate Research Fellowship

Graduate Research Assistantship

This research was supported, in part, under National Science Foundation Grants CNS-0958379 and CNS-0855217 and the City University of New York High Performance Computing Center.
Questions?
Suspended Sediment

- **$D_{50} = 0.05 \text{ mm}$**
 - Concentration: 0.7 g/l

- **$D_{50} = 0.1 \text{ mm}$**
 - Concentration: 0.2 g/l

- Suspended sediment concentration dependent on sediment composition on the ground
 - The finer the d_{50}, the higher the concentration
 - Need to adjust initial d_{50} to reach desired sediment concentration in water column for sensitivity studies

Problem:
- The finer the d_{50}, the more erosion >> unrealistic
 - Limiting the erodible layer cuts off supply at some point
 - >> No long term results yet that show significant deposition on tidal flats

- Settling velocity calculated based on d_{50} >> consistently too high
 - >> Material settles completely during slack tide
Elevation Adjustment

Vegetation error

before

after

difference