Sources and Composition of Dissolved and Particulate Organic Matter in the Delaware Estuary

Hadley McIntosh, Bauer, J.E., and E.A. Canuel

Delaware Estuary Science & Environmental Summit 2013: January 30, 2013 11:15 Virginia Institute of Marine Science College of William & Mary Gloucester Point, VA

Overview

- Introduction
 - Estuarine Carbon Cycle
- Study Site
 - Delaware River and Bay Watershed
 - Sampling Locations
- Methods
- Results
 - Terrestrial to Aquatic Ratio for Fatty Acids
 - Radiocarbon Ages of Lipid Fractions
- Summary

Estuarine Carbon Cycle

Objectives

 Evaluate the sources and ages of different lipid fractions across the riverestuary-coastal ocean gradient in DE Bay

Approaches Used:

- Lipid biomarker composition of surface water POM and UDOM: sources of OM
 - TAR_{FA}
- Radiocarbon: identify ages of POM and UDOM
 - Today: neutral and polar total lipid extract (TLE)
 - Still to come: identify ages of POM lipid fractions, source specific biomarkers

Raymond (2005) Nature

Delaware Watershed OM

Potential OM end-members (and ages) include:

- Estuarine primary production algae and marsh plants (modern)
- Runoff from pastureland, farmland, and forests (modern/intermediate)
- Wastewater effluent (intermediate)
- Marsh sediments (intermediate)
- re-exposed Pleistocene sediments (ancient)
- Marcellus Shale and fossil fuels (ancient)

Sampling Locations

- 5 cruises Surface water collection
- Fixed Locations
 - River, Bay Mouth, Coastal Ocean
- Variable Locations
 - ETM, Chl a Max, High Chl a

Sample Collection Methods

Lipids as Biomarkers

- Biomarkers are used to determine organic matter sources and reactivity $H_{3C} - (CH_{2})_{n} - C_{\beta}^{3} - C_{\alpha}^{2} - C_{\alpha}^{1}$
 - Lipid biomarkers = fatty acids
- Terrestrial-to-Aquatic ratio (TAR_{FA}) can show contributions of terrestrial and aquatic OM

• TAR_{FA} =
$$(C_{24:0} + C_{26:0} + C_{28:0})$$
 (Meyers, 1997)

• $TAR_{FA} = 1$ equal terrestrial and aquatic FA

Results – Terrestrial – to – Aquatic Ratio_{FA}

- Surface water POM and UDOM dominated by aquatic OM (i.e., TAR_{FA} <1)
- **↑** TAR_{FA} at River and ETM for POM
- **↑** TAR_{FA} in Oct.
 2010 than Mar.
 2011

Motivation: Lipid Ages

- TOC radiocarbon age reflects average of all biochemical compound classes
- Biochemical classes
 range in radiocarbon age
- DE River UDOM lipid fraction oldest compound class

modified from Wang et al. 2006

- Lipid older than POC
- Neutral TLE aged relative to Polar TLE

Summary

- Marine primary production main contributor to surface water FA
- Greater difference in age between neutral and polar TLE in UDOM than in POM
- Isotope bi-plot suggests bulk POC reflects a mixture of plankton and terrigenous sources along estuary **but** lipids reflect a range of source and age composition
 - POM TLE:
 - ETM/ Bay Mouth mixture of sources
 - River/ Chl a max similar to petroleum source
 - UDOM TLE:
 - Neutral TLE similar to petroleum and black carbon
 - Polar TLE mixture of sources

Acknowledgements

Marine Organic Geochemistry lab Past and Present: Sarah Cammer, Matt Mainor, Christie Pondell, Stephanie Salisbury, Erin Tyler

Committee Members: Iris Anderson, Carl Friedrichs, Leigh McCallister

Amy Barrett, Amber Bellemy, Mary Chang, Michele Cochran, Katie Housler, Jenna Luek, Marta Sanderson, Chris Sommerfield and his lab, Jen Stanhope – Many others NSF Ocean Sciences Division Award #0962277 to E.A. Canuel and J.E. Bauer

Nichols Student Travel Fellowship

VIMS Council Fellowship

VIMS Student Research Grant

VIMS Graduate Student Association(GSA) Mini-Grant

Captains and Crew of the R/V H. R. Sharp

Questions?

Results – POM Fatty Acid Distribution

• Saturated and polyunsaturated FA were most abundant

Results – UDOM Fatty Acid Distribution

Distance from Bay Mouth (km)

- FA Concentrations much lower in UDOM
- Dominated by saturated FA