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Stratification

Formation of layers of water of different
densities that act as barriers for water mixing.
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Why is stratification important?

Physical aspects:

® It controls the time variability of salt fluxes and it
affects the salt intrusion length.

® It determines the extent of sediments in the water
column.
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Why is stratification important?

Biological aspects:

® Affects dissolved oxygen concentration.

® Sediments decrease the light penetration in the water
column inhibiting photosynthesis.

® Toxicants and nutrients attach to sediments and are
easily fransported.

Sediments: biological impacts

http://wetlandinfo.derm.qgld.gov.au/wetlands/SupportTools/MonitoringExtentAndCondition/Stressormodeloverview/AquaticSediments/Condition.html
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What controls stratification in estuaries?
River discharge and tides
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What controls stratification in estuaries?

River discharge and tides

Spring-neap cycle
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What controls stratification in estuaries?
River discharge and tides
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What controls stratification in estuaries?

River discharge and tides

Spring-neap cycle
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Methods

® Mooring arrays (March-June and July-Sept 2011)
with CT sensor and current profilers.
® Cross-channel tidal surveys along the C line.
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Results: Mooring data
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The subtidal variability in stratification is controlled not
only by the spring-neap cycle but also by river discharge.
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Results: Tidal Cycle surveys
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Stratification is reduced at the end of ebb
and increased at the end of the food tide.
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Results: Tidal Cycle surveys
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Mooring data: tidal variability in stratification
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The observed tidal variability in stratification is
contrary to the one expected from the tidal
straining mechanism .

(Simpson et al. 1990)
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What causes this tidal variability in stratification?

Cross-channel straining
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The adjustment of the isohalines during the flood stratifies
the water column but subsequently the cross-channel flows
strain the isohalines during the ebb reducing stratification.
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Conclusions

® The subtidal variability in stratification is
controlled by the spring-neap cycle but also
by river discharge.

® The tidal variability is controlled by the
straining of the isohalines by the cross-
channel flows during the ebb and the

subsequent adjustment during the flood
tide.



