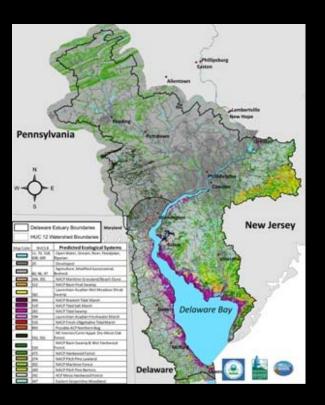
Climate Adaptation in the Delaware Estuary: Risks, Opportunities and Tough Choices



Danielle Kreeger Priscilla Cole Jennifer Adkins

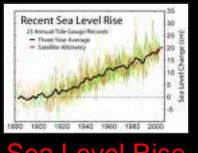
Climate Change in a Complex Landscape

The Working River

4th largest US urban center world's largest freshwater port 70% of east coast oil past and present industrial center

The Living Estuary

Water fowl, finfish, shellfish Horseshoe crab population Extensive tidal marshes



Climate Change in the Delaware Estuary

1. Likely Physical Changes

Temp

Salinity

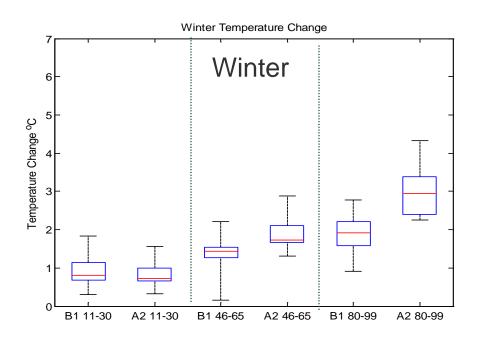
Sea Level Rise

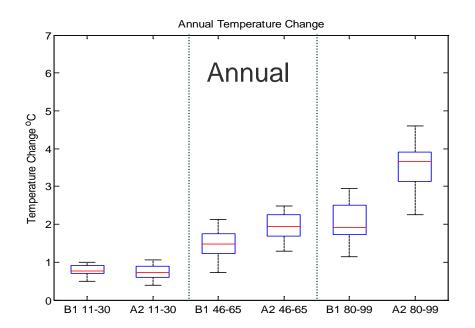
Storms

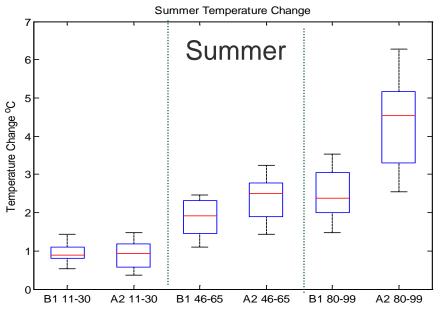
2. Example Effects on Resources

Drinking Water

Marshes

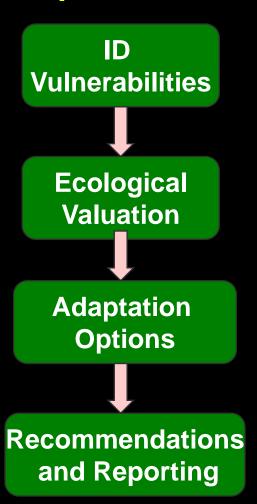



Bivalves



Temperature

- More warming in summer than winter
- Scenario differences minor until late century



R. Najjar, PSU

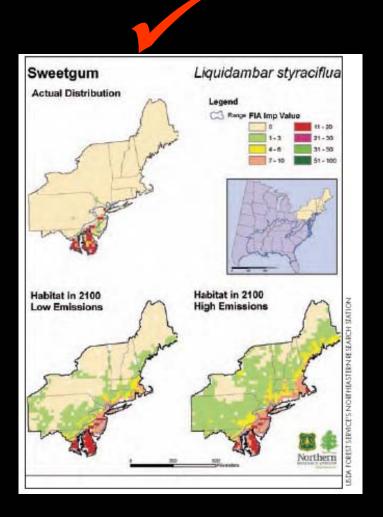
Climate Ready Pilot Adaptation Planning

Case Studies

Tidal Marshes

Bivalve Shellfish

Drinking Water



Disruption

Example: Species Range Shifts

Freshwater Mussels

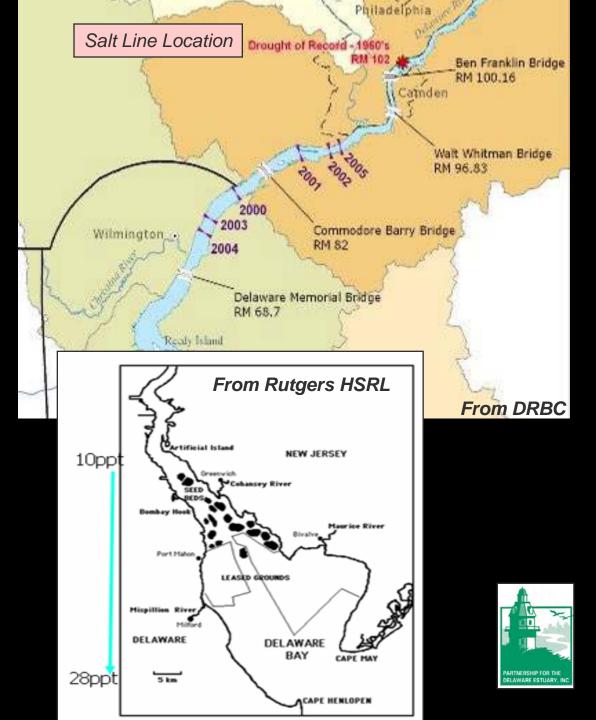
Patchy, Impaired

Elliptio complanata

Rare

Strophitus undulatus

Extirpated


Alasmidonta heterodon

		State Conservation Status		
Scientific Name	Scientific Name	DE	NJ	PA
ALASMIDONT	DWARF WEDGEMUSSEL	Endangered	Endangered	Critically Imperiled
ALASN ONTA UNDULATA	TRIANGLE FLOATER	Extirpated ?	Threatened	Vulnerable
ALASMIDONT VARICOSA	BROOK FLOATER	Endangered	Endangered	Imperiled
ANODONTA IMPLICATA	ALEWIFE FLOATER	Extremely Rare	no data	Extirpated ?
ELLIPTIO COMPLANATA	EASTERN ELLIPTIO	common	common	Secure
LAMPSIL	YELLOW LAMPMUSSEL	Endangered	Threatened	Vulnerable
LAMPS RADIATA	EASTERN LAMPMUSSEL	Endangered	Threatened	Imperiled
LASMIGONA SUBVIRIDIS	GREEN FLOATER	no data	Endangered	Imperiled
LEPTODEA OCHRACEA	TIDEWATER MUCKET	Endangered	Threatened	Extirpated ?
LIGUMIA NASUTA	EASTERN PONDMUSSEL	Endangered	Threatened	Critically Imperiled
MARGARI ERA MARGARITIFERA	EASTERN PEARLSHELL	no data	no data	Imperiled
PYGANODON CATARACTA	EASTERN FLOATER	no data	no data	Vulnerable
STROPHITUS UNDULATUS	SQUAWFOOT	Extremely Rare	Species of Concern	Apparently Secure

Disruption

Oyster Disease and Salinity

Oyster Management

Can they maintain (or be maintained) until they might see more optimal conditions?

Historical data from Rutgers Haskin Shellfish Laboratory

DK 10

Bivalve Vulnerability?

Oyster Reefs

- Salinity Driven Disease Epizootics
- Others: Food, pH

Salt marsh Mussel Beds

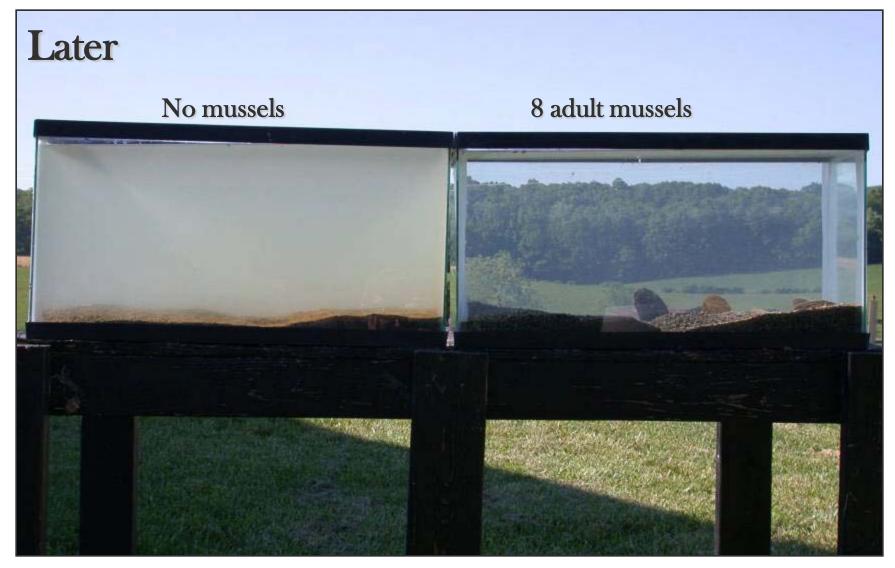
- Loss and Degradation of Wetland Habitat
- Others: Food, PH

Freshwater Mussel Beds

- Range Shifts with No Dispersal
- Habitat Degradation (T, salinity, pH, fish hosts)

U.S. Fish and Wildlife Service

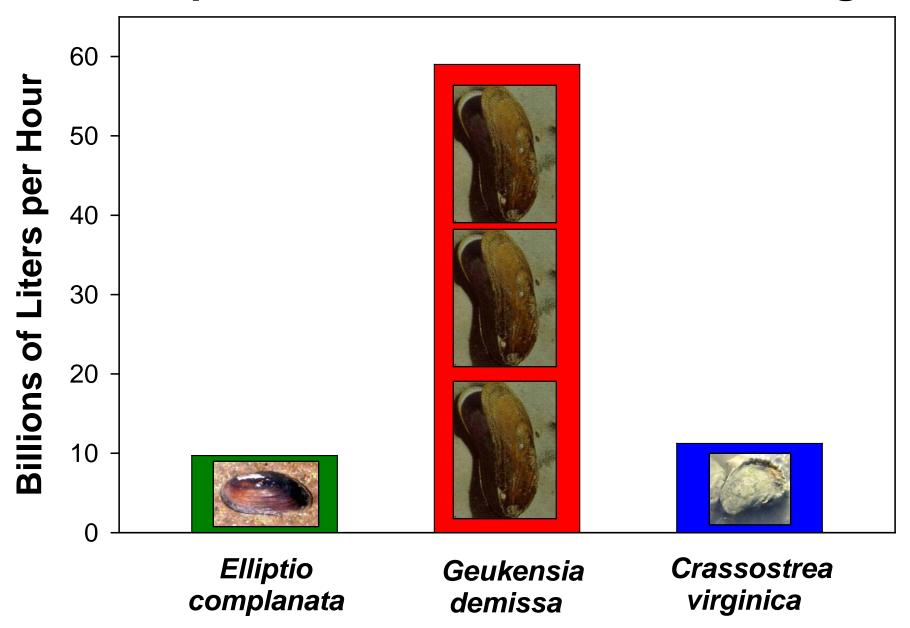
Clean Water



Slide from R. Neves, VA Tech

U.S. Fish and Wildlife Service

Biofiltration Potential

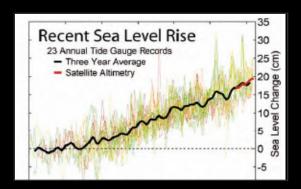


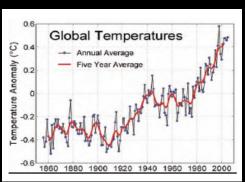
Slide from R. Neves, VA Tech

Population-Level Water Processing

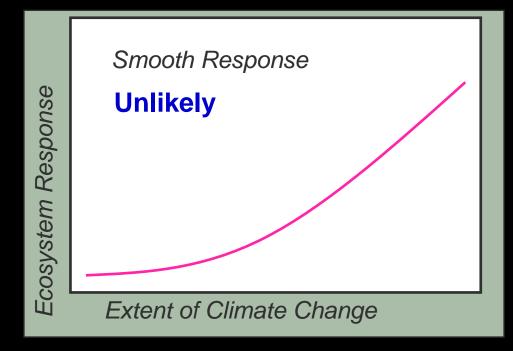
Bivalve Na	atural Capital	Oysters	Marsh Mussels	FW Mussels			
Millennium Ecosystem Assessment Categories	Specific Services/Values	Relati	Scores				
Provisioning: Food & Fiber	Dockside Product	111		4			
Deculation	Shoreline & Bottom Protection	11					
Regulating	Shoreline Stabilization	11	111	44			
Shellfish Tough Decisions							
 Which species and associated ecosystem services can be sustained? Which should we invest in? (since funding will always be too limited) 							
	Waterman Lifestyle, Ecotourism	11					
Cultural/ Spiritual/ Historical/ Human Well	Native American	11		111			
Being	Watershed Indicator	111	11	111			
	Bio-Assessment	111	11	111			

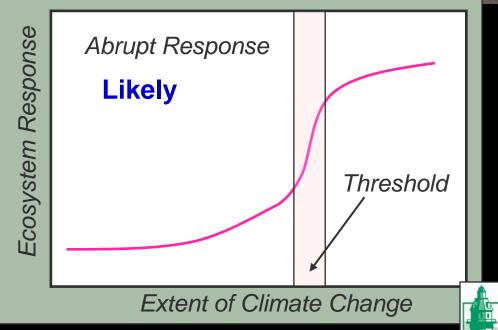
Disconnects (Hypothetical Example)



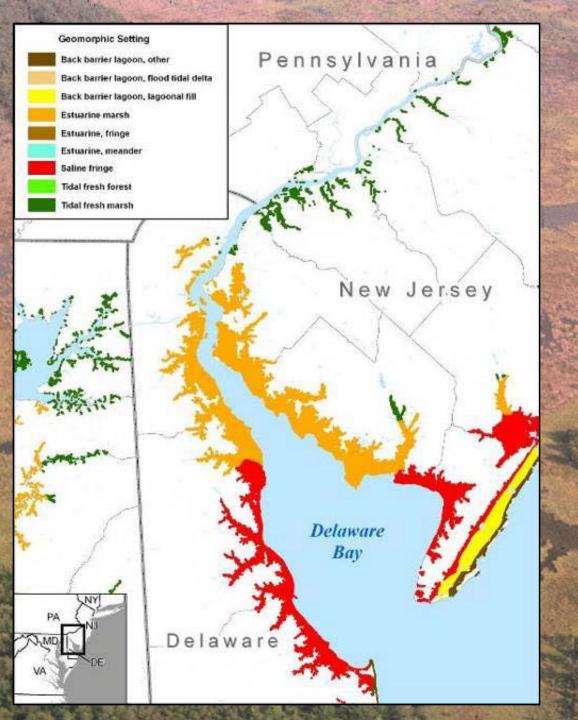

Decoupling of Horseshoe Crab Spawning and Shorebird Migration

Website slides are from the Delaware Shorebird Project and the Horseshoe Crab Conservation Network


Thresholds (Non-linear Responses)



Tolerance Limits Breached



Slide adapted from Carlos Duarte

DK 19

Tidal Wetlands

Tidal Wetlands

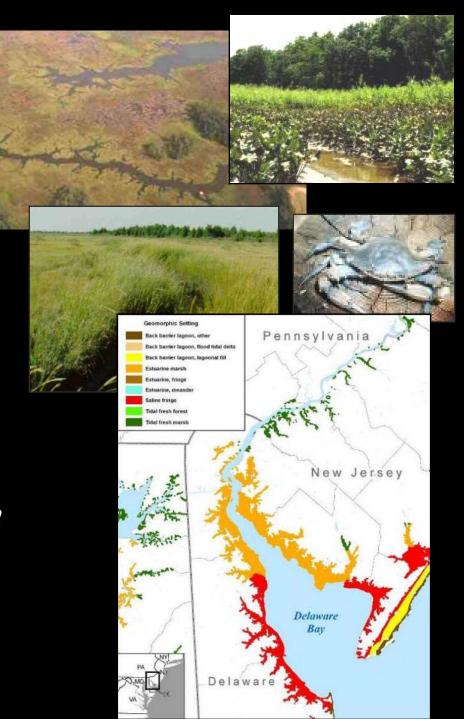
A Signature Trait of System

Near Contiguous Band

• Diverse: Freshwater Tidal Marshes

Brackish Marshes

Salt Marshes


Ecological Values:

Structural

biodiversity habitat for fish and wildlife nurseries for imperiled taxa

Functional

food web water quality flood protection

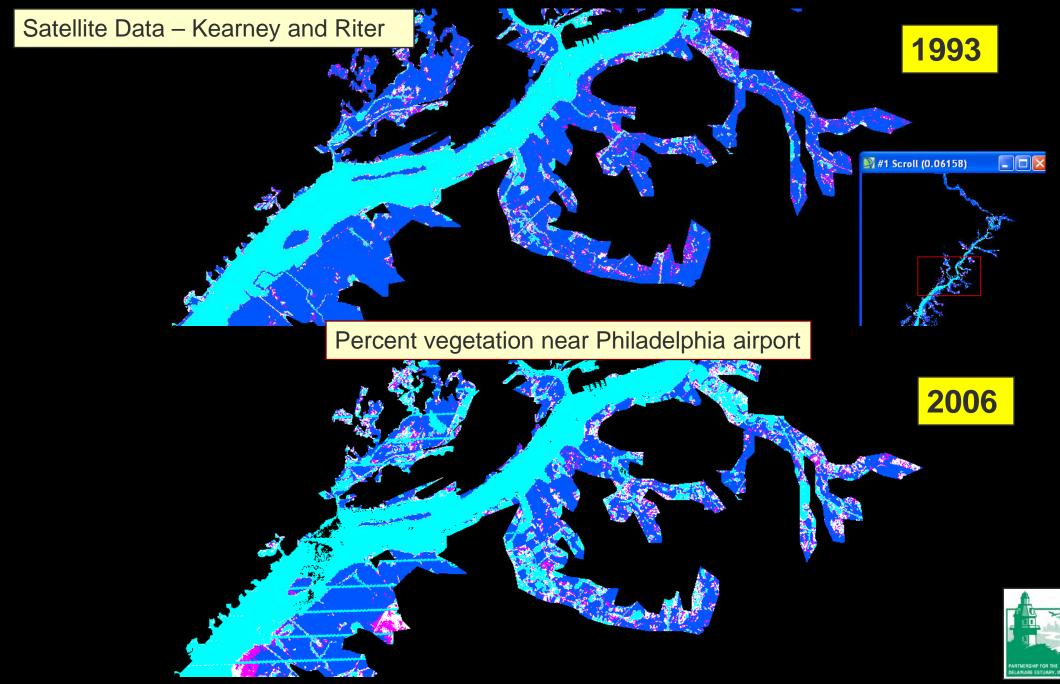
Wetland Ecosystem Services

Milenium Ecosystem Assessment 1° Service	2° Service	3° Service	4° Service
	Food	Fisheries Support Algae and invertebrate production	
Provisioning	Genetic Materials	Phragmites control research	
	Biochemical Products	Research in Antifungal Agents	
	Fiber and Fuel	Cellulose stock	
	Sequestration	Carbon	Carbon Caps, mitigation
Regulating	Sediment Stabilization	Erosion control	Meet TMDLs for sediment
	Storm Protection/ Wave Attenuation/ Flood Protection	Protect Property Values and infrastructure	
	Gas Regulation	Carbon Sequestration Oxygen production	
	Water Quality	Sequestration, Filtering	TMDLs: Nutrients, Pollutants
	Recreation	Bird watching, hunting, boating	
	Spiritual and Inspirational	Native American Uses	
Cultural/ Spiritual Human Well Being	Educational	University reasearch & school projects/trips	
	Aesthetic Value	Landscape pictures, paintings, open space	
	Habitat	Wildlife, shellfish, insects	
	Biodiversity	Maintain Plant Communities	
Supporting	Production	Primary Production	
Supporting	Water Cycling/Hydrologic Regime		
	Nutrient Cycling/Biogeochemical	Maintain trophic cycles, soil	
	Processes	building	

Tidal Wetlands

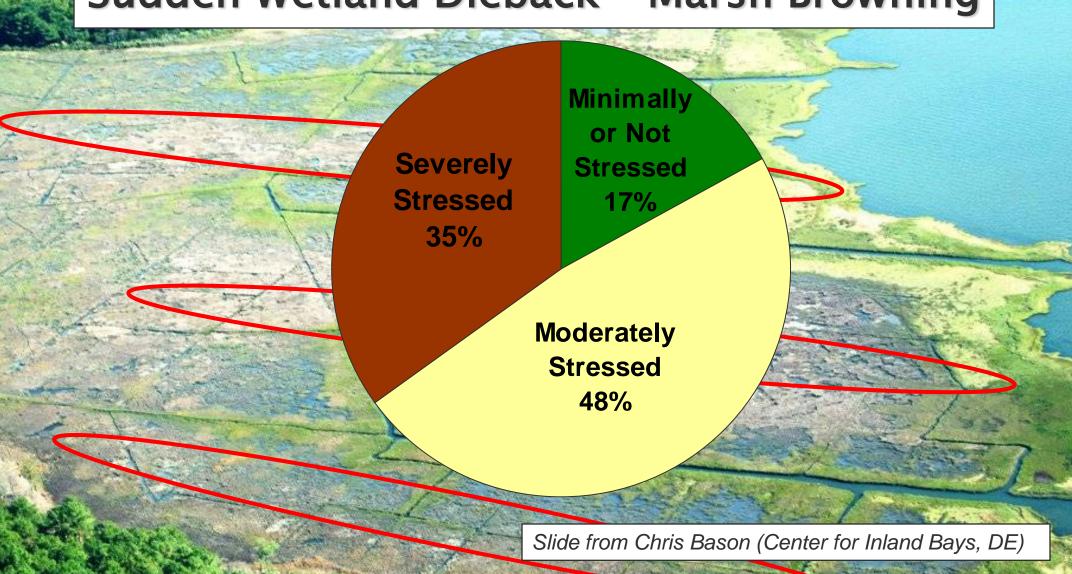
Concerns:

Degradation


Conversion and Loss

Sea Level & Salinity

Storms


Sediment budget

Summer, 2006

Sudden Wetland Dieback - Marsh Browning

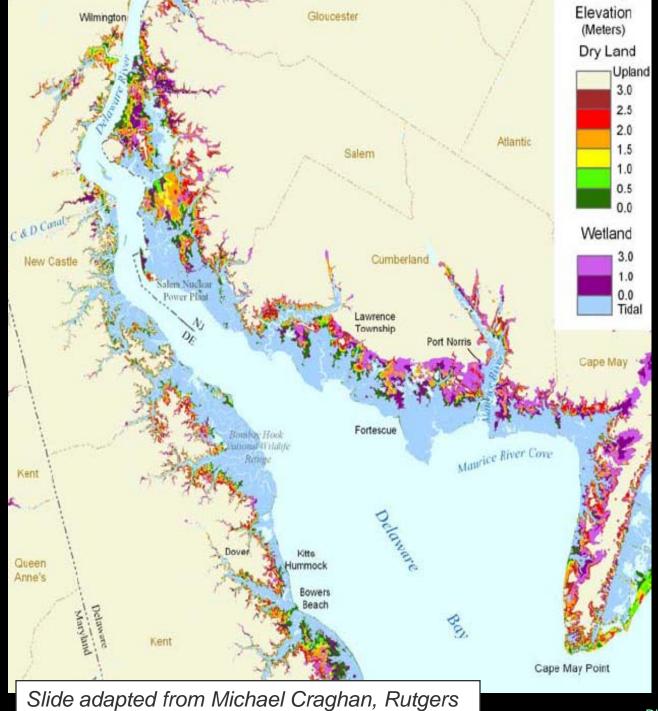
Tidal Wetland Vulnerability?

Freshwater Tidal Marshes

- Salinity Rise Causes Conversion to Brackish
- Barriers to Landward Migration
- Others: Tidal Range, Seasonal Drying/Wetting

Salt Marshes

- Sea Level Rise, Subsidence and Sediment Deficits Lead to Drowning
- Storms and Wind Wave Erosion
- Barriers to Landward Migration
- Others: Seasonal Wetting/Drying, Invasives

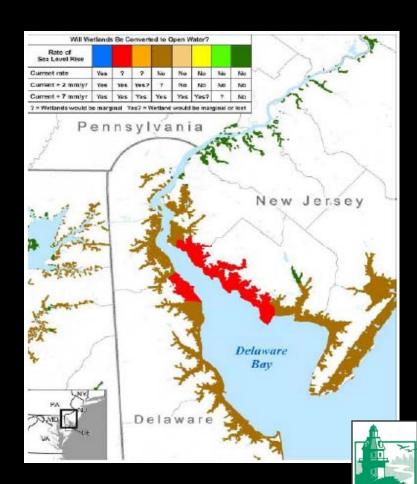

Tidal marshes need to move:

1) <u>horizontally</u> (landward)

and/or

2) <u>vertically</u> (to keep pace)

Can they do it? Where?


Tidal Wetlands Adaptation Planning

Goal: Maximize long-term ecosystem health and resiliency

Will Wetlands Be Converted to Open Water?								
Rate of Sea Level Rise								
Current rate	Yes	7	7	No	No	No	No	No
Current + 2 mm/yr	Yes	Yes	Yes?	?	No	No	No	No
Current + 7 mm/yr	Yes	Yes	Yes	Yes	Yes	Yes?	?	No
? = Wetlands would b	e marg	inal Y	es? = V	Vetland	would	be man	ginal o	or lost

Wetland Tough Choices

- Where will wetlands will be converted to open water?
- Where can we save them?
- Where is strategic retreat the best option?

Synergisms - Climate & Other Changes Together

Received 24 July 2002 Accepted 28 October 2002 Published online 3 February 2003

Climate change and habitat destruction: a deadly anthropogenic cocktail

J. M. J. Travis

"... The interaction between climate change and habitat loss might be disastrous. During climate change, the habitat threshold occurs sooner. Similarly, species suffer more from climate change in a fragmented habitat."

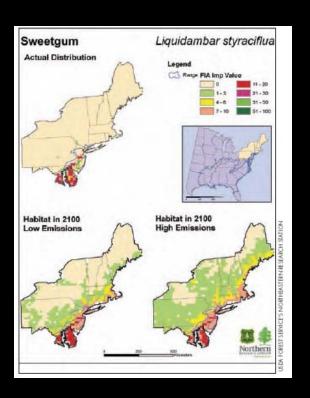
Drinking Water Vulnerabilities to Climate Change

CI	limate Change Will Bring:	Resultant Effects	These Effects will Impact Water Systems Through:
To V	Warmer Temperatures & Weather Fluctuations	increased precipitation (rainfall expected to increase mainly in the Northern and Eastern parts of the country)	increased river discharge and stream flow 1 2 6 increased runoff 1 2 6 increased groundwater levels 1 2 6 extreme flooding 1 2 4 6 10 changes in watershed vegetation and forest cover
Leading to Issues with the Drinking Water Supply:	decreased precipitation (rainfall expected to decrease mainly in the Southwest, but could be short-term periods in the East)	decreased river discharge and stream flow 3 6 7 9 decreased groundwater levels 3 6 7 9 increased frequency of short-term drought 3 6 8 9 increased number and intensity of wild fires 1 6 9 10 changes in watershed vegetation and forest cover	
	reservoirs plants and pump stations	increased frequency and magnitude of storms	lightning and electrical disturbances 5 10 storm surge 1 2 4 5 6 8 9 10
degraded water quality of source water and finished water (turbidity, dissolved oxygen, dissolved organic carbon, taste and odor compounds, dbp formation etc.) rupward salt line movement saltwater intrusion in coastal aquifers and freshwater habitats increased demand for supply power outages and issues with customer supply		warmer water temperatures	disruptions to aquatic ecosystems (including wetlands) 6 7 8 sea level rise 1 4 5 6 7 8
		thawing permafrost, reduced ice cover and snow pack, and reduction in freezing season	flooding 1 2 4 6 10 sea level rise 1 4 5 6 7 8 decreased river discharge and stream flow (spring and summer) 3 6 7 9 changes in watershed vegetation and forest cover

Added Complexity

- Ecological Flows
 - Dredging
- ·Withdrawals
 - Wind Farms

· Land Use Change · Spills, NRDA



- Drinking Water Tough Questions
 How can we maintain low salinity in the upper estuary?
 - · Will more reservoirs be needed, which have their own issues?
 - · Where should infrastructure be protected from SLR versus strategic retreat?

Principle: "Restore" for the Future

PARTNERSHIP FOR THE DELAWARE ESTULARY, INC.

- Forecast future sustainable states
- Smart "restoration" = climate adaptation

Shift policy and management paradigms

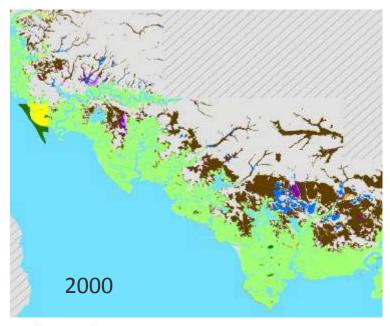
Next Steps?

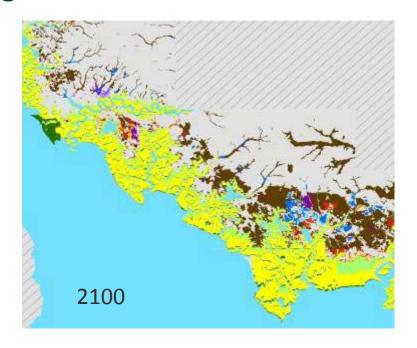
1. Science

Strengthen adaptation plan with more rigorous monitoring and predictive modeling for likely consequences

2. Local Relevance

Develop high resolution geospatial—based planning tools that guide local actions, nested within a watershed-basis


3. Natural Capital


Enhance decision tools with "bang for the buck" estimates of environmental uplift outcomes for various adaptation tactics

4. Collaboration

Implement a coordinated strategy for advancing science, policy and on-the-ground actions

Projecting the Fate of Tidal Wetlands and Their Ecosystem Services Using SLAMM Modeling - *Industrial Economics*

Areas for Model Improvement

- Erosion/Accretion Rates
- Better Vegetation Classifications
- Marsh Drowning Mechanisms

Climate Adaptation Planning

ID Vulnerabilities

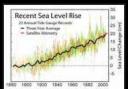
Ecological Valuation

Adaptation Options

Recommendations and Reporting

Work Groups

Climate Adaptation Work Group (CAWG) STAC-affiliated; Co-Chairs: Najjar & Kreeger


Tidal Wetland Sub-group Velinsky & Kreeger

Shellfish Sub-group Kraeuter & Kreeger

Drinking Water Sub-groupConnolly

Predications & Modeling Team Najjar

Natural Capital Team Cole

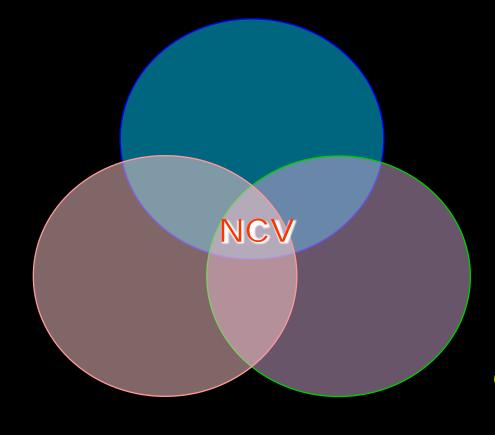
Climate Adaptation Planning

PDE: Climate Ready Pilot

DRBC: Flooding, Inundation, Salinity

PWD: Drinking Water

PA: Energy, Forests


NJ: Carbon Sequestration, Air

DE: Sea Level Rise, Inundation

DE Estuary Climate Summit?

Ecosystem Services in PDE Science

Regional Restoration Initiative

Climate Adaptation Targeted
On-the-Ground
Projects

Kreeger 38