

A Comparison of a Coastal Lagoon and Coastal Plain Estuary in the Mid-Atlantic U.S.

Academy of Natural Sciences of Drexel University Philadelpia, PA

Coauthors: T. Quirk, D. Velinsky, S. Kilham, C. Sommerfield.

Background: Current Trends in Literature

- Salt marshes offer many ecosystem services
- Highly efficient at carbon (C) sequestration

Ecosystem	Carbon burial rate (g C m ⁻² yr ⁻¹) mean ± SE	Global area (km²)	Global carbon burial* (Tg C yr ⁻¹) mean ± SE	Sources	
				Global area	Carbon burial
Salt marshes	218 ± 24 range = 18–1713 n = 96 sites	22 000**- 400 000	4.8 ± 0.5 87.2 ± 9.6	Chmura et al. (2003); Duarte et al. (2005a)	Chmura et al. (2003); Duarte et al. (2005a)
Mangroves	226 ± 39 (range = 20-949) n = 34 sites	137 760 – 152 361	31.1 ± 5.4 34.4 ± 5.9	Giri et al. (2010); Spalding et al. (2010)	Chmura et al. (2003); Bird et al. (2004); Lovelock et al. (2010) Sanders et al. (2010)

- Increase soil volume over millennia
- (Table modified from Mcleod et al. 2011.)
- Release relatively minimal amount of methane (CH_4), nitrous oxide (N_2O)

Accumulation of C in Salt Marsh Soils

- Occurs when plant productivity exceeds microbial decomposition
- Rates of accumulation depend upon several fine-scale controls

Problem Statement

- Factors affecting rates of C sequestration are poorly understood, vary greatly
- Few studies geared toward quantifying relative magnitude of influence
- Few studies compare two types of estuaries

Research Goals

- 1) Elucidate fine-scale controls that influence C accumulation in salt marsh soils
- 2) Examine relative magnitude of influence of fine-scale controls in two estuary types
 - Sediment deposition/accumulation
 - Belowground biomass production
 - Organic matter accumulation

Preliminary Accretion Data

Study Locations: Coastal Plain

elevations at specific locations. Actual elevations at specific locations may be 75 cm above or below the elevation shown. Source: J.G. Titus and J Wang. 2008. "Maps of Lands Close to Sea Level along the Mid-Atlantic Coast".

Delaware Bay

1) Dividing Creek

2) Maurice River

3) Dennis Creek

(J.G. Titus and J. Wang . U.S. EPA 2008.)

Study Locations: Coastal Lagoon

Barnegat Bay

1) Reedy Creek

2) Island Beach State Park

3) Horse Point

(N.J. DEP)

Sample Collection & Design

- 3 replicate cores per marsh
 - ~ 15.25cm diameter (6in)
 - ~1 m deep
- Stratified near, middle and far distances from estuary
- Collected in short form Spartina alterniflora

Sample Processing

- Cores cut in 2cm depth sections
- Sections halved
 - Cs¹³⁷ and Pb²¹⁰ dating
 - Loss on Ignition (%OM)
 - Nutrients (C, N, P)
 - Labile vs. Refractory C
 - Belowground biomass composition

Results: Aboveground Biomass

Live:

P-value= .02276*

Dead:

P-value= .02941*

Results: Belowground Biomass

Belowground Biomass Profiles: Delaware Bay

Belowground Biomass Profiles: Barnegat Bay

Results: Loss on Ignition (%OM)

Organic C = (0.001217)*OM² + (0.3839)*OM
Equation from Callaway et. al 2012

%LOI Profiles:

Delaware Bay

%Inorganic Matter%Organic Matter

%LOI Profiles:

Barnegat Bay

Conclusions

- DB: higher live:dead ratio of aboveground biomass
- BB: on average higher amounts belowground biomass
- Biomass depth profiles:
 - Composition of root structures diverse in DB
 - IBSP and Horse point similar, Reedy creek extremely low
 - Did not correspond to %OM profiles
- %OM depth profiles: uniform in DB and concentrated near surface BB
- BB marshes more dependent on plant growth for accretion
- Depending on accretion rates, we hypothesize that C burial rates will be greater in DE Bay