Bulkhead configurations and horseshoe crab spawning on sandy shorelines in Delaware Bay, New Jersey
Sherestha Saini*, Nancy L. Jackson* and Karl F. Nordstrom* 
a. Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark NJ 
b. Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick NJ

Problem Statement

- Bulkheads are shore parallel walls designed to protect upland from erosion and flooding.
- Studies on ocean beaches suggest that shore parallel walls reduce frontal foreshore widths and eliminate or truncate habitat for species that use the foreshore for spawning, nesting or foraging.
- Bulkheads are the most common response to bayside erosion in developed areas.

The rationale for this study is a need to understand the interactions between shore protection structures such as bulkheads and spawning populations of horseshoe crabs on estuarine beaches.

Delaware Bay is an important location for spawning horseshoe crabs.
Most of the beaches heavily used for spawning are also backed by human settlements.

Many bulkheads are built incrementally over time and intersect the shoreline at different elevations.
Discontinuous alignment creates enclaves of relatively wide sandy intertidal beach between segments of exposed bulkhead.

3 enclaves and an unarmored segment of shoreline were selected at Reeds and Fortescue to enumerate spawning abundance.

Methods

A ground assessment of bulkheaded and adjacent unbulkheaded beach segments was conducted at 7 sites.

Sandy enclave lengths and active foreshore widths bounded by a shore perpendicular bulkhead were determined.

Mean tidal range: 1.6 - 1.9 m
Foreshore slope: 5 - 9 degrees
Sediment - Medium to coarse sand
Dominant waves are locally generated due to sites being inundated during high water.

Beach Day Mean Wind speed (m/s) Wind direction Significant wave height (m)
Reeds beach 5/15/2007 3.8 SE 0.53
5/17/2007 3.2 NE 0.60
5/30/2007 4.5 SE 0.40
6/1/2007 3.9 SE 0.40
Fortescue beach 5/14/2007 5.3 SE 0.50
5/16/2007 1.1 Variable 0.67
5/31/2007 4.2 SE 0.47
6/1/2007 3.4 SE no data

Results

Enclave 1 Enclave 2 Enclave 3 Enclave
Fortescue Reeds Pierces Point Sunray and Sunny
Percentage of bulkheads Percentage of enclaves Percentage of horseshoe crab spawning

Fortescue and Gandy’s have the highest percentage of bulkheads. 
Fortescue and Reeds have the lowest and highest percentage of enclaves along their shorelines respectively.
All bulkheads on Reeds beach lie below the spring wrack elevation.

Abundance of spawning horseshoe crabs at Fortescue Beach.

Preliminary Findings

- Approximately 60 % of bulkheads on the New Jersey shoreline are below spring wrack elevation and may interfere with horseshoe crab spawning.
- Relatively high waves revealed greater densities of horseshoe crabs in the enclaves, with more horseshoe crab clusters in the shadow zones along bulkheads relative to wind direction.
- Waves approaching the shoreline at an angle break at the base of bulkheads; dissipating wave energy before entering the enclaves.
- Density of spawning crabs increases an hour after high tide as crabs cluster in shadow zones along bulkheads where wave and current velocities maybe lower.
- Enclaves on Reeds beach appear to be a more favorable location for spawning crabs when compared to the unarmored site during high water.
- Enclaves on Fortescue beach not favorable for crabs to spawn due to sites being inundated during high water.

Objective

The main objectives of this study are to:
1. Document the physical configurations of bulkheads on the New Jersey shoreline of Delaware Bay.
2. Assess the suitability of bulkheaded beach enclaves for horseshoe crab spawning.

Counts of spawning horseshoe crabs were made at high tide and one hour before and after high tide.

Horseshoe crab spawning counts generally greater an hour after high tide.
Densities of spawning horseshoe crabs greater in enclaves.

Abundance of spawning horseshoe crabs at Reeds Beach.

Acknowledgements

Funding: National Science Foundation
NOAA – New Jersey Seagrant Program