
# Hydrological and Geochemical Investigations in Support of Watershed Restoration in Upper Schuylkill River

- Stream water quantity: Losses of surface water to underground mines can eliminate or reduce streamflow.
- Stream water quality: Elevated sulfate and metals in CMD degrade water quality and aquatic ecosystems.

Charles A. Cravotta III, Research Hydrologist
USGS Pennsylvania Water Science Center, New Cumberland, PA



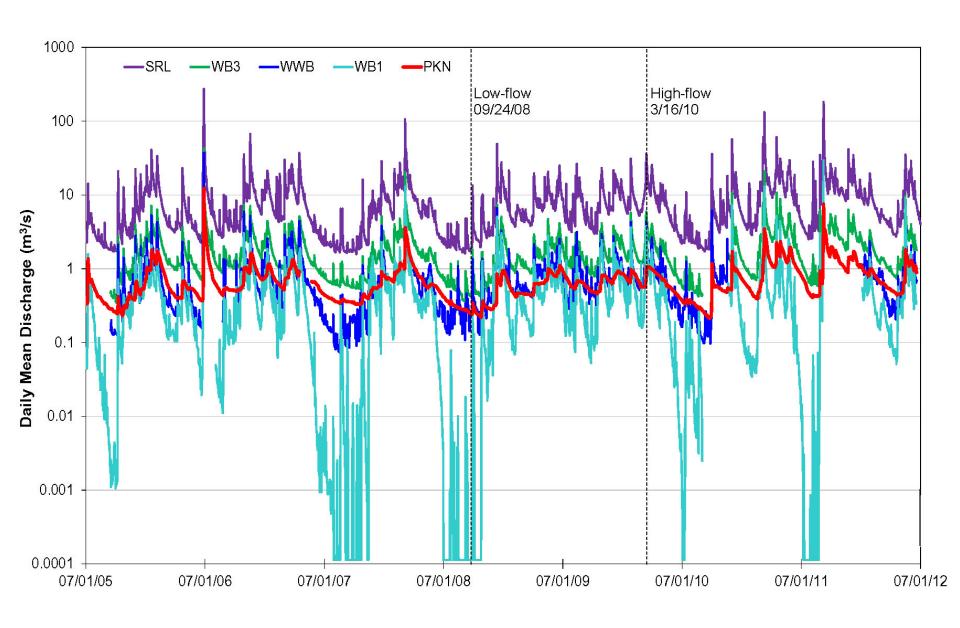


Synclinal basins containing coal deposits (numbered) and underground mines (now abandoned) underlie parallel valleys.

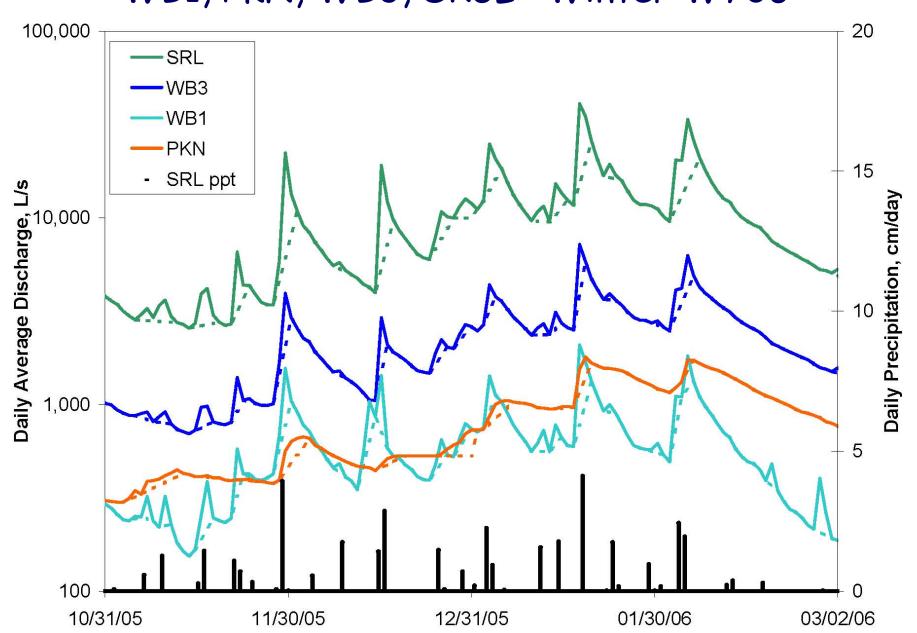
Groundwater floods the Pine Knot Mine (mine pool) to the Pine Knot Tunnel level and then flows 1,400 m by gravity to the tunnel outlet on south side of Mine Hill.

The Oak Hill Mine pool level is maintained by artesian discharge from the Oak Hill Boreholes within the flood plain of the West Branch Schuylkill River.










#### Variations in Discharge (Jul 2005 - Jul 2012)

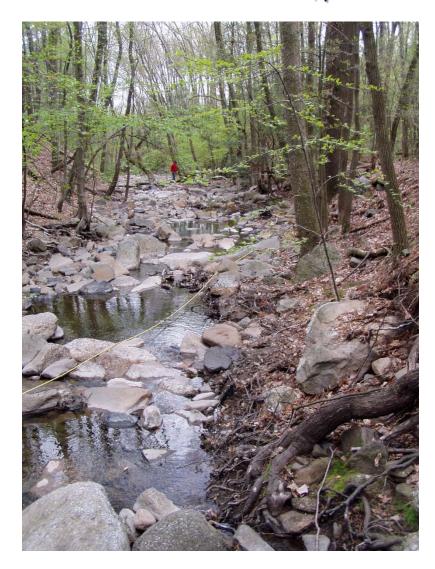


### Hydrograph Separation Analysis WB1, PKN, WB3, SR5L--Winter WY06



#### Hydrograph Separation Analysis WY06

October 1, 2005 - September 30, 2006 [mi<sup>2</sup>, square miles; ft<sup>3</sup>/s, cubic feet per second; in/yr, inches per year]

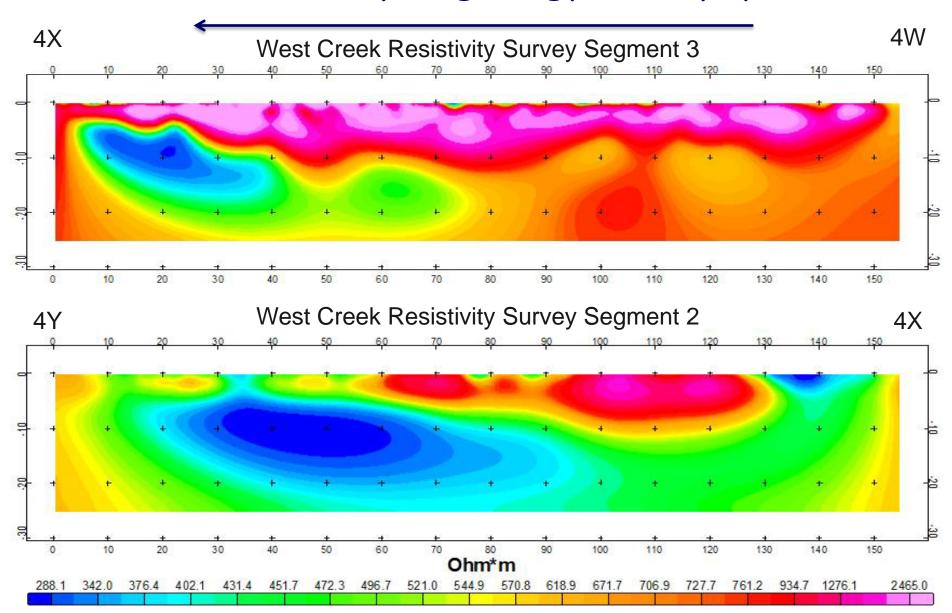

| Map ID    | Drainage Area,<br>mi <sup>2</sup> | Mean Streamflow <sup>b</sup> |       | Ме                | Streamflow/<br>Rainfall <sup>d</sup> |           |            |
|-----------|-----------------------------------|------------------------------|-------|-------------------|--------------------------------------|-----------|------------|
|           |                                   | $\mathrm{ft^3/s}$            | in/yr | $\mathrm{ft^3/s}$ | in/yr                                | Index (%) | 53.6 in/yr |
| WB1       | 19.46                             | 15.9                         | 11.1  | 10.1              | 7.1                                  | 63.7      | 0.21       |
| PKN       | 19.19                             | 26.1                         | 18.5  | 24.2              | 17.1                                 | (92.6)    | 0.34       |
| (PKN+WB1) | 19.46                             | 42.0                         | 29.3  | 35.2              | 24.6                                 | 83.9      | 0.55       |
| WB3       | 24.1                              | 67.9                         | 38.3  | 56.3              | 31.7                                 | 82.9      | 0.71       |
| WWB       | 18.6                              | 31.9                         | 23.3  | 20.6              | 15.1                                 | 64.6      | 0.43       |
| MCR       | 25.5                              | 61.7                         | 32.9  | 43.1              | 23.0                                 | 69.9      | 0.61       |
| SR4       | 27.2                              | 64.8                         | 32.4  | 44.0              | 22.0                                 | 67.9      | 0.60       |
| LSR1      | 42.9                              | 109.0                        | 34.5  | 81.4              | 25.8                                 | 74.7      | 0.64       |
| LSR2      | 65.7                              | 173.1                        | 35.8  | 129.0             | 26.5                                 | 73.9      | 0.67       |
| SRL       | 133                               | 300.3                        | 30.7  | 203.5             | 20.8                                 | 67.7      | 0.57       |
| SRB       | 355                               | 858.0                        | 32.8  | 515.8             | 19.7                                 | 60.1      | 0.61       |

- a. Hydrograph separation conducted using "PART" computer program (Rutledge, 1998) with daily average flow during Water Year 2006.
- b. Streamflow expressed as inches per year by dividing streamflow in cubic feet per second by drainage area in square miles and then multiplying by the factor 13.584.
- c. Baseflow expressed as cubic feet per second, inches per year, and "index" as percentage of total annual streamflow.
- d. Ratio of total annual streamflow to total annual rainfall given for measured rainfall of 53.6 in/yr at SRB during Water Year 2006.

### Streamflow Losses to Underground Mines West Creek (Headwaters of West West Branch)

West Creek above Forestville, perennial

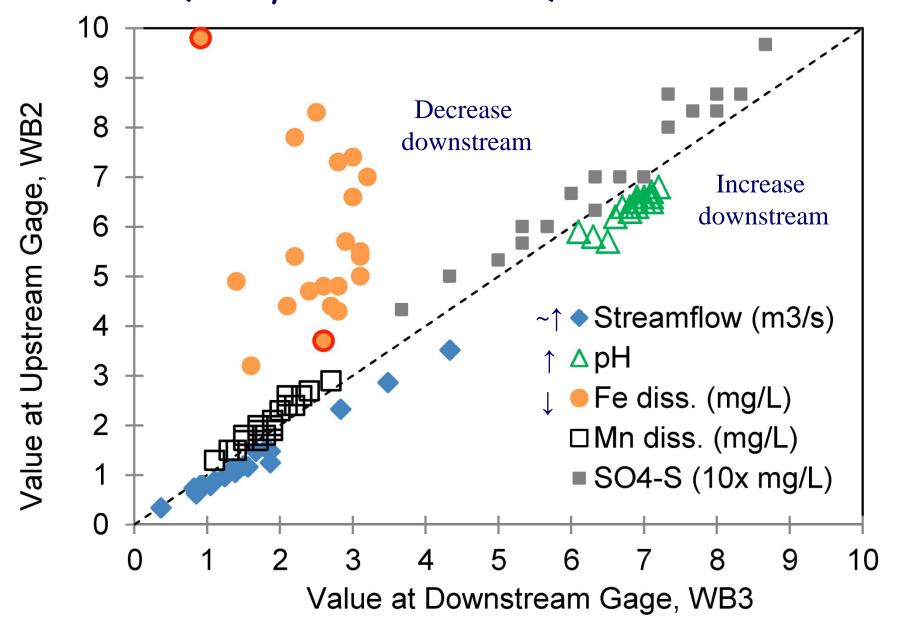
West Creek below Forestville, intermittent






#### West Creek Flow Loss Survey - March 2012

| MAP | SNAME           | LAT      | LON       | DATE -   | FLOW   | FIELD WATER QUALITY METER READINGS |      |       |      |       | -          |                   |
|-----|-----------------|----------|-----------|----------|--------|------------------------------------|------|-------|------|-------|------------|-------------------|
| NUM | NUM SNAIVIE     |          |           |          | Qcfs   | TempC                              | SC25 | DO.mg | рН   | Eh.mv | Q Loss     | Q Gain            |
| 4   | WestCr_1        | 40.69366 | -76.30820 | 20120313 | 0.633  | 6.9                                | 44   | 10.61 | 3.88 | 605   |            | 0.633             |
| 4X  | WestCr_loss     | 40.69144 | -76.30453 | 20120418 | 1923 s |                                    |      |       |      |       |            |                   |
| 5   | WestCr_2        | 40.69131 | -76.30200 | 20120313 | 0.131  | 8.89                               | 57   | 10.73 | 3.98 | 538   | -0.502     |                   |
| 6   | WestCr_3        | 40.68986 | -76.29631 | 20120313 | 0.355  | 8.82                               | 154  | 10.59 | 4.42 | 573   |            | 0.224             |
| 7A  | WCr_4 ab UNN    | 40.68243 | -76.29431 | 20120313 | 0.267  | 10.7                               | 125  | 11.2  | 4.9  |       | -0.088     |                   |
| 7   | UNN_1           | 40.68234 | -76.29431 | 20120313 | 0.045  | 12.3                               | 136  | 9.7   | 6.6  |       |            |                   |
| 8   | WestCr_4        | 40.68197 | -76.29408 | 20120313 | 0.312  | 10                                 | 159  | 11.4  | 5.6  |       | 1          | 0.045             |
| 9A  | WCr_5 ab seepag | 40.68000 | -76.28815 | 20120313 | 0.170  | 10.4                               | 405  | 9.1   | 6.56 |       | -0.142     |                   |
| 9B  | WCr_5 seepage   | 40.67993 | -76.28822 | 20120313 | 0.011  | 13.8                               | 1068 | 7.7   | 7    |       | 1          |                   |
| 9   | WestCr_5        | 40.67986 | -76.28815 | 20120313 | 0.182  | 10.6                               | 451  | 90    | 6.55 |       | ]          | 0.011             |
| 10  | PhoenixPark     | 40.68061 | -76.28703 | 20120313 | 0.000  |                                    |      |       |      |       | -0.731     | 0.913 -80.1%      |
| 14  | WWBranch_2      | 40.66877 | -76.23796 | 20120313 | 12.425 | 8.54                               | 261  | 11.57 | 7.31 | 377   | loss froi  | n starting point  |
| 15  | WBranch_APine   | 40.70413 | -76.24969 | 20120313 | 8.44   | 7.52                               | 143  | 11.65 | 4.91 | 282   |            |                   |
| 16  | PineKnot        | 40.70409 | -76.24989 | 20120313 | 19.25  | 10.62                              | 538  | 10.7  | 6.36 | 151   | 1          |                   |
| 17  | OakHill         | 40.70203 | -76.25158 | 20120313 | 6.6    | 14.67                              | 1010 | 1.68  | 6.34 |       | Q loss pe  | rcentage 11.1%    |
| 18  | WBranch_BOak    | 40.70169 | -76.25199 | 20120313 | 34.29  |                                    |      |       |      | 253   | flow of Oa | ak Hill Boreholes |
| 19  | WBranch3        | 40.66869 | -76.23642 | 20120313 | 42.38  | 10.09                              | 522  | 10.42 | 6.86 | 294   |            |                   |


### West Creek Hydrogeology & Geophysics



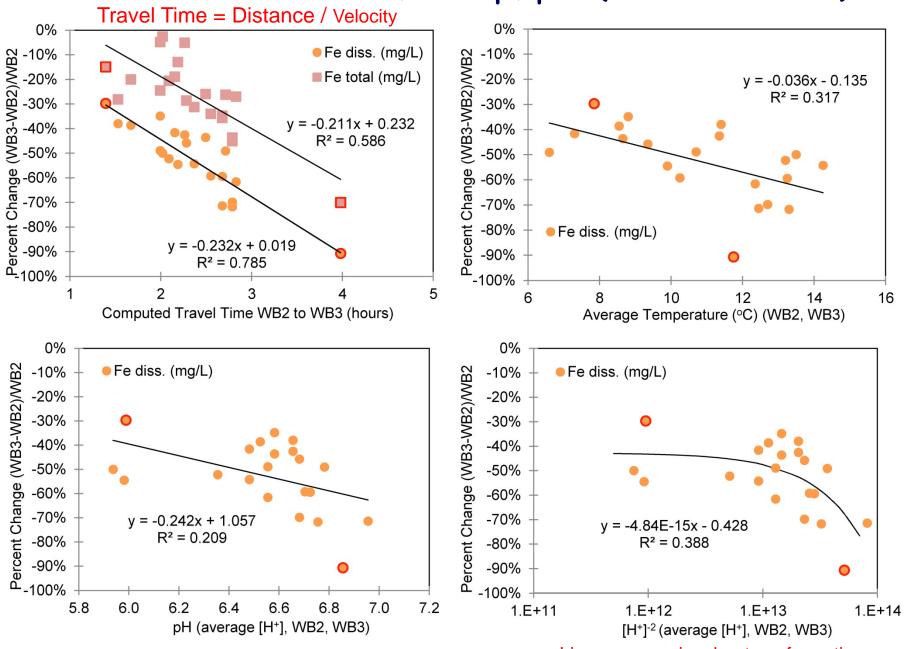
#### Variations in Water Quality (Jul 2005 - Jul 2012)

|                          | Upstream | С    | Dow    | ·      |             |        |      |
|--------------------------|----------|------|--------|--------|-------------|--------|------|
|                          | WB1      | PKN  | OAK    | WB2    |             | WB3    | WWB  |
| Flow (m <sup>3</sup> /s) | 0.20 +   | 0.57 | + 0.18 | = 0.96 | <u>&lt;</u> | 1.20   | 0.51 |
| Temp. (°C)               | 13.0     | 10.9 | 14.7   | 12.0   |             | 12.0   | 11.4 |
| DO                       | 9.4      | 9.9  | 2.0    | 9.0    |             | 9.5    | 9.8  |
| Eh (mV)                  | 405      | 320  | 220    | 300    |             | 270    | 330  |
| SC (µS/cm)               | 155      | 570  | 1000   | 560    |             | 570    | 350  |
| pH (units)               | 5.2      | 6.4  | 6.3    | 6.4    | <           | 6.9 ↑  | 7.4  |
| Alkalinity               | 2        | 34   | 150    | 45     |             | 47     | 52   |
| Acidity                  | 3        | -22  | -113   | -30    |             | -40 ↓  | -48  |
| SO <sub>4</sub> , diss.  | 52       | 240  | 390    | 210    |             | 190    | 110  |
| CI, diss.                | 14.0     | 17.5 | 8.8    | 16.0   |             | 20.0   | 7.4  |
| Ca, diss.                | 9.6      | 40.5 | 99.0   | 41.5   |             | 43.0   | 30.0 |
| Mg, diss.                | 6.8      | 42.0 | 55.0   | 34.5   |             | 33.0   | 18.0 |
| K, diss.                 | 0.7      | 1.4  | 2.3    | 1.4    |             | 1.9    | 1.4  |
| Na, diss.                | 8.0      | 10.0 | 32.0   | 14.0   |             | 18.0   | 11.0 |
| Al, diss.                | 0.50     | 0.07 | 0.06   | 0.04   | >           | 0.01 ↓ | 0.01 |
| Fe, diss.                | 0.07     | 5.15 | 18.00  | 5.45   | >           | 2.60 ↓ | 0.04 |
| Mn, diss.                | 0.33     | 2.45 | 3.70   | 2.05   |             | 1.90   | 0.31 |
| Ni, diss.                | 0.02     | 0.05 | 0.04   | 0.04   |             | 0.03   | 0.01 |
| Zn, diss.                | 0.04     | 0.12 | 0.05   | 0.08   |             | 0.07   | 0.02 |

#### △ Water-Quality WB2 to WB3 (Jul 2005 - Jul 2012)

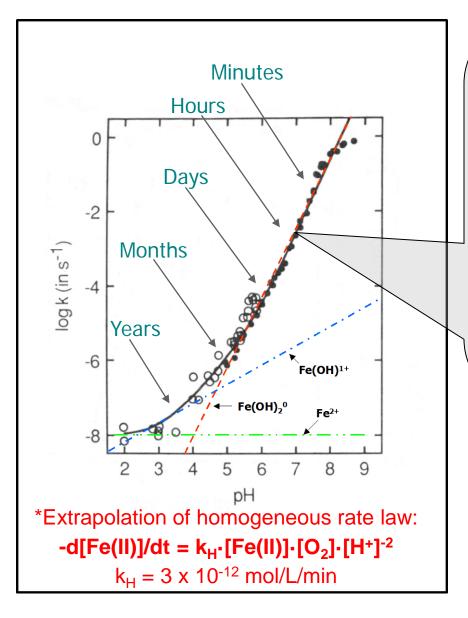


## Iron Oxidation & Hydrolysis (pH decrease, overall)


Fe(II) Fe<sup>2+</sup> +  $\frac{1}{4}$ O<sub>2</sub> + H<sup>+</sup>  $\rightarrow$  Fe<sup>3+</sup> +  $\frac{1}{2}$ H<sub>2</sub>O Oxidation (rate limiting): 7 mg/L Fe<sup>2+</sup> = 1 mg/L of D.O.

Fe(III) Fe<sup>3+</sup> +  $3H_2O \rightarrow Fe(OH)_3 + 3H^+$ 

Hydrolysis:  $1 \text{ mg/L Fe}^{2+} = 1.8 \text{ mg/L as CaCO}_3$ 


Overall, 1 mol Fe(II) oxidized/hydrolyzed to Fe(OH)<sub>3</sub> yields 2 mol [H<sup>+</sup>]: Fe<sup>2+</sup> + 0.25 O<sub>2</sub> + 2.5 H<sub>2</sub>O  $\rightarrow$  Fe(OH)<sub>3</sub> + 2 H<sup>+</sup>

#### △ Iron: Travel Time, Temp, pH (WB2 to WB3)



Linear regression; log-transformation

### Abiotic Homogeneous Fe(II) Oxidation Rate (importance of pH)



Between pH 5 and 8 the Fe(II) oxidation rate increases by 100x for each pH unit increase.\*

At a given pH, the rate increases by 10x for a 15 °C increase. Using the activation energy of 23 kcal/mol with the Arrhenius equation, the rate can be adjusted for temperature.

 $\log k_{T1} = \log k_{T2} + Ea / (2.303 * R) \cdot (1/T_2 - 1/T_1)$ 

At  $[O_2] = 0.26$  mM (pO<sub>2</sub> = 0.21 atm) and 25°C. Open circles (o) from Singer & Stumm (1970), and solid circles ( $\bullet$ ) from Millero et al. (1987).

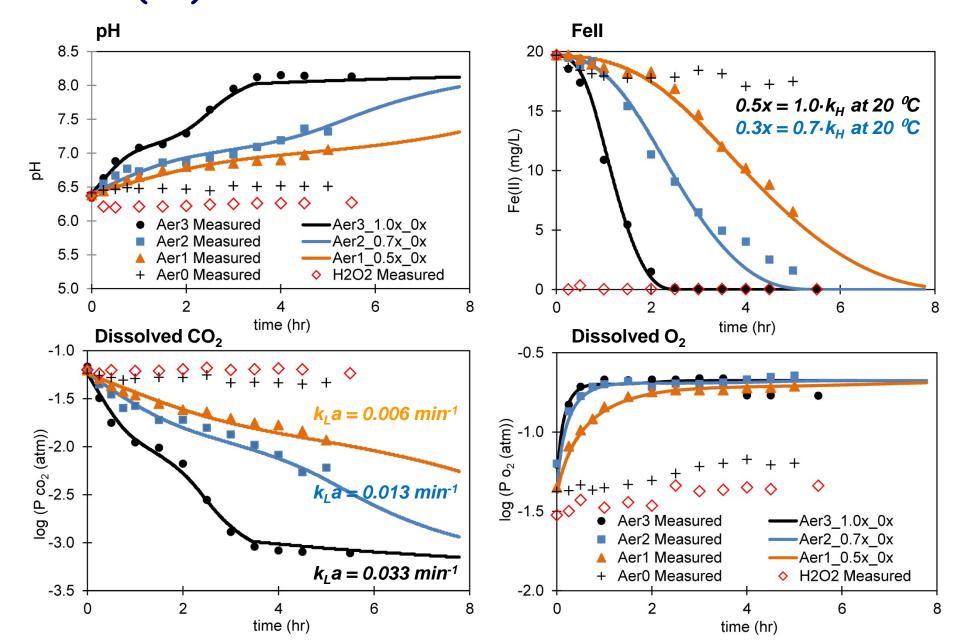
Dashed lines are estimated rates for the various dissolved Fe(II) species.

Control Not Aerated

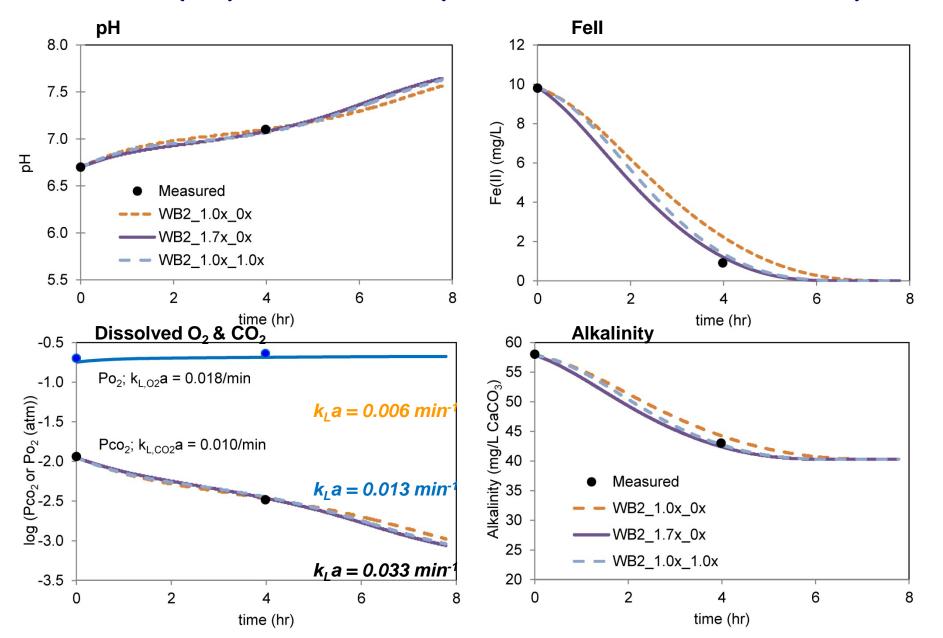


#### Development & Testing of Geochemical Kinetic Model for Iron Removal

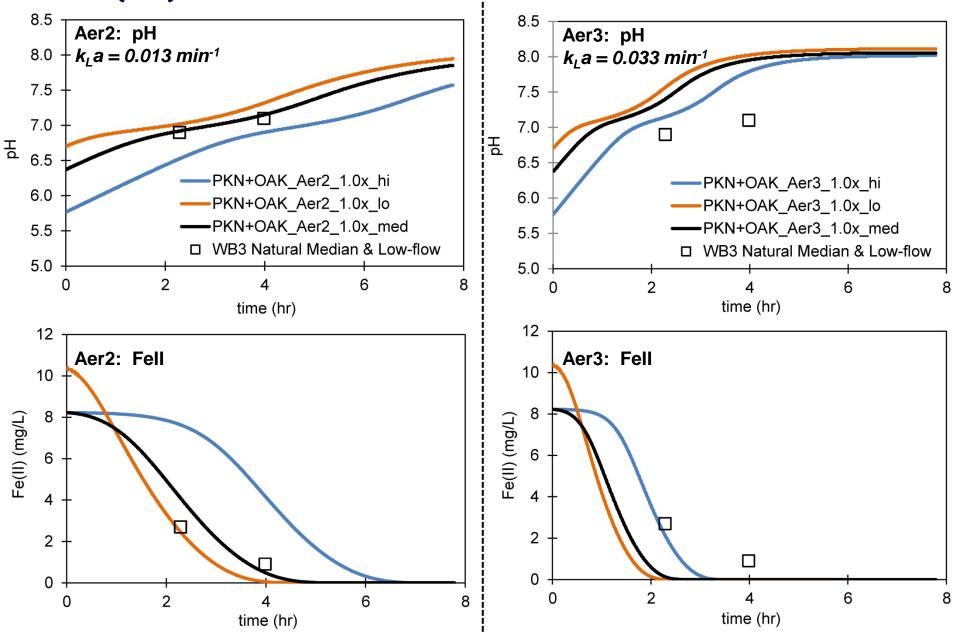
Batch Aeration Tests at Oak Hill Boreholes: Effects of CO<sub>2</sub> Outgassing on pH & Fe(II) Oxidation Rates


Aerated

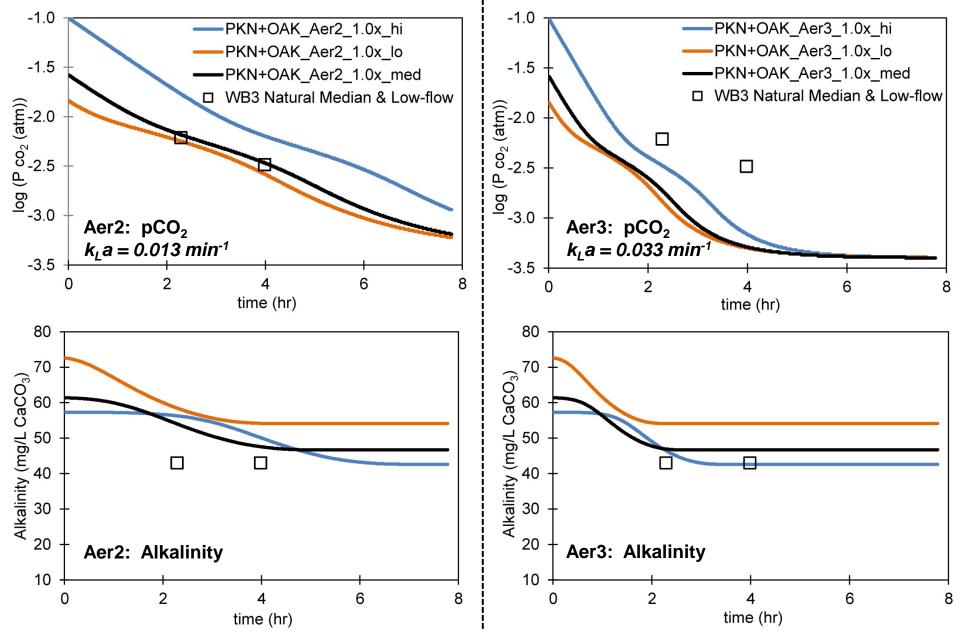



H<sub>2</sub>O<sub>2</sub> Addition




### PHREEQC Coupled Kinetic Models of CO<sub>2</sub> Outgassing & Fe(II) Oxidation—Oak Hill Boreholes Aeration




### PHREEQC Coupled Kinetic Models of CO<sub>2</sub> Outgassing & Fe(II) Oxidation (WB2 to WB3, Low Flow)



### PHREEQC Coupled Kinetic Models of CO<sub>2</sub> Degassing & Fe(II) Oxidation—3:1 Pine Knot + Oak Hill CMD



### PHREEQC Coupled Kinetic Models of CO<sub>2</sub> Degassing & Fe(II) Oxidation—3:1 Pine Knot + Oak Hill CMD



#### Conclusions

- Streamflow losses to underground mines cause aquatic habitat loss and contribute to contaminated CMD at downgradient outfalls.
- Attenuation of iron below CMD in West Branch and during aeration tests on CMD increased with time, temperature, and pH, consistent with 1<sup>st</sup>-order kinetic control of Fe(II) oxidation.
- Aerobic treatment of net alkaline CMD could decrease Fe loading.
  - ✓ Mechanical aeration may be incorporated to outgas  $CO_2$ , thereby increasing pH and the rate of iron oxidation in a treatment system.
  - ✓ Combined aeration augmented with H<sub>2</sub>O<sub>2</sub> treatment may be appropriate given small area available to treat CMD from Oak Hill Boreholes and Pine Knot Tunnel.