Reconstruction of Historic Water Quality in the Tidal Christina River from Pre-European Settlement through the Present

MEG CHRISTIE A, DON CHARLES B, RON MARTIN A, PETE MCLAUGHLIN C, JIM PIZZUTO A

A DEPARTMENT OF GEOLOGICAL SCIENCES, UNIVERSITY OF DELAWARE
B ACADEMY OF NATURAL SCIENCES OF DREXEL UNIVERSITY
C DELAWARE GEOLOGICAL SURVEY
Introduction

- Determine how water quality varied over the last 1000 years in a tidal river through analysis of sediment cores and diatoms
- Increase understanding of changes in water quality before European settlement
- Determine continuing impacts of land-use changes on water quality
Hypotheses

- Post-settlement water quality will degrade due to land-use changes, which increase sediments and nutrient loads.
- 20th century perturbations to water quality include input of heavy metals and further inputs of nutrients and sediments.
Background

- European settlement in the Mid-Atlantic US began in the late 1600s

- Impacts include: increased sedimentation, vegetation changes, increased nutrient levels, changes in carbon storage, and increased heavy metals (Boesch et al., 2001; Bratton et al., 2003; Cooper & Brush, 1991)

- Christina River is also influenced by “natural” processes

- This research is significant because tidal river systems are:
 - Lacking research on historical changes
 - Likely impacted by sea level change
Study Sites

- Three sites selected in marshes surrounding Christina River near Wilmington, DE
- Marshes are tidally inundated 2x per day, oligohaline
- Watershed contains a variety of land-uses (agriculture, urban, forest, industry); Sites impacted by multiple Brownfields and a Superfund site
Methods

- Two 2-2.5 m cores from each site
- Brown-grey clay/mud throughout the core. Organics were variable.

Chronology

- Gamma counting (Pb-210, Cs-137): every 2 cm in top meter of core
- Pollen analysis: every 5-10 cm between 1 and 1.5 m
 - Used % Ambrosia and Quercus:Ambrosia to identify settlement horizons
- Radiocarbon dating: 2-3 samples taken below 1.5 m
Methods

Diatoms
- Samples taken every 10 cm
- >500 valves identified and counted at 1000x
- Stratigraphically constrained cluster analysis, a trophic index, and a transfer function were used to analyze the diatom data

Chemistry
- Sediment chemistry analyses were performed by Plant and Soil Sciences at the University of Delaware
Age-Depth Model

- Focus on Site 1, other sites similar
- Error based on methods and depth intervals (light blue)
- Flat area at 150 m corresponds to both a change in dating methods and sediment type
Sediment Chemistry Results: Metals

- Zinc from National Vulcanized Fiber Co. (~1900-1990s) and DuPont Pigment Plant (closed in 1950s)
- Pb from gasoline, 1920s-1970s
- Other metals from other industries along river
Sediment Chemistry Results: Phosphorus

- Phosphorus is generally variable in Christina River
- After 200 YBP, consistently high
- Agricultural and phosphorus detergents
Sediment Chemistry Results: Nitrogen

- Similar pattern to Phosphorus
- Recent increases partially due to agriculture? Overall not as clearly responding to anthropogenic activity
Cluster Analysis of Diatom Data

Pre-European Settlement to Early Settlement:
- Low nutrients
- Forested

Mid-settlement: Deforestation Starts
- Major industrial increases
- Green revolution

Post-deforestation, early industrialization
- Increasing inputs of nutrients

Runoff? Changes to pollution laws?
Post Enviro movement?
Continuing nutrients?

Cophen. Corr. 0.844
Trophic Index (Porter, 2008; vanDam et al., 1994)

- Percent abundance of species preferring high nutrient conditions increases over past 200yrs, particularly past 100yrs
- Species preferring moderate nutrient conditions decrease over the same period
- Species preferring low nutrient conditions low to absent throughout
Diatom Species Analysis

- Black: Mesotraphenic; Grey: Eutraphenic, as grouped by Porter (2008) and van Dam (1994)

- Species track trophic levels through time
Trophic Index Results vs. Sediment Chemistry

R² = 0.59

% Eutraphenic

Sediment Phosphorus, (mg/kg)

R² = 0.09

% Eutraphenic

Sediment Nitrogen (%)
Transfer Function Results

The graph shows the changes in Total Phosphorus (µg/L) over different ages (YBP) with shaded areas indicating Mesotrophentic and Eutrophentic conditions. The x-axis represents age in years before present, while the y-axis represents total phosphorus concentration. The graph also includes a dendrogram on the right side, likely representing a phylogenetic tree or similar data structure.
Transfer Function Results

Site 1

R² = 0.40

% Eutraphentic

Total Phosphorus (µg/L)
Conceptual Model: Regional Water Quality History

- **700 CE**
- **1650**
- **1780**
- **1800**
- **1900**
- **1940**
- **1970**
- **2013**

Nutrients
- European Settlement
- Increase of Industry
- DuPont, NVF open (ZN)

Metals
- Maximum Deforestation
- Industrial Fertilizers
- Enviro. Legislation

Core Collected
Conclusions

- Diatoms were used to identify nutrient-related changes caused by land-use shifts in a transitional environment
 - This allowed the influences of different land-use strategies to be better understood
 - In particular, van Dam’s Trophic Index seems to track phosphorous in this site
 - While sediment P remains high in recent samples, the diatom trophic index shows a decrease/variation in recent samples
- Metals were important pollutants in the Christina River following the industrial revolution and have declined since the 1970s, likely due to improved environmental laws
Acknowledgements

- Funding for this project was partially provided by NSF-EAR1331856, GSA Graduate Student Grant, and an SEPM Foundation Grant.

- Thanks also to Tobi Ackerman, Corey Hovanec, Dale Lambert, Mike Orefice, Adam Pearson, and Matt Pinson for help in the field and to Chris Sommerfield for advice and guidance.
Questions?

Over 40,000 Diatoms Counted!