
React 
Practice Projects10

"... but what do I build?"

React seems worth learning, and the basics make some 
sense, but you need more practice.  

But most projects are either too small or too big. 
 
You want some direction, but you want less hand-
holding than a step-by-step tutorial (this is supposed to 
be practice, after all). And no more To Do apps. 

In this guide you'll find 10 projects to level up your 
React skills.

🎉



Before you start...
Make sure you have the tools installed:

node with npm (or yarn) 
npm install -g create-react-app

You should already understand some of the basics:

• JSX, conditionals 
• How to make a component 
• How to pass props to a component 
• What state is, how to update it, how to pass it down 

as props 
• How to pass callback functions down as props and 

use them to update state in parent components

If you have no idea what I just said, I strongly 
recommend running through the official React tutorial 
first 😄 You can find it here:

https://facebook.github.io/react/tutorial/tutorial.html

https://facebook.github.io/react/tutorial/tutorial.html


Weather#1
Display a weather forecast, where each day shows the 
high and low temperatures, and an image for sunny/
rainy/cloudy/snowy. 

Use fake, hard-coded data until you've got everything 
rendering correctly.

• Click on a day to see its hourly forecast (maintain 
the current view in the top-level App state) 

• Use React Router to map / to the full forecast and  
/name-of-day to that day’s hourly forecast. 

• Sign up for a free API key from Open Weather Map 
and fetch a real 5-day forecast.

Bonus

https://reacttraining.com/react-router/web/guides/quick-start
https://openweathermap.org


Calculator#2

1

4

7

2

5

8

3

6

9

0

clear

=
+
–
÷

Clicking the numbers or the operations should perform 
the corresponding action. 

Think about what to store in state. Just the numbers on 
the display? When you type a new number, does it 
replace the display, or append?

Bonus
Respond to keyboard input without using an <input> 
control.



Hacker Hunt#3

Make a clone of Hacker Hunt. 
Use static data until you get the app rendering correctly.

Bonus

• Use their API to fetch real data: https://hackerhunt.co/api/daily/0 
• Implement pagination

https://hackerhunt.co
https://hackerhunt.co/api/daily/0


Github Issues#4

• Start with just the list by itself. Ignore the star rating, search/
filter controls, etc. 

• Fetch data from Github’s API 
• Add pagination controls 
• Use React Router to allow navigating directly to a page 
• Click an issue to go to its detail page 
• Render the issue’s text + comments with react-markdown

https://developer.github.com/v3/issues/
https://github.com/rexxars/react-markdown


Email#5

Make a clone of your favorite email client. 

Start by rendering the list of emails, and use static 
data. 

Once that’s working, enable clicking on emails to view 
their contents. For crazy extra bonus points, fetch the 
actual mail over IMAP. Here’s a library for that.

https://github.com/emailjs/emailjs-imap-client


Airbnb#6
A great way to practice is to copy existing apps that 
you’re familiar with. This is known as copy work. 

Make a clone of Airbnb’s home page. The screenshot 
below has some potential components already outlined.

https://daveceddia.com/learn-react-with-copywork/


Calendar#7

• Start by making a Calendar component that displays a given 
month/year 

• Add interactivity: selecting dates, and date ranges 
• Add controls to move forward/backward between months — 

do these become part of the Calendar component, or are they 
in a parent? Where should the state be maintained for 
maximum reusability?



Instagram#8
• Clone a single page from Instagram - use static data at first 
• Download the images and serve them locally, use a 

screenshot of the map instead of a real map, etc.

Bonus
• Use the API to fetch real data  

https://www.instagram.com/developer/ 
• Implement the “Load More” button, and infinite scrolling

https://www.instagram.com/developer/


Comment System#9
• Render a nested list of comments (start with static data) 
• Add the ability to add comments at the top level 
• Add the ability to Reply to a comment 
• Make the upvote/downvote buttons functional 
• How do you handle deep nesting (e.g. > 3 or 4 levels?)



Chat App#10
• Make a clone of something like Apple’s Messages app 
• Assume 2 participants 
• After it’s working with static data, add the ability to send 

messages

Bonus
• Create a back end server to handle the messages 
• Connect the React app to the back end and send real 

messages back and forth 
• Add the ability for more than 2 participants in a single chat


