Chapter 2: Atomic and Electronic Structure

Lesson 2.1 – Atomic Structure and the Bohr Model

Atomic Structure

- Mass Number = (Protons) + (Neutrons)
- Neutrons = (Mass Number) – (Protons)

Bohr Model of the Atom

- Electrons distance from their nuclei are quantized
- The distance between each energy shell and the next shell above it gets smaller as you get further away from the nucleus.
Lesson 2.2 – Atomic Orbitals

S-orbitals

P-orbitals

D-orbitals

Lesson 2.3 – Quantum Numbers

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>WHAT</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>principal</td>
<td>Shell (distance from nucleus)</td>
<td>[1...infinity]</td>
</tr>
<tr>
<td>l</td>
<td>azimuthal</td>
<td>subshell (type of orbital)</td>
<td>[0...(n-l)]</td>
</tr>
<tr>
<td>ml</td>
<td>magnetic</td>
<td>specific orbital (orientation in space)</td>
<td>[-l...+l]</td>
</tr>
<tr>
<td>ms</td>
<td>spin</td>
<td>Up or down</td>
<td>+1/2 or -1/2</td>
</tr>
</tbody>
</table>
Lesson 2.4 – Electron Configuration

- What is the electron configuration of oxygen?

- Cool video on stacking of orbitals and how atoms really look: http://www.youtube.com/watch?v=sMt5Dce0kg

Lesson 2.5 – Condensed Electron Configuration, Valence, and Energy Diagrams

Condensed Electron Configuration

- What is the condensed electron configuration of bromine?

Valence Electrons

- What are bromine’s valence electrons?

- How many valence electrons does titanium have?

- When does the d-block count toward an atom’s number of valence electrons?

Continue to next page...
Lesson 2.5 – Condensed Electron Configuration, Valence, and Energy Diagrams (Continued)

Energy Diagrams

- **Aufbau Principle**: electrons fill the lowest energy orbitals first
- **Hund's Rule**: Don't pair up electrons until you have to.
- **Pauli Exclusion Principle**: no two electrons in the same atom can have the same four quantum numbers. In other words, no two electrons in the same atom can have the exact same address.

Lesson 2.6 – Electron Configuration Exceptions (Cr and Cu)

- What are the 5 exceptions you need to know, and what are their electron configurations?
Lesson 2.7 – Excited Electron Configurations
- Electrons can absorb a photon and be promoted to a higher-energy shell or orbital.

Lesson 2.8 – Paramagnetic vs. Diamagnetic

<table>
<thead>
<tr>
<th>When I hear . . .</th>
<th>I think . . .</th>
<th>I then think . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramagnetic</td>
<td>“Unpaired”-a-magnetic</td>
<td>Attracted to magnets because it has unpaired electrons.</td>
</tr>
<tr>
<td>Diamagnetic</td>
<td>The other one (all paired)</td>
<td>Slightly repelled by magnets because it has all paired electrons.</td>
</tr>
</tbody>
</table>

- If an element has an **ODD** number of electrons, then it’s **paramagnetic**.
- If it has an **EVEN** number of electrons, then it can be either **paramagnetic** or **diamagnetic**; you have to fill out the electron configuration energy diagram to find out.
- **Hint**: Liquid oxygen is paramagnetic, liquid nitrogen is diamagnetic.

Lesson 2.9 – Emission Spectra, Heisenberg Uncertainty, Photoelectric Effect

\[E_{\text{photon}} = hf = \frac{hc}{\lambda} \]

\(f \) = the photon's **frequency** (this can be different for different photons)
\(c \) = **speed of light**, which is \(3.0 \times 10^8 \text{ m/s} \)
\(h \) = **Planck’s constant**, which is \(6.63 \times 10^{-34} \text{ J \cdot s} \)
\(\lambda \) = the photon's **wavelength**

Heisenberg Uncertainty
- It is impossible to determine a subatomic particle's **position** and its **momentum** with perfect accuracy.

Photoelectric Effect
- **Kinetic Energy**\(_{\text{electron}} = E_{\text{photon}} - \Phi \)
- **\(\Phi \)** = work function (the minimum amount of energy required to ionize the electron)
 - In order to expel an energized electron, the **Kinetic Energy** must be greater than zero.