Formulation design and evaluation of self-emulsifying API delivery systems (SEDDS) for a poorly water-soluble BCS II API

J Mains (Encap API Delivery, Livingston, Scotland), P Evans (Encap API Delivery, Livingston, Scotland), H Williams (Capsguel R&D, Monash Institute of Pharmaceutical Sciences, Melbourne, Australia), E Jule (Capsugel, Morristown, NJ) and A McNaughton (Encap API Delivery, Livingston, Scotland).

PURPOSE

Robust SEDDS formulation development is based on in-depth analysis and understanding of a given API’s physicochemical and biological characteristics and, if appropriate, the consequent selection of specific lipid-based excipients known to have physiological effects1.

The purpose of this study was to leverage internal know-how and methodologies to develop lipid formulations that address solubility and was indirectly evaluated through metabolic barriers to the oral bioavailability of a BCS II API. Formulations that address solubility and were progressed onto supersaturation measurements during in vitro digestion.

METHODS

SEDDS were designed using API solubility and chemical stability data in a range of oils, cosurfactants and surfactants. Concept formulations were initially selected based on their ability to solubilise the API at the target dose, and formulation physical stability.

Dispersion behaviour was assessed in both SGF (Simulated Gastric Fluid) and SIF (Simulated Intestinal Fluid), focusing on emulsion stability and risk of API precipitation over six hours.

Based on the dispersion performance, concept formulations were progressed onto in vitro digestion assessment using the methods developed by the LFCS Consortium2 to understand the fate of the API over time in simulated small intestinal conditions.

In addition, the extent of supersaturation on digestion was assessed for each formulation, with a view to identify the potential risk of API precipitation on increasing API loading.

RESULTS

APIs are considered good candidates if Log D values are >5 and solubility in long chain oils is >50 mg/mL3. To promote the lymphatic delivery of the API, formulations were designed incorporating long chain lipids and high HLB surfactants at a target API loading of 125 mg/g.

Dispersion testing in SGF and SIF identified three lead formulations that formed stable emulsions (assessed visually), with no evidence of API precipitation (assessed microscopically). These formulations were readily digested within 60 minutes digestion of 5 lipid formulations in vitro digestion profiles across a range of optimized formulations was substantially higher than for non-optimized formulations, F-1 and F-2 (1.2 and 0.2 mg/mL, Figure 1), wherein the majority of API (>50%) remained in a poorly dispersed and lipid-rich colloidal phase (Figure 2). The higher API concentrations in the F-2, F-3 and F-4 aqueous phase suggest better absorption in vivo relative to F-1 & F-2, since they present higher API concentrations in a readily available micellar form.

In addition, for all optimized formulations, the calculated supersaturation ratio (solubilized API concentration / API solubility in digested lipid formulations) was >1, indicating that higher API loadings may be supported without inducing a risk of precipitation, providing greater dosing flexibility when the program is progressed to in vivo studies.

CONCLUSIONS

Three SEDDS formulations consisting of long-chain lipids and cosurfactant/surfactant were developed to support BCS II API solubilisation in the GI tract and to promote lymphatic uptake. Formulation performance was assessed in vitro, against two previously developed formulations. The three newly developed formulations demonstrated formulation stability on dispersion, and increased API solubilisation in the aqueous phase during digestion, in comparison to the two formulations developed previously.

The developed SEDDS therefore offer the potential for bioavailability enhancement in vivo through optimized API solubilisation combined with long-chain lipids to promote API entry into the lymphatic system.

ACKNOWLEDGEMENTS

The author would like to thank colleagues from Encap Drug Delivery and Capsugel for their input and support.

REFERENCES

