Differentiation between and preference for colours and colour combinations of hard gelatin capsules by the elderly

University of Basle
Institute of Physiology
November 1997

by: J. Hersberger and S. Hatebur
(Supervisors: Prof. Dr. R. Spiegel, Prof. Dr. V. Hobi)

Summary and translation by
Dr. S. Stegemann, Capsugel

English version by Deanna Wilson, a UK-based freelance journalist specialising in medical and pharmaceutical topics
Differentiation between and preference for colours and colour combinations of hard gelatin capsules by the elderly (1,2)

Papers summarised by
Dr. S. Stegemann, Capsugel

Drug safety is strongly related to correct use of a pharmaceutical product. Although other factors also play a part, correct use is heavily dependent upon whether the patient can identify the product, and how he perceives the likely therapeutic benefits.

Elderly patients on polymedication (several different drugs to be taken every day) and whose vision is impaired can find it difficult to differentiate between drugs. Poor differentiation leads to uncertainty, which may in turn reduce patient compliance and so diminish the potential for treatment benefit.

As it is well known that the right colour or colour combination can contribute positively to patients’ identification of a pharmaceutical product and their expectation of beneficial treatment effects, it was decided to carry out a study of colour perception in elderly subjects.

Since the importance of identifying the most appropriate colours or colour combinations for use in different therapeutic indications is likely to increase with advancing age, only people of 65 or over were included in the trial.

The study involved 50 subjects (34 women and 16 men aged 65-92; mean age, 74 years) who were taking at least two drugs a day without assistance (typically, 2-6 drugs per day) and who were suffering age-related visual impairment.

Ten different colours were chosen for the study (white, yellow, orange, red, pink, light blue, dark blue, green, brown, purple), and applied to capsules either as a single colour (monochromatic) or as a combination of two (bichromatic).

The studies performed included the effect of low light intensity (40W/60W) and surface colour (white/brown) on colour recognition; the role of gender and personal colour preference in colour selection; subjective expectation of the physiological and emotional effects of colour on organ functioning, motor function and mood (treatment effects). Another aim of the study was to investigate if colour selection is influenced by previous experience of treatment for a (chronic) disease. For example, will a patient being treated for diabetes select a different colour/colour combination from that chosen by a healthy (untreated) subject?

The results showed that being able to differentiate between monochromatic colours depends on the intensity of the available light and the surface colour used. In particular, subjects found it difficult to differentiate between the colours brown, orange, purple and pink in conditions of low light intensity (40W) or when a dark surface colour (brown) was used.

From 45 colour combinations the subjects were asked to choose 10 that they found easy to distinguish and 10 that were difficult for them. Over 50% of the subjects selected white/red, yellow/red and white/light blue as easily distinguishable, while more than 50% found brown/purple, green/brown, dark blue/purple, white/pink, yellow/pink and dark blue/brown difficult to distinguish (Table 1).

With monochromatic colours no gender-related difference was observed. However, with colour combinations (bichromatic capsules) men were significantly more likely than women to rate those that included pink as more difficult to distinguish; this may, however, be an artefact of social and cultural factors.

Personal colour preference didn’t appear to play a part in colour differentiation and selection.
To assess patient expectation of the likely treatment effects of monochromatic colours on organs, motor function and mood, participants were first shown the colours and then asked to rate their subjective reactions (compared with their preconceptions) according to three categories: less, no difference and greater.

Over 80% stated that white, yellow, pink and light blue helped to ease their breathing and were appealing to look at; pink was also perceived as having a calming effect on heart rate. Another colour identified as appealing was green. Red was seen as a stimulus on motor function and mood, causing blood pressure and heart rate to rise. More than 80% of subjects found that brown had the effect of slowing down motor function, and calming heart rate and mood. No clear effects (80%) could be identified for the colours orange, dark blue and purple.

In two of three conditions investigated – cardiac-related disease, sleep disorders and arthritic joint conditions – it appeared that patients may be influenced in their colour selection by the experience of previous medication.

Although subjects suffering from cardiac-related disease showed no preferences for particular colours or colour combinations, subjects previously treated for sleep disorders preferentially selected monochromatic light blue capsules (p = 0.039*). Similarly, subjects who had been treated for arthritic joint conditions chose the colour combinations white/green (p = 0.008*) and red/light blue (p = 0.0035*) as the most suitable. Interestingly, there were no statistical differences between subject groups in terms of the colours/colour combinations they considered unsuitable.

In summary, it appears that white and to some extent yellow, used with colours such as light blue, red, green, dark blue and orange are the most suitable colour combinations. Dark colours such as brown, dark blue and purple, used with another dark colour, cannot be recommended as suitable colour combinations.

* Since the investigated groups were very small, a chance effect cannot be ruled out.

<table>
<thead>
<tr>
<th>Easy to distinguish</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>White/red</td>
<td>60</td>
</tr>
<tr>
<td>Yellow/red</td>
<td>54</td>
</tr>
<tr>
<td>White/light blue</td>
<td>52</td>
</tr>
<tr>
<td>Red/dark blue</td>
<td>44</td>
</tr>
<tr>
<td>White/green ; red/green</td>
<td>42</td>
</tr>
<tr>
<td>Red/light blue</td>
<td>38</td>
</tr>
<tr>
<td>Yellow/light blue</td>
<td>34</td>
</tr>
<tr>
<td>White/dark blue</td>
<td>28</td>
</tr>
<tr>
<td>White/purple</td>
<td>26</td>
</tr>
<tr>
<td>White/yellow ; white/orange ; red/purple</td>
<td>24</td>
</tr>
<tr>
<td>Yellow/green ; pink/light blue ; light blue/purple</td>
<td>22</td>
</tr>
<tr>
<td>Yellow/dark blue ; red/brown ; light blue/dark blue</td>
<td>20</td>
</tr>
<tr>
<td>Yellow/brown ; orange/red</td>
<td>18</td>
</tr>
<tr>
<td>Pink/purple</td>
<td>16</td>
</tr>
<tr>
<td>White/brown ; yellow/purple ; orange/dark blue ; orange/green ; pink/green</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Difficult to distinguish</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown/purple</td>
<td>84</td>
</tr>
<tr>
<td>Green/brown</td>
<td>76</td>
</tr>
<tr>
<td>Dark blue/purple</td>
<td>74</td>
</tr>
<tr>
<td>White/pink</td>
<td>58</td>
</tr>
<tr>
<td>Yellow/pink</td>
<td>56</td>
</tr>
<tr>
<td>Dark blue/brown</td>
<td>54</td>
</tr>
<tr>
<td>Dark blue/green ; green/purple</td>
<td>38</td>
</tr>
<tr>
<td>White/yellow</td>
<td>34</td>
</tr>
<tr>
<td>Light blue/green</td>
<td>28</td>
</tr>
<tr>
<td>Orange/pink</td>
<td>24</td>
</tr>
<tr>
<td>Orange/brown</td>
<td>22</td>
</tr>
<tr>
<td>Yellow/orange ; red/brown</td>
<td>20</td>
</tr>
<tr>
<td>Light blue/brown</td>
<td>16</td>
</tr>
<tr>
<td>Pink/brown</td>
<td>12</td>
</tr>
<tr>
<td>Yellow/brown ; orange/green ; red/dark blue ; light blue/dark blue</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1: Easy and difficult to distinguish colour combinations by percentage of the selection (1)
Graph 1: Likely treatment effect on respiratory function (1)

Average subjective value pre- and post-exposure:

<table>
<thead>
<tr>
<th>Value</th>
<th>Greater</th>
<th>No Difference</th>
<th>Less</th>
<th>No Difference</th>
<th>Greater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-2.8</td>
<td>2.1</td>
<td>1.8</td>
<td>2.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Graph 2: Likely treatment effect on eyes (1)

Average subjective value pre- and post-exposure:

<table>
<thead>
<tr>
<th>Value</th>
<th>Greater</th>
<th>No Difference</th>
<th>Less</th>
<th>No Difference</th>
<th>Greater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-2.5</td>
<td>2.5</td>
<td>2.3</td>
<td>2.1</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Graph 3: Likely treatment effect on motor function (1)

Average subjective value pre- and post-exposure:

Graph 4: Likely treatment effect on blood pressure (1)

Average subjective value pre- and post-exposure:
Graph 5: Likely treatment effect on heart rate (1)

Average subjective value pre- and post-exposure:

Graph 6: Likely treatment effect on mood (1)

Average subjective value pre- and post-exposure:
Capsugel Americas

U.S.A.
535 North Emerald Road
Greenwood, S.C. 29646
U.S.A.
Tel: 864-223-2270/800-845-6973
Fax: 864-942-3848

MEXICO
Carr. Mexico-Veracruz No. 1030
C.P. 72270 Puebla
MEXICO
Tel: 52-22-82-62-18
Fax: 52-22-82-64-49

BRAZIL
Estrada Mal. Miguel Salazar
Mendes de Moraes
Nr. 969 Jacarepagua
CEP 22770-033
Rio de Janeiro
BRAZIL
Tel: 55-21-445-5777
Fax: 55-21-445-1950

Capsugel Europe

BELGIUM
Rijksweg 11
B-2880 Bornem
BELGIUM
Tel: 32-3-890-05-11
Fax: 32-3-889-26-22

FRANCE
10, rue Timken
F-68027 Colmar Cedex
FRANCE
Tel: 33-3-89-20-57-09
Fax: 33-3-89-41-48-11

Capsugel Asia

THAILAND
Internat. Capsules Co.LTD
32/46 Sino Thai Tower, 18th Floor
Asoke road, Sukhumvit 21
Bangkok 10110
THAILAND
Tel: 662-259-2400
Fax: 662-259-2401

CHINA
Yellow Stone Bridge
Suxie Highway
Suzhou 215006
Jiangsu Province
PEOPLES REPUBLIC OF CHINA
Tel: 86-512-761-6666
Fax: 86-512-761-8807

JAPAN
3-36 Minamihashimoto 4
Chome
Sagamihara City
Kanagawa prefecture
JAPAN 229-1133
Tel: 81-427-70-4601
Fax: 81-427-71-7397

INDONESIA
Jl. Raya Bogor Km 42
Cibinong, Jawa Barat
INDONESIA
Tel: 62-21-875-2226
Fax: 62-21-875-2227