
9
Mixture Models

and EM

If we define a joint distribution over observed and latent variables, the correspond-
ing distribution of the observed variables alone is obtained by marginalization. This
allows relatively complex marginal distributions over observed variables to be ex-
pressed in terms of more tractable joint distributions over the expanded space of
observed and latent variables. The introduction of latent variables thereby allows
complicated distributions to be formed from simpler components. In this chapter,
we shall see that mixture distributions, such as the Gaussian mixture discussed in
Section 2.3.9, can be interpreted in terms of discrete latent variables. Continuous
latent variables will form the subject of Chapter 12.

As well as providing a framework for building more complex probability dis-
tributions, mixture models can also be used to cluster data. We therefore begin our
discussion of mixture distributions by considering the problem of finding clusters
in a set of data points, which we approach first using a nonprobabilistic technique
called the K-means algorithm (Lloyd, 1982). Then we introduce the latent variableSection 9.1
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424 9. MIXTURE MODELS AND EM

view of mixture distributions in which the discrete latent variables can be interpreted
as defining assignments of data points to specific components of the mixture. A gen-Section 9.2
eral technique for finding maximum likelihood estimators in latent variable models
is the expectation-maximization (EM) algorithm. We first of all use the Gaussian
mixture distribution to motivate the EM algorithm in a fairly informal way, and then
we give a more careful treatment based on the latent variable viewpoint. We shallSection 9.3
see that the K-means algorithm corresponds to a particular nonprobabilistic limit of
EM applied to mixtures of Gaussians. Finally, we discuss EM in some generality.Section 9.4

Gaussian mixture models are widely used in data mining, pattern recognition,
machine learning, and statistical analysis. In many applications, their parameters are
determined by maximum likelihood, typically using the EM algorithm. However, as
we shall see there are some significant limitations to the maximum likelihood ap-
proach, and in Chapter 10 we shall show that an elegant Bayesian treatment can be
given using the framework of variational inference. This requires little additional
computation compared with EM, and it resolves the principal difficulties of maxi-
mum likelihood while also allowing the number of components in the mixture to be
inferred automatically from the data.

9.1. K-means Clustering

We begin by considering the problem of identifying groups, or clusters, of data points
in a multidimensional space. Suppose we have a data set {x1, . . . ,xN} consisting
of N observations of a random D-dimensional Euclidean variable x. Our goal is to
partition the data set into some number K of clusters, where we shall suppose for
the moment that the value of K is given. Intuitively, we might think of a cluster as
comprising a group of data points whose inter-point distances are small compared
with the distances to points outside of the cluster. We can formalize this notion by
first introducing a set of D-dimensional vectors µk, where k = 1, . . . , K, in which
µk is a prototype associated with the kth cluster. As we shall see shortly, we can
think of the µk as representing the centres of the clusters. Our goal is then to find
an assignment of data points to clusters, as well as a set of vectors {µk}, such that
the sum of the squares of the distances of each data point to its closest vector µk, is
a minimum.

It is convenient at this point to define some notation to describe the assignment
of data points to clusters. For each data point xn, we introduce a corresponding set
of binary indicator variables rnk ∈ {0, 1}, where k = 1, . . . , K describing which of
the K clusters the data point xn is assigned to, so that if data point xn is assigned to
cluster k then rnk = 1, and rnj = 0 for j �= k. This is known as the 1-of-K coding
scheme. We can then define an objective function, sometimes called a distortion
measure, given by

J =
N�

n=1

K�

k=1

rnk�xn − µk�2 (9.1)

which represents the sum of the squares of the distances of each data point to its
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assigned vector µk. Our goal is to find values for the {rnk} and the {µk} so as to
minimize J . We can do this through an iterative procedure in which each iteration
involves two successive steps corresponding to successive optimizations with respect
to the rnk and the µk. First we choose some initial values for the µk. Then in the first
phase we minimize J with respect to the rnk, keeping the µk fixed. In the second
phase we minimize J with respect to the µk, keeping rnk fixed. This two-stage
optimization is then repeated until convergence. We shall see that these two stages
of updating rnk and updating µk correspond respectively to the E (expectation) and
M (maximization) steps of the EM algorithm, and to emphasize this we shall use theSection 9.4
terms E step and M step in the context of the K-means algorithm.

Consider first the determination of the rnk. Because J in (9.1) is a linear func-
tion of rnk, this optimization can be performed easily to give a closed form solution.
The terms involving different n are independent and so we can optimize for each
n separately by choosing rnk to be 1 for whichever value of k gives the minimum
value of �xn − µk�2. In other words, we simply assign the nth data point to the
closest cluster centre. More formally, this can be expressed as

rnk =
�

1 if k = arg minj �xn − µj�2

0 otherwise.
(9.2)

Now consider the optimization of the µk with the rnk held fixed. The objective
function J is a quadratic function of µk, and it can be minimized by setting its
derivative with respect to µk to zero giving

2
N�

n=1

rnk(xn − µk) = 0 (9.3)

which we can easily solve for µk to give

µk =
�

n rnkxn�
n rnk

. (9.4)

The denominator in this expression is equal to the number of points assigned to
cluster k, and so this result has a simple interpretation, namely set µk equal to the
mean of all of the data points xn assigned to cluster k. For this reason, the procedure
is known as the K-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the clus-
ter means are repeated in turn until there is no further change in the assignments (or
until some maximum number of iterations is exceeded). Because each phase reduces
the value of the objective function J , convergence of the algorithm is assured. How-Exercise 9.1
ever, it may converge to a local rather than global minimum of J . The convergence
properties of the K-means algorithm were studied by MacQueen (1967).

The K-means algorithm is illustrated using the Old Faithful data set in Fig-Appendix A
ure 9.1. For the purposes of this example, we have made a linear re-scaling of the
data, known as standardizing, such that each of the variables has zero mean and
unit standard deviation. For this example, we have chosen K = 2, and so in this
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Figure 9.1 Illustration of the K-means algorithm using the re-scaled Old Faithful data set. (a) Green points
denote the data set in a two-dimensional Euclidean space. The initial choices for centres µ1 and µ2 are shown
by the red and blue crosses, respectively. (b) In the initial E step, each data point is assigned either to the red
cluster or to the blue cluster, according to which cluster centre is nearer. This is equivalent to classifying the
points according to which side of the perpendicular bisector of the two cluster centres, shown by the magenta
line, they lie on. (c) In the subsequent M step, each cluster centre is re-computed to be the mean of the points
assigned to the corresponding cluster. (d)–(i) show successive E and M steps through to final convergence of
the algorithm.
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Figure 9.2 Plot of the cost function J given by
(9.1) after each E step (blue points)
and M step (red points) of the K-
means algorithm for the example
shown in Figure 9.1. The algo-
rithm has converged after the third
M step, and the final EM cycle pro-
duces no changes in either the as-
signments or the prototype vectors.
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case, the assignment of each data point to the nearest cluster centre is equivalent to a
classification of the data points according to which side they lie of the perpendicular
bisector of the two cluster centres. A plot of the cost function J given by (9.1) for
the Old Faithful example is shown in Figure 9.2.

Note that we have deliberately chosen poor initial values for the cluster centres
so that the algorithm takes several steps before convergence. In practice, a better
initialization procedure would be to choose the cluster centres µk to be equal to a
random subset of K data points. It is also worth noting that the K-means algorithm
itself is often used to initialize the parameters in a Gaussian mixture model before
applying the EM algorithm.Section 9.2.2

A direct implementation of the K-means algorithm as discussed here can be
relatively slow, because in each E step it is necessary to compute the Euclidean dis-
tance between every prototype vector and every data point. Various schemes have
been proposed for speeding up the K-means algorithm, some of which are based on
precomputing a data structure such as a tree such that nearby points are in the same
subtree (Ramasubramanian and Paliwal, 1990; Moore, 2000). Other approaches
make use of the triangle inequality for distances, thereby avoiding unnecessary dis-
tance calculations (Hodgson, 1998; Elkan, 2003).

So far, we have considered a batch version of K-means in which the whole data
set is used together to update the prototype vectors. We can also derive an on-line
stochastic algorithm (MacQueen, 1967) by applying the Robbins-Monro procedureSection 2.3.5
to the problem of finding the roots of the regression function given by the derivatives
of J in (9.1) with respect to µk. This leads to a sequential update in which, for eachExercise 9.2
data point xn in turn, we update the nearest prototype µk using

µnew
k = µold

k + ηn(xn − µold
k ) (9.5)

where ηn is the learning rate parameter, which is typically made to decrease mono-
tonically as more data points are considered.

The K-means algorithm is based on the use of squared Euclidean distance as the
measure of dissimilarity between a data point and a prototype vector. Not only does
this limit the type of data variables that can be considered (it would be inappropriate
for cases where some or all of the variables represent categorical labels for instance),
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but it can also make the determination of the cluster means nonrobust to outliers. WeSection 2.3.7
can generalize the K-means algorithm by introducing a more general dissimilarity
measure V(x,x�) between two vectors x and x� and then minimizing the following
distortion measure

�J =
N�

n=1

K�

k=1

rnkV(xn, µk) (9.6)

which gives the K-medoids algorithm. The E step again involves, for given cluster
prototypes µk, assigning each data point to the cluster for which the dissimilarity to
the corresponding prototype is smallest. The computational cost of this is O(KN),
as is the case for the standard K-means algorithm. For a general choice of dissimi-
larity measure, the M step is potentially more complex than for K-means, and so it
is common to restrict each cluster prototype to be equal to one of the data vectors as-
signed to that cluster, as this allows the algorithm to be implemented for any choice
of dissimilarity measure V(·, ·) so long as it can be readily evaluated. Thus the M
step involves, for each cluster k, a discrete search over the Nk points assigned to that
cluster, which requires O(N2

k) evaluations of V(·, ·).
One notable feature of the K-means algorithm is that at each iteration, every

data point is assigned uniquely to one, and only one, of the clusters. Whereas some
data points will be much closer to a particular centre µk than to any other centre,
there may be other data points that lie roughly midway between cluster centres. In
the latter case, it is not clear that the hard assignment to the nearest cluster is the
most appropriate. We shall see in the next section that by adopting a probabilistic
approach, we obtain ‘soft’ assignments of data points to clusters in a way that reflects
the level of uncertainty over the most appropriate assignment. This probabilistic
formulation brings with it numerous benefits.

9.1.1 Image segmentation and compression
As an illustration of the application of the K-means algorithm, we consider

the related problems of image segmentation and image compression. The goal of
segmentation is to partition an image into regions each of which has a reasonably
homogeneous visual appearance or which corresponds to objects or parts of objects
(Forsyth and Ponce, 2003). Each pixel in an image is a point in a 3-dimensional space
comprising the intensities of the red, blue, and green channels, and our segmentation
algorithm simply treats each pixel in the image as a separate data point. Note that
strictly this space is not Euclidean because the channel intensities are bounded by
the interval [0, 1]. Nevertheless, we can apply the K-means algorithm without diffi-
culty. We illustrate the result of running K-means to convergence, for any particular
value of K, by re-drawing the image replacing each pixel vector with the {R, G, B}
intensity triplet given by the centre µk to which that pixel has been assigned. Results
for various values of K are shown in Figure 9.3. We see that for a given value of K,
the algorithm is representing the image using a palette of only K colours. It should
be emphasized that this use of K-means is not a particularly sophisticated approach
to image segmentation, not least because it takes no account of the spatial proximity
of different pixels. The image segmentation problem is in general extremely difficult
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K = 2 K = 3 K = 10 Original image

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation show-
ing the initial images together with their K-means segmentations obtained using various values of K. This
also illustrates of the use of vector quantization for data compression, in which smaller values of K give higher
compression at the expense of poorer image quality.

and remains the subject of active research and is introduced here simply to illustrate
the behaviour of the K-means algorithm.

We can also use the result of a clustering algorithm to perform data compres-
sion. It is important to distinguish between lossless data compression, in which
the goal is to be able to reconstruct the original data exactly from the compressed
representation, and lossy data compression, in which we accept some errors in the
reconstruction in return for higher levels of compression than can be achieved in the
lossless case. We can apply the K-means algorithm to the problem of lossy data
compression as follows. For each of the N data points, we store only the identity
k of the cluster to which it is assigned. We also store the values of the K clus-
ter centres µk, which typically requires significantly less data, provided we choose
K � N . Each data point is then approximated by its nearest centre µk. New data
points can similarly be compressed by first finding the nearest µk and then storing
the label k instead of the original data vector. This framework is often called vector
quantization, and the vectors µk are called code-book vectors.
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The image segmentation problem discussed above also provides an illustration
of the use of clustering for data compression. Suppose the original image has N
pixels comprising {R, G, B} values each of which is stored with 8 bits of precision.
Then to transmit the whole image directly would cost 24N bits. Now suppose we
first run K-means on the image data, and then instead of transmitting the original
pixel intensity vectors we transmit the identity of the nearest vector µk. Because
there are K such vectors, this requires log2 K bits per pixel. We must also transmit
the K code book vectors µk, which requires 24K bits, and so the total number of
bits required to transmit the image is 24K + N log2 K (rounding up to the nearest
integer). The original image shown in Figure 9.3 has 240 × 180 = 43, 200 pixels
and so requires 24 × 43, 200 = 1, 036, 800 bits to transmit directly. By comparison,
the compressed images require 43, 248 bits (K = 2), 86, 472 bits (K = 3), and
173, 040 bits (K = 10), respectively, to transmit. These represent compression ratios
compared to the original image of 4.2%, 8.3%, and 16.7%, respectively. We see that
there is a trade-off between degree of compression and image quality. Note that our
aim in this example is to illustrate the K-means algorithm. If we had been aiming to
produce a good image compressor, then it would be more fruitful to consider small
blocks of adjacent pixels, for instance 5×5, and thereby exploit the correlations that
exist in natural images between nearby pixels.

9.2. Mixtures of Gaussians

In Section 2.3.9 we motivated the Gaussian mixture model as a simple linear super-
position of Gaussian components, aimed at providing a richer class of density mod-
els than the single Gaussian. We now turn to a formulation of Gaussian mixtures in
terms of discrete latent variables. This will provide us with a deeper insight into this
important distribution, and will also serve to motivate the expectation-maximization
algorithm.

Recall from (2.188) that the Gaussian mixture distribution can be written as a
linear superposition of Gaussians in the form

p(x) =
K�

k=1

πkN (x|µk,Σk). (9.7)

Let us introduce a K-dimensional binary random variable z having a 1-of-K repre-
sentation in which a particular element zk is equal to 1 and all other elements are
equal to 0. The values of zk therefore satisfy zk ∈ {0, 1} and

�
k zk = 1, and we

see that there are K possible states for the vector z according to which element is
nonzero. We shall define the joint distribution p(x, z) in terms of a marginal dis-
tribution p(z) and a conditional distribution p(x|z), corresponding to the graphical
model in Figure 9.4. The marginal distribution over z is specified in terms of the
mixing coefficients πk, such that

p(zk = 1) = πk



9.2. Mixtures of Gaussians 431

Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).

x

z

where the parameters {πk} must satisfy

0 � πk � 1 (9.8)

together with
K�

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K�

k=1

πzk

k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K�

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
�

z

p(z)p(x|z) =
K�

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =�

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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instead of the marginal distribution p(x), and this will lead to significant simplifica-
tions, most notably through the introduction of the expectation-maximization (EM)
algorithm.

Another quantity that will play an important role is the conditional probability
of z given x. We shall use γ(zk) to denote p(zk = 1|x), whose value can be found
using Bayes’ theorem

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

K�

j=1

p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)

K�

j=1

πjN (x|µj ,Σj)

. (9.13)

We shall view πk as the prior probability of zk = 1, and the quantity γ(zk) as the
corresponding posterior probability once we have observed x. As we shall see later,
γ(zk) can also be viewed as the responsibility that component k takes for ‘explain-
ing’ the observation x.

We can use the technique of ancestral sampling to generate random samplesSection 8.1.2
distributed according to the Gaussian mixture model. To do this, we first generate a
value for z, which we denote �z, from the marginal distribution p(z) and then generate
a value for x from the conditional distribution p(x|�z). Techniques for sampling from
standard distributions are discussed in Chapter 11. We can depict samples from the
joint distribution p(x, z) by plotting points at the corresponding values of x and
then colouring them according to the value of z, in other words according to which
Gaussian component was responsible for generating them, as shown in Figure 9.5(a).
Similarly samples from the marginal distribution p(x) are obtained by taking the
samples from the joint distribution and ignoring the values of z. These are illustrated
in Figure 9.5(b) by plotting the x values without any coloured labels.

We can also use this synthetic data set to illustrate the ‘responsibilities’ by eval-
uating, for every data point, the posterior probability for each component in the
mixture distribution from which this data set was generated. In particular, we can
represent the value of the responsibilities γ(znk) associated with data point xn by
plotting the corresponding point using proportions of red, blue, and green ink given
by γ(znk) for k = 1, 2, 3, respectively, as shown in Figure 9.5(c). So, for instance,
a data point for which γ(zn1) = 1 will be coloured red, whereas one for which
γ(zn2) = γ(zn3) = 0.5 will be coloured with equal proportions of blue and green
ink and so will appear cyan. This should be compared with Figure 9.5(a) in which
the data points were labelled using the true identity of the component from which
they were generated.

9.2.1 Maximum likelihood
Suppose we have a data set of observations {x1, . . . ,xN}, and we wish to model

this data using a mixture of Gaussians. We can represent this data set as an N × D
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N�

n=1

ln

�
K�

k=1

πkN (xn|µk,Σk)

�
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π
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Figure 9.7 Illustration of how singularities in the
likelihood function arise with mixtures
of Gaussians. This should be com-
pared with the case of a single Gaus-
sian shown in Figure 1.14 for which no
singularities arise.

x

p(x)

points so that µj = xn for some value of n. This data point will then contribute a
term in the likelihood function of the form

N (xn|xn, σ2
j I) =

1
(2π)1/2

1
σj

. (9.15)

If we consider the limit σj → 0, then we see that this term goes to infinity and
so the log likelihood function will also go to infinity. Thus the maximization of
the log likelihood function is not a well posed problem because such singularities
will always be present and will occur whenever one of the Gaussian components
‘collapses’ onto a specific data point. Recall that this problem did not arise in the
case of a single Gaussian distribution. To understand the difference, note that if a
single Gaussian collapses onto a data point it will contribute multiplicative factors
to the likelihood function arising from the other data points and these factors will go
to zero exponentially fast, giving an overall likelihood that goes to zero rather than
infinity. However, once we have (at least) two components in the mixture, one of
the components can have a finite variance and therefore assign finite probability to
all of the data points while the other component can shrink onto one specific data
point and thereby contribute an ever increasing additive value to the log likelihood.
This is illustrated in Figure 9.7. These singularities provide another example of the
severe over-fitting that can occur in a maximum likelihood approach. We shall see
that this difficulty does not occur if we adopt a Bayesian approach. For the moment,Section 10.1
however, we simply note that in applying maximum likelihood to Gaussian mixture
models we must take steps to avoid finding such pathological solutions and instead
seek local maxima of the likelihood function that are well behaved. We can hope to
avoid the singularities by using suitable heuristics, for instance by detecting when a
Gaussian component is collapsing and resetting its mean to a randomly chosen value
while also resetting its covariance to some large value, and then continuing with the
optimization.

A further issue in finding maximum likelihood solutions arises from the fact
that for any given maximum likelihood solution, a K-component mixture will have
a total of K! equivalent solutions corresponding to the K! ways of assigning K
sets of parameters to K components. In other words, for any given (nondegenerate)
point in the space of parameter values there will be a further K!−1 additional points
all of which give rise to exactly the same distribution. This problem is known as
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N�

n=1

πkN (xn|µk,Σk)�
j πjN (xn|µj ,Σj)� �� �

γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N�

n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N�

n=1

γ(znk). (9.18)
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N�

n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

�
K�

k=1

πk − 1

�
(9.20)

which gives

0 =
N�

n=1

N (xn|µk,Σk)�
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two
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Gaussian components are shown as blue and red circles. Plot (b) shows the result
of the initial E step, in which each data point is depicted using a proportion of blue
ink equal to the posterior probability of having been generated from the blue com-
ponent, and a corresponding proportion of red ink given by the posterior probability
of having been generated by the red component. Thus, points that have a significant
probability for belonging to either cluster appear purple. The situation after the first
M step is shown in plot (c), in which the mean of the blue Gaussian has moved to
the mean of the data set, weighted by the probabilities of each data point belonging
to the blue cluster, in other words it has moved to the centre of mass of the blue ink.
Similarly, the covariance of the blue Gaussian is set equal to the covariance of the
blue ink. Analogous results hold for the red component. Plots (d), (e), and (f) show
the results after 2, 5, and 20 complete cycles of EM, respectively. In plot (f) the
algorithm is close to convergence.

Note that the EM algorithm takes many more iterations to reach (approximate)
convergence compared with the K-means algorithm, and that each cycle requires
significantly more computation. It is therefore common to run the K-means algo-
rithm in order to find a suitable initialization for a Gaussian mixture model that is
subsequently adapted using EM. The covariance matrices can conveniently be ini-
tialized to the sample covariances of the clusters found by the K-means algorithm,
and the mixing coefficients can be set to the fractions of data points assigned to the
respective clusters. As with gradient-based approaches for maximizing the log like-
lihood, techniques must be employed to avoid singularities of the likelihood function
in which a Gaussian component collapses onto a particular data point. It should be
emphasized that there will generally be multiple local maxima of the log likelihood
function, and that EM is not guaranteed to find the largest of these maxima. Because
the EM algorithm for Gaussian mixtures plays such an important role, we summarize
it below.

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function
with respect to the parameters (comprising the means and covariances of the
components and the mixing coefficients).

1. Initialize the means µk, covariances Σk and mixing coefficients πk, and
evaluate the initial value of the log likelihood.

2. E step. Evaluate the responsibilities using the current parameter values

γ(znk) =
πkN (xn|µk,Σk)

K�

j=1

πjN (xn|µj ,Σj)

. (9.23)
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3. M step. Re-estimate the parameters using the current responsibilities

µnew
k =

1
Nk

N�

n=1

γ(znk)xn (9.24)

Σnew
k =

1
Nk

N�

n=1

γ(znk) (xn − µnew
k ) (xn − µnew

k )T (9.25)

πnew
k =

Nk

N
(9.26)

where

Nk =
N�

n=1

γ(znk). (9.27)

4. Evaluate the log likelihood

ln p(X|µ,Σ, π) =
N�

n=1

ln

�
K�

k=1

πkN (xn|µk,Σk)

�
(9.28)

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion is not satisfied return to step 2.

9.3. An Alternative View of EM

In this section, we present a complementary view of the EM algorithm that recog-
nizes the key role played by latent variables. We discuss this approach first of all
in an abstract setting, and then for illustration we consider once again the case of
Gaussian mixtures.

The goal of the EM algorithm is to find maximum likelihood solutions for mod-
els having latent variables. We denote the set of all observed data by X, in which the
nth row represents xT

n , and similarly we denote the set of all latent variables by Z,
with a corresponding row zT

n . The set of all model parameters is denoted by θ, and
so the log likelihood function is given by

ln p(X|θ) = ln

��

Z

p(X,Z|θ)

�
. (9.29)

Note that our discussion will apply equally well to continuous latent variables simply
by replacing the sum over Z with an integral.

A key observation is that the summation over the latent variables appears inside
the logarithm. Even if the joint distribution p(X,Z|θ) belongs to the exponential


