CS4495/6495
Introduction to Computer Vision

3D-L2 Homographies and mosaics
Projective Transformsations

Projective transformations: for 2D images it’s a 3x3 matrix applied to homogenous coordinates

$$\begin{bmatrix} w' & x' \end{bmatrix} = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$$

$$\begin{bmatrix} w' & y' \end{bmatrix} = \begin{bmatrix} d & e & f \end{bmatrix} \begin{bmatrix} y \end{bmatrix}$$

$$\begin{bmatrix} w' \end{bmatrix} = \begin{bmatrix} g & h & i \end{bmatrix} \begin{bmatrix} w \end{bmatrix}$$
The projective plane

What is the geometric intuition of using homogenous coordinates?

- A point in the image is a ray in projective space
The projective plane

Each point \((x,y)\) on the plane (at \(z=1\)) is represented by a ray \((sx,sy,s)\)

All points on the ray are equivalent:
\[(x, y, 1) \cong (sx, sy, s)\]
Basic question:

How to relate two images from the same camera center?

How to map a pixel from projective plane PP1 to PP2?

Source: Alyosha Efros
Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2
Image reprojection

Observation:
• Rather than thinking of this as a 3D reprojection, think of it as a 2D **image warp** from one image (plane) to another (plane).
Application: Simple mosaics
How to stitch together a panorama (a.k.a. mosaic)?

Basic Procedure

• Take a sequence of images from the same position
 > Rotate the camera about its optical center
• Compute transformation between second image and first
• Transform the second image to overlap with the first
• Blend the two together to create a mosaic
• (If there are more images, repeat)
But wait...

Why should this work at all?

• What about the 3D geometry of the scene?
• Why aren’t we using it?
Image reprojection

The mosaic has a natural interpretation in 3D:

The images are *reprojected* onto a common plane.

The mosaic is formed on this plane.

Source: Steve Seitz
Warning: This model only holds for angular views up to 180°. Beyond that need to use sequence that “bends the rays” or map onto a different surface, say, a cylinder.
Obtain a wider angle view by combining multiple images *all of which are taken from the same camera center.*
Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection.

- Lines map to lines
- So rectangle maps to arbitrary quadrilateral

Called Homography

\[
\begin{bmatrix}
wx' \\
w'y' \\
w \\
w
\end{bmatrix}
= \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
l \\
1
\end{bmatrix}
\]

\[
p' \quad H \quad p
\]

Source: Alyosha Efros
Homography

\[
\begin{align*}
(x_1, y_1) & \\
(x_2, y_2) & \\
& \quad \vdots \\
(x_N, y_N) & \\
\end{align*}
\]

\[
\begin{align*}
(x'_1, y'_1) & \\
(x'_2, y'_2) & \\
& \quad \vdots \\
(x'_N, y'_N) & \\
\end{align*}
\]
Solving for homographies

\[\begin{bmatrix} w & x' \\ w & y' \\ w \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ \end{bmatrix} \]

\[p' = Hp \]
Solving for homographies – non-homogeneous

\[p' = H\mathbf{p} \]

Since 8 unknowns, can set scale factor \(i = 1 \).
Set up a system of linear equations \(A\mathbf{h} = \mathbf{b} \) where vector of unknowns

\[\mathbf{h} = [a, b, c, d, e, f, g, h]^T \]

Need at least 4 points for 8 eqs, but the more the better...
Solve for \(\mathbf{h} \) by \(\min \| A\mathbf{h} - \mathbf{b} \|^2 \) using least-squares
Solving for homographies – homogeneous

\[\mathbf{p}' = \mathbf{Hp} \]

\[
\begin{bmatrix}
wx' \\
w y' \\
w \\
w
\end{bmatrix}
=
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Just like we did for the extrinsics, multiply through, and divide out by \(w \). Gives two homogeneous equations per point.
Solve using SVD just like before. This is the cool way.
Apply the Homography

\[p' = H p \]

\[(w x'/w, w y'/w) = (x', y') \]
Mosaics
Mosaics for Video Coding

- Convert masked images into a background sprite for “content-based coding”
Quiz

We said that the transformation between two images taken from the same center of projection is a homography H. How many pairs of corresponding points do I need to compute H?

a) 6
b) 4
c) 2
d) 8
We said that the transformation between two images taken from the same center of projection is a *homography* H. How many pairs of corresponding points do I need to compute H?

a) 6
b) 4
c) 2
d) 8
Homographies and 3D planes

Remember this:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \approx \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
Homographies and 3D planes

• Suppose the 3D points are on a plane:

\[aX + bY + cZ + d = 0 \]
Homographies and 3D planes

• On the plane $[a \ b \ c \ d]$ can replace Z:

$$
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix}
\overset{\sim}{\rightarrow}
\begin{bmatrix}
 m_{00} & m_{01} & m_{02} & m_{03} \\
 m_{10} & m_{11} & m_{12} & m_{13} \\
 m_{20} & m_{21} & m_{22} & m_{23}
\end{bmatrix}
\begin{bmatrix}
 X \\
 Y \\
 (aX + bY + d) / (-c) \\
 1
\end{bmatrix}
$$
Homographies and 3D planes

• So, can put the Z coefficients into the others:

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} \approx \begin{bmatrix}
 m'_{00} & m'_{01} & 0 & m'_{03} \\
 m'_{10} & m'_{11} & 0 & m'_{13} \\
 m'_{20} & m'_{21} & 0 & m'_{23}
\end{bmatrix} \begin{bmatrix}
 X \\
 Y \\
 (aX + bY + d) / (-c) \\
 1
\end{bmatrix}
\]

3x3 Homography!
Image reprojection

• Mapping between planes is a homography.

• Whether a plane in the world to the image or between image planes.
Rectifying slanted views
Rectifying slanted views

Corrected image (front-to-parallel)
Measuring distances
Measurements on planes

Approach: unwarp then measure

What kind of warp is this?

Homography...
Image rectification

If there is a planar rectangular grid in the scene you can map it into a rectangular grid in the image...
Some other images of rectangular grids...
Same pixels – via a homography
Image warping

Given a coordinate transform and a source image $f(x,y)$, how do we compute a transformed image $g(x',y') = f(T(x,y))$?
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.

Q: what if pixel lands “between” two pixels?
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.
Inverse warping

Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image.

Q: what if pixel comes from “between” two pixels?
Bilinear interpolation

\[
f(x, y) = (1 - a)(1 - b) \ f[i, j] \\
+ a(1 - b) \ f[i + 1, j] \\
+ ab \ f[i + 1, j + 1] \\
+ (1 - a)b \ f[i, j + 1]
\]

See Matlab (Octave) function \texttt{interp2}
Review: How to make a panorama (or mosaic)

Basic Procedure

• Take a sequence of images from the same position
 ➢ Rotate the camera about its optical center
• Compute transformation between second image and first
• Transform the second image to overlap with the first
• Blend the two together to create a mosaic
• (If there are more images, repeat)