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Abstract – The development of inbreeding in rotation breeding schemes, sequentially
using artificial insemination (AI) sires over generations, was investigated for a full AI
scheme. Asymptotic prediction formulae of inbreeding coefficients were established when
the first rotation list of AI sires (possibly related) was in use. Simulated annealing
provided the optimal rotation order of sires within this list, when the sires were related.
These methods were also used for subsequent rotation lists, needed by the exhaustion of
semen stores for the first bulls. Simulation was carried out starting with groups of
independent sires, with different sizes. To generate a yearly inbreeding rate substantially
lower than 0.05% (considered to be within reach by conventional conservation schemes
using frequent replacements), the results obtained showed that the number of sires
should be at least 10–15 and that the same sires should be used during at least 50 years.
The ultimate objective was to examine the relevance of implementing rotation in
breeding schemes on the actual rare French cattle breeds under conservation. The best
candidate for such a test was the Villard-de-Lans breed (27 bulls and 73 000 doses for
only 340 females) and it turned out to be the best performer with an inbreeding
coefficient of only 7.4% after 500 years and five different sire lists. Due to the strong
requirements on semen stores and on the stability of population size, actual implemen-
tation of this kind of conservation scheme was recommended only in special (‘niche’)
cattle populations.

conservation / rotation / inbreeding / coancestry / artificial insemination

1. INTRODUCTION

Conservation of endangered cattle breeds often involves only several tens or
hundreds of individuals. In such circumstances, the prospect of efficient selec-
tion for some economically important traits is virtually nil. Then, instead of
trying to accumulate genetic gains as in large selected populations, the only
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appropriate issue to be addressed is to avoid possible genetic losses, first by
unfavourable drift and then by inbreeding, the eventual consequence of any drift.
A prominent factor of drift is the succession of generations where gene sam-
pling, hence gene losses, continuously occurs. In large selected populations,
breeders face (and even underestimate) this risk because they are primarily inter-
ested in genetic gains and consequently, replace breeding animals frequently,
especially sires. The lifetime of dams can be more or less considered as imposed
by the biology of the species. This behaviour still influences breeders of endan-
gered cattle breeds, who are reluctant to use the same sires during very long peri-
ods, although semen collection is easy in this species and could provide the
stores needed. However, research work has clearly shown that low inbreeding
coefficients are definitely possible when rotationally using the same sires during
long periods [11,12,22]: the essential reason is that new independent gene sam-
ples of the rotation sires are steadily introduced into the population. For instance,
when a single non-inbred sire is used throughout over generations, the female
gene pool tends towards the gene pool of this sire and then, the inbreeding coef-
ficient tends towards the probability of sampling the same allele in the sire gene
pool twice i.e., 0.5 (not 1, as one might think at first sight).

The objective of this paper will be to examine in detail the asymptotic prop-
erties of rotational schemes, using the same rotation list of artificial insemination
(AI) sires. The issue of replacing rotation lists, when semen is exhausted, will
also be examined, especially to assess the increase, from the current list to the
next one, of the average inbreeding coefficients generated. Asymptotic compu-
tations will rely on a very simple population structure i.e., discrete generations
and no group management (at a given time, the whole female population is born
from the same sire). Numerical implementation of the resulting analytical formu-
lae will be carried out in order to assess the value of such an approach to breed
conservation under realistic conditions (overlapping generations and asymptotic
inbreeding coefficients not exactly obtained) and to identify the major variation
factors of the asymptotic inbreeding coefficients.

Finally, very long-term (500 years) deterministic and Monte-Carlo simula-
tions of the rotational AI scheme will be implemented to model some real pop-
ulations. This time span for evaluating the potential of breeding schemes to
contain the development of inbreeding might look excessive and it might be
argued that this view is immaterial, given the numerous extraneous risks
incurred by rare populations. However, as previously mentioned, these breeds
have no other genetic alternative for the long-term future than struggling to keep
their genetic background as intact as possible, whatever the level of the other
risks. Then, efficient long-term solutions would provide what could be called
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‘genetic sustainability’. It should be recognised, however, that good genetic
management is not enough to prevent a rare population from disappearing
and that strong economic incentives should be found by the corresponding
breeders and (or) provided to them.

2. OUTLINE OF THE APPROACH

The development pattern of inbreeding in these schemes is stepwise, not con-
tinuous, as if levels of inbreeding were represented by the steps of a staircase.
The population undergoes each step during a long time unit that might be called
the ‘interval between step’.

During a given step, a list of N AI sires (generally related) is in use, taking
advantage of the semen stores accumulated during the previous step. Simplicity
of management for breeders is maximal: based on this list and on the sires of
their cows, the breeders involved in the conservation scheme can immediately
know which bulls should serve and furthermore, replacement of females can
be probabilistic in the sense they are not obliged to replace each female by
one daughter, for instance. During this step, inbreeding coefficients go closer
and closer to a series of N (generally different) asymptotic values. Section 3
shows how these values can be obtained. The average of these asymptotic values
corresponds to the average inbreeding for this step and the N asymptotic values
can be considered as cyclic oscillations around this average.

Preparation of semen stores for the next step is compulsory and requires some
attention from the staff in charge of the breeding scheme, in contrast with breed-
ers, for whom management is quite simple. Section 4 shows how the next rota-
tion list can be established and how semen stores can be progressively
accumulated during the whole step.

From a step to the next one, the average inbreeding coefficient increases, and
hence the staircase pattern of inbreeding development, although minor oscilla-
tions do exist at a given step of the staircase.

The major requirements for undergoing this kind of breeding scheme are first
the initial existence of substantial semen stores, accumulated during the history
of the existing conservation breeding scheme, and second the relative stability of
the population size.

As mentioned in the introduction, literature on rotation schemes does exist.
However, the approach presented here is quite different from the corresponding
proposals. The work of Honda et al. [11,12] pertains to selected populations
(typically dairy cattle) divided into two tiers, the selection tier subdivided into
fully [11] or partly [12] isolated sire lines and the commercial tier, served by

Conservation through rotational AI 417



the selected males, under a rotation scheme. The inbreeding development in the
selection tier is of its own, continuous, and does not depend on the genetic sit-
uation in the commercial tier. As a result, the inbreeding development in the
commercial tier does not follow a staircase pattern but a continuous one mixed
with oscillations due to the rotation between lines. We considered that rare pop-
ulations could not be divided into two distinct tiers due to their small size: in this
case, the inbreeding rates in the very small tier procreating AI sires would have
been too high. The schemes of Shepherd and Woolliams [22] are quite adapted
to small populations but do not consider AI rotation sires beyond generation 2,
where generation 0 pertains to the first rotation sires used in history. Here, in
contrast, the whole scheme can be conducted forever, theoretically speaking,
i.e., unless extraneous events destroy the population.

3. ASYMPTOTIC PROPERTIES OF A GIVEN ROTATION LIST

Inbreeding and coancestry issues can always be treated by considering a
hypothetical neutral polygenic trait under drift. If its additive genetic variance
is 1, then the coancestry coefficient between two individuals is equal to 0.5 times
their covariance for the polygenic trait [8,15]. It should be kept in mind that this
equivalence is steadily exploited during the subsequent theoretical develop-
ments. Furthermore, properties are presented in full matrix notation, avoiding
the use of multiple indices (modulo number of sires).

Let us consider an ordered list k of N AI sires: (1, 2, . . ., N ). The correspond-
ing vector of breeding values for the neutral polygenic trait is s with variance-
covariance matrix S, i.e., the relationship matrix between the N sires. Let us con-
sider discrete generations and denote g[t] the expected breeding value in the
female population at generation t, where generation 1 is the initial population.
For simplicity, the sire to be used on females of generation t is sire t (mod N).
At t = 1, we use sire 1, at t = 2, we use sire 2, . . ., at t = N, we use sire N, at
t = N + 1, we use sire 1, and so on. We introduce here the term ‘phase’: females
of phase i are females to be served by sire i.Under the rotation regime, females of
phase 1 are born from females of phase N and sire N. Females of phase i (i5 1)
are born from females of phase i � 1 and sire i � 1.

Let us denote g[c] the vector of the N successive expected breeding values
obtained during cycle c of N generations. Let us introduce the rotation operator
matrix R such that the operation y = Rx with any column vector x transforms
this vector by transferring the last element to the first place and shifts the other

elements i.e., R ¼ 0
0

N�1 1
IN�1 0N�1

� �
: To illustrate how this operator mimics
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rotation, let us consider a small example with N = 3. It can be checked that
y1 = x3, y2 = x1, y3 = x2. Let us imagine that the y’s pertain to daughters, that
the x’s pertain to dams, and that the indices denote the phases defined above,
i.e., the sire identification for the next service. It can be checked that the rotation
rules were fully followed: daughters of phase 1, phase 2, phase 3 originated from
dams of phases 3, 1, 2, respectively, and consequently from sires 3, 1, 2, respec-
tively, as required.

Then, returning to the general case and considering vectors of expected breed-
ing values, g[c+1] = 0.5R(g[c] + s). It is straightforward that the vector of the
expected breeding values found during one cycle will reach the asymptotic
value: g = 0.5(IN � 0.5R)�1Rs = Xs. This means that the asymptotic vector
of the N expected breeding values successively obtained during one cycle is a
weighted combination of the breeding values of sires. Basically, this equation
will allow a fast approach to the calculation of covariances (hence coancestry
and inbreeding coefficients) between females and AI sires (see later).

The analytical expression of the terms of weight matrix X can be established
according to matrix considerations (see Appendix 1). The following genetic con-
siderations yield the same results in a more accessible way. Let us consider the
expected breeding value at generation N + 1. Then,

g½Nþ1� ¼ aþ b
0
r; a ¼ 1=2Ng 1½ �; b

0 ¼ 1=2N ; 1=2N�1 . . . 1=2:

After kN generations (i.e., k cycles), the expected breeding value becomes

g½kNþ1� ¼ a1=2Nðk�1Þ þ 1=2Nðk�1Þb
0
sþ 1=2Nðk�2Þb

0
sþ . . .þ b

0
s:

When k increases, the breeding value tends towards the first element of the
asymptotic vector g. Its limit can be obtained from the sum of a geometric ser-

ies not involving term a and is equal to b
0
s

1�1=2N
¼ 20...2N�1ð Þ

2N�1
s, i.e., x 0s where x 0

represents the first row of matrix X. Then, term xi = 2i�1/(2N � 1). It
is straightforward to show that

Pi¼N
i¼1 2i�1 ¼ 2N � 1: Then, x 01N = 1 and

row 1 of matrix X can be easily interpreted as the relative contribution
of the sires’ breeding values to the expected breeding value of females of
phase 1. The same reasoning can be carried out for finding the second element
of vector g. Then, it turns out that row 2 of matrix X is row 1 after rotation,
using the same definition of rotation as previously, but applied to a row vector:
row2 = row1R

0. Finally, all the rows can be set up after successive rotations,
starting from row 1. Then, row i of matrix X can be easily interpreted as the
relative contribution of the sires’ breeding values to the expected breeding
value of females of phase i. Term xij of matrix X is equal to 2j�i

2N�1
if i � j

and to 2Nþj�i

2N�1
otherwise.

Conservation through rotational AI 419



3.1. Inbreeding of female phases

The vector of the inbreeding coefficients for the different female phases is vec-
tor F. This vector is simple to obtain because it is not influenced by the drift exist-
ing on the female population. Due to the probability of sire origins for female
phases, the covariance between a female of phase i and her serving sire (sire i)
is the sum of the products between the elements of row i of X and the elements
of column i ofS. Then, the vector of coancestries between female phases and serv-
ing sires is 0.5Diag(XS). Finally, after introducing the rotation operator, to arrange
the result in the appropriate order, we have F = 0.5RDiag(XS). Given the
pedigree of AI sires, calculations are straightforward. Therefore, the inbreeding
coefficients correspond to a list of N values, possibly different, and show a cyclic
pattern, of periodN, across generations. When sires are unrelated and non-inbred,
these values are the same and are equal tox11/2, i.e., 1/(2

N+1� 2), a value already
found by Shepherd and Woolliams [22] and Honda et al. [12]. F , the average
inbreeding coefficient over the cycle, is equal to Tr(XS)/2N where the symbol
Tr refers to the trace of a matrix, i.e., the sum of its diagonal elements. Then, when
sires are related, the weight of relationship sij between sire i and sire j (> i) is pro-
portional to term j of row i ofX plus term i of row j ofX, i.e., is proportional to the
sum 2j�i + 2N+i�j. This expression is minimisedwhen j� i =N/2 or close toN/2, if
N is uneven. Then, highly related sires, e.g., sire-son pairs, should be used succes-
sively after about half a cycle. More generally, the value of F obviously depends
on sire order in the rotation list.WhenN is high, say larger than 10, it is impossible
to test each of the N � 1! situations to be envisioned. In this case, Monte-Carlo
optimisationmethods, such as simulated annealing [14,18,23], can provide an effi-
cient approximate optimum.

3.2. Coancestries

For the issue of replacing rotation lists (see further), we need to know coan-
cestry coefficients between female phases and AI males and coancestry coeffi-
cients between female phases. The coancestry matrix between female phases
(rows) and AI males (columns) is equal to 0.5XS. The coancestry coefficients
between female phases are more complex to obtain: details are given in
Appendix 2. These coefficients depend on parameter c, the probability that a ran-
domly chosen pair of females is born from different dams.

4. REPLACEMENT OF ROTATION LISTS

Semen stores for a given list will be exhausted ultimately. Preparing the
next list of AI sires is needed and collection of semen for this list should be
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progressive and anyway fully completed at the time of exhaustion. In the next
list, each old sire is represented by a single son, who becomes a new sire,
and female phases are represented by a single dam. The mating design for pro-
ducing the sires of the next list is optimised for minimising the average inbreed-
ing generated by this list.

Replacing lists raises two distinct issues. First, the origin of the new sires, i.e.,
which is the best list of pairs of parents (AI sire * female phase)? The relation-
ship matrix for a given set of pairs is easy to obtain based on the results given in
Section 3.1. Second, semen of replacement sires can only be obtained sequen-
tially due to the small size of the population and due to the need to smooth
money expenses over time.

As to the first issue, the problem amounts to finding the best vector of female
phases that will be mated to AI sires 1, . . ., N. Theoretically N ! permutation vec-
tors situations should be tested. Numerical methods such as simulated annealing
permit to solve the problem with a reasonable efficiency when factorial becomes
too large. For each permutation between the sires attributed to the dams, matrix S
changes and modifies the potential average F of the progeny born from the
corresponding AI list.

To assess the long-term potential of successive rotation lists on simplified
populations (cf. later), we further assume that the asymptotic inbreeding coeffi-
cients were reached for a given rotation list. Then, there is no difficulty to predict
the sets of asymptotic vectors F1F2F3. . . corresponding to successive lists
k1k2k3. . . Based on these vectors, we define the value of the inbreeding rate
DFi generated by the replacement of list i� 1 by list i as DF i ¼ ðF i�
F i�1Þ=ð1� F i�1Þ with setting DF 1 ¼ F 1. This formula is the same as for con-
ventional DF’s except that the time unit is no longer year or generation but the
time interval between steps or equivalently between successive lists.

Replacing lists in real populations raises the second issue i.e., how to proceed
sequentially. Further, in these populations, the asymptotic regime might not be
obtained at exhaustion of the semen stores due to long intervals between gener-
ation and (or) long lists of AI sires.

Hence, here is the procedure we propose for practical populations. First, u,
the optimal vector of phases of bull dams, is determined (ui is the phase of
the dam mated to AI sire i to produce a replacement son), based on the asymp-
totic properties of the next list. Then, collection of semen of sons is iterative, sire
by sire, starting from a son of sire 1. When sons of sires 1, . . ., i � 1 have
already been found and collected for semen, the desired son of sire i is obtained
from the female of phase ui able to minimise the contributions of the i first sons
to the average asymptotic F generated by the new list. This contribution is
Tr(S(i,i)X(i,i)) where block (i,i) of a matrix pertains to its i first rows and the i first
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columns. Finally, after collection of semen for the son of sire N, the next S is
fully known and the next asymptotic F can be assessed.

The procedures described above for replacing rotation lists have the drawback
of inducing high inbreeding coefficients (higher than 10%) in the replacement
sires even as soon as the second or the third list. The algorithm always tries
to establish a sort of ‘inbred sire lines’. The favourable value of this inbreeding
for the long-term inbreeding rate of the overall population has been well known
for a long time in population genetics [5,13,19]. Partial extra-inbreeding was
also proposed for the sake of purging genetic load [3]. However, such high
inbreeding rates for the AI sires might impair robustness of the corresponding
animals and anyway might have large probability to be rejected by breeders.
Then, a dedicated version of simulated annealing was set up in order to contain
inbreeding of AI sires close to inbreeding of their female progeny and was tested
on simple modelled populations.

5. PREDICTIONS ON SIMPLE MODELLED POPULATIONS

In order to assess the potential of rotating breeding schemes, predictions of
asymptotic inbreeding coefficients were carried out for six successive lists (a first
list constituted of unrelated and non-inbred males, first female generation also
constituted of unrelated and non-inbred individuals). Discrete generations and
a single herd were assumed, as in the theoretical section.

Different values of N were investigated: 5, 10, 15, and 20. Furthermore,
three values were considered for the probability that two randomly chosen
females come from different dams: 0.8, 0.9, and 1. The third value is obtained
when each female is replaced by one daughter and the other values correspond
to a Poisson distribution of progeny size in a population of 5 and 10 females
per generation, respectively. For larger populations and the same distribution of
progeny size, the relevant value for the probability considered would have laid
between 0.9 and 1. The assumption of independence between the first AI males
did not hold for practical populations. As expected, inbreeding depended not
only on the average level of coancestry between sires but also on the full dis-
tribution of coancestries. As an example, breed B (see later) with 18 sires
exhibiting heterogeneous coancestries around the average (5.1%) yielded a
DF1 of 2.7%. If coancestries had been homogeneous, with the same average,
then DF1 would have jumped to 5.1%. Then, we thought that presenting a ser-
ies of results for special configurations might be cumbersome and in fact, little
informative.
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6. SIMULATIONS ON SIX RARE FRENCH CATTLE BREEDS

The cattle populations under conservation in France and the corresponding
breeding schemes are described in [2,7].

For implementing the kind of rotation schemes we described, the current
semen stores per bull (National Survey of Year 2005) should be large enough
to serve the population in full AI at its current size during 100 years or equiv-
alently twice the population during 50 years (moderate yearly increase of pop-
ulation size: +2.5%), with a minimum number of bulls equal to 8. In case of an
increase of the population, allowance should be made when preparing the semen
stores for list 2.

Then, this test retained six breeds: Villard-de-Lans (V, South-East of France),
Armoricaine (A, Brittany), Béarnaise (B, South-West), Casta (C, South-West),
Froment du Léon (F, Brittany), and Lourdaise (L, South-West). The numbers
of cows and heifers of these populations were smaller than 500. The excluded
breeds were Bretonne Pie-Noire, Ferrandaise, Maraı̂chine, Mirandaise, and
Nantaise.

6.1. The current conservation programme of the Villard-de-Lans breed

The Villard-de-Lans breed is a small population of about 340 cows and heif-
ers, located near Grenoble, southeast of France, exploited both for milk produc-
tion and beef depending on herds. This breed has been under conservation since
1977 [1]. A substantial effort was devoted to collect semen of bulls as unrelated
as possible. Until now, 27 bulls including some sire-son pairs (average coances-
try: 3.9%) were collected and on an average, 2700 doses were stored per bull
(National Survey of Year 2005).

So, this breed was an excellent candidate for implementing a long-term rota-
tion scheme. Monte-Carlo simulations were carried out to investigate the poten-
tial of this implementation over a very challenging period (500 years).
Furthermore, this scheme was chosen for conducting a comparison between
the predicted inbreeding coefficients and the ones observed during simulations.

6.2. Monte-Carlo AI rotation scenario in the Villard-de-Lans breed

Although the current natural service (NS) rate is about 40%, we only simu-
lated a full AI scheme (during 500 years, i.e., five lists) for 50 replicates, based
on the population structure known at the beginning of 2005. The sizes of the
49 herds were extremely variable since only eight herds with at least 10 animals
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concentrated 60% of the animals. Each year, 210 cows and 57 two-year-old heif-
ers were assumed to be inseminated. The average age at culling was 5.4 years
and the probability that a breeding female gave birth to a female entering the
breeding population was only 0.21. This probability was kept during simula-
tions. Even when accounting for the large amount of AI not resulting in useful
progeny, the existing stores of semen would allow one to inseminate the popu-
lation during 100 years. Then, this time span was also kept for the subsequent
rotation lists. At the beginning, 27 management groups were constituted and
mated to each bull of the list. Optimising these groups for progeny inbreeding
or allocating them at random was found of little influence on the future devel-
opment of inbreeding, as expected (data not shown).

Just after starting a rotation list, the best mating programme for producing the
bulls of the future list was established. Then, each third year, inseminations by a
sire to be replaced were carried out on 10 existing females of the relevant female
phase in order to get a son, to be collected for the future list. These females were
chosen based on the sequential procedure described previously. Finally, a single
son was chosen within the sons born, for mimicking choice of breeders on
phenotype.

6.3. Deterministic predictions for five other rare French cattle breeds

The value of initiating an AI rotation scheme in these breeds, given the cur-
rent semen stores and coancestries between sires, was investigated for the same
very long period (500 years), using asymptotic equations.

7. RESULTS

7.1. Modelled populations

Table I shows the results obtained for the AI situation, when 0.9 was the prob-
ability of two females randomly chosen originating from different dams. Varia-
tion of this parameter by 0.1 around this value modified inbreeding rates
between lists by 0.3%, which is small, compared with the range of rates across
AI situations (mostly from 2% to 8%). By trial and error, we found that for con-
taining both inbreeding of AI males and inbreeding of their progeny, an efficient
simulated annealing procedure should minimise a linear combination of these
inbreeding coefficients. The appropriate weights were found to be, respectively,
0.2 and 0.8. The little weight given to inbreeding of males was enough because
male inbreeding varied much more across annealing permutations than female
inbreeding.
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For any N, the values of DF1 obtained with the initial rotation list were low or
very low. In contrast, sharp increases were observed with DF2 and further
increases were observed for subsequent DFi’s but were small after the fourth list.
Then, for the very long term ði � 4Þ, a reasonable approximation would be
DF i ’ DF 4 ¼ D F . Then, the D F between list was about 7%, 4%, 3%, 1.5%
for N = 5, 10, 15, 20, respectively, i.e., roughly proportional to 1/N. If the same
list could be maintained during 50 years, this would give a yearly DF of 0.14%,
0.08%, 0.06% or 0.03%. If the list could be maintained during 100 years, half
these values would be obtained. Then, if N was at least 10–15 and time life of
rotation list was at least 50 years, implementing a rotational breeding scheme
could compete with conventional conservation breeding schemes, where the
lower bound for the yearly DF can be thought of as lying in the vicinity of
0.05%, i.e., 0.30% per generation in cattle (see later for a discussion of this
bound). Table I also shows inbreeding coefficients for males of the list and
females resulting from this list. As a result of the procedure used, both inbreed-
ing coefficients were close except for the three first lists where male inbreeding
was smaller than female inbreeding.

7.2. The Villard-de-Lans breed

In Table II, three sub-periods were sampled from each step: sub-period a
(years 1–10), sub-period b (years 46–55), and sub-period c (years 91–100). This
sampling allowed one to compare predicted and observed inbreeding coeffi-
cients at different moments of the current step and to assess how fast the asymp-
totic coefficients were obtained. The predicted inbreeding of females born in

Table I.Deterministic predictions on simple AI populations according to the number N
of rotation sires.

N Step 1 2 3 4 5 6

5 DF (%) 1.61 7.46 7.46 7.51 7.68 7.72
Fmale (%) 0.0 3.2 13.0 20.0 22.2 29.9
Ffemale (%) 1.6 8.9 15.7 22.1 28.1 33.6

10 DF (%) 0.05 2.72 3.74 3.75 3.71 4.07
Fmale (%) 0.0 0.5 5.0 8.1 11.9 14.5
Ffemale (%) 0.1 2.8 6.4 9.9 13.3 16.8

15 DF (%) 0.0 1.24 2.48 2.43 2.44 2.46
Fmale (%) 0.0 0.1 2.2 5.0 7.5 9.8
Ffemale (%) 0.0 1.2 3.7 6.0 8.3 10.6

20 DF (%) 0.0 0.65 1.88 1.73 1.88 1.80
Fmale (%) 0.0 0.1 1.5 3.4 5.2 7.0
Ffemale (%) 0.0 0.7 2.5 4.2 6.0 7.7
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a given sub-period was obtained from the observed phases and the observed
coancestry matrix between males of the current list. At the start of each step,
observed inbreeding coefficients were lower than asymptotic coefficients (by
about 0.4%) except for the first step. In the middle of each step (sub-period b),
asymptotic coefficients were already virtually reached. At the end of each step,
discrepancies were very small, thus confirming correctness of the prediction
algorithm for the inbreeding produced by a given list. At year 500, inbreeding
coefficients were quite reasonable (7.4%), corresponding to a very low average
yearly DF (0.007%) during this extremely long time span, reminding that the
current average inbreeding coefficient is 3.9%. In fact, inbreeding decreased
during century I and returned to its initial value during century II. Starting from
a non-inbred population would also have yielded a very low yearly DF: 0.015%.
This should be compared with the observed yearly value between years of birth
1995 and 2004: 0.08%. Fully deterministic prediction for year 500, as in the
simple modelled populations, slightly overestimated inbreeding coefficients.
At years 100, 200, 300, 400, and 500, predicted values were 1.9, 4.0, 5.4,
6.6, and 7.8 whereas observed values were 1.9, 3.9, 5.2, 6.3, and 7.4, respec-
tively. A possible explanation was that the actual dams chosen in the beginning

Table II. Observed effect of implementing a rotation breeding scheme in the Villard-
de-Lans breed.

Step of
100 years

Observed
inbreeding

average % (sd %)

Phase
inbreeding

(%)

DiscrepancyP
ðF observed�F phaseÞ2P

F 2
phase

1 a 2.0 (2.6) 1.9 1.4
b 1.9 (1.0) 1.9 10�2

c 1.9 (0.9) 1.9 5 · 10�5

2 a 3.5 (0.7) 3.9 4 · 10�2

b 3.8 (0.6) 3.9 3 · 10�4

c 3.9 (0.6) 3.9 3 · 10�7

3 a 4.8 (0.4) 5.2 10�2

b 5.1 (0.4) 5.2 6 · 10�5

c 5.2 (0.4) 5.2 3 · 10�7

4 a 6.0 (0.4) 6.3 5 · 10�3

b 6.3 (0.3) 6.3 6 · 10�5

c 6.3 (0.2) 6.3 3 · 10�7

5 a 7.0 (0.3) 7.4 4 · 10�3

b 7.3 (0.2) 7.4 6 · 10�5

c 7.4 (0.2) 7.4 2 · 10�7

Sub-steps a, b, c are years 1–10, 46–55, 91–100, respectively.
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of periods for generating future sires were less inbred and related to the popu-
lation than predicted (asymptotic state not reached). Interestingly, standard devi-
ation of the inbreeding coefficients decreased over time. This was in accordance
with the decrease of the standard deviation between phases observed during the
deterministic prediction concerning the breed. Because this decrease was not
observed for simulations concerning initial nuclei of independent sires, this phe-
nomenon could be considered as the result of the progressive dilution of the
initial heterogeneity as to inbreeding and coancestry. These interesting perspec-
tives, if applicable, can be compared to the evolution of inbreeding in the Merino
Rambouillet flock [17]. After two centuries of closed natural service manage-
ment (1786–1983), i.e., 49 generations, it climbed up to 52%, yielding a gener-
ational DF of 1.5% (0.04% per year). This comparison highlights the value of AI
and quantitative genetics for conservation issues, largely beyond reach for this
flock, due to their availability only after the 1950s.

Sanchez et al. [21] proposed a significant improvement of management meth-
ods for ‘conventional’ (not using rotation sires) populations, by organising sort
of rotational female ‘phases’. In their method, the number of phases was equal to
N = 1 + n(females)/n(males). The phases were determined sequentially. Phase 1
produced replacement sons, phase N produced two daughters, and the other
ones, one daughter. This scheme would be demanding for breeders, obliged
to programme their female replacements very tightly. However, implementing
this scheme in the Villard-de-Lans breed would yield a generational DF of
0.3%, i.e., a yearly DF of about 0.05%, at least three times as high as the one
found when running the rotation scheme during 500 years (lower than
0.015%, see above). Then, the value of implementing the rotational breeding
scheme in this breed was confirmed, provided of course prerequisites would
be fulfilled in practice.

7.3. The five other breeds

Table III shows the results obtained with these breeds. First, it can be
observed that the current yearly inbreeding rate is still substantially larger than
the value of 0.05% we defined as fully satisfactory for a conventional breeding
scheme (variation between 0.08 and 0.57). The number of rotation sires varied
between 8 and 18 and initial coancestry between sires varied between 2.9% and
7.1%. The values of the eventual inbreeding coefficient at the end of the use of
the first list (DF1) were substantially below 5% (the limit of acceptability, cor-
responding to 0.05% per year during 100 years) for all breeds except for
breed L (5.1). However, the long-term increase rate of inbreeding between lists
(monitored by DF4) was rather high (4.8%) for breeds A and F with short lists
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Table III. Deterministic prediction of the effect of implementing a rotation breeding scheme in five breeds.

Breed Population size DFy (%) List size Initial sire coancestry (%) DF1 (%) DF4 (%) F500 (%)

A 136 0.08 8 3.5 2.3 4.8 19.9
B 149 0.25 18 5.1 2.7 2.0 11.5
C 206 0.47 18 2.9 1.3 2.1 9.9
F 232 0.57 8 3.9 2.5 4.8 20.2
L 245 0.33 12 7.1 5.1 3.1 17.0

DFy: observed yearly inbreeding rate (1995–2004).
DF1, DF4: inbreeding rate calculated for lists 1, 4.
F500: inbreeding of females born at year 500.
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(eight sires). As a consequence, only breeds B and C exhibited an attractive
inbreeding coefficient at year 500, 11.5% and 9.9%, respectively. However, if
conventional breeding schemes would not be able to sustain a yearly inbreeding
rate of 0.05%, then initiating rotation breeding schemes in all of the five breeds
would still be valuable.

8. DISCUSSION AND CONCLUSION

For assessing the relevance of a long-term rotational breeding scheme, we con-
sidered that it should perform definitely better than the best of non-rotational (to
our sense) schemes, corresponding to the lower bound for DF of about 0.05% per
year. Justification of this value is as follows. Lower bounds for their schemes
were indicated by Sanchez et al. [21] to be approximately equal to 1/12 number
of males per generation, which corresponds exactly to 0.05% per year for the
Villard-de-Lans breed. As mentioned in [4,10,16,20], an efficient system for
managing genetic variability consists in thinking definitely the other way round,
as compared with the approach of the present paper, i.e., to replace males very
frequently so that the annual number of new males is maximised and also organ-
ising circulation of male groups over female groups (for AI or natural service). In
these conditions, a generational DF of around 0.3% might be obtained (i.e., per
year, 0.05% for cattle and 0.07% for sheep and goats).

This standard of evaluation is far more stringent than the FAO’s guidelines [9]
that recommend only a generational DF of 1%. Considering both the need for
strong long-term sustainability and the major advances obtained in quantitative
genetics concerning the design of conservation schemes (see the literature men-
tioned), a value of 0.5%would have beenmuchmore appropriate and stimulating.

Based on the investigations on theoretical and real cattle populations, one can
conclude that rotation breeding schemes might be recommended for implemen-
tation in special circumstances, defining sort of population niches. First, census
sizes of populations should be stable or exhibiting a moderate increase (order of
magnitude: + 2–3% per year). In France, this excludes breeds exhibiting a sharp
revival such as the Ferrandaise, Bretonne Pie-Noire, Maraı̂chine, and Nantaise
breeds. Second, breeders should be already happy with the current sire lines
and should envision their further use without any fear. In France, this excludes
the Bretonne Pie-Noire breed again, where a strong demand exists since the
beginning of the conservation programme (1976) for permanently changing
AI sires [6], exactly as in large selected dairy cattle breeds. Outside of the niches
where rotation schemes can be used, the schemes proposed by Sanchez et al.
[21], provide excellent solutions.
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The possible systematic use of natural service through sons of AI rotation
sires was also studied and the corresponding theory fully developed, mainly
for a possible implementation in sheep and goats. Theory and results are not
shown here, first due to the poor potential assessed on modelled populations
and second due to the theoretical complexity.
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APPENDIX 1: FINDING TERMS OF WEIGHT MATRIX X

MatrixX = (IN –Q)�1QwhereQ = 0.5R. We also haveX = (IN�Q)�1�IN.
Let T = IN + Q + . . . + QN � 1. Then, (IN � Q)T = IN � QN = (1 � 2�N)IN
because RN = IN. Finally,

X ¼ 2NT� ð2N � 1ÞIN
2N � 1

¼ IN þ 2NðQþ . . . þQN�1Þ
2N � 1

¼

Pk¼N

k¼1

2N�kRk

2N � 1
�

Matrix R has its first row constituted of 0’s except for a single 1 at column N.
Successive rows can be obtained by successive rotation, where a rotation con-
sists in moving the last element to the first place and moving the other elements
to the right. First rows of the successive powers of this matrix can be obtained
by successive rotations and the other rows can be obtained by internal rotations.
Then, the whole matrix X can be built by successive rotations, starting from its
first row x. It is easy to check that term i of this row is equal to 2i�1/(2N�1).
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APPENDIX 2: COANCESTRIES BETWEEN FEMALE
PHASES

Coancestry coefficients between female phases depend on whether they are
considered within-cycle or between-cycle. For instance, within-cycle, phase N
is separated from phase 1 by N � 1 generations whereas between-cycle they
are separated by only one generation. Here, we consider within-cycle coancestry
coefficients. In contrast with inbreeding coefficients, coancestries between
female phases are influenced by the drift occurring in females, independently
on AI sires. Here, we decompose the breeding value of an individual into a rota-
tional component due to the AI rotation males and a residual component. It is
straightforward that the matrix of coancestry coefficients between phases due
to the rotation is 0.5XSX0. Let v1 be the vector, of size N, of within-phase resid-
ual variances. Then, v1 = 1N + F � Diag(XSX0). Within a given phase, some
females can share other ancestral origins than AI sires. Then, a residual covari-
ance between two randomly chosen females of the same phase does exist. Let v2
be the vector, of size N, of the within-phase residual covariances. If we denote c
the probability that two different females, randomly chosen, originate from
different dams, then v2 = 0.25((1 – c)Rv1 + cRv2). Hence, v2 = 0.25(1 – c) ·
(IN – 0.25cR)�1Rv1.

Let c be the vector of residual covariances between successive phases, i.e.,
covariance between phase 1 and phase 2, between phase 2 and phase 3, . . .
between phase N and phase 1. Obviously, c = 0.5((1 – c)v1 + cv2). The still
unknown covariances between phase i and phase j (j > i) correspond to the
domain where i = 1, . . ., N � 2 and j = i + 2, . . ., N. For a given i, covariances
can be obtained recursively because the covariance between phase i and phase j
is equal to 0.5 times the residual covariance between phase i and phase j � 1.
Finally, the off-diagonal terms of the matrix of coancestry coefficients between
females are equal to the corresponding terms of the matrix of rotational coances-
try coefficients +0.5 times the corresponding terms of the matrix of residual
variances-covariances. The diagonal terms are the terms of v2. This algorithm
was checked on simulated data.

432 J.-J. Colleau, L. Avon


	Introduction
	Outline of the approach
	Asymptotic properties of a given rotation list
	Inbreeding of female phases
	Coancestries

	Replacement of rotation lists
	Predictions on simple modelled populations
	Simulations on six rare french cattle breeds
	The current conservation programme of the Villard-de-Lans breed
	Monte-Carlo AI rotation scenario in the Villard-de-Lans breed
	Deterministic predictions for five other rare French cattle breeds

	Results
	Modelled populations
	The Villard-de-Lans breed
	The five other breeds

	Discussion and conclusion
	References
	APPENDIX 1:
	APPENDIX 2:

