This slide deck may contain certain forward-looking information. Such information involves known and unknown risks, uncertainties and other factors that may cause actual results, performance or achievements to be materially different from those implied by statements herein, and therefore these statements should not be read as guarantees of future performance or results. All forward-looking statements are based on the Company’s current beliefs as well as assumptions made by and information currently available to it as well as other factors. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this slide deck. Due to risks and uncertainties, including the risks and uncertainties identified by the Company in its public securities filings available online at www.sedar.com. Actual events may differ materially from current expectations. The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.
Investment Highlights

- ProMIS is developing a portfolio of disease modifying therapies in neurodegenerative diseases, including Alzheimer’s disease, based on our proprietary discovery platform
 - Neurodegenerative diseases a high priority area for large pharma licensing and acquisition

- ProMIS lead programs are following a “best in class” strategy targeting Amyloid beta in Alzheimer’s disease, with advantages over “first in class” therapy from Biogen (aducanumab)

- Listed on the TSX, ticker symbol PMN.TO, Listed on U.S. OTCQB, ticker symbol ARFXF and pursuing U.S. NASDAQ listing in 2018

- Highly experienced management team
ProMIS Neurosciences Pipeline: *Output of a highly productive discovery engine*

<table>
<thead>
<tr>
<th>Product Candidate</th>
<th>Target Protein</th>
<th>Disease Area Focus</th>
<th>Discovery</th>
<th>Pre-Clinical</th>
<th>Phase I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMN310</td>
<td>Toxic Amyloid β Oligomers</td>
<td>Alzheimer’s¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMN350</td>
<td>Toxic Amyloid β Oligomers</td>
<td>Alzheimer’s¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMN330</td>
<td>Toxic Amyloid β Oligomers</td>
<td>Alzheimer’s¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Process</td>
<td>Tau Protein</td>
<td>Alzheimer’s²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMN110 PMN120 PMN130</td>
<td>Superoxide Dismutase-1 (SOD1)</td>
<td>Amyotrophic Lateral Sclerosis (ALS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under Evaluation</td>
<td>TAR DNA-Binding Protein 43 (TDP43)</td>
<td>Amyotrophic Lateral Sclerosis (ALS)³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Process</td>
<td>alpha synuclein</td>
<td>Parkinson’s Disease⁴</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Potential use in Down syndrome
² Potential use in other dementias, eg. chronic traumatic brain injury
³ Potential use in frontotemporal dementia
⁴ Potential use in Lewy body dementia

ProMIS lead programs: a best in class strategy in Alzheimer’s
The three largest products in industry history were not first in class, but "best in class" – the inventors identified improvements to existing drugs

ProMIS following the “best in class” playbook

- Take advantage of “proof of biology” developed by earlier products
- Use proprietary science platform to design an improved product

<table>
<thead>
<tr>
<th>Product</th>
<th>Peak Sales</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipitor</td>
<td>$12BB</td>
<td>1996</td>
</tr>
<tr>
<td>Humira, RA, Crohn’s</td>
<td>$16BB</td>
<td>2003</td>
</tr>
<tr>
<td>Sovaldi/Harvoni, Pharmasset, Hepatitis C</td>
<td>$25BB</td>
<td>2014</td>
</tr>
</tbody>
</table>
Pharmasset created substantial value developing Sovaldi with a “best in class” strategy

Pharmasset Market Value

IPO

April 2007

Sovaldi at Preclinical Stage

PMN310 at Preclinical Stage

November, 2011

Sovaldi with Phase 2 data

PMN310 Phase 2 Expected 2021

M&A Exit

$11BB

Gilead Acquis.

$5.8BB Before Gilead Acquis.

$150MM

ProMIS Neurosciences
ProMIS is applying the “best in class playbook” to Alzheimer’s: Goal to create the “Pharmasset” of Alzheimer’s

<table>
<thead>
<tr>
<th>Company/Product</th>
<th>Disease</th>
<th>Product Category</th>
<th>First in Class</th>
<th>Best in Class Advantages</th>
</tr>
</thead>
</table>
| Pharmasset/Sovaldi | Hepatitis C | Direct Acting Anti-Virals | Merck, Vertex, J&J | • Higher SVR for all genotypes
 • Lower Side effects
 • Improved Dosing |
| ProMIS / PMN310, 330, 350 | Alzheimer’s | Amyloid beta targeted therapy | Biogen, Aducanumab | • Better selectivity for the root cause
 • Lower side effects
 • Personalized medicine |
ProMIS uses its proprietary technology platform to create highly selective antibodies.

Computer modeling to identify sequences (epitopes) likely to be exposed in toxic oligomers but not in monomers or fibrils -> Regions most prone to exposure thermodynamically

Two process patents, ProMIS and Collective Coordinates

Mimic the conformation of the epitope as exposed in the oligomer, distinct from the monomer or fibril -> Use for immunization
The cause of Alzheimer’s: the progressive death of neurons in the brain

The number of AD patients and associated costs are rising rapidly

- By 2050, one new case of AD is expected to develop every 33 seconds in the U.S.
- $500B Cost in the US, combining direct medical and indirect costs
- Fastest growing cause of death

1 Reviewed in Bloom 2014, JAMA Neurol
There are three forms of amyloid beta in the brain....the toxic oligomer is the neuron killer and the driver of disease

Soluble Aβ oligomers now recognized as the most neuropathogenic Aβ species

-> Spread in a prion-like manner

Relative abundance in the brain

Monomers

Binding reduces efficacy (target distraction)

Plaque

Binding causes adverse events (ARIA-E)

Specific targeting of toxic Aβ oligomers required for optimal efficacy and safety

Image courtesy of Nicolle Rager
A growing body of science confirms that toxic oligomers of Aβ are the root cause of disease

Toxic Aβ oligomers, also known as prions, are the real root cause of AD

- Aβ monomers and Aβ plaque have little or no demonstrable toxicity in vitro or in vivo1-3
- Soluble Aβ oligomers show the highest degree of neurotoxicity4
 - Toxicity in primary neuron cultures and brain slices1,3,5-7
 - Induction of cognitive impairment in rodents3,4

Plaque is not the problem – that explains many previous failures

1Shankar et al, Nature Med 2008; 2Cleary et al, Nature Neuroscience 2005; 3Hong et al, Science 2016; 4Benilova et al, Nature Neuroscience 2012 - Review; 5Lacor et al, J Neuroscience 2007; 6Jin et al, PNAS 2011; 7Lauren et al, Nature 2009
Dr. Eliezer Masliah, new head of US Nat’l Institute of Aging, stressed the need for therapies targeting the toxic oligomer at the AAN1 meeting in April 2017

• “A common mechanism underlies the top 3 neurodegenerative disorders, including Alzheimer’s: monomers aggregate into oligomers that are toxic to synapses and propagate in a prion-like fashion”

• Need to target oligomers of Amyloid beta, tau, alpha-synuclein ... [with therapy]

• Biogen’s aducanumab is showing promise, since it targets aggregated Amyloid beta [oligomers]
Biogen’s aducanumab is the first amyloid beta-targeted therapy with positive clinical efficacy results (does not bind monomers), but dose-limiting ARIA-E (binds plaque)

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
<th>Phase 2 Result</th>
<th>Phase 3 Result</th>
<th>Monomer Binding*</th>
<th>Oligomer Binding*</th>
<th>Plaque binding*</th>
<th>Antibody Isotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanezumab</td>
<td>Lilly</td>
<td>Failed, n=52</td>
<td>Failed, 3 trials</td>
<td>+++</td>
<td>+</td>
<td>None</td>
<td>IgG1</td>
</tr>
<tr>
<td>Bapineuzumab</td>
<td>J&J, Pfizer</td>
<td>Failed, n=234</td>
<td>Failed</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>IgG1</td>
</tr>
<tr>
<td>Verubecestat</td>
<td>Merck</td>
<td>No efficacy readout, n=200</td>
<td>Failed</td>
<td>Depletes Monomer</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Crenezumab</td>
<td>Roche</td>
<td>Failed, n=450</td>
<td>Ongoing at 4x dose of Ph2</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>IgG4</td>
</tr>
<tr>
<td>Gantenerumab</td>
<td>Roche</td>
<td>Failed</td>
<td>Stopped enrolling</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>IgG1</td>
</tr>
<tr>
<td>Aducanumab</td>
<td>Biogen</td>
<td>Positive Efficacy n=166</td>
<td>Ongoing, expected 2020</td>
<td>None</td>
<td>+++</td>
<td>+++</td>
<td>IgG1</td>
</tr>
<tr>
<td>PMN310, 330, 350</td>
<td>ProMIS</td>
<td>On track for 2021</td>
<td></td>
<td>None</td>
<td>+++</td>
<td>None</td>
<td>IgG4</td>
</tr>
</tbody>
</table>

* Source: Andre Uddin, Mackie Research
ProMIS used its proprietary technology platform to design products with advantages over prior therapies

Greater selectivity for the toxic oligomer (AβO)

- **No monomer binding** (like aducanumab), better efficacy
- **No plaque binding** (improvement over aducanumab), lower risk of brain edema side effect
- **IgG4** (improvement over aducanumab) – lower risk of brain edema side effect
- **Personalized medicine** – match the best drug to each patient, improved efficacy
Selective binding pattern of PMN310 vs other amyloid beta-directed antibodies:

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Binding to Monomers</th>
<th>Binding to Fibrils</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bapineuzumab</td>
<td>No binding to monomers -> No efficacy</td>
<td>Binding to fibrils -> ARIA-E, ARIA-H</td>
<td>ARIA-E, ARIA-H, ARIA-H</td>
</tr>
<tr>
<td>Solanezumab</td>
<td>Binding to monomers -> No efficacy</td>
<td>No binding to fibrils -> No ARIA-E</td>
<td>ARIA-E</td>
</tr>
<tr>
<td>Aducanumab</td>
<td>No binding to monomers -> Signal for efficacy</td>
<td>Binding to fibrils -> ARIA-E</td>
<td></td>
</tr>
<tr>
<td>PMN310</td>
<td>Selective binding to oligomers -> Expected improvement in efficacy & safety</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MONOMERS

FIBRILS
(Plaque)

OLIGOMERS

![Image of binding patterns for PMN310, Bapineuzumab, Solanezumab, and Aducanumab](image)
Implications of ProMIS selective binding advantages

- Selectively target toxic oligomers, avoid target distraction, ARIA-E
- Higher chances of strong efficacy signal, lower chances of dose limiting side effects
- Potential for precision medicine
 - Several strains of Aβ prion-like oligomers reported\(^1,2\) (and computationally predicted)
 - Companion diagnostic enables enrollment of patients confirmed to express the target against which our precision therapy is directed
 - Enables smaller, more focused trials with time and cost savings, and higher odds of success
 - Early treatment key to success – ProMIS companion diagnostics could eventually enable treating before symptoms arise, preventing or significantly delaying disease

\(^1\)Watts JC et al, 2014, PNAS; \(^2\)Sanders et al, 2014, Neuron
ProMIS antibodies stop toxic oligomers

Amyloid beta (Aβ) → Neurotoxic Oligomers form → Propagation or spreading → Neurotoxicity: oligomers kill neurons

ProMIS antibody products disable toxic oligomers and stop them from spreading

ProMIS data has been presented at numerous international neurology meetings in 2017
Administration of PMN310 to Mice: Prevents Loss of Short-Term Memory Formation Caused by Toxic Oligomers

THE EXPERIMENT

- Mice are tested for discriminating objects:
 - Without treatment (control);
 - With only Aβ Oligomer;
 - Without treatment (control) and PMN310; and
 - With Aβ Oligomer and PMN310.

THE RESULTS

![Graph showing discrimination index comparison between different treatments.](image)

- **AbO +/- Mab**
- **7 days**

Novel Object Recognition Assay

- Control mice remember a familiar object when re-exposed to it and spend more time exploring a new object
- Oligomer-injected mice lose the ability to discriminate between known and novel objects and spend equivalent amounts of time exploring both

Discrimination index = \((\text{Time exploring new object} - \text{time exploring familiar object}) / \text{total exploration time}\)

The potential value of Biogen’s aducanumab is gaining wide recognition...a rising tide for ProMIS

- **Goldman Sachs** Buy Biogen 08/16/17 “$12B peak sales estimate”
- **Morgan Stanley** Upgraded to OW Biogen 10/05/17 “Alzheimer’s Disease Remains a Must-Own Catalyst”
- **RBC** Initiate Biogen SP 09/14/17 “theoretical total market size could be $25B in U.S. alone...65% probability of success for aducanumab”
- **Jeffries** Initiates Coverage 07/10/17 “estimates odds of aducanumab success at 60%”
- **Evaluate Pharma** June 2017 “Aducanumab the highest NPV program in all industry” pipelines, *Estimates NPV of $10B*”
On track for value creation

• Further in vivo and in vitro data on lead products PMN310, PMN350, and PMN330
 • Including comparative results versus aducanumab
• Development of companion diagnostics and blood-based screening assay
• Development of TDP43 assets, based on epitope identification
• Tau and alpha synuclein: identification & IP filings on specific epitope targets
• Potential partnering deals
ProMIS Neurosciences: summary

- Developing personalized, “best in class” therapies targeting the root cause of Alzheimer’s and other neurodegenerative disease
- ProMIS proprietary technology platform is generating additional differentiated products in dementia, ALS, and Parkinson’s disease; potential partnering opportunities
- Numerous near term catalysts
- Lead product PMN310 in Alzheimer’s disease on track to
 - Further confirm differentiation from likely “first in class” Biogen’s aducanumab
 - Initiate clinical trials in 2019 and
 - Potentially superior clinical data vs aducanumab in late 2021 shortly after aducanumab anticipated approval
- **ProMIS pursuing NASDAQ listing, likely in 2018**
Thank You

We appreciate your interest in ProMIS Neurosciences and the exciting developments in AD therapeutics. Please feel free to contact us with any additional questions.

Eugene Williams, Executive Chairman
eugene.williams@promisneurosciences.com
+1 (617) 460-0978

Elliot Goldstein, MD, CEO
elliot.goldstein@promisneurosciences.com
+1 (415) 341-5783

Website: www.promisneurosciences.com
Twitter: https://twitter.com/ProMISinc
LinkedIn: https://www.linkedin.com/company/promis-neurosciences

Investor Relations Contact: Nick Rigopulos, President
Alpine Equity Advisors
nick@alpineequityadv.com
+1 (617) 901-07856
ProMIS has successfully raised $12.5MM in 5 rounds, at increasing values

- Cash life into H2 2018
- Common stock – 220,058,533
- Warrants – 24,708,098
Experienced Leadership Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Years of Experience</th>
<th>Prior Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene Williams</td>
<td>Executive Chairman</td>
<td>25+</td>
<td>- Former SVP at Genzyme, with senior roles integrating commercialization, drug</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>development, and deal making</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Recently the CEO of Dart Therapeutics, an Orphan Disease drug development</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>company</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Founder and director of Adheris, which became the largest company in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>patient adherence/compliance area</td>
</tr>
<tr>
<td>Elliot Goldstein</td>
<td>CEO</td>
<td>25+</td>
<td>- Held positions as SVP of Strategic Product Development at SmithKline Beecham</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(now GSK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Chief Operating Officer and Chief Medical Officer of Maxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Chief Operating Officer at DART Therapeutics</td>
</tr>
<tr>
<td>Neil Cashman</td>
<td>Chief Science Officer</td>
<td>25+</td>
<td>- Holds the Canada Research Chair in Neurodegeneration and Protein Misfolding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diseases,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Serves as the Director of the University of British Columbia ALS Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Awarded the Jonas Salk Prize for biomedical research in 2000</td>
</tr>
<tr>
<td>Steven Plotkin</td>
<td>Chief Physics Officer</td>
<td>20</td>
<td>- Professor at UBC in the Department of Physics and Astronomy since 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Appointed as the Canada Research Chair in Theoretical Molecular Biophysics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Associate member of the Genome Sciences and Technology Program, the Bioinformatics Program, and the Institute for Applied Mathematics at the University of British Columbia</td>
</tr>
<tr>
<td>Dan Geffken</td>
<td>CFO</td>
<td>25+</td>
<td>- Founding Managing Director of Danforth Advisors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Served as the Chief financial officer of Homology, Inc., GenePeeks, Inc.,</td>
</tr>
<tr>
<td>Johanne Kaplan</td>
<td>Chief Development Officer</td>
<td>25+</td>
<td>- Former VP of Research at Genzyme</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Associate Immunopathologist at SmithKline Beecham where she established an</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Immuno toxicology program</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Her work has resulted in over 60 scientific publications and multiple patents</td>
</tr>
</tbody>
</table>
Independent Board of Directors

<table>
<thead>
<tr>
<th>Name</th>
<th>Years of Experience</th>
<th>Prior Experience</th>
</tr>
</thead>
</table>
| Anthony Giovinazzo| 25+ | ▪ President and CEO of Sunovion CNS Development Canada ULC
▪ President, CEO and a Director of Cynapsus Therapeutics from 2009 to 2016 and one of the three original inventors and patent holders of the company’s Parkinson’s focused technology |
| Richard Gregory | 25+ | ▪ Chief Scientific Officer & Executive VP for Research at ImmunoGen
▪ Held a variety of roles at Genzyme and Sanofi-Genzyme, including Vice President for Gene Therapy, Head of Corporate Research and Head of R&D |
| Bill Wyman | 40+ | ▪ Co-founded the management consulting firm, Oliver Wyman & Co
▪ Former President of the Management Consulting Group called Booz Allen and Hamilton |
| Johannes Roth | 15+ | ▪ Founding director and partner at FiveT Capital Holding AG
▪ A board member of Insilico Biotechnology AG |
| Pat Kirwin | 30+ | ▪ Senior partner at Kirwin LLP
▪ Advises and represents businesses in a range of industries and sizes from local to multinational |
Scientific/Business Advisory Board

Scientific Advisory Board (SAB)

<table>
<thead>
<tr>
<th>Name</th>
<th>Years of Experience</th>
<th>Prior Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todd Golde, MD, PhD.</td>
<td>20+</td>
<td>▪ Director of the Center for Translational Research in Neurodegenerative Disease at the University of Florida</td>
</tr>
<tr>
<td>Lary Walker, PhD.</td>
<td>20+</td>
<td>▪ Associate Professor of Neurology and Research Professor at Emory University Yerkes National Primate Research Center</td>
</tr>
<tr>
<td>Bill Mobley, MD, PhD.</td>
<td>25+</td>
<td>▪ Dean for Neurosciences Initiatives, Distinguished Professor of Neurosciences, and Florence Riford Chair for Alzheimer Disease at the University of California, San Diego</td>
</tr>
</tbody>
</table>

Business Advisory Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Years of Experience</th>
<th>Prior Experience</th>
</tr>
</thead>
</table>
| Mara Aspinall, MBA | 25+ | ▪ Executive Chairman of GenePeeks
▪ Former President and CEO of Ventana Medical Systems, a division of Roche Group, a worldwide leader in the development and commercialization of tissue-based cancer diagnostics |
| Nigel Burns, PhD. | 25+ | ▪ CEO and Founder of SweetSpot Therapeutics Ltd
▪ Served as Senior Vice President of Cambridge Antibody Technology |
| Michael Higgins, MBA | 25+ | ▪ Currently an Entrepreneur-in-residence at Polaris Partners
▪ Previously at Genzyme, served as Vice President of Corporate Finance and Vice President of Business Development, and was involved with multiple business units, including Cell Therapy, Gene Therapy and Orphan Diseases |