
SA33901 / CVE-2009-0658

Released by Secunia

23 February, 2009

6 pages

SA33901 / CVE-2009-0658

Table of Contents

Terms and Conditions 2
Introduction 3
Technical Details 3
Exploitation 5
Characteristics 5
Tested Versions 6
Fixed Versions 6
References 6

Generated by Secunia 23 February, 2009 Page 1 of 6

SA33901 / CVE-2009-0658

Terms and Conditions:

=====================

This Binary Analysis, including any PoC, pcap, exploit, or other support files

(hereinafter referred to as BA), are intended for defensive purposes only.

The BA may not be used to orchestrate attack tools. It may, however, be utilised to

verify signatures and rules created. To a certain extent, the information may also be

used to verify that patches are properly applied if you are the legal owner of the

system or have been legally authorised to test the patch level.

The BA may NOT be redistributed outside the legal entity for which it was purchased, nor

may it be republished in any way.

Any employee working with this BA must be aware of the legal aspects related to BA.

Secunia is not in any way liable for any damages, business impact, or legal issues

caused or related directly or indirectly to the purchase, use, interpretation,

misappropriation, misinterpretation, or derivative work of the BA.

All other legal issues regarding the Secunia Binary Analysis Service are governed by the

most recent version of the Secunia Terms and Conditions. A copy of the T&C may be

obtained from the following URL:

https://ca.secunia.com/terms_and_conditions/

Generated by Secunia 23 February, 2009 Page 2 of 6

SA33901 / CVE-2009-0658

Introduction:

=============

An array indexing error in Adobe Reader can be exploited to corrupt arbitrary memory via

a PDF file containing a specially crafted JBIG2 stream.

Technical Details:

==================

The PDF "JBIG2Decode" filter is used to provide image data via a JBIG2-encoded stream. A

JBIG2 stream includes an arbitrary number of JBIG2 segments, each segment having the

following header structure:

[4 bytes - Segment number]

[1 byte - Segment header flags (segment type in low 6 bits)]

[Variable size - Referred-to segments]

[1 or 4 bytes - Segment page association]

The segment page association field specifies the number of the JBIG2 page associated

with the current segment. It contains one byte by default and can optionally have four

bytes if the 6th bit is set inside the segment header flags.

An array indexing error when processing a JBIG2 segment having an overly large segment

page association value can be exploited to corrupt arbitrary memory.

sub_9AD380() in AcroRd32.dll is called in order to process an encountered JBIG2 data

stream. The function parses each JBIG2 segment, extracting segment information via calls

to sub_9BB160().

.text:009AD380 sub_9AD380 proc near ; CODE XREF: sub_9AE700+8Cp
.text:009AD380
.text:009AD380 var_20 = dword ptr -20h
.text:009AD380 var_1C = dword ptr -1Ch
.text:009AD380 pSegments = dword ptr -18h
.text:009AD380 nSegNum = dword ptr -14h
.text:009AD380 pSegmentsHolder = dword ptr -10h
.text:009AD380 var_C = dword ptr -0Ch
.text:009AD380 segtype = dword ptr -8
.text:009AD380 var_4 = dword ptr -4
.text:009AD380
...
.text:009AD509 mov bl, [edx+4] ; segment type
.text:009AD50C and bl, 3Fh
.text:009AD50F mov byte ptr [esp+30h+segtype], bl
.text:009AD513 mov edx, [esp+30h+segtype]
.text:009AD517 push edx
.text:009AD518 mov ecx, esi
.text:009AD51A call sub_9AD2A0 ; allocate memory by looking at flags
.text:009AD51F mov edi, eax
.text:009AD521 test edi, edi
.text:009AD523 jz loc_9ADB54
.text:009AD529 xor eax, eax
.text:009AD52B mov ecx, edi
.text:009AD52D mov [edi+38h], ax
.text:009AD531 mov [edi+40h], eax
.text:009AD534 mov [edi+24h], ax
.text:009AD538 mov [edi+2Ch], ebp
.text:009AD53B call sub_9BB160 ; process segment

Among other fields, sub_9BB160() extracts the segment number, segment type (low 6 bits

in segment header flags), and the segment page association (in big-endian order) into a

heap object allocated for the current segment.

Generated by Secunia 23 February, 2009 Page 3 of 6

SA33901 / CVE-2009-0658

.text:009BB160 sub_9BB160 proc near ; CODE XREF: sub_9AD380+1BBp

.text:009BB160 ; sub_9AD380+291p

.text:009BB160 push ebx

.text:009BB161 push esi

.text:009BB162 push edi

.text:009BB163 mov esi, ecx

.text:009BB165 mov ecx, [esi+2Ch]

.text:009BB168 push 4

.text:009BB16A call sub_9BA6B0 ; read 4 bytes and advance

.text:009BB16F mov [esi+JBIG2Seg.segnum], eax ; segment number

.text:009BB171 mov eax, [esi+2Ch]

.text:009BB174 mov ecx, [eax]

.text:009BB176 movzx edx, byte ptr [ecx]

.text:009BB179 mov [eax+0Ch], dl ; segment header flags

.text:009BB17C add ecx, 1

.text:009BB17F mov [eax], ecx

.text:009BB181 mov al, dl

.text:009BB183 mov cl, al

.text:009BB185 and cl, 3Fh ; segment type (low 6 bits)

.text:009BB188 test al, 40h	 ; bit 6 set

.text:009BB18A setnbe dl ; dl becomes one if the segment page association field occupies 4 bytes

.text:009BB18D mov [esi+JBIG2Seg.segtype], cl

...

.text:009BB192 movzx cx, dl

...

.text:009BB1A4 mov [esi+JBIG2Seg.assocpage_4b], cx ; segment page association field occupies 4 bytes

...

.text:009BB388 cmp [esi+JBIG2Seg.assocpage_4b], 0

.text:009BB38D jnz short loc_9BB3A3 ; page association has four bytes

.text:009BB38F mov eax, [esi+2Ch]	; here if 1 byte

.text:009BB392 mov ecx, [eax]

.text:009BB394 mov dl, [ecx]	; length

...

.text:009BB39E movzx eax, dl

.text:009BB3A1 jmp short loc_9BB3AD

.text:009BB3A3 loc_9BB3A3: ; CODE XREF: sub_9BB160+22Dj

.text:009BB3A3 mov ecx, [esi+2Ch]

.text:009BB3A6 push 4

.text:009BB3A8 call sub_9BA6B0 ; read 4 bytes and advance

.text:009BB3AD

.text:009BB3AD loc_9BB3AD: ; CODE XREF: sub_9BB160+241j

.text:009BB3AD mov ecx, [esi+2Ch]

.text:009BB3B0 push 4

.text:009BB3B2 mov [esi+JBIG2Seg.assocpage], eax ; Segment page association

.text:009BB3B2 ; (number of page to which this segment belongs)

After extracting header fields from all included segments, sub_9AD380() re-parses the

segment array, computing the number of page information segments (segments with a type

of 0x30).

.text:009AD593 loc_9AD593: ; CODE XREF: sub_9AD380+F6j
.text:009AD593 mov edx, [eax+0Ch] ; array of segment objects base
.text:009AD596 mov ebx, [eax] ; number of segments
...
.text:009AD75E mov cl, 30h
.text:009AD760
.text:009AD760 loc_9AD760: ; CODE XREF: sub_9AD380+3F1j
.text:009AD760 mov ebp, [edx+eax*4]
.text:009AD763 cmp [ebp+JBIG2Seg.segtype], cl
.text:009AD766 jnz short loc_9AD76C ; not page information (0x30)?
.text:009AD768 add dword ptr [esi+0Ch], 1	; number of page information segments
.text:009AD76C
.text:009AD76C loc_9AD76C: ; CODE XREF: sub_9AD380+3E6j
.text:009AD76C add eax, 1
.text:009AD76F cmp eax, ebx		; number of segments
.text:009AD771 jb short loc_9AD760

An array of 20-byte elements is allocated on the heap, holding a maximum number of

elements equal to the previously computed number of page information segments.

.text:009AD773 loc_9AD773: ; CODE XREF: sub_9AD380+3D3j
.text:009AD773 ; sub_9AD380+3DCj
.text:009AD773 mov eax, [esi+0Ch] ; number of page information segments
.text:009AD776 lea ecx, [eax+eax*4]	; * 5
.text:009AD779 add ecx, ecx		; * 2
.text:009AD77B add ecx, ecx		; * 2
.text:009AD77D push ecx
.text:009AD77E call sub_9BA700 ; allocate page information * 20 bytes
.text:009AD783 add esp, 4
.text:009AD786 cmp eax, edi
.text:009AD788 mov [esi+10h], eax	; save it

Generated by Secunia 23 February, 2009 Page 4 of 6

SA33901 / CVE-2009-0658

After additional operations irrelevant to this analysis, sub_9AD380() enters a loop in

which the segment page association value of each segment is used to index the previously

allocated array of 20-byte elements while incrementing the first double word of an

element. Due to missing boundary checks, the operation results in memory corruption for

an overly large segment page association value.

.text:009AD86F loc_9AD86F: ; CODE XREF: sub_9AD380+43Fj
.text:009AD86F ; sub_9AD380+44Aj
.text:009AD86F xor edi, edi
.text:009AD871 cmp [esp+30h+nSegNum], edi
.text:009AD875 mov [esp+30h+var_1C], edi
.text:009AD879 jbe loc_9ADA31
.text:009AD87F mov edx, [esp+30h+pSegments]	; array of segment information objects
.text:009AD883 mov [esp+30h+segtype], edx
.text:009AD887 mov ecx, [edx]	; extract object for the current segment
.text:009AD889 mov eax, [ecx+JBIG2Seg.assocpage] ; segment page association
.text:009AD88C test eax, eax
.text:009AD88E jz loc_9ADB40
.text:009AD894 mov ecx, [esi+10h] ; page information structure
.text:009AD897 lea eax, [eax+eax*4]
.text:009AD89A add dword ptr [ecx+eax*4-14h], 1 ; page_info[segment_page_assoc - 1] += 1

Other similar operations, reading and writing to out-of-bounds indexes into the array

follow (not shown in disassembly).

Exploitation:

=============

The vulnerability can be exploited to reliably overwrite an almost arbitrary memory

address with a pointer to controlled memory. This results in the execution of arbitrary

code when a specially crafted PDF file is opened.

Secunia has developed a PoC and working exploit, which are available to customers via

the BA customer web interface.

Characteristics:

================

Detection:

Look for PDF files containing a JBIG2 stream with a segment page association value

greater than the number of page information segments included in the same stream.

Verification:

Create a PDF file containing a JBIG2 stream defining a segment having bit 6 set in the

segment header flags and a segment page association value equal to 0xFFFFFF. A

vulnerable Adobe Reader crashes when opening the file.

Identification:

AcroRd32.dll version 9.0.0.332 is confirmed to be vulnerable. Prior versions are also

reportedly affected. The default installation location of AcroRd32.dll is

"%ProgramFiles%\Adobe\Reader 9.0\Reader".

Generated by Secunia 23 February, 2009 Page 5 of 6

SA33901 / CVE-2009-0658

Tested Versions:

================

The vulnerability was analysed on Windows XP SP3 with Adobe Reader version 9.0.0.

Fixed Versions:

===============

The vulnerability is currently unpatched.

References:

===========

SA33901:

http://secunia.com/advisories/33901/

Adobe:

http://www.adobe.com/support/security/advisories/apsa09-01.html

JBIG specifications:

http://www.jpeg.org/public/fcd14492.pdf

Generated by Secunia 23 February, 2009 Page 6 of 6

