
LLVM/Clang and ARM 32-bit
Stefan Agner

Cross compiling with LLVM/Clang
● LLVM/Clang can cross compile by default (multiple backends)

llc --version

● Currently, only compiling is done by LLVM/Clang
○ GNU cross-compiler toolchain with assembler/linker required

● Environment setup as usual (cross compiler in PATH!)
export ARCH=arm

export CROSS_COMPILE=arm-linux-gnueabihf-

Cross compiling with LLVM/Clang
● Compile using

make CC=clang HOSTCC=clang multi_v7_defconfig

make CC=clang HOSTCC=clang nconfig

make CC=clang HOSTCC=clang -j4

● v4.18 adds compiler flag checks in Kbuild
○ hence CC/HOSTCC is required at config time!

● If using distro LLVM/Clang, add symlink in cross compiler bin dir [why?]
cd ~/gcc-linaro-7.3.1-2018.05-x86_64_arm-linux-gnueabihf/bin

ln -s /usr/bin/clang clang

Brief history LLVM/Clang Linux
● 2012-2014: LLVMLinux (Linux Foundation project)

○ Behan Webster, Jan-Simon Möller, Mark Charlebois
● 2015-: Compiled kernels/rebased the patches

○ https://blog.printk.io/2015/03/cross-compile-linux-for-arm-using-llvm-clang-on-arch-linux/
● 2017: Google Android team pushing upstream 2017

○ Matthias Kaehlcke, Nick Desaulniers, Miguel Ojeda, Sedat Dilek
○ v4.4/v4.9 https://lkml.org/lkml/2017/8/22/912
○ v4.14/state https://lkml.org/lkml/2017/11/22/943

● 2017: Pushed fixes for build errors/warnings
○ E.g. build error for ARM in MPI
○ Lots of warnings: e.g. implicit conversion from enumeration

● 2018: Initial complete support for ARM 32-bit
○ https://lkml.org/lkml/2018/3/20/837

https://blog.printk.io/2015/03/cross-compile-linux-for-arm-using-llvm-clang-on-arch-linux/
https://lkml.org/lkml/2017/8/22/912
https://lkml.org/lkml/2017/11/22/943
https://lkml.org/lkml/2018/3/20/837

Why?
● Competition etc….
● Prints really useful warning:

drivers/gpu/drm/tegra/dc.c:408:18: warning: variable
 'tegra124_primary_formats' is not needed and will not be emitted

 [-Wunneeded-internal-declaration]

static const u32 tegra124_primary_formats[] = {

 ^

drivers/gpu/drm/tegra/dc.c:835:18: warning: variable

 'tegra124_overlay_formats' is not needed and will not be emitted

 [-Wunneeded-internal-declaration]

static const u32 tegra124_overlay_formats[] = {

 ^

2 warnings generated.

Upstream ARM 32-bit state
● v4.18 multi_v7_defconfig-CONFIG_EFI

○ Patch queued for v4.20: https://lkml.org/lkml/2018/8/9/658

● v4.19-rc3 currently broken (missing __naked preprocessor define)
○ Patch underway: https://lkml.org/lkml/2018/9/10/101

https://lkml.org/lkml/2018/8/9/658
https://lkml.org/lkml/2018/9/10/101

Known issues/Future work
● Function tracing fails to link

○ https://www.spinics.net/lists/arm-kernel/msg671262.html
○ Work ongoing: https://github.com/ClangBuiltLinux/linux/issues/35

● ARMv6 fails to build
/tmp/empty-96a4d6.s: Assembler messages:

/tmp/empty-96a4d6.s:4: Error: unknown cpu `arm1176j-s'
○ Assembler file contains

.cpu arm1176j-s
○ LLVM/Clang issue? https://reviews.llvm.org/D18086
○ https://github.com/ClangBuiltLinux/linux/issues/55

https://www.spinics.net/lists/arm-kernel/msg671262.html
https://github.com/ClangBuiltLinux/linux/issues/35
https://reviews.llvm.org/D18086
https://github.com/ClangBuiltLinux/linux/issues/55

Known issues/Future work
● Disable features/CPUs (currently) not supported with LLVM/Clang

○ ARMv5/ARMv6/Big Endian (https://github.com/ClangBuiltLinux/linux/issues/57)
○ Kconfig symbols for compiler/compiler version are very helpful!

● Use integrated assembler
○ Requires ARM unified syntax...

● Making use of static analysis tools/instrumentation

https://github.com/ClangBuiltLinux/linux/issues/57

Debugging Techniques
● Compile single threaded & verbose

make CC=clang HOSTCC=clang -j1 V=1

● Invoke the compiler manually verbose/or through CC
clang … -v
make CC=”clang -v” HOSTCC=clang -j1 V=1

● To retain intermediate files use -save-temps
● Debug compiler flag detection

○ Edit scripts/Kbuild.include to echo command before execute (cc-option)
○ Better alternative?

Thank you!

Stefan Agner
stefan@agner.ch

