
YVR18-417: Struck entropy!
Finding true randomness from sensor data

Sumit Garg and Daniel Thompson

Agenda
● Platform: Developerbox
● OP-TEE port
● OP-TEE use-case: RNG feasible?
● RNG mechanism
● Is this RNG truly random?
● Optimize RNG collection
● RNG use-cases

Platform: Developerbox
Based on Socionext SynQuacer
SC2A11 multi-core chip with 24
cores of ARM® Cortex-A53.

Use-cases:
● ARM ® based software development

environment.
● IoT gateway
● Edge computing
● Low power consumption server.

OP-TEE port for Developerbox

1

2

3

5

6

Note: Here numbering represents the boot sequence

4

OP-TEE use-case: RNG?

RNG – Random Number Generator

Developerbox lacks a hardware based TRNG.

Kernel provides a software implementation using randomness from
inter-interrupt timings with following shortcomings:
● Lacks sufficient entropy at critical points (especially at boot)
● Not trusted (eg. by OP-TEE)
● Quite slow (especially when there are few interrupts)

OP-TEE use-case: RNG feasible

Developerbox provides 7 on-chip thermal sensors, accessible from
secure world only, sensing temperature from various group of core
clusters.

Do these thermal sensors contain sufficient noise to develop a TRNG?

Sensor: Randomness sources

Randomness (measurement error + ADC conversion error) resides
in Least Significant Bits (LSBs) of sensor output depending on
precision of measurement and ADC conversion.

Thermal sensor: raw data

1 0 1 0 0 0 0 0

1 0 0 1 1 1 1 1

1 0 1 0 0 0 1 0

1 0 1 0 0 0 1 1

1 0 1 0 0 0 0 1

1 0 1 0 0 0 1 0

1 0 1 0 0 0 0 1

1 0 1 0 0 0 1 1

1 0 1 0 0 0 1 0

1 0 1 0 0 0 1 1

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

Sample no. (freq: 2ms) Raw binary data

Collect randomness from least
significant bits

Sampling sensor data every 2ms

RNG mechanism

RNG byte stream

Is this RNG truly random?

Answer to this really depends on how much paranoia one has. In our case
we used following procedure to measure randomness:
● Collected approx. 2.1GB raw data from thermal sensors.
● Used “rngtest” (implements FIPS 140-2 RNG fitness tests).

○ https://wiki.archlinux.org/index.php/Rng-tools
○ https://en.wikipedia.org/wiki/FIPS_140-2

20k bits data generated
from RNG

Is this truly random?

https://www.google.com/url?q=https://wiki.archlinux.org/index.php/Rng-tools&sa=D&ust=1537305976085000&usg=AFQjCNH0c_Ad2_PJuqLAzPNe_QlrQEadtg
https://www.google.com/url?q=https://en.wikipedia.org/wiki/FIPS_140-2&sa=D&ust=1537305976086000&usg=AFQjCNGtrOkaui1tK-CVSneBwLN2ZIm6eg

Collect randomness from least significant bits

Sampling sensor data every 2ms

RNG algo 1: LSB only

G0 F0 E0 D0 C0 B0 A0

F0 E0 D0 C0 B0 A0 G0 F0G0 F0 E0 D0 C0 B0 A0 G0

Byte 0 (1st & 2nd sample) So on ...Byte 1 (2nd & 3rd sample)

FIPS test (rngtest) results show 2.13%
success ratio.

Collect randomness from least significant bits

Sampling sensor data every 2ms

RNG algo 2: LSB + xor of bit1

G1 G0 F1 F0 E1 E0 D1 D0 C1 C0 B1 B0 A1 A0

⊕ G0 F0 E0 D0 C0 B0 A0

G1 ⊕ F1 ⊕ E1 ⊕ D1 ⊕ C1 ⊕ B1 ⊕ A1

⊕ G0 F0 E0 D0 C0 B0 A0

Byte 0 (1st sample) So on ...Byte 1 (2nd sample)

G1 ⊕ F1 ⊕ E1 ⊕ D1 ⊕ C1 ⊕ B1 ⊕ A1

FIPS test (rngtest) results show 0.07%
success ratio.

Collect randomness from least significant bits

Sampling sensor data every 2ms

RNG algo 3: LSB + xor of bit1 + CRC

G1 G0 F1 F0 E1 E0 D1 D0 C1 C0 B1 B0 A1 A0

⊕ G0 F0 E0 D0 C0 B0 A0

G1 ⊕ F1 ⊕ E1 ⊕ D1 ⊕ C1 ⊕ B1 ⊕ A1

⊕ G0 F0 E0 D0 C0 B0 A0

Byte 0 (1st sample) So on ...Byte 1 (2nd sample)

G1 ⊕ F1 ⊕ E1 ⊕ D1 ⊕ C1 ⊕ B1 ⊕ A1

Statistical fine tuning using CRC32 algo per
4 byte payload (32:32 bit whitening).

Statistical fine tuning using CRC32 algo per
5 byte payload (40:32 bit whitening).

RNG testing results
● FIPS test (rngtest) results

show 99.91% success ratio.
● Entropy collection rate:

~500 bytes/sec
● Tried using the dieharder

suite to discriminate
between the 32:32 bit and
the 40:32 bit CRC whitening
but results are ambiguous.

Comparison with random.org data
● FIPS test (rngtest) results

show similar 99.92%
success ratio.

rngtest 6
Copyright (c) 2004 by Henrique de Moraes Holschuh
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

rngtest: starting FIPS tests...
rngtest: entropy source drained
rngtest: bits received from input: 20166213632
rngtest: FIPS 140-2 successes: 1007529
rngtest: FIPS 140-2 failures: 781
rngtest: FIPS 140-2(2001-10-10) Monobit: 103
rngtest: FIPS 140-2(2001-10-10) Poker: 102
rngtest: FIPS 140-2(2001-10-10) Runs: 292
rngtest: FIPS 140-2(2001-10-10) Long run: 290
rngtest: FIPS 140-2(2001-10-10) Continuous run: 0
rngtest: input channel speed: (min=36.893; avg=18053.932;
max=19073.486)Mibits/s
rngtest: FIPS tests speed: (min=84.396; avg=161.269; max=178.257)Mibits/s
rngtest: Program run time: 120430395 microseconds

Aside: My Intel machine’s RNG
● Uses “rdrand” hardware

instruction to get entropy.
● FIPS test (rngtest) results

show similar 99.91%
success ratio.

● Entropy collection rate far
higher: ~1 Mbytes/sec

RNG implementation

pseudo TA

Thermal Sensor

SMC
interface

RNG pseudo TA built as part
of OP-TEE OS. Initialized
during OP-TEE init. Normal
world client interface remains
same as with Dynamic TA.

Issue with RNG collection
● Sensor values refresh every 2ms

○ Theoretic maximum RNG rate of ~500 bytes/sec is relatively low
○ Max rate is only achieved if we read (poll) the sensors frequently

● Earlier implementation relied on continuous busy looping in pseudo TA
until requested RNG data is generated (time: 2ms * no. of bytes)

○ Busy looping for multi-milliseconds is wasteful

Busy looping? Yuck!

Optimize RNG collection

Configured OP-TEE pseudo TA with secure timer interrupts (freq: every 2ms)
and entropy pool (size: 4k).

Functionality:
● At each interrupt, pseudo TA formulates byte from LSBs of thermal

sensor output.
● Entropy pool is used to collect these bytes. Once pool is full, interrupts are

disabled and enabled again with every entropy request.

RNG: SMC interface
Normal world

driver
Secure world RNG

service (TA)

Allocate non-sec SHM
buffer (max. 4k)

Does some useful work
for (N-E)*2ms and then
request again to get
(N-E) bytes

Creates session with RNG TA

open session

ret: session

invoke cmd

ret: rng data

invoke cmd

ret: rng data

close session

ret: success

Available entropy E bytes in pool
less than requested. Return E
bytes and enable timer FIQ to
collect entropy in backend.

Issue request to get N
bytes of rng data

Returns (N-E) bytes of entropy
generated in the pool.

Timer FIQ keeps on running until
pool is full.

Issue request to close
session with RNG TA

Entropy pool (size: 4k)

RNG use-case - Kernel: /dev/random

Timer
FIQ

pseudo TA

Thermal Sensor

/dev/hwrng

/dev/random

rngd daemon

SMC
interface

TEE
Driver

“rngtest” results for /dev/random

RNG use-case - Boot time: UEFI

Timer
FIQ

pseudo TA

Thermal Sensor

SMC
interface

KASLR

OP-TEE
Library

Random
seed

Next steps...

● Improvements to the whitening algorithm.
● Work towards creating a generic RNG interface to secure world handling:

○ Fast vs. slow entropy sources.
○ Implements entropy pool vs. must be called every N ms.

● Upstream RNG driver in edk2 (UEFI) and Linux.

Thank You
#YVR18
YVR18 keynotes and videos on: connect.linaro.org
For further information: www.linaro.org
Contact: support@linaro.org

