How to build affordable Panoramic Camera product with Bubblegum96

Bo Dong <bdong@ucrobotics.com>
● Brief introduction
● The goal of this project
● Software - Hardware Acceleration
● Hardware - Open hardware MIPI Mezzanine Board
● Performance Benchmark
Brief Introduction

Who am I?

- Bo Dong
- bdong@ucrobotics.com
- Software Engineer
- Community Manager
- Maker
Brief Introduction

Who is uCRobotics?

uCRobotics is a Hi-tech company which focuses on Intelligent Platform, System Integration, and the development of Embedded System, etc.

Intelligent Platform
Solution
OpenSource

- uCRobotics is the manufacturer of Bubblegum-96 which is the 4th intelligence development platform based on the Linaro Standard.
- 3D cloud printing solution, Robotics solution, big data solution
- Contribution in open source projects
Brief Introduction

What is Bubblegum96?

- Optimized Actions S900 quad-core ARM Cortex-A53 64-bit SoC up to 1.8GHz
- Embedded Imagination PowerVR™ G6230 GPU support OpenGL ES 3.1, OpenGL 3.2, OpenCL 1.2 EP
- Integrated HDMI with Ultra 4K output
- 802.11b/g/n WiFi, Bluetooth 4.0
- USB 3.0 (Type A) x1 & USB 2.0 (Type A) x1 & Micro USB 2.0 x 1
- Extend Header(x40 pin) +1.8V, +5V, SYS_DCIN, GND, UART, I2C, SPI, PCM, GPIO x12
- Extend Header(x60 pin) SDIO, MIPI_DSI, MIPI_CSI, I2C, USB2.0
- Support Ubuntu Core & Android 5.1 Lollipop & Debian & Gentoo & OpenSUSE & Remix OS
- High performance, low latency and low cost
Goal of the project

Insta 360
$239.92

Ricoh Theta V
$396.99

Rylo 360
$497.89
Goal of the project

Bubblegum96
$89

Camera Set
~ $30

< $120
Software

Base System

- Based on Debian 8 (Jessie)
- Imagination DDK support OpenCL
- OpenCV
- Linaro overlay
- OV5640 Driver
Software → Camera Driver Architecture

- **Userspace**
 - Applications
 - API (open, ioctl, close...)
 - V4L2
 - v4l2_file_operations
 - soc-camera
 - soc_camera_host
 - soc_camera_device
 - ISP driver
 - v4l2_subdev
 - Module driver
 - I2C

- **Kernel Space**
 - ISP driver
 - OV5640

- **Hardware**
 - ISP
 - OV5640
Software

OV5640 Sensor Initialization Timing

set_gpio_level(&spinfo->gpio_rear, GPIO_HIGH);
set_gpio_level(&spinfo->gpio_rear_reset, GPIO_LOW);
mdelay(100);
set_gpio_level(&spinfo->gpio_rear, GPIO_LOW);
mdelay(100);
set_gpio_level(&spinfo->gpio_rear_reset, GPIO_HIGH);
mdelay(500);

Note:
1. \(t_0 > 0\) ms, delay from DOVDD stable to AVDD stable, it is recommended to power up AVDD shortly after DOVDD has been powered up.
2. \(t_1 > 0\) ms, delay from XVCLK off to AVDD off.
3. \(t_2 > 5\) ms, delay from AVDD stable to sensor power up stable, PWDN can be pulled low after this point.
4. XVCLK can be turned on after power on.
5. \(t_3 = 1\) ms, delay from sensor power up stable to RESETB pull up.
6. \(t_4 = 20\) ms, delay from RESETB pull high to SCCB initialization.
7. \(t_5 > 0\) ms, delay from AVDD off to DOVDD initialization.
8. \(t_6 > 0\) ms, delay from RESETB pull low to AVDD off.
Software

Infrastructure

Application
Algorithm
QP Middleware
OpenCL
Debian

GPU Acceleration

General Interface
Software

Porting QP Middleware

QP/C++ (Quantum Platform in C++) is a lightweight, open source software framework/RTOS for building reactive real-time embedded applications as systems of cooperating, event-driven active objects (actors). The QP/C++ framework is a member of a larger QP family consisting of QP/C, QP/C++, and QP-nano frameworks, which are all strictly quality controlled, thoroughly documented, and commercially licensable.
Software

QP State Machine

State Sequence for [Wakeup] and [Pause]
Software

GPU Acceleration

PowerVR Rogue G6230

- Compute Core: 64Core
- Freq: 528MHz
- Shared Memory: 4Kbyte
- Support: OpenGL ES 3.1, OpenGL 3.2, OpenCL 1.2 EP
Software

OpenCL Acceleration

Discover and initialize the platform
\texttt{clGetPlatformIDs()}

Discover and initialize the devices
\texttt{clGetDeviceIDs()}

Create a context
\texttt{clCreateContext()}

Create a command queue
\texttt{clCreateCommandQueue()}

Create device buffers
\texttt{clCreateBuffer()}

Write host data to device buffers
\texttt{clEnqueueWriteBuffer()}

Create and compile the program

Create the kernel
\texttt{clCreateKernel()}

Set the kernel arguments
\texttt{clSetKernelArg()}

Configure the work-item structure

Enqueue the kernel for execution
\texttt{clEnqueueNDRangeKernel()}

Read the output buffer back to the host
\texttt{clEnqueueReadBuffer()}

Release OpenCL resources
1. Correct Fisheye distortion by spherical projection.
2. Perform the inverse mapping.
Software

Panoramic Stiching

Ref: http://www.360facil.com/eng/360-degree-photo-shot-fisheye-two-shots.php
Hardware

Dual MIPI Cam Schematic
Hardware

Three reversions of PCB
Hardware

Raw capture from module
Fisheye camera model

`cv::fisheye`

https://docs.opencv.org/trunk/db/d58/group__calib3d__fisheye.html
Performance Benchmark

Benchmark

8X
Thanks!

Bo Dong <bdong@ucrobotics.com>
Bubblegum96 <96boards@ucrobotics.com>