EB corbos and the L4Re microhypervisor: Open-source automotive safety

Alexander Much, Michael Hohmuth, Adam Lackorzynski
2018-09-19, Vancouver, Linaro Connect 2018
About EB

Technical competencies
EB’s technical core competencies are development of automotive-grade (software) products and engineering services.

Employees
More than 2200 employees worldwide. Spans three continents and ten countries.

Consistent growth
Average growth (CAGR) > 10 %

Global presence
Development and business offices in Austria, China, Finland, France, Germany, India, Israel, Japan, Romania and USA.

Continental AG
Wholly owned, independent subsidiary of Continental AG.

100+ million
Over 90 million vehicles on the road and 1 billion embedded devices.
What we do

Automated driving
- Hardware and software products for development, test, visualization, and validation.
- Key software components to bring automated driving functions and systems to serial production.

Vehicle infrastructure
- AUTOSAR standard
- Single- & multi-core OS
- Functional Safety OS
- Embedded Security
- Automotive networks, e.g. Ethernet

Connected car
- Intelligent big data analytics & online diagnostics
- Scalable backend infrastructures
- Cyber security solutions plus modular add-ons by Argus
- Software updates over-the-air

User experience
- Navigation client for connected use cases
- Electronic horizon provider enabling map-based ADAS functions
- Model-based development of multimodal user interfaces
- Augmented reality solutions

Consulting services
- Consulting services for Functional Safety and Software Architectures
- Lean Software Development
- Established agile processes

Verification and validation
- End-to-end testing of complex embedded software systems
- Test concept development
- Independent verification and validation of software systems
Interesting times...

- Machine learning
- Crowd-sourced data
- System of systems
- Third party access

- Personalization
- Shortened development cycles
- Evolution after SOP
- New topics
 - new business models
Mobile on wheels or wheels on mobile?

What comes first?

We need to completely re-think the E/E architecture:

• Domain or zonal architectures

• Centralized computing units

• High-speed, reliable and dependable networking

• Connected vehicle within infrastructure eco-systems

Cloud and mobile first!

Source: https://pxhere.com/en/photo/1064249, CC0 Public Domain
Phone and cloud vs. vehicle

What needs to be „more“ secure?

Most prominent answer: „Of course, my car!“

People don’t realize:
• How many security solutions are in today’s phones
• Cloud and phones set the „state-of-the-art“
• ... not cars!

Evolution of E/E architectures

Domain Architecture
- Signal-based communication
- System of ECUs
- Predictable communication
- Function orientated topology

Centralized Architecture
- Central computing nodes
- Mix of signal based and service orientated communication
- Partly centralized functions
- Software upgradeability

Zonal Architecture
- IP/Ethernet communication
- Centralized applications / functions
- Computing power for AD and AI
- Anything anywhere (sensors/actors)
- Architecture follows software / system demands
Building blocks of the next architecture

EB corbos and the L4Re microhypervisor: Open-source automotive safety

HPC = High performance controller

Horizontal deployment of functions

Vehicle API / basic services / information layer

Real time and sensor/actuator layer

Computing layer

Back-end

Every information anywhere – enables horizontal deployment of services and updating service. → But needs to be controlled for safety and security reasons
EB corbos
Safety, security and performance
EB corbos – The architecture

- New CPU-intensive (safety-relevant) functions: e.g. sensor fusion
- Novel user functions: e.g. App Store
- Reuse of existing vehicle functions from Classic AUTOSAR (SWCs)
- Secure startup, authentication
- Safety-relevant vehicle functions, monitoring of performance partitions

Performance partitions
- Adaptive AUTOSAR
- POSIX OS
- Virtual machine

Security partition
- Classic AUTOSAR
- AUTOSAR OS
- Trusted Execution Environment
- Trusted OS
- AUTOSAR Safety OS

Hypervisor
- Secure Boot
- Performance cores
- Safety cores

High-performance computer
EB corbos – The architecture (II)

Performance partitions
- App
- EB corbos AdaptiveCore
- EB corbos Linux
- POSIX RTOS
- EB corbos Hypervisor

Security partition
- App
- Trusted Execution Environment
- Trusted OS
- EB tresos Safety OS

Safety partition
- App
- EB tresos AutoCore

High-performance computer
Secure Boot
Performance cores
Safety cores

Tools
- EB tresos Studio
- Configuration
- Code generation
- EB corbos Studio
- Application development
- Integration and deployment
- Logging and debugging

Software
EB tresos
EB corbos
Services
3rd party

Hardware (SoC)
EB corbos AdaptiveCore

EB corbos and the L4Re microhypervisor: Open-source automotive safety

EB corbos AdaptiveCore

Application

Runtime for adaptive applications

Adaptive application

Services

Communication management
ara::com/rest/dds*

Diagnostic management

Network management

Persistency

Update & configuration management

Signal-2-service mapping*

Platform health management

Cryptography*

Identification & Access management*

Platform health management

Execution management

Log & Trace

Hardware acceleration*

Log & Trace

Platform health management

Execution management

Cryptography*

Persistency

Identity & Access management*

Network management

Communication management
ara::com/rest/dds*

Platform health management

Hardware acceleration*

Execution management

Log & Trace

Persistency

Malfunction management

Application

EB corbos Hypervisor

EB corbos Linux

OS

POSIX RTOS

Future content*

3rd Party

Alternatives

EB corbos

Tools

Generic

HW-depend.

Future content*

2018-09-19 | Linaro Connect 2018 | Public | © Elektrobit Automotive GmbH 2018 | All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Distributed safety management

Vehicle functions partition
- Container
 - Vehicle function
 - Virtual resources
- Execution manager
- Health manager
- Diagnostic manager
- Persistence manager

Privileged partition
- Container
 - Vehicle function
 - Virtual resources
- Virtual resources
- Health manager
- Physical resources

Classic AUTOSAR components
- Health control
 - WDG
 - Lockstep Safety OS

Adaptive AUTOSAR on Linux
- Hypervisor
 - Bootloader

Core
- Monitor
- Control
Platform security layers

- Control flow integrity
- Virtual address space separation
- ASLR, sanitizers, etc.

- Resource access control
- Intermediate address space separation
- 1st-stage MMU

- Scheduling domains
- Resource constraints

- Hardware resource separation
- Physical address space separation
- 2nd-stage MMU

- Processes
- Containers
- Operating systems
- Hypervisor

- Classic μC
- HSM
- Performance cores
- Performance μP
- Secure engine
- Switch

- HSM (EVITA medium)
- HIS SHE support
- Crypto accelerators
- Life cycle management
- Hardware access protection
- Crypto accelerators
- 3 core logic (Secure, Public & PKA)
- Dedicated RAM/ROM (key material)
- eFuses
- DoS prevention
- VLAN tagging
- Static ARP tables
- Monitoring ports

2018-09-19 | Linar Connect 2018 | Public | © Elektrobit Automotive GmbH 2018 | All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Hypervisor use-cases

ECU Consolidation
Increasing capabilities of nowadays performance controllers enable suppliers to consolidate multiple in-car applications to one single device.

Network Separation
Growing Car-2-X connectivity requires secure separation of out-bounded connections to the in-vehicle network.

Mixed Criticality Systems
Virtualization brings in the key technology to build fail operational software systems with mixed safety integrity levels.

Your benefit
EB corbos Hypervisor
Based on the L4Re microhypervisor
Noteworthy L4Re features

Isolation

- Capabilities as references to kernel (and user-land) objects
 - Provides information hiding (local naming) and access control
 - Enables reasoning about isolation and freedom from interference
 - No capability to shared object
 → No way to communicate or interfere

- Designed to even allow preventing sharing 2nd-class kernel objects (allocators ...) and invisible architectural state (not 100 % there yet...)

Real-time

- Real-time per-CPU scheduler: Fixed priority round robin
 - Support for thread-group budget scheduling planned
 - WFQ (non-RT) also available
 - Cross-CPU thread / VCPU migration supported

- Short critical sections w/ IRQs off, preemption points
- Fine-granular wait-free locking
 → Excellent interrupt-response times

- No cross-CPU shared state in critical paths, no big kernel lock
 → Excellent scalability
Noteworthy L4Re features (II)

Virtualization

• Hardware-assisted virtualization
 – Untrusted (user-level) virtual-machine monitors (VMMs) for platform emulation
 • uvmm: Tiny VMM for Linux guests. Upstream ARM Linux “just works”
 • l4-kvm: Uses Qemu/KVM in a Linux guest to provide platform for Windows guests (x86 only)
• Also available: Paravirtualization with L4Linux
 – A user-mode Linux kernel running on L4Re

Microapps

• Microapps: Native L4Re applications
 – Small TCB: no dependency on any rich OS, no Dom0
 – No dependency on VMM
 – No virtualization overhead
• POSIX subset for microapps: L4Re Runtime Environment
 – Supports libc, C++ library, pthreads, etc.
 – Natural extension of kernel API with useful OS abstractions, e.g. for address-space management
Noteworthy L4Re features (III)

I/O virtualization

- Device pass-through to VMs or driver microapps
 - DMA security via IOMMU (ARM: WIP)
- Native drivers and multiplexing for various buses and devices
 - PCI, serial console, AHCI, framebuffer
- Virtual networking among VMs supported
 - Virtual Ethernet switch or p2p connection
 - Virtual socket connections
- Virtio supported

Where to get it?

- Go to www.kernkonzept.com/download.html
- Or www.l4re.org
- Early access at github.com/kernkonzept

Licensing?

- (Mostly) GPL version 2
- Commercial licenses: Dual licensing capability
 - Require CLA for contributions, essential for attracting investments needed for certification
 - Also, a customer requirement in Automotive
- Kernkonzept serves as maintainer & gatekeeper for contributions
Solutions for interesting times

- **Machine learning**
 - Crowd-sourced data

- **Personalization**
 - Real-time capable
 - Shortened development cycles

- **High-assurance security**

- **Long-term maintenance and operations**

- **Automotive safety up to ASIL-D**
 - Based on open-source and established, well-proven implementations

- **System of systems**

- **Third party access**

- **Evolution after SOP**

- **New topics**
 - new business models
Get in touch!

alexander.much@elektrobit.com
michael.hohmuth@kernkonzept.com
adam.lackorzynski@kernkonzept.com
www.elektrobit.com