Agenda

Introduction to PSA and Trusted Firmware M
High Level System Architecture
Overview of services
Use-case Scenarios
Getting Involved

Please feel free to interrupt during the course of this presentation!
Overview – PSA and TFM
Platform Security Architecture

1. Device identity
2. Secure over-the-air software update
3. Trusted boot sequence
4. Certificate based authentication

Common principles across multiple use cases

3 Parts to PSA

Software architecture
Hardware requirements
Architecture & Specifications
TF-M Overview

- Open source project
- PSA implementation for M class
- Secure Boot
- Secure Partition Management (SPM)
- Secure function call routing
- Isolation within SPE
- Secure Services
- NSPE API
- CMake based Build environment
- Test suite
- Documentation
- Infrastructure

Non-secure Processing Environment

- Non-secure partition
 - Application firmware
 - OS libraries
 - OS kernel

Secure Non-Privileged Domain

- Crypto Secure partition
 - Secure function
 - Secure function

- SST Secure partition
 - Secure function
 - Secure function

- Trusted partition
 - Trusted function
 - Trusted function

Secure Privileged Domain

- TFM Framework
 - Secure IPC
 - Secure isolation
 - Secure debug

- Bootloader
 - Secure boot
 - FW Update support
 - Attestation data

Isolation boundary
Secure Partition Manager and IPC
TF-M Core Framework

- Secure system init
- Secure Partition Management (SPM)
- Secure function call routing (IPC)
- Isolation within SPE
- NSPE API
- Build environment
- Test suite
- ...

Non-secure Processing Environment

- Non-secure partition
 - Application firmware
 - OS libraries
 - OS kernel

Encrypt Secure partition
 - Secure function

SST Secure partition
 - Secure function

Secure function

Trusted partition
 - Trusted function

Bootloader
 - Secure boot
 - FW Update support
 - Attestation data

Secure Processing Environment

Non-Privileged Domain

Secure Privileged Domain

© 2017 Arm Limited
Framework Updates

- NS to S transition in thread mode
- Manifest based service definition
- IPC support (on a feature branch currently)
- Support for Trusted and Secure partitions
- GCC support
- Platform abstraction improvements
- ARMv8-m mainline and baseline supported
IPC

- Facilitates secure communication between-
 - SPE Services
 - NSPE to SPE services
- Services are written as daemons running in a while loop
- Calls from clients are sent as a message to partition
- Synchronous execution of Service’s interrupt handling
- Blocking API calls
IPC Security Considerations

- IOVEC based communication
  ```c
  typedef struct psa_iovec {
    const void *base;
    size_t len;
  } psa_iovec;
  ```
- Integrity protection of iovecs
- Streamed buffer read/write
- Framework level memory bound check
- API based access to client memory
- MMIO regions per partition for peripheral usage isolation
Secure Services
Secure Storage

TFM Crypto Glue API

TFM ‘Crypto Service’
- Glue APIs, Available only to a limited set of entities
- Key passed in plaintext
- Abstracts usage of HW keys
- Either a service, or custom interface into SPM

TBSA HAL API

- HW Keys

- Crypto Accelerator

Secure Partition Manager

Secure Privileged Domain

Secure Non-Privileged Domain

Non-Secure Processing Environment

Non-secure partition
- Application firmware
- SST Service API
- OS libraries
- OS kernel

Secure Processing Environment
Secure Storage

- Protects Confidentiality, Integrity and availability of stored content
- Policy based access
- AES-GCM For AEAD
- Power failure safe operation
- Custom File System
- Rollback protection

New Stuff....
- PSA API, crypto property binding
- Rollback protection
- Key diversification (under review)
- File system abstraction (under review)
Audit Log

- Mitigation against repudiation
- Confidentiality/Integrity/ Authenticity protested log of system’s security critical events
- Use-case defined log entries
- Facilitates secure retrieval of logs by server
Bootloader
Bootloader

- SPE and NSPE image combined and signed
- SHA256, RSA-2048
- Firmware update support
- Attestation token collection
- Support for execution from RAM
Use case Scenarios
Runtime Device Provisioning

Non-Secure Processing Environment

Non-secure partition
- Provisioning Client
 - Service API
 - TFM Crypto
 - OS libraries
 - OS kernel
 - TBSA HAL API
 - HW Keys
 - Crypto Accelerator

Secure Non-Privileged Domain
- Crypto Service
- Secure Storage
- Provisioning service

Secure Privileged Domain
- Secure Partition Manager

Hardware

Provisioning cmd
- Provisioning cmd (signed and encrypted)
- Challenge req
- Bin blob
Runtime Device Provisioning

- Server sends provisioning cmd
- Provisioning client requests a challenge from provisioning service
- Server signs and encrypts the provisioning data (includes challenge)
- Provisioning service authenticates and decrypts the provisioning data
- Provisioning data is programmed in secure storage
- Flush crypto cache (key slots)
PSK TLS Setup

Non-Secure Processing Environment

Non-secure partition

TLS

Service API

OS libraries

OS kernel

Secure Storage

TLS PSK

Crypto

Secure Non-Privileged Domain

Privileged Services

TFM Crypto

TBSA Platform APIs

Initial attestation service

Secure Partition Manager

TBSA HAL API

HW Keys

Crypto Accelerator

Secure Domain

Hardware

arm
PSK TLS

- Server or device initiates the TLS protocol
- TLS lib on device requests Crypto for enc/dec/hash
- Crypto fetches the TLS key from secure storage
- Crypto performs the requested cryptographic operation
- Result is returned back to NSPE world
- Key never leaves secure world
Attestation

Non-Secure Processing Environment

Non-secure partition

Attestation Client

Non-Secure

Crypto Service

Attestation Tokens (image signature, boot stats, geo positioning, etc)

Attestation Service

Privileged Services

TFM Crypto

TBSA Platform APIs

Secure Partition Manager

Service API

OS libraries

OS kernel

Hardware

TBSA HAL API

HW Keys

Crypto Accelerator

Secure

Non-Privileged Domain

Secure

Non-Privileged Domain

Signed/encrypted attestation token

Attestation req+challenge

Attestation token
Attestation

- Service to securely collect and provide the device measurements
 - Boot measurements
 - Image signature(s)
 - Device identity
 - Geographical location
 - Vendor data
- Server sends attestation request with a challenge
- Att service signs/encrypts the data along with challenge
- NSPE client returns the attestation blob to server
Getting Involved
How to get involved

Trusted Firmware Website
 • https://www.trustedfirmware.org/index.html

TF-M codebases
 • https://git.trustedfirmware.org/

TF-M Dev Team @ Connect HKG18
 • Abhishek Pandit
 • Ashutosh Singh

Get in touch
 • Come round LITE hacking room
 • Schedule a meeting via hkg18.pathable.com

More info on developer.arm.com
Looking Ahead

- Add support for IPC in all the services
- Secure interrupt handling
- TFM-M scheduler
- Crypto service enhancements to support asymmetric crypto
- Attestations Service
- Provisioning Service
- Platform HAL standardization
- Threat Modelling
Questions?

• BoF: IOT Security with Arm OSS – 10:00 - 10:55, 18 September 2018
• Trusted Firmware - Project Updates - 16:00 - 16:55, 18 September 2018
• Open CI for Trusted Firmware - 12:00 - 12:25, 18 September 2018
Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद
Firmware upgrade

- Update client downloads the FW
- Bootloader validates the new image
- Swap the images
- Perform BIST in runtime and mark SPE and NSPE as ‘safe’
- If not, revert back
ARMv8-M TrustZone overview
ARMv8-M Secure and Non-secure states

Non-secure

Application Code
Thread Mode
MSP NS
PSP NS

Exception Code
Handler Mode
MSP NS

Secure

Application Code
Thread Mode
MSP S
PSP S

Exception Code
Handler Mode
MSP S
ARMv8-M additional states

Existing Handler and Thread Modes mirrored with Secure and Non-secure States

Secure and Non-Secure code run on a single CPU

Secure state for trusted code

• New Secure stack pointers for robust operation
 - MSP and PSP → MSP_NS, PSP_NS, MSP_S and PSP_S

Dedicated resources

• Separate memory protection units for S and NS
• Private SysTick timer for each state
• Secure side can configure target domain of interrupts
Secure Partitions: Address space layout/permissions

PSA level 1

SPE/NSPE isolation provided by v8M TrustZone (SAU, IDAU, MPC, PPC)

Partition Manager

• creates/maintains database of SPs
• sets up isolation boundaries
• prepares execution context for secure function
• keeps track of partition states
Calling between security states

Secure code can call Non-secure functions

- Non-secure functions and data should not be trusted

Non-secure code can call into Secure libraries

- Only a sub-set of the Secure code is callable
- Secure entry points are limited
- Non-secure code does not need to know it is calling a Secure function

This is different from Armv8-A TrustZone

- Where changing security state can only occur on an exception boundary
Memory security

Physical memory is split into Secure and Non-secure regions (No MMU in M-class)

- A Secure region can also be Non-Secure Callable (NSC)