Mezzanine Enablement

Hardware for Software engineers
“People who are really serious about software should make their own hardware”

Alan Kay, Creative Think Seminar, 1982
Why 96Boards?
96Boards is a **Software** Project

- Hardware to support our software goals
- Reference Platform Builds
 - 16.03 release single kernel binary & distro
 - supports many platforms out of the box
 - Software base for applications
 - Including support for IO expansion
- Same form factor, same software, same use cases, different hardware
96Boards are Real Products

- Market Availability
- Directly Usable in Products
- Platforms are First Class Citizens
 - Support from Reference Platform Builds
 - Support from Distros expected
Why Build a Mezzanine?

1. Idea for hardware
2. ???
3. Profit!
DISCLAIMER

I am *not* saying everyone should design hardware!

Adverse effects such as bricked boards, soldering iron burns, or slipped schedules are on your own head!
Why Build a Mezzanine?

- Hardware design has never been easier
- Consider solving SW problems with HW
 - Test jigs
 - Expand capabilities of hardware
Start With The Basics

Getting started can be intimidating, but fear not! Ask the Internet!

- Find Examples showing Basic Electronics
 - Arduino
 - Starter Kits
- Standard Solderless Breadboards*
- Build something that interests you
 - Lightsabers!
Free Software Design Tools

We’ve got Open Source tools for every stage of design

- **KiCad**
 - Schematic & PCB
 - Advanced routing tools

- **Fritzing**
 - Breadboard, Schematic & PCB
 - “Lego” building blocks
 - Library of common maker modules
Free Software Design Tools

- **OpenSCAD**
 - Solid modeling for programmers
 - 3D case design
- **Inkscape**
 - Laser cut designs
- **LibreOffice**
 - Packaging and printed documentation
- **Git, Make, XML tools**
 - Good software practice applies to hardware
Prototyping

- PCB printing
 - DirtyPCBs
 - OSHPark
 - Seeed Fusion PCB

- Assembly
 - Do it yourself
 - Learn how to solder - lots of guides online
 - Prototype assembly services
Manufacturing

- Find a manufacturing partner
 - Doesn’t have to be local
 - Should provide
 - Design for Manufacturing Review
 - Testing
Sales & Marketing

● Don’t ask me, I’m just an engineer
Design for 96Boards

- Start with KiCad Template
 - https://github.com/96boards/96boards-kicad-mezzanine-template

- Or fork an existing design
 - 96Boards UART
 - Sensors Mezzanine
 - Robomezzi
Mechanical

- 54x85mm
- Optionally stackable
 - Check baseboard height requirements
- 7mm minimum separation
 - LS connector only insufficient mechanically
 - Mount with standoffs
 - LS+HS mounts solidly
- Prefer surface mount
 - Don’t short against baseboard connectors
Components and Footprints

- 0603 footprints are a good choice
 - Resistors
 - Capacitors
 - Diodes
- Look in datasheets for recommended footprint
- Look at other open hardware designs
Power

- Supply
 - SYS_DCIN (8-18V) - pins 36, 38
 - Careful!
 - Supply from either baseboard or mezzanine

- Regulated Power
 - 5V/1A - Pin 37
 - 1.8V/0.1A - Pin 35

- Typical mezzanine will regulate from 5V rail
- Use 1.8V (pin 35) as VIO reference
1.8V IO

Transparent level shifting is tricky. Options:

- One-way Buffers
 - When the signal is unidirectional
- Simple Clamp Style
 - BSS138 MOSFETs
 - PCA9306 dual channel (made for I²C)
- High Density Multi-Channel
 - Low drive strength
 - Good for short traces, poor for off-board
 - TXS010x - Clamp style
 - TXB010x - Push/pull
I2C

- Test design on breadboard before building
- BSS138 or PCA9306 works best
- Not all devices play well together
- Check drive strength and choose pull-ups appropriately
- ie. 1k pull-up is typical, but the Grove RGB LCD cannot drive it through the shifter
UART

- UART0
 - Available for applications
 - RTS/CTS lines

- UART1
 - Default Linux console
 - Pass through to a header if not using
SPI

- Pins defined for MISO, MOSI, CLK and one CS line
- Can use GPIOs as additional CS lines
GPIO

- 12 Lines
- Pins 23 through 34
PWR_BTN & RST_BTN

- Power and Reset button inputs
- Pulled high
- Drive low to activate
 - ex. Short to GND with momentary button
- Behaviour depends on PMIC/SoC
 - Artifact of using Mobile SoCs & PMICs
 - Looking to resolve in next rev of spec
PCM/I2S Audio

- Should be usable with I2S codec
Questions?