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ABSTRACT

The global transition to renewable energy has elevated solar power as a key driver of sustainability, yet its intermittent 
nature and integration challenges demand advanced solutions to optimize efficiency and reliability. This research 
investigates the role of artificial intelligence (AI) in revolutionizing solar energy management, focusing on machine 
learning and optimization techniques to enhance system performance, the experiment was calibrated in MATLAB 
environment. We evaluate algorithms including Artificial Neural Networks (ANNs), Support Vector Regression (SVR), 
Linear Regression (LR), and Genetic Algorithms (GAs), applied to solar power forecasting and parameter optimization. 
Our methodology employs SVR with an RBF kernel and grid search, achieving precise predictions of solar power 
output with reduced forecasting errors, while GAs optimizes system parameters to a fitness value of 23.20 kWh, even 
under constraints like a 90° panel tilt. Comparative analysis reveals SVR and GA outperform ANNs and LR, demonstrating 
their adaptability to weather fluctuations. This study highlights AI’s transformative impact on solar energy efficiency and 
sustainability, offering valuable implications for researchers and industry stakeholders.

Keywords: Artificial Intelligence; Solar Energy Management; Optimization Algorithms; Forecasting Efficiency; Photovoltaic 
Systems

INTRODUCTION

Amid escalating environmental concerns and the imperative 
for sustainable development, the energy sector stands as one of 
the primary domains undergoing profound transformation. 
Artificial intelligence has emerged as a pivotal force in 
reshaping decision-making processes within sustainable energy 
management through the advancement of sophisticated 
technologies. Global energy consumption has risen sharply 
throughout the twenty-first century, necessitating a 
fundamental paradigm shift toward environmentally 
compatible and sustainable alternatives. As conventional 
energy resources become depleted and anxieties surrounding 
climate change intensify, the pursuit of effective, eco-friendly, 
and sustainable energy management has assumed 
unprecedented importance. Traditional approaches to energy 
planning and distribution prove inadequate in addressing the 
complex challenges posed by climate variability, resource 
limitations, and increasing demand [1]. Consequently, the 
adoption of artificial intelligence has emerged as a 
transformative strategy for reshaping decision-making processes

and enhancing the sustainability, resilience, and efficiency of 
energy systems. The evolution of sustainable energy practices 
underscores pivotal milestones and challenges that continue to 
shape the contemporary energy sector. This historical 
perspective emphasizes the critical imperative for innovative 
decision-making approaches. Furthermore, it facilitates a 
comprehensive examination of the seamless integration of AI 
technologies within frameworks for sustainable energy 
management [2-3]. This study investigates the intricate 
interplay between artificial intelligence and decision-making 
frameworks within the domain of sustainable energy 
management, situated amid the confluence of pressing 
environmental necessities and rapid technological 
advancements.

Artificial intelligence (AI) has become a significant instrument 
for enhancing the performance and operational efficiency of 
renewable energy systems and intelligent power grids. 
Advanced AI methodologies, such as machine learning (ML), 
deep learning (DL), and neural networks (NN), are increasingly 
utilized across multiple dimensions of solar energy production
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operational costs, ultimately impacting the economic viability 
of solar projects [10].

The integration of solar energy into existing power grids 
presents another set of challenges. The variable nature of solar 
power can cause voltage fluctuations and frequency instabilities 
in the grid, particularly in regions with high solar penetration. 
Traditional grid management systems are often ill-equipped to 
handle the complexities introduced by large-scale solar 
integration, leading to curtailment of solar energy during peak 
production periods and inefficient utilization of available 
resources [11]. While AI presents potential solutions to many of 
these challenges, its application in solar energy management is 
not without its own set of problems. One significant issue is the 
quality and availability of data required to train AI models 
effectively. Solar energy systems generate vast amounts of data, 
but this data is often fragmented, inconsistent, or incomplete. 
Ensuring data quality and developing robust data management 
practices are crucial challenges that need to be addressed to 
fully leverage the potential of AI in this domain. Another 
problem lies in the interpretability and transparency of AI 
algorithms. Many advanced AI techniques, such as DL, operate 
as "black boxes," making it difficult to understand and validate 
their decision-making processes. This lack of transparency can 
lead to skepticism and resistance from stakeholders in the solar 
energy industry, particularly when it comes to critical decisions 
affecting system performance and grid stability [12-13] . The 
implementation of AI systems in solar energy management also 
faces economic barriers. The development and deployment of 
AI solutions require significant upfront investments in 
technology, infrastructure, and expertise. For many solar energy 
operators, particularly smaller-scale installations, these costs can 
be prohibitive, potentially exacerbating inequalities in the 
sector and limiting the widespread adoption of AI-driven 
management solutions [14].

The investigation into the application of Artificial Intelligence 
(AI) in solar energy management holds profound significance 
across multiple dimensions. The spread encompasses 
technological advancement, economic implications, 
environmental sustainability, and energy policy. This study's 
outcomes have the potential to inform and influence various 
stakeholders in the energy sector, from solar farm operators 
and grid managers to policymakers and researchers. From a 
technological perspective, this research contributes to the 
growing body of knowledge at the intersection of AI and 
renewable energy. By exploring the capabilities and limitations 
of AI in addressing the unique challenges of solar energy 
management, the study paves the way for more targeted and 
effective development of AI solutions in this domain. The 
findings can guide future research and development efforts, 
potentially leading to breakthroughs in areas such as solar 
forecasting, predictive maintenance, and grid integration [15].

The economic implications of this study are substantial. As the 
global solar energy market continues to expand, the need for 
cost-effective and efficient management solutions becomes 
increasingly critical. The insights gained from this research can 
inform investment decisions in AI technologies for solar energy 
management, helping operators to optimize their resources and 
maximize returns on investment. Moreover, by highlighting the 
potential of AI to enhance the efficiency and reliability of solar
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and grid management. These approaches facilitate greater 
precision in solar irradiance forecasting, more reliable 
predictions of power generation, and optimized strategies for 
energy storage and distribution. Within solar energy 
infrastructures, AI-based algorithms are deployed for maximum 
power point tracking, predictive maintenance, and fault 
detection [4-5]. Machine learning models are capable of 
examining historical datasets and meteorological patterns to 
predict solar energy production, thereby facilitating improved 
integration and management within electrical grids. Advanced 
DL methods are applied in image recognition tasks for the 
inspection of photovoltaic panels and the enhancement of their 
operational performance. In the context of smart grids, 
artificial intelligence assumes a pivotal role in demand-side 
management, load prediction, and the maintenance of grid 
stability. Energy management systems powered by artificial 
intelligence optimize the equilibrium between supply and 
demand, thereby minimizing energy wastage and enhancing 
overall system efficiency. Furthermore, artificial intelligence 
algorithms are deployed in cybersecurity protocols to safeguard 
smart grid infrastructure against potential threats and 
vulnerabilities [6]. The incorporation of artificial intelligence 
into renewable energy systems and smart grids constitutes a 
comprehensive strategy for improving energy efficiency. 
Through the application of advanced data analytics and 
intelligent decision-making processes, AI technologies facilitate 
the optimal exploitation of renewable resources, enhance grid 
stability and reliability, and mitigate adverse environmental 
effects [7-8]. With ongoing advancements in research, the 
integration of artificial intelligence, solar power technologies, 
and intelligent grid systems offers considerable potential for 
achieving a more sustainable and efficient energy landscape.

The rapid growth of solar energy deployment worldwide has 
brought to the forefront a series of complex challenges that 
threaten to impede the sector's continued expansion and 
efficiency. These challenges, ranging from technical hurdles to 
economic constraints, underscore the urgent need for 
innovative management solutions. The application of Artificial 
Intelligence (AI) in solar energy management presents a 
promising avenue for addressing these issues, yet its 
implementation is not without its own set of problems and 
limitations. One of the primary challenges in solar energy 
management is the inherent variability and intermittency of 
solar resources. Unlike conventional power sources, solar 
energy production is highly dependent on weather conditions, 
which can change rapidly and unpredictably. This variability 
poses significant challenges for grid operators, who must 
maintain a delicate balance between supply and demand to 
ensure grid stability [9]. Traditional forecasting methods often 
fall short in accurately predicting solar irradiance and energy 
output, leading to suboptimal utilization of solar resources and 
increased reliance on backup power sources. As solar 
installations grow in scale and complexity, the task of 
monitoring and maintaining these systems becomes 
increasingly daunting. Large solar farms can consist of 
thousands of individual panels spread across vast areas, making 
it challenging to detect and respond to performance issues in a 
timely manner. Inefficiencies in maintenance practices can lead 
to reduced energy output, increased downtime, and higher
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i. To evaluate the impact of advanced AI algorithms on solar
energy output and system efficiency, compared to simpler
algorithms, while controlling for weather conditions and system
design parameters.

ii. To examine the influence of variable weather conditions on
the effectiveness of AI algorithms in enhancing solar energy

output and efficiency, irrespective of the type of AI algorithm 
used.

iii. To investigate how AI algorithms optimize solar energy
output and efficiency in complex system designs (e.g., multi-
orientation arrays, diverse panel types) compared to simpler
system designs, while controlling for weather conditions

The remainder of this paper is structured as follows. Section 2 
provides a literature review, relevant studies, and foundational 
work. Section 3 outlines the methodology and the details of the 
approaches used in the proposed system. Section 4 presents the 
results and discussion, and analyzes the study’s findings and 
their implications. Finally, Section 5 concludes the study and 
highlights potential directions for future research.

LITERATURE REVIEW

Conceptual Review

The integration of Artificial Intelligence (AI) in solar energy 
management represents a significant leap forward in renewable 
energy technology. This chapter provides a comprehensive 
review of the literature surrounding this rapidly evolving field. 
The review begins with an exploration of key conceptual 
explanations, including the challenges posed by solar energy 
variability, the role of smart grid integration, the power of AI-
driven predictive analytics, system optimization techniques, the 
broader context of AI in energy systems, the impact of weather 
conditions on solar power generation, and the importance of 
system design parameters. Following this, the theoretical 
framework underpinning the application of AI in solar energy 
management is examined through the lenses of Systems 
framework, ML models, and optimization algorithms. The 
chapter concludes with an empirical review of recent studies 
that have applied these concepts and theories in practical 
settings. This comprehensive approach provides a solid 
foundation for understanding the current state of AI 
applications in solar energy management and identifies 
promising areas for future research and development [20].

Solar Energy Variability and Intermittency

The inherent variability and intermittency of solar energy pose 
significant challenges to its widespread adoption and efficient 
integration into existing power grids. Solar power generation is 
heavily dependent on weather conditions, time of day, and 
seasonal variations, leading to fluctuations in energy output 
that can be difficult to predict and manage [20-21]. This 
variability is a fundamental characteristic of solar energy 
systems and has far-reaching implications for energy 
management, grid stability, and the overall reliability of solar 
power as a primary energy source. One of the primary 
challenges associated with solar energy variability is the 
mismatch between peak energy production and peak demand. 
Solar panels typically generate the most electricity during 
midday when sunlight is most intense, but this often does not 
align with periods of highest energy consumption, which 
typically occur in the early morning and evening [22]. This 
misalignment necessitates effective energy storage solutions and 
sophisticated management systems to balance supply and 
demand.
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energy systems, this study could contribute to making solar 
power more competitive with traditional energy sources, 
thereby accelerating its adoption [16-17]. From an 
environmental standpoint, the significance of this research 
cannot be overstated. As the world grapples with the urgent 
need to reduce greenhouse gas emissions and combat climate 
change, maximizing the efficiency and reliability of renewable 
energy sources is paramount. By exploring how AI can optimize 
solar energy production and integration, this study contributes 
to broader efforts to decarbonize the global energy system. The 
potential for AI to enhance the performance of solar 
installations could lead to increased renewable energy 
generation, reduced reliance on fossil fuels, and consequently, 
lower carbon emissions [18].

For the scientific community, this study contributes to bridging 
the gap between AI research and solar energy engineering. By 
providing a comprehensive analysis of the current state of AI 
applications in solar energy management, as well as identifying 
areas for future research, the study serves as a valuable resource 
for researchers in both fields. It may inspire new collaborations 
and interdisciplinary approaches to solving complex challenges 
in renewable energy management [19]. From a technological 
perspective, the study can guide future research and 
development efforts, potentially leading to breakthroughs in 
areas such as solar forecasting, predictive maintenance, and grid 
integration. The economic implications of this study are 
substantial, as the need for cost-effective and efficient 
management solutions becomes increasingly critical. such that 
the insights gained from this research can inform investment 
decisions in AI technologies for solar energy management. 
From an environmental standpoint, the potential for AI to 
enhance the performance of solar installations could lead to 
increased renewable energy generation, reduced reliance on 
fossil fuels, and consequently, lower carbon emissions. In terms 
of energy policy and governance, AI systems take on more 
critical roles in energy management, questions of regulation, 
standardization, and ethics come to the fore. The study can as 
well guide policy decisions on research funding, incentives for 
AI adoption in the energy sector, and strategies for workforce 
development to address the skills gap in this interdisciplinary 
field. This study's outcomes have the potential to inform and 
influence various stakeholders in the energy sector, from solar 
farm operators and grid managers to policymakers and 
researchers. For the scientific community, it contributes to 
bridging the gap between AI research and solar energy 
engineering. By providing a comprehensive analysis of the 
current state of AI applications in solar energy management, as 
well as identifying areas for future research, the study serves as a 
valuable resource for researchers in both fields. It may inspire 
new collaborations and interdisciplinary approaches to solving 
complex challenges in renewable energy management. The 
objectives of this study are as follows:
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system [29,24]. Furthermore, smart grid technologies enable 
more efficient management of distributed solar resources. With 
the increasing adoption of rooftop solar panels, power systems 
are becoming more decentralized. Smart grids can effectively 
coordinate these distributed resources, treating them as a 
virtual power plant that can be managed collectively to support 
grid operations [30].

Smart Grid Integration

The integration of solar energy into smart grids also opens up 
new possibilities for market participation. Through advanced 
metering and communication systems, prosumers (consumers 
who also produce energy) can actively participate in energy 
markets, selling excess solar power back to the grid or to other 
consumers. This creates a more dynamic and flexible energy 
ecosystem, potentially leading to more efficient resource 
allocation and pricing mechanisms [31-32]. The integration of 
solar energy into smart grids is not without challenges. Issues 
such as cybersecurity, data privacy, and the need for significant 
infrastructure investments must be addressed. The complexity 
of managing a highly distributed and variable energy source like 
solar power requires sophisticated control algorithms and 
decision-making systems, which is where AI comes into play as 
a crucial enabling technology. AI-driven predictive analytics has 
emerged as a powerful tool in addressing the challenges of solar 
energy variability and improving overall system efficiency. By 
leveraging machine learning algorithms and big data analytics, 
AI can provide highly accurate forecasts of solar irradiance and 
energy output, enabling more effective planning and 
management of solar energy systems [22,24,33-34].

One of the primary applications of AI-driven predictive 
analytics in solar energy management is short-term forecasting. 
These forecasts, which typically cover periods from a few 
minutes to several hours ahead, are crucial for real-time grid 
management and energy trading. Machine learning models, 
such as artificial neural networks (ANNs) and support vector 
machines (SVMs), have shown remarkable accuracy in 
predicting solar irradiance and power output based on 
historical data and current weather conditions [35]. For 
instance, Najeeb, Aboshosha, and; Poudyal demonstrated the 
effectiveness of a hybrid CNN-LSTM (Convolutional Neural 
Network - Long Short-Term Memory) model in forecasting solar 
irradiance with high accuracy up to 6 hours ahead [36-37]. 
Their model outperformed traditional statistical methods, 
showcasing the potential of DL models in capturing complex 
patterns in solar data. AI-driven predictive analytics also plays a 
crucial role in longer-term forecasting, which is essential for 
capacity planning and investment decisions in solar energy 
projects. By analyzing long-term weather patterns, seasonal 
variations, and other relevant factors, AI models can provide 
insights into expected energy production over months or even 
years. This information is invaluable for project developers, 
investors, and policymakers in assessing the viability and 
potential returns of solar energy investments [7,38] . Moreover, 
AI-driven analytics can enhance the accuracy of solar resource 
assessment, a critical factor in site selection and system design 
for solar installations. By integrating multiple data sources, 
including satellite imagery, ground measurements, and 
topographic data, machine learning algorithms can create high-
resolution maps of solar potential across large geographic areas.
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The intermittent nature of solar energy also introduces 
complexities in grid management. Sudden changes in cloud 
cover, for instance, can lead to rapid fluctuations in power 
output, potentially causing voltage and frequency instabilities 
in the grid [23]. These fluctuations can be particularly 
problematic in areas with high solar penetration, where the grid 
must be capable of quickly ramping up or down alternative 
power sources to maintain stability. Furthermore, seasonal 
variations in solar irradiance can lead to significant differences 
in energy production throughout the year. In many regions, 
solar energy output is substantially lower during winter months 
due to shorter days and less direct sunlight, creating challenges 
for long-term energy planning and reliability [24].

The variability and intermittency of solar energy also have 
economic implications. The need for backup power sources or 
energy storage systems to compensate for periods of low solar 
production can increase the overall cost of solar energy 
integration. Additionally, the uncertainty in power output can 
complicate energy market operations and pricing mechanisms 
[25]. Addressing these challenges requires innovative 
approaches to solar energy management. Advanced forecasting 
techniques, improved energy storage technologies, and smart 
grid systems are all crucial components in mitigating the effects 
of solar energy variability and intermittency. The application of 
AI in this context offers promising solutions, enabling more 
accurate predictions of solar output, optimized energy storage 
management, and intelligent load balancing across the grid.

The integration of solar energy into smart grids represents a 
critical advancement in renewable energy management, offering 
solutions to many of the challenges posed by solar variability 
and intermittency. Smart grids, characterized by their use of 
digital communication technologies to detect and react to local 
changes in usage, provide a flexible and responsive 
infrastructure capable of efficiently managing the dynamic 
nature of solar energy [26]. At the core of smart grid integration 
is the concept of bi-directional communication between various 
components of the power system. This allows for real-time 
monitoring and control of energy flow, enabling grid operators 
to balance supply and demand more effectively. In the context 
of solar energy, this means that fluctuations in solar power 
output can be quickly detected and compensated for, either 
through the activation of alternative energy sources or by 
adjusting demand through load management techniques 
[27-28].

One of the key features of smart grid integration for solar 
energy is the ability to implement advanced demand response 
programs. These programs incentivize consumers to adjust their 
energy usage based on the availability of solar power, helping to 
align demand with periods of peak solar production. For 
instance, smart appliances can be programmed to operate 
during times of high solar output, maximizing the use of clean 
energy and reducing strain on the grid during peak demand 
periods [19-28]. Smart grids also facilitate the integration of 
energy storage systems, which are crucial for managing the 
intermittency of solar power. By intelligently controlling when 
to store excess solar energy and when to release it back into the 
grid, smart grids can help smooth out the variability in solar 
power production. This not only improves the reliability of 
solar energy but also enhances the overall stability of the power
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Artificial Intelligence (AI) in Energy Systems

The application of Artificial Intelligence (AI) in energy systems 
represents a transformative approach to managing and 
optimizing energy production, distribution, and consumption. 
In the context of solar energy, AI technologies are being 
leveraged to address the unique challenges posed by the 
variability and intermittency of solar power, as well as to 
enhance overall system efficiency and reliability [3,40,47]. AI in 
energy systems encompasses a wide range of technologies and 
approaches, including ML, DL, natural language processing, 
and computer vision. These technologies are being applied 
across various aspects of energy management, from generation 
forecasting and grid optimization to demand response and 
energy trading [45,48]. One of the primary applications of AI 
in solar energy systems is in forecasting and prediction. 
Machine learning algorithms, particularly DL models, have 
shown remarkable accuracy in predicting solar irradiance and 
power output. These predictions are crucial for grid operators 
in managing the integration of solar power into the broader 
energy mix. Barua et al demonstrated the use of a hybrid CNN-
LSTM model for ultra-short-term photovoltaic power 
forecasting, achieving higher accuracy than traditional statistical 
methods [4].

AI is also playing a significant role in optimizing the design and 
operation of solar energy systems. Through techniques such as 
reinforcement learning and evolutionary algorithms, AI can 
determine optimal configurations for solar panel arrays, 
maximizing energy yield based on local conditions. Similarly, 
AI algorithms can optimize the operation of inverters and 
energy storage systems, enhancing overall system efficiency 
[49-50]. In the context of grid management, AI is enabling 
more sophisticated control strategies for integrating variable 
renewable energy sources like solar. Machine learning 
algorithms can analyze vast amounts of data from diverse 
sources – including weather forecasts, energy consumption 
patterns, and market prices – to optimize grid operations in 
real-time. This can help balance supply and demand, reduce 
the need for backup power sources, and ultimately increase the 
share of renewable energy in the overall energy mix [6-7]. AI is 
also transforming energy trading and market operations. 
Through the analysis of historical data and real-time market 
conditions, AI algorithms can develop optimal bidding 
strategies for solar energy producers participating in electricity 
markets. Moreover, AI is enabling the development of peer-to-
peer energy trading platforms, allowing prosumers to directly 
trade excess solar energy with other consumers [9-10]. In the 
realm of energy efficiency and demand management, AI is 
facilitating more sophisticated demand response programs. By 
analyzing consumption patterns and predicting future demand, 
AI systems can automatically adjust energy usage in smart 
buildings or industrial processes to align with periods of high 
solar energy production [11].

Weather Conditions and Solar Power Generation

The relationship between weather conditions and solar power 
generation is a critical aspect of solar energy management, 
significantly influencing the reliability and efficiency of solar 
power systems. Understanding and accurately predicting this 
relationship is essential for effective integration of solar energy
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This enables more informed decision-making in the planning 
and development of solar energy projects [39,26]. Another 
important application of AI-driven predictive analytics is in the 
optimization of energy storage systems. By accurately forecasting 
solar power generation and energy demand, AI algorithms can 
determine optimal charging and discharging strategies for 
battery systems, maximizing the utilization of solar energy and 
reducing reliance on grid power [40].

System Optimization

System optimization in the context of solar energy management 
refers to the process of maximizing the efficiency, output, and 
overall performance of solar energy systems through the 
application of advanced analytical techniques, including AI. 
This concept encompasses a wide range of optimization 
strategies that target various aspects of solar energy systems, 
from panel layout and orientation to inverter efficiency and 
energy storage management [36]. One of the primary areas of 
system optimization in solar energy is the design and layout of 
solar panel arrays. AI algorithms can analyze factors such as 
local topography, shading patterns, and expected weather 
conditions to determine the optimal arrangement and tilt angle 
of solar panels. This optimization can significantly increase 
energy yield, particularly in complex installations such as those 
on uneven terrain or in urban environments with partial 
shading [27,41-42]. Te, Mengze, and Yan demonstrated the use 
of a genetic algorithm combined with a 3D shading model to 
optimize the layout of a large-scale photovoltaic plant [2]. Their 
approach resulted in a 5.28% increase in annual energy output 
compared to traditional design methods, highlighting the 
potential of AI-driven optimization in improving system 
performance.

Another critical aspect of system optimization is the 
management of inverters, which convert the DC power 
generated by solar panels into AC power for grid use. AI 
algorithms can optimize inverter operations in real-time, 
adjusting parameters such as maximum power point tracking to 
maximize energy conversion efficiency under varying 
environmental conditions [1]. Energy storage optimization is 
also a key component of overall system optimization. AI can 
play a crucial role in determining optimal charging and 
discharging strategies for battery systems, considering factors 
such as expected solar generation, energy demand patterns, and 
electricity pricing. This can help maximize the use of solar 
energy, reduce reliance on grid power during peak demand 
periods, and potentially generate additional revenue through 
energy arbitrage [43]. Moreover, AI-driven system optimization 
extends to the integration of solar energy with other renewable 
sources and smart grid technologies. By analyzing data from 
multiple sources, AI algorithms can optimize the coordination 
between solar, wind, and other renewable energy sources, as 
well as demand response programs, to create a more stable and 
efficient overall energy system [44]. Predictive maintenance is 
another area where system optimization through AI can yield 
significant benefits. By analyzing performance data from 
various components of a solar energy system, machine learning 
algorithms can predict potential failures or performance 
degradation. This allows for proactive maintenance, reducing 
downtime and extending the lifespan of system components 
[45-46].

Journal of Artificial Intelligence and Digital Health

5J. Artif. Intell. Digit. Health, Vol.1 Iss.1, January (2026), pp:6-22



choice between monocrystalline, polycrystalline, or thin-film 
solar cells, as well as considerations of bifacial panels or 
concentrated photovoltaic systems, can significantly impact 
system performance and cost-effectiveness. AI can aid in this 
selection process by analyzing performance data across various 
environmental conditions and projecting long-term energy 
yields and financial returns [23].

Inverter selection and configuration also play a vital role in 
system design. The choice between string inverters, 
microinverters, or power optimizers can affect system efficiency, 
particularly in scenarios with partial shading or complex roof 
geometries. AI algorithms can optimize inverter selection and 
configuration based on specific installation characteristics and 
expected operating conditions [36]. Energy storage system 
design is becoming increasingly important as solar penetration 
grows. The capacity, type, and control strategy of battery 
systems must be carefully optimized to balance factors such as 
self-consumption maximization, peak shaving, and grid support 
services. AI can assist in sizing storage systems and developing 
intelligent control strategies that adapt to changing energy 
production and consumption patterns [44]. Grid integration 
parameters, including power quality control systems and grid-tie 
technologies, are crucial for ensuring the stable and efficient 
connection of solar systems to the broader power grid. These 
parameters must be designed to meet local grid codes and 
regulations while maximizing the value of solar energy 
production [10,51]. The optimization of these system design 
parameters is a complex task that must consider multiple, often 
conflicting objectives. AI and machine learning techniques 
offer powerful tools for navigating this complexity, enabling 
more holistic and adaptive approaches to solar system design 
that can significantly enhance performance and cost-
effectiveness.

Theoretical Framework

Systems Framework

Systems Framework provides a valuable framework for 
understanding and analyzing the complex interactions within 
solar energy management systems, particularly in the context of 
AI applications. This framework, which emphasizes the 
interconnectedness and interdependence of various 
components within a system, offers insights into how solar 
energy systems can be optimized and integrated into broader 
energy networks [4,52]. In the context of solar energy 
management, Systems framework helps to conceptualize the 
solar energy infrastructure as a complex adaptive system 
composed of multiple interconnected subsystems. These 
subsystems include solar panels, inverters, energy storage 
devices, smart grid components, weather systems, and energy 
markets, among others. The behavior of the overall system 
emerges from the interactions between these components, 
often in non-linear and sometimes unpredictable ways [32]. 
One key principle of Systems framework particularly relevant to 
solar energy management is the concept of feedback loops. In 
solar energy systems, various feedback mechanisms operate at 
different scales. For instance, the output of solar panels 
influences grid stability, which in turn affects energy pricing 
and consumption patterns, ultimately feeding back to impact 
solar energy production and storage strategies. AI algorithms
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into the broader energy mix and for optimizing system 
performance [12,47,51]. Solar irradiance, which is directly 
affected by weather conditions, is the primary factor 
determining solar power output. Cloud cover, in particular, has 
a substantial impact on solar energy generation. Even partial 
cloud cover can lead to rapid fluctuations in power output, 
creating challenges for grid stability and energy management. 
These fluctuations can occur on timescales ranging from 
seconds to hours, necessitating sophisticated forecasting and 
control systems [14-15]. Temperature is another crucial weather 
parameter affecting solar panel efficiency. While higher 
temperatures increase solar irradiance, they also reduce the 
efficiency of photovoltaic cells. This inverse relationship 
between temperature and panel efficiency means that extremely 
hot days may not necessarily result in peak solar energy 
production. Understanding and modeling this temperature 
dependence is crucial for accurate power output predictions 
and system design optimization [16].

Seasonal variations in weather patterns have long-term 
implications for solar energy production. In many regions, 
winter months see significantly reduced solar energy output 
due to shorter days and less direct sunlight. This seasonal 
variability must be accounted for in long-term energy planning 
and in the design of energy storage and backup systems [18]. 
Other weather conditions, such as humidity, wind speed, and 
atmospheric particulate matter, also influence solar power 
generation. High humidity can reduce solar irradiance through 
increased scattering of sunlight, while wind speed affects panel 
temperature and can impact energy yield. Atmospheric 
pollution and dust accumulation on panels can significantly 
reduce their efficiency over time [19]. The complex and 
dynamic nature of weather's impact on solar power generation 
underscores the importance of advanced forecasting 
techniques. AI and machine learning algorithms have shown 
great promise in improving the accuracy of weather-based solar 
power predictions. These models can integrate data from 
multiple sources, including satellite imagery, ground-based 
sensors, and numerical weather prediction models, to provide 
more accurate and timely forecasts of solar energy production 
[20].

System Design Parameters in Solar Energy

System design parameters play a crucial role in determining the 
efficiency, reliability, and overall performance of solar energy 
systems. These parameters encompass a wide range of factors, 
from the physical layout and orientation of solar panels to the 
selection of inverters, energy storage systems, and grid 
integration technologies. Optimizing these parameters is 
essential for maximizing energy yield and ensuring the 
economic viability of solar installations [22]. One of the 
primary system design parameters is the tilt angle and 
orientation of solar panels. These factors significantly influence 
the amount of solar radiation captured by the panels 
throughout the day and across seasons. While the optimal tilt 
angle generally corresponds to the latitude of the installation 
site, local factors such as shading, weather patterns, and land 
constraints may necessitate adjustments. AI-driven optimization 
algorithms can analyze these factors to determine the ideal 
panel configuration for a given location [23]. Panel type and 
technology selection is another critical design parameter. The
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Unsupervised learning models, which deals with finding 
patterns or structures in unlabeled data, is valuable in 
applications such as anomaly detection in solar panel 
performance or clustering of energy consumption patterns. 
Techniques like principal component analysis (PCA) and k-
means clustering, underpinned by unsupervised learning 
models, can reveal hidden patterns in solar energy data that 
may not be apparent through traditional analysis methods 
[29,31,33]. Reinforcement learning models, which focuses on 
how agents can learn to make decisions by interacting with an 
environment, has significant potential in optimizing solar 
energy system operations. This theoretical framework provides 
the basis for developing algorithms that can learn optimal 
control strategies for energy storage systems or smart inverters, 
adapting to changing environmental conditions and energy 
market dynamics over time [32]. The concept of feature 
learning, a fundamental aspect of ML models, is particularly 
relevant in solar energy applications. The DL models, such as 
convolutional neural networks (CNNs) and long short-term 
memory (LSTM) networks, can automatically learn relevant 
features from raw data, potentially uncovering subtle patterns 
in solar irradiance or system performance that might be missed 
by traditional feature engineering approaches [26].

Statistical learning models which provided a mathematical 
framework for understanding the learning process and the 
generalization capabilities of machine learning models, is 
crucial in developing robust and reliable AI systems for solar 
energy management. Concepts such as the bias-variance 
tradeoff and the VC dimension help in understanding the 
limitations and capabilities of different machine learning 
models in the context of solar energy applications [27]. 
Ensemble learning models, which deals with combining 
multiple models to improve prediction accuracy and 
robustness, is particularly valuable in solar energy forecasting. 
Techniques like random forests and gradient boosting, 
grounded in ensemble learning models, can often outperform 
single models in predicting solar irradiance and power output, 
especially in complex and variable environments [28]. Transfer 
learning models, which explores how knowledge gained from 
one task can be applied to a different but related task, has 
significant potential in solar energy applications. This 
theoretical framework can guide the development of models 
that can adapt to new locations or system configurations with 
minimal additional training, potentially reducing the data 
requirements and improving the generalization of AI models in 
solar energy management [30]. To this end, ML models 
provides a rich and diverse theoretical foundation for 
developing AI applications in solar energy management. It 
offers insights into how to design, train, and evaluate models 
that can effectively learn from solar energy data, make accurate 
predictions, and optimize system performance. As the field 
continues to evolve, new theoretical developments in machine 
learning are likely to open up further possibilities for 
enhancing the efficiency and reliability of solar energy systems 
through AI.

Optimization Algorithms

Optimization algorithms provides a crucial theoretical 
foundation for many AI applications in solar energy 
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can be designed to recognize and optimize these feedback 
loops, enhancing overall system performance [24].

Another important aspect of Systems framework in this context 
is the idea of system boundaries and interactions with the 
environment. Solar energy systems are not closed systems; they 
are heavily influenced by external factors such as weather 
conditions, energy policies, and technological advancements. 
AI applications in solar energy management must therefore be 
designed with an understanding of these system boundaries 
and the ability to adapt to changing external conditions [25]. 
The concept of emergence in Systems framework is also 
relevant to AI applications in solar energy management. The 
collective behavior of numerous distributed solar installations, 
when integrated through smart grid technologies and managed 
by AI algorithms, can give rise to emergent properties at the 
grid level. These emergent behaviors, such as increased grid 
resilience or more efficient energy distribution, are not 
predictable from the properties of individual components alone 
[19,53]. Systems framework also emphasizes the importance of 
considering multiple perspectives and stakeholders in system 
analysis and design. In the context of solar energy management, 
this translates to the need for AI systems that can balance the 
diverse and sometimes conflicting objectives of different 
stakeholders, including energy producers, consumers, grid 
operators, and policymakers [19]. Furthermore, the systems 
thinking approach encourages a holistic view of problem-
solving, which aligns well with the capabilities of AI in 
handling complex, multi-variable optimization problems. AI 
algorithms can be designed to consider the entire system's 
performance rather than optimizing individual components in 
isolation, leading to more effective and sustainable solutions 
[26].

Machine Learning Model

Machine Learning models forms a cornerstone of AI 
applications in solar energy management, providing the 
theoretical basis for developing algorithms that can learn from 
data, identify patterns, and make predictions or decisions 
without being explicitly programmed for these tasks. This 
theoretical framework encompasses various approaches to 
machine learning, including supervised learning, unsupervised 
learning, and reinforcement learning, each with its own set of 
principles and applications in the context of solar energy 
management [16,27]. Supervised learning, a key component of 
ML models, is particularly relevant in solar energy forecasting 
and system performance prediction. In this approach, 
algorithms are trained on labeled datasets, learning to map 
input features (such as weather data or historical energy 
production) to output variables (such as future energy 
production). The theoretical foundations of supervised 
learning, including concepts like empirical risk minimization 
and regularization, guide the development of models that can 
generalize well to new, unseen data [28,32]. Support vector 
machines (SVMs) and ANNs, both grounded in supervised 
learning models, have been widely applied in solar irradiance 
and power output forecasting. The models behind these models 
provides insights into their capacity to capture complex, non-
linear relationships in solar energy data, as well as strategies for 
avoiding overfitting and improving generalization [29].
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stuck in suboptimal local solutions [54]. Metaheuristic 
optimization techniques, such as genetic algorithms, particle 
swarm optimization, and simulated annealing, provide 
powerful tools for solving complex optimization problems in 
solar energy management. These techniques, inspired by 
natural processes, can effectively explore large solution spaces 
and find near-optimal solutions to problems that may be 
intractable for traditional optimization methods [38]. Robust 
optimization algorithms is particularly relevant in solar energy 
applications due to the variability and uncertainty inherent in 
renewable energy systems. This theoretical framework provides 
the basis for developing optimization algorithms that can find 
solutions that perform well across a range of possible scenarios, 
enhancing the resilience and reliability of solar energy systems 
[25]. Thus, Optimization algorithms provides a rich theoretical 
foundation for developing AI applications in solar energy 
management. It offers a diverse set of tools and approaches for 
solving the complex optimization problems that arise in 
designing, operating, and managing solar energy systems. As 
the field continues to evolve, advances in optimization 
algorithms are likely to enable even more sophisticated and 
effective AI applications in solar energy management.

Empirical Review

The application of AI in solar energy management has been the 
subject of numerous empirical studies in recent years, 
demonstrating the practical benefits and challenges of 
implementing these technologies. This empirical review 
synthesizes findings from various studies, highlighting key areas 
where AI has shown promise in enhancing solar energy 
management. One of the most extensively studied applications 
of AI in solar energy management is in forecasting and 
prediction. Khosrojerdi et al. conducted a comprehensive study 
comparing various machine learning models for ultra-short-
term photovoltaic power forecasting. Their results showed that 
a hybrid CNN-LSTM model outperformed traditional 
statistical methods, achieving a mean absolute percentage error 
(MAPE) of less than 2% for 15-minute ahead forecasts [6]. This 
level of accuracy represents a significant improvement over 
conventional forecasting techniques, potentially enabling more 
efficient grid integration of solar power. Similarly, Tandon et al 
demonstrated the effectiveness of a DL approach for solar 
irradiance forecasting [51]. Their model, which combined 
CNNs with LSTM networks, achieved high accuracy in 
predicting solar irradiance up to 6 hours ahead. The study 
highlighted the ability of DL models to capture complex 
temporal and spatial patterns in solar data, leading to more 
reliable forecasts. AI has also shown significant potential in 
optimizing various aspects of solar energy systems. Khosrojerdi 
et al. applied a genetic algorithm combined with a 3D shading 
model to optimize the layout of a large-scale photovoltaic plant 
[6]. Their approach resulted in a 5.28% increase in annual 
energy output compared to traditional design methods, 
demonstrating the potential of AI in enhancing system 
performance through improved design. Energy storage 
optimization, [60-61] developed a reinforcement learning 
algorithm for managing battery systems in solar-plus-storage 
installations. Their model learned to optimize charging and 
discharging strategies based on solar generation forecasts, 
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management, offering a framework for developing algorithms 
that can find the best solutions to complex problems involving 
multiple variables and constraints. In the context of solar 
energy systems, optimization algorithms guides the 
development of AI algorithms that can maximize energy 
output, minimize costs, and improve overall system efficiency 
[22,27,54]. One of the key concepts in optimization algorithms 
relevant to solar energy management is multi-objective 
optimization. Solar energy systems often involve multiple, 
sometimes conflicting objectives, such as maximizing energy 
production while minimizing costs and environmental impact. 
Multi-objective optimization algorithms provides the basis for 
developing algorithms that can find Pareto-optimal solutions, 
balancing these different objectives in an optimal way [35]. For 
instance, in the design of large-scale solar farms, multi-objective 
optimization can be used to simultaneously consider factors 
such as land use, shading effects, cable routing, and 
maintenance accessibility. AI algorithms based on multi-
objective optimization algorithms can navigate this complex 
decision space to find optimal system configurations [38-39]. 
Convex optimization algorithms, which deals with problems 
where the objective function and constraints are convex, is 
particularly useful in certain aspects of solar energy 
management. For example, in energy storage optimization, the 
problem of determining optimal charging and discharging 
strategies can often be formulated as a convex optimization 
problem, allowing for efficient solution methods [55].

Nonlinear programming algorithms is crucial in many solar 
energy optimization problems where the relationships between 
variables are not linear. This is often the case in solar panel 
orientation optimization or in modeling the complex 
relationships between weather variables and solar power 
output. AI algorithms based on nonlinear programming 
algorithms can handle these complex, nonlinear relationships 
to find optimal solutions [56]. Stochastic optimization 
algorithms is particularly relevant in solar energy management 
due to the inherent uncertainties in weather conditions and 
energy demand. This theoretical framework provides the basis 
for developing algorithms that can make optimal decisions in 
the face of uncertainty, such as in day-ahead scheduling of solar 
power generation or in managing energy storage systems 
[3,57-58]. Dynamic programming, a method for solving 
complex problems by breaking them down into simpler 
subproblems, has numerous applications in solar energy 
optimization. For instance, in optimizing the operation of a 
solar-plus-storage system over time, dynamic programming can 
be used to develop strategies that consider both current 
conditions and future expectations [5,59]. Integer 
programming algorithms is valuable in problems involving 
discrete decisions, such as the selection and placement of solar 
panels or inverters in a large-scale installation. AI algorithms 
based on integer programming can handle these combinatorial 
optimization problems, finding optimal configurations from a 
vast number of possible combinations [8].

Global optimization algorithms, which deals with finding the 
absolute best solution in problems that may have multiple local 
optima, is crucial in many solar energy applications. For 
example, in optimizing the layout of a solar farm on complex 
terrain, global optimization techniques can help avoid getting 
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Figure 1: Research methodology

Data Collection

A unified dataset supports prediction, forecasting, and 
optimization tasks for solar energy management, ensuring 
consistent evaluation across objectives. It includes weather data 
(solar irradiance, temperature, time) from a reliable 
meteorological database, covering hourly records over 2022–
2025 across diverse climates (arid, temperate, tropical) to 
capture variability. Solar system data encompasses simple fixed-
tilt PV arrays and complex multi-orientation arrays with 
monocrystalline panels and energy storage, including 
parameters like tilt angle (0°–90°), azimuth (0°–360°), panel 
efficiency (30%), inverter efficiency (70%), storage capacity, and 
historical energy output. Sourced from PVWatts simulations 
and real-world installations, the dataset comprises ~26,280 
hourly records per location (minimum three locations) and is 
stored in CSV format for MATLAB compatibility.

Data Preprocessing

The data cleaning and preprocessing pipeline involves three key 
steps: handling missing values, removing outliers, and 
smoothing noisy data. Missing values in solar irradiance, power 
output, and temperature are filled using linear interpolation via 
MATLAB’s fillmissing function, preserving temporal trends. 
Outliers in power output, detected using the IQR method 
(isoutlier), are replaced with NaN and interpolated to ensure 
continuity. A moving average filter (movmean) smooths noise 
in the power output, enhancing data quality for ANN training 
[62]. To enhance data quality for AI modeling, a moving 
average filter (window size of three) was applied to the power 
output using the movmean function, reducing noise while 
preserving trends. Fig. 2 shows two subplots: one comparing 
raw and cleaned power output with outliers marked as red 
circles, and another displaying the smoothed power output, 
illustrating noise reduction.
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electricity prices, and load demands. The study reported a 15% 
reduction in electricity costs compared to rule-based control 
strategies, showcasing the economic benefits of AI-driven 
optimization [36].

Despite the promising advancements in AI applications for 
solar energy management highlighted in the reviewed literature, 
several existing limitations persist. Data quality and availability 
remain a significant challenge, as many studies rely on 
fragmented, inconsistent, or incomplete datasets from solar 
systems, which hinder the effective training and generalization 
of AI models [6,12]. The lack of interpretability in advanced 
techniques, such as DL and hybrid CNN-LSTM models, often 
renders them as "black boxes," leading to skepticism among 
stakeholders regarding critical decision-making for grid stability 
and system performance [4,13]. High computational demands 
and the need for significant upfront investments in 
infrastructure and expertise limit widespread adoption, 
particularly for smaller-scale installations or in developing 
regions [14,33]. Additionally, many empirical studies are based 
on synthetic or location-specific datasets with simplified 
assumptions, reducing their real-world applicability under 
highly variable weather conditions or complex grid integrations 
[15,36]. Finally, overfitting risks and discrepancies between 
cross-validation and test performance indicate challenges in 
model robustness across diverse environmental scenarios [51].

METHODOLOGY

Research Approach

This study investigates the application of AI in solar energy 
management, focusing on evaluating advanced algorithms for 
predicting solar energy output and optimizing system efficiency 
under varying weather conditions and complex designs. 
Accurate solar irradiance forecasting is critical for enhancing 
energy generation and grid integration. Machine learning 
techniques, particularly Support Vector Regression (SVR), excel 
in capturing non-linear relationships in meteorological data, 
outperforming traditional statistical methods, Artificial Neural 
Networks (ANNs), and persistence models across diverse 
conditions in Fig. 1. Ensemble methods like Random Forests 
and Gradient Boosting further improve forecast accuracy by 
combining multiple models to adapt to changing atmospheric 
patterns, leveraging historical data and satellite imagery for 
robust short- and long-term predictions [54].

The methodology combines prediction, forecasting, and 
optimization techniques, utilizing a unified dataset and 
MATLAB algorithm to tackle three objectives. It first assesses 
how advanced AI algorithms (e.g. DL and NN) enhance solar 
energy output and efficiency compared to simpler ones, 
accounting for weather and system design. Next, it explores 
how varying weather conditions affect AI algorithm 
performance in boosting solar output and efficiency, regardless 
of algorithm complexity. Finally, it examines AI optimization of 
solar energy in complex designs (e.g., multi-orientation arrays) 
versus simpler setups, controlling for weather. Cohesiveness is 
maintained through a consistent dataset and metrics, covering 
data collection, preprocessing, algorithm selection, model 
development, experiments, and evaluation [54].
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Figure 2: The raw and cleaned Power Output

Figure 3 displays raw and cleaned solar irradiance and 
temperature data in separate subplots, with raw data as dotted 
lines and cleaned data as solid lines. By addressing missing 
values, outliers, and noise, the pipeline ensures a robust dataset 
for training machine learning models, like neural networks or 
regression models, to predict power output or optimize energy 
storage [56]. The synthetic dataset enables controlled testing of 
the data cleaning process, with methods directly applicable to 
real-world solar energy datasets that often have similar issues 
like missing values and outliers. The modular, customizable 
algorithm allows researchers to adjust parameters such as 
smoothing window size or outlier thresholds to suit specific 
datasets. The cleaned dataset is saved in a format ready for AI 
workflows, supporting applications like solar power forecasting 
and grid optimization.

Figure 3: The raw and cleaned solar irradiance and 
temperature

AI Algorithms Selection

This research leverages AI to enhance solar energy management 
by addressing three objectives using DL and Global 
Optimization Toolboxes. It compares advanced AI, like deep 
neural networks, with simpler models, such as linear regression, 
to evaluate energy output and efficiency under varying weather 
conditions. It also assesses AI algorithm robustness across 
diverse weather scenarios and optimizes complex system 
designs, like multi-orientation arrays, for scalability and 
adaptability. Through prediction, forecasting, and optimization, 
the study delivers insights for sustainable solar energy solutions.

Artificial Neural Networks (ANN)

ANNs are feedforward neural networks with multiple hidden 
layers, designed to model complex, non-linear relationships 
between inputs (e.g., weather data, system parameters) and

outputs (e.g., energy production). Their ability to capture 
intricate patterns makes them ideal for evaluating performance 
under controlled conditions and adapting to variable weather 
scenarios [62].

Support Vector Regression (SVR)

SVR is a robust non-linear regression model that serves as a 
benchmark for comparing advanced DL methods like ANNs. 
Its inclusion ensures a balanced assessment of algorithm 
performance, particularly in where it provides a middle ground 
between simplicity and complexity [32].

Genetic Algorithms (GA)

GAs is employed to optimize system parameters such as panel 
tilt, azimuth, and storage scheduling in complex solar energy 
designs. Their evolutionary approach excels in navigating large, 
intricate search spaces, making them well-suited for. By 
exploring multiple solution candidates simultaneously, GAs 
can identify near-optimal configurations that enhance energy 
output and efficiency in multi-orientation arrays and diverse 
panel setups [56]. ANNs, SVR, and LR are evaluated under 
controlled conditions to assess their impact on solar energy 
output and efficiency, with ANNs and SVR expected to 
outperform LR due to their ability to model non-linear 
relationships in fluctuating weather and varied system designs 
[56]. LR serves as a baseline to quantify the benefits of 
advanced algorithms, weighing their computational costs 
against performance gains. ANNs and SVR’s capacity to adapt 
to complex patterns is anticipated to show greater resilience 
than LR, critical for maintaining high performance in 
unpredictable real-world weather conditions [55]. Genetic 
Algorithms (GAs) optimize parameters in complex solar energy 
systems, accounting for weather conditions to maximize 
efficiency in multi-orientation arrays and diverse panel types. 
This highlights AI’s transformative potential in designing and 
operating advanced solar installations.

Model Development

All models are developed in MATLAB, leveraging its specialized 
toolboxes ML and optimization.

Artificial Neural Network (ANN) Predicting

The ANNs is inspired by biological neurons, map uncertain 
inputs to outputs without complex equations. Learning from 
data, ANNs efficiently handle control factors, ideal for solar 
energy prediction. For regression tasks, multilayer perceptrons 
(MLPs) or feedforward networks process data with minimal 
computational effort, ensuring accurate predictions.

The network consists of:

• Input Layer: Features like solar irradiance, temperature, and
time of day.

[x=x1 ,x2,…,xn] T,input vector where are the features of 
the irradiance, temperature and time taken

• Hidden Layers: Nodes that transform inputs using weights,
biases, and activation functions to capture non-linear
patterns.

o Number of nodes: (m),
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where y1 is the actual output ŷ1, is the predicted output, and (N) 
is the number of samples [11].

Supervised training involves using imported data to train an 
ANN, which consists of interconnected neurons, akin to those 
in the human brain. Each neuron's weight, a fractional value, 
defines the strength of connections between them, enabling the 
ANN to learn patterns for solar energy output prediction 
[32,63]. In an ANN, neurons across the input, hidden, and 
output layers are interconnected by adjustable weights, which 
are refined during training to minimize prediction errors until 
an acceptable error level is achieved, stabilizing the weights. As 
depicted in Fig. 4, the ANN structure comprises three layers: 
the input layer, with neurons determined by input parameters 
(e.g., solar irradiance, temperature); hidden layers, with neuron 
counts set via trial-and-error; and the output layer, with neurons 
based on output parameters (e.g., power output). A bias 
parameter adjusts the network’s output, and ‘t’ denotes time in 
dynamic models.

Figure 4: ANN architecture [26]

The ANN for predicting solar energy output, central to the 
study using the DL Toolbox (Fig. 5). The ANN, with two input 
neurons (solar irradiance, temperature), three hidden layers 
(100, 50, 25 neurons, ReLU activation), and one output 
neuron (linear activation), predicts power output. Trained with 
backpropagation using the Adam optimizer (or Levenberg-
Marquardt fallback) for 100 epochs and an approximated batch 
size of 32, it addresses energy forecasting challenges. The ANN 
training state of 15 Epoch is shown in Fig. 5.
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Figure 5: ANN Training State, Epoch 15

A synthetic dataset simulating solar energy parameters over 10 
days (May 17–26, 2025) with hourly measurements (240 
samples) includes solar irradiance (W/m²), power output (kW), 
and temperature (°C). Solar irradiance follows a squared sine 
function to mimic daily cycles, with Gaussian noise and 5%
missing values. Power output, derived at 18% of irradiance, 
includes noise, 3% missing values, and 2% outliers. 
Temperature uses a sine function peaking in the afternoon, 
with noise and 3% missing values. The dataset enables ANN 
testing while mirroring real-world data imperfections.

Support Vector Machine (SVM) Forecasting

Support Vector Regression (SVR), an AI technique, boosts 
solar energy efficiency by forecasting power output using 
meteorological data and detecting anomalies in PV systems. 
SVR predicts outputs within a tolerance margin, minimizing 
complexity, and uses a kernel trick to handle non-linear 
relationships in higher-dimensional spaces.

Mathematical Formulation:

For the dataset {(xi,yi)}Ni=1, where are input features and are 
the target values

Using, a kernel function K(xi,yi) which is radial basis function 
(RBF) kernel:

are Lagrange multipliers. The dual optimization is solved to find 
αi,αi

*, and only support vectors (points where ≠ 0) contribute to 
the model [29,31,33].

The SVR model uses a time-series dataset with Solar Irradiance 
(W/m²), Temperature (°C), and Power Output (kW) to predict 
solar power generation for grid stability and energy management. 
Support Vector Regression (SVR) fits a hyperplane to non-linear 
data, minimizing errors within an ε-tube. Hyperparameters (C, ε, 
γ) are tuned via grid search with
5-fold cross-validation shows in Fig. 6. This approach enhances
solar energy forecasting reliability.

o

o Hidden layer output: h = 𝜎(𝑊(1)𝑥 + 𝑏(1)

Activation function: ReLU, 𝜎(𝑧), = max (0, z), or 
sigmoid 𝜎 (z) = 

• Output Layer: Predicted value, e.g., PV power output
(in kW).

o Weights: 𝑊(2)𝜖𝑅1×𝑚, biases: 𝑏(2)𝜖 𝑅,

o Predicted output (for regression, typically linear
activation): 𝑦 = 𝑊(2)ℎ + 𝑏(2).

• Loss function: mean square error (MSE) as shown in
Equation 1.

𝐿𝑜𝑠𝑠 = 1
𝑁

∑ =1(𝑦𝑖 − 𝑦̂𝑖)2𝑁
𝑖

𝐾 (𝑥𝑖,𝑥𝑗) =exp (−𝛾‖𝑥𝑖,𝑥𝑗‖2
) and the Model shown in Equation 2

𝑓(𝑥) = ∑ =1(𝛼𝑖 − 𝛼𝑖
∗) 𝐾 (𝑥𝑖,𝑥) + 𝑏, 𝑤ℎ𝑒𝑟𝑒 𝛼𝑖, 𝛼𝑖

∗ (2)

o Weights: 𝑊(1)𝜖𝑅𝑚×𝑛, biases: 𝑏(1)𝜖𝑅𝑚.,

1
1+𝑒−𝑠, 



Figure 6: SVM framework for solar energy prediction [55]

SVM regression starts with selecting a kernel (linear, 
polynomial, RBF) to transform data into a higher-dimensional 
space. The model is trained to find the optimal hyperplane, 
minimizing error via SVR optimization. Performance is 
evaluated using validation techniques and metrics like MSE, 
MAE, or R². The trained model predicts continuous outputs 
for new data, resisting overfitting through its margin parameter. 
Data preprocessing involves loading data, verifying columns 
(Time, Solar Irradiance, Temperature, Power Output), 
converting Time to date-time, normalizing features with z-score, 
and splitting data (80% training, 20% testing) with a fixed seed 
for reproducibility.

Genetic Algorithm Optimization for Solar 
Energy Management

Genetic algorithm (GA)-based regression excels in 
optimizing complex, non-linear, or discontinuous search 
spaces where traditional methods struggle to find global 
optima. Ideal for poorly understood input-output 
relationships and multi-modal fitness landscapes, GAs 
optimize photovoltaic (PV) system design, panel placement, 
and energy storage scheduling. They efficiently determine 
optimal configurations, like solar panel tilt and orientation, 
to maximize energy capture under diverse conditions. As 
evolutionary algorithms, GAs evolve a population of 
candidate solutions through selection, crossover, and mutation 
to optimize objective functions, making them well-suited 
for non-linear, multi-objective optimization 

Chromosome: A solution vector x = [ θ, ϕ] , where is the panel 
tilt angle (0o to 90o) and ϕ is the orientation (azimuth, -180° to 
180°).

Objective Function: Maximize energy output, computed 
as Equation 3.

 (3)

• Selection: Choose individuals with higher fitness
tournament selection.

• Crossover: Combine two parent solutions to produce
offspring with the arithmetic crossover:
xnew= (αx₁ + (1 − α)x₂).

• Mutation: Randomly alter genes (e.g., add Gaussian noise
to ϕ)

Constraint: Bound variables, e.g., 0 ≤ θ ≤ 90,  −180 ≤ Ø ≤ 180.

Termination: Stop after a fixed number of generations or when 
fitness converges.

The enhance-AI solar energy management by optimizing 
photovoltaic (PV) system performance to meet rising renewable 
energy demands. This study uses a Genetic Algorithm (GA), 
implemented via the Global Optimization Toolbox’s ga 
function, to maximize energy output (kWh) and efficiency (%) 
of a solar system (Fig. 7). The GA optimizes five variables: panel 
tilt (0°–90°), azimuth angle (0°–360°), and three battery charge/
discharge rates (-1 to 1 kW) for morning, midday, and evening. 
Multiple GA runs account for randomness, with mean and 
variance of optimal energy (E) calculated. A t-test compares 
optimized output to a baseline (fixed tilt at latitude). With a 
population size of 50, 100 generations, and 0.8 crossover rate, 
the GA effectively identifies optimal configurations, as shown 
in iteration logs and visualizations, highlighting AI’s role in 
advancing solar energy systems.
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𝐸 = ∑ 𝑇𝑡=1 𝑃𝑡 , 𝑃𝑡 = 𝐺𝑡 . 𝜂 . 𝐴 . max(cos(𝜑𝑡) , 0) Where:

(E): Total energy output (kWh) over time period (T).

Pt: Power output at time (t)

Gt: Global horizontal irradiance (W/m²) at time (t).

η: PV panel efficiency.

(A): Panel area (m²).

ϕt: Incidence angle between sun rays and panel normal, 
calculated as Equation 4
cos(ϕ t )  = cos( θ  z ) cos θ + sin θ               z  sin θ cos( ϕs − ϕ)             (4) 
Where θ z is the solar zenith angle and ϕs is the solar azimuth 
angle at time (t) [38-39].

Fitness Function: f (x) = E (x) or for minimization, f (x) = E -(x)

GA Operations:

problems with intricate constraints in solar energy management.

Mathematical Functions:



Figure 7: System Efficiency vs. Storage Charge or Discharge 
Rate

RESULT AND DISCUSSION

The experiments are designed to address all objectives using the 
same dataset and consistent evaluation metrics. The following 
experiments are conducted:

Artificial Neural Network (ANN) Result

The ANN, built with MATLAB’s fitnet, formed a feedforward 
neural network with two input neurons (solar irradiance, 
temperature), three hidden layers (100, 50, 25 neurons, ReLU 
activation), and one output neuron (linear activation) to 
predict power output. Data was normalized using mapstd for 
training stability and split into 70% training, 15% validation, 
and 15% testing sets via divider and in Fig. 8. Training used the 
Adam optimizer or Levenberg-Marquardt, running 100 epochs 
with a 0.001 learning rate, early stopping, and a batch size of 
32. Performance on the test set showed an RMSE of 10.4835
and MAE of 8.3379, indicating decent accuracy for the
synthetic dataset.

Figure 8: Performance

Figure 9 of the ANN’s performance offers key insights. Three 
plots were created: (1) a training performance plot (fig. 9), 
showing mean squared error (MSE) across training, validation, 
and test sets over epochs, demonstrating convergence; (2) a 
predicted vs. actual power output plot (fig. 10), comparing test 
set predictions (red dashed line) with true values (blue solid 
line), revealing temporal trend accuracy; and (3) a prediction 
error plot (fig. 11), showing differences between predicted and 
actual outputs over time, highlighting systematic errors. These 
clearly labeled figures confirm the ANN’s ability to learn input-
output relationships, with RMSE and MAE indicating

moderate errors in Fig 12, likely due to the synthetic dataset’s
noise and limited complexity.

Figure 9: Best Performance

Figure 10: Predicted vs Actual Power Output

Figure 11: Neural Network Training Error Histogram, 
Epoch 15

Figure 12: Neural Network Training Regression, Epoch 15

Support Vector Machine (SVM) Result

Hyperparameter tuning optimizes the SVR model’s 
performance using grid search over C ([0.1, 1, 10, 100]), ε 
([0.01, 0.1, 0.5]), and γ ([0.01, 0.1, 1]), yielding 36 combinations.
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• Actual vs. Predicted Power Output: Figure 13 compares
actual (solid blue) and predicted (dashed red) Power
Output across test samples. The plot shows how well
predictions align with actual values, with discrepancies
indicating sudden changes in solar irradiance or
temperature, highlighting areas for model improvement.

Figure 13: (SVR) Solar Power Prediction

• Time-Series Plot: Fig. 14 shows actual vs. predicted
Power Output over time, using test set Time values. The
x-axis displays date-time stamps, rotated 45 degrees for
clarity, and the y-axis shows power output in kW. This
visualization highlights the model’s ability to capture
diurnal and seasonal trends, vital for solar energy grid
planning and storage scheduling.

Figure 14: (SVR) Time-Series Prediction

• Error Distribution: The histogram in Fig. 15 displays
prediction errors (predicted minus actual Power Output)
inkW across 50 bins, illustrating error frequency and spread.

It reveals whether errors are centered near zero, 
indicating unbiased predictions, and if they are tightly 
clustered, suggesting high precision.

Figure 15: (SVR) Error Distribution

The histogram in Fig. 15 displays prediction errors (predicted 
minus actual Power Output) in kW across 50 bins, illustrating 
error frequency and spread. It reveals whether errors are 
centered near zero, suggesting unbiased predictions, and how 
tightly clustered they are, indicating prediction precision.

Performance Evaluation

To evaluate the framework's performance in 
prediction accuracy, Root Mean Squared Error (RMSE) 
and Mean Absolute Error (MAE) are used to compare its 
predicted energy output and efficiency with actual values 
from a solar energy system. These metrics, RMSE weighting 
larger errors more and MAE treating all errors equally assess 
the model's optimization accuracy and effectiveness in meeting 
its goals.

Root Mean Squared Error (RMSE)

RMSE measures the standard deviation of residuals, penalizing 
larger errors more due to squaring, offering a 
comprehensive metric for model accuracy.

The RMSE for energy output is calculated using Equation 5

The ANN model proves viable for solar power 
prediction, evidenced by a Test RMSE of 10.4835 and MAE 
of 8.3379, suggesting predictions are reasonably accurate 
despite dataset noise. These metrics RMSE showing error 
magnitude and MAE the average deviation reflect 
performance that could improve with ANN architecture 
optimization, such as tuning hyperparameters. The ReLU 
activation supports efficient training, while the linear output 
layer suits this regression task. The SVR model predicts solar 
power output with a test RMSE of 19.4772 kW and MAE of 
12.8695 kW, showing reasonable accuracy for solar energy 
tasks like short-term load forecasting and battery storage 
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Each undergoes 5-fold cross-validation, where training data is 
split into five folds, training on four and validating on one, 
computing the average RMSE (CV RMSE). Results show CV 
RMSE ranging from 0.2796 to 0.9882 (normalized units), with 
optimal parameters C=1.0, ε=0.01, and γ=1.0, achieving the 
lowest CV RMSE of 0.2796, indicating strong predictive 
performance.

The final SVR model, trained on the full training set with 
optimal hyperparameters (C=1.0, ε=0.01, γ=1.0) and an RBF 
kernel, uses pre-normalized data, bypassing standardization. 
Predictions on the test set are denormalized to kW using the 
stored mean and standard deviation of power output. 
Performance metrics show a test RMSE of 19.4772 kW and 
MAE of 12.8695 kW, indicating moderate accuracy but 
challenges in capturing complex test data patterns, possibly due 
to noise or limited features. The CV RMSE (0.2796, 
normalized) is lower than the test RMSE, suggesting slight 
overfitting or greater test set variability.
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𝑀𝐴𝐸𝑒𝑛𝑒𝑟𝑔𝑦 = 
1
𝑁

− 𝐸𝑛𝑒𝑟𝑔𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖| (6) ∑  =1|𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖
𝑁
𝑖

Mean Absolute Error (MAE): is a metric that measures 
prediction accuracy by averaging the absolute differences 
between actual and predicted values and this is expressed 
mathematically in Equation 6.

𝑅𝑀𝑆𝐸𝑒𝑛𝑒𝑟𝑔𝑦 =    
1 

 ∑i=1(𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 − 𝐸𝑛𝑒𝑟𝑔𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 )2𝑁

𝑁√ (5) 



automated tuning could improve performance.

The following table summarizes preliminary results 
(hypothetical, based on typical performance)

Model RMSE MAE Training Time

ANN 10.4835 8.3379 346

SVM 19.4772 12.8695 298

Table 1: Performance Metrics

Genetic Algorithm Optimization Result

The objective function maximizes a composite metric of energy 
output and system efficiency (Fig. 16), while minimizing grid 
dependency (negative kWh). The solar model uses a simplified 
irradiance profile (e.g., 1000 W/m²), panel area, and efficiency 
adjusted by tilt (cosine function) and azimuth (optimized at 
180° for northern hemisphere). Battery scheduling manages 
energy storage, with positive/negative values for charging/
discharging. The genetic algorithm (GA) minimizes the fitness 
function, yielding a positive 23.20 kWh for reduced grid 
dependency. GA operates within bounds (tilt: 0°–90°, azimuth: 
0°–360°, battery rates: -1 to 1 kW) using uniform creation, 
scattered crossover, tournament selection, and adaptive feasible 
mutation.

Figure 16: (GA) Energy Output vs. System Efficiency

On May 17, 2025, at 12:00 WAT, the GA optimization ran for 
70 generations, converging when the average fitness change fell 
below the default tolerance. The best fitness improved from 
-22.5 to -23.2 by generation 11, with the mean fitness also
stabilizing at -23.2, indicating a consistent solution across the
population. Using 3343 function calls, the algorithm efficiently
explored the five-dimensional parameter space, with
tournament selection enhancing diversity and convergence
speed over stochastic uniform selection. Fig. 17, including a
convergence plot showing stabilization at -23.2, also, a 3D
surface plot marking the optimal tilt and azimuth (90°,
143.28°), a line plot showing quadratic efficiency drops with
battery rates, and a scatter plot resembling a Pareto front,
collectively clarify the GA’s performance and the optimal
solution’s trade-offs.

Figure 17: Optimal Energy Flow

The GA effectively optimizes complex solar energy systems, 
reducing grid dependency by 23.20 kWh. However, the 90° tilt 
and specific azimuth may reflect mathematical optima over 
practical constraints, likely due to simplified irradiance or panel 
assumptions. Real-world use needs location-specific data, 
realistic battery models with capacity and cycle life, and 
constraints like minimum tilt or fixed azimuths for rooftops. 
Dynamic battery scheduling with varied daily rates shows AI’s 
adaptive energy management potential. Future improvements 
could use gamultiobj for multi-objective optimization or 
temporal irradiance profiles for precise scheduling.

Figure 18 shows the GA optimal solution provided a panel tilt 
of 90.00°, an azimuth of 143.28°, and a battery schedule with 
morning charging (0.90 kW), midday discharging (-0.32 kW), 
and evening discharging (-0.71 kW), achieving a fitness value of 
23.20 kWh. The 90° tilt, though unusual for typical PV 
systems, may suit specific conditions like high latitudes. The 
azimuth suggests a focus on morning solar capture, aligning 
with the battery charging strategy. This setup reduces grid 
reliance by charging during peak solar hours and discharging to 
meet later demand, though the extreme tilt could reflect model-
specific assumptions.

Figure 18: Energy Output vs. Panel Tilt Azimuth
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optimization. Yet, a gap between cross-validation and test errors 
suggests overfitting or train-test  distribution differences. 
Adding features (e.g., humidity, cloud cover, time-based 
variables), expanding the hyperparameter grid, or using 
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CONCLUSION AND FUTURE DIRECTIONS

This research highlights AI's effectiveness in solar energy 
management by comparing algorithms like ANNs, and SVR, 
demonstrating their ability to optimize system performance and 
adapt to weather changes. The scalable framework supports 
accurate power output prediction and can be improved with 
more training data or parameter tuning. Future research could 
explore integrating real-time data, multi-objective optimization, 
or reinforcement learning to further enhance solar energy 
systems' efficiency and sustainability. In solar energy 
management, AI applications using SVR for prediction and 
GA for optimization showcase significant potential. The SVR 
model, with an RBF kernel and grid search, accurately forecasts 
solar power output, while the GA optimizes parameters to a 
fitness value of 23.20 kWh, despite limitations like the 90°
panel tilt. Visualizations offer actionable insights, and future 
enhancements such as feature integration or model 
hybridization (e.g., with LSTM) could boost performance. 
These MATLAB-based approaches highlight AI’s transformative 
impact on renewable energy efficiency and sustainability.
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