Bridging the Parent Math Gap

Engaging K-2 Parents in Conceptual Mathematics Supports K-2 students

Maria Franshaw

Elementary Mathematics Specialist and Curriculum Coordinator

Mathematics Methods Instructor

Doctorate degree expected May, 2019

Our goal today is for you to plan a framework of engaging parent mathematics education to support student learning and mathematics instruction.

Rationale

Mathematics these days requires

- Conceptual understanding
- Flexibility and fluency
- Collaboration
- Communication
- Cross-curricular connections

Rationale

- "Parents these days..." are
 - Math anxious
 - Procedural
 - Anxious

Math anxiety

- First informal research, 1957
- First formal research, 1972 MARS
- May lead to math avoidance
- Doesn't mean lower aptitude
- Disrupts cognitive process
- Blocks working memory

Dreger and Aiken

Richardson and Suinn

Ashcraft, 2002

Ashcraft, 2002

Ashcraft, 2002

Ashcraft, 2002

Math anxiety

 Math anxiety can occur at various stages from young children to young adults

Beilock and Willingham, 2014

- Researched by educators, neuroscientists, and psychologists

Beilock and Maloney, 2015

- Math anxiety
 - fMRI brain images of higher math anxious children working math problems showed:
 - Less activity in the region governing working memory
 - Increased activity in the regions governing negative emotions

 Young, Wu, and Menon, 2012

Parents with math anxiety negatively impact:

- Children before formal schooling even begins
- Home environment and building a foundation of early childhood math experiences:
 - Developing spatial awareness
 - Comparing size or quantity
 - Comparing and classifying

Research Who is most significantly impacted?

- Children in lower SES whose parents have lower educational backgrounds

Maloney and Beilock, 2012; Vukovic, Roberts, Wright, 2013

- Girls whose parents have negative attitude about math Ma, 2003; Scarpello, 2007; Turner, et al, 2002
- Children whose math anxious parents help them with homework

Maloney, Ramirez, Gunderson, Levine, and Beilock, 2015

Two intersecting strands impact students

- Parent Math Anxiety
- Student Equity and Access
 - Children from lower SES
 - Girls

We are ethically bound to attend to both.

Parents need help understanding mathematics today:

- Currrent Math standards include Content <u>and</u>
 Practice
- Teachers Value mathematical practices:
 - Sense making, reasoning, problem solving
 - Constructing, critiquing
 - Persevering

Ball and Hill, 2009; Boaler, 2015; Fosnot, 2012

Real Life - Starting small, 2002

Back to school night

- Parents shared their personal math anxieties
- Parents worked a math exercise
- I shared philosophy
 - More focus on learning, less on grades
 - "disequilibrium"

Piaget, 1936

Starting small, 2002

- Staying connected personal connections via email, phone, face to face
 - Gratitude sandwich, always
 - Learning goals
 - Sample exercises, questions, and more

Starting small, 2002

- Students and their work were communicating to parents even when I wasn't:
 - Emphasis on process seen in graded work
 - Writing and portfolios
 - "disequilibrium" continued

Growing effort, 2004 – MS Math Dept. Head

- Half-time algebra teacher; half-time supporting MS math curriculum and instruction
- More teachers and grade levels
- About 500 students, 450 families, 800 adults

Growing the growing effort, 2005

- Expanding with intentionality
- Back to School events
 - Teachers shared vertically-aligned philosophy
 - Parents did math! ©
 - Parents shared their math anxieties

Real life (bears repeating...)

- Teachers' continuing parent math dialogue:
 - Teacher time, workload, technology
 - Parent perspective, awareness, beliefs
- Parents shared math anxieties with teachers, who in turn shared them with me
- Necessary adjustments

Growing the growing effort, 2005 to date

How do we reach more parents?

- Parent math seminars (2005-present)
- -Parent packets (2005-2012)
- School website postings/ videos/emails/ other online sharing tools (2010-present)

Real life results

Parent math anxiety is lower - not gone, but lower.

- Seminars balance direct instruction and parents collaborating to do math!
- Most parents talk openly in real-time at the seminars about revelatory learning and/or deeper understanding

Real life results

(Continued)

- Some share how alone they felt as children because they either were made to feel less or thought conceptually and were told to follow procedures
- Some parents still seek 1:1 support

Real life results

- Parent anxiety about their child's math learning/our math curriculum is lower:
 - -They heard it firsthand from a professional
 - -They saw K algebra vertical connections
 - -They did the math, experienced learning
 - -They have high-quality resources

What?

- What do you wish your students' parents knew about "math these days"?
- What recurring questions do they ask that shine a spotlight on the resources they need?
- What do you desperately wish your students' parents would stop telling/showing them: "but my dad/mom/big brother/big sister/ babysitter, grandpa, uncle showed me a short cut for..."?

Some Real-life "What?"

- Counting isn't evidence of meaning
- Memorizing isn't evidence of knowing
- Faster is not evidence of better
- Borrowing and carrying
- Traditional algorithms without conceptual understanding
- Trust us, we're educated professionals, we have a plan, and it works!

What?

- Your "what" will drive your "how".
- If you're newly embarking on parent education, then consider sharing philosophy and some vertical alignment/ connections.

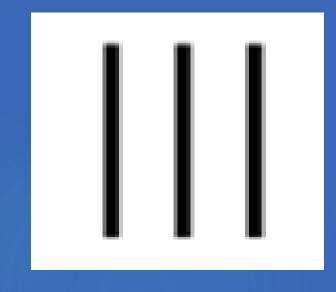
Some examples of PK-2 "Whats?"

We want parents to know the instructional sequence/ progression we will use with their children:

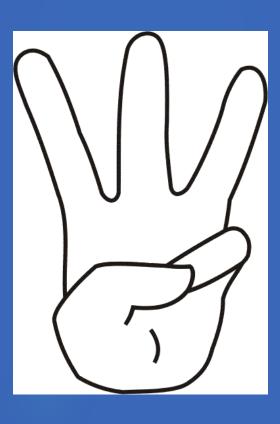
Concrete – build, manipulate, explore

Representational – draw, illustrate

Abstract – symbolic

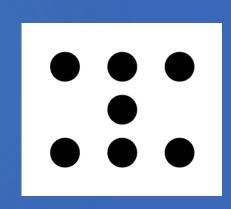

Numeracy, like literacy, is important.

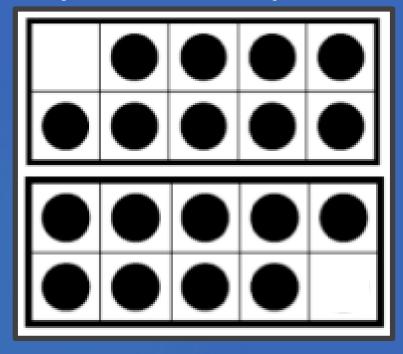
- Number sense : Mathematics
 as Phonemic awareness : Reading
- Number Sense: Number Concept
 as Decoding: Early reading
- Fluency: Computationas Words: Sentences


Franshaw, 2015

- We want parents to know we value and expect students to communicate mathematically.
- This begins in early childhood.

Perceptual subitizing



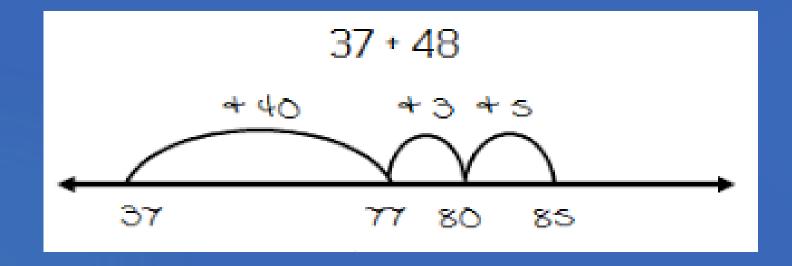

Why conceptual subitizing?

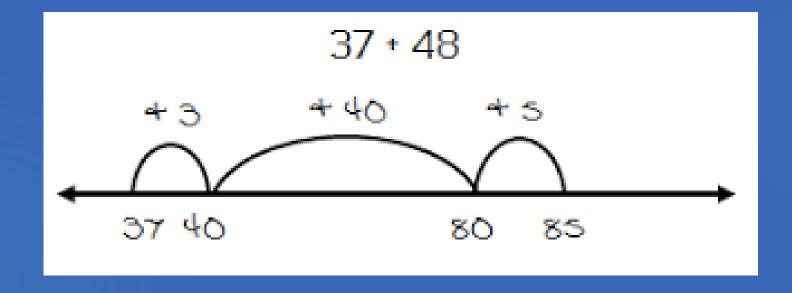
- Internalize a sense of quantities 0-5
- Build on this from 6-10, then 11-20, gaining flexibility with larger quantities

$$2+2+3=7$$
 $3+3+1=7$
 $3+2+2=7$
 $4+3=7$

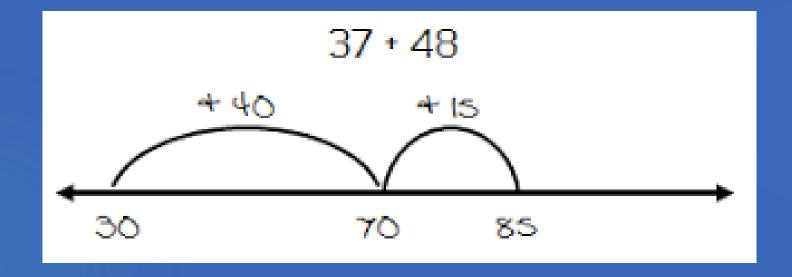
Why conceptual subitizing?

$$5+5+4+4=18$$
 $4+5+4+5=18$
 $3+3+3+3+3+3=18$
 $20-1-1=18$
 $20-2=18$
 $9+9=18$

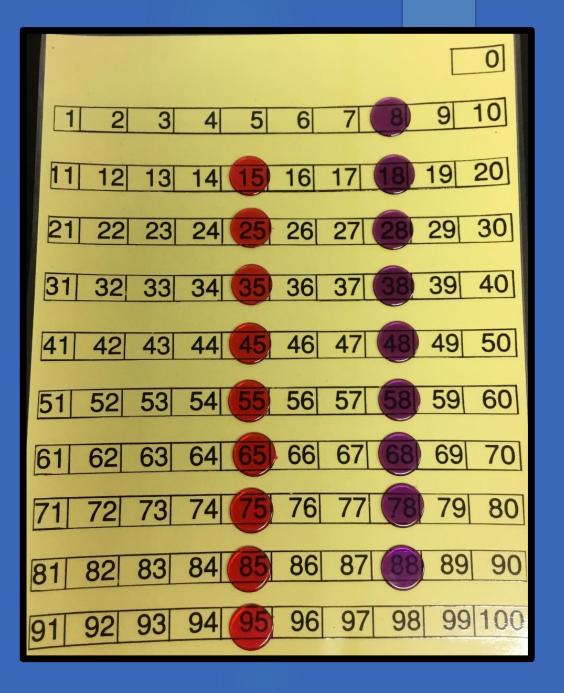

Conceptual subitizing supports the development of:


- Cardinality
- Increased flexibility
- Fluency
- Efficiency

37 + 48


37 + 48

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99


PK-2

PK-2

Flexibility leads to extending and patterns:

Fact:
$$8 + 7 = 15$$

 $18 + 7 = 25$
 $28 + 7 = 35$

PK-2 to 3-5

Flexibility, fluency, and extending:

Fact:
$$5 + 7 = 12$$

Extensions: $5 + 17 = 22$
 $52 = 15 + 37$
 $72 = 17 + 55$
 $25 + 67 = 92$

$$120 = 70 + 50$$

 $250 + 370 = 620$
 $1,200 = 500 + 700$
 $3.5 + 1.7 = 5.2$

Prioritize your "what"

- Talk with your colleagues
- Share ideas
- Prioritize your "what" to maximize parents' learning to better support student learning and your mathematics curriculum and instruction

Determine "how"

- Talk with your colleagues
- Share ideas
- Determine the best "how" at your school, for your grade band, with your parents

Vertical Connections: Addition

$$37 + 48 = 30 + 7 + 40 + 8$$

= $30 + 40 + 7 + 8$
= $70 + 15$
= 85
 $(11x + 4) + (5x + 17) = 11x + 5x + 4 + 17$
= $15x + 21$

Vertical connections: multiplication

Multiplication strategies:

- Base-10 blocks to Algebra tiles
- Partial products (horizontal or vertical)
- Area Model (multiplication and division)

Mhos

- Who on your campus or in your district?
- How can this be an opportunity to build capacity on your campuses and in your district for teacher leaders to participate, co-lead, or lead?

When?

- Do you already have opportunities through which this information can be shared?
- Is there a way to start small and expand?
- How can you create a stand-alone event that becomes an anticipated event in your community?

When at my school?

- Back to School Night philosophy and activity
- Parent Seminars
 - Fall and spring for PK and K; fall for 1-2 and 3-5
 - Parents attend, take aways, shared resources
- Ongoing
 - School website as often as we need, usually monthly; videos, work samples, literature connections, etc.
 - Online tools vary by grade and needs

What for Parents?

How to Help Your Child With Math

- Positive talk
- Notice and wonder #noticewonder
- Play games!
- Ask your child where they see number and shape in their worlds
 - talk math with your kids #tmwyk
- Cook, build, measure, sew, create, take a walk and collect/compare/count found objects
- Talk about zero, act out zero

What for Parents? How to Help Your Child With Math

- Do math games and puzzles, many are free!
- Play games!
 - Board games
 - Games involving spatial skills
 - Card games
- Complete 2D and 3D puzzles to support the development of spatial reasoning

Mhàs

Literacy and numeracy

Effective math education for all

Local, state, national and world economies

References

- Ashcraft, M. H. (2002). Math Anxiety: Personal, Educational, and Cognitive

 Consequences. Current Directions in Psychological Science, 11(5), 181-185.
- Ball, D. L., & Hill, H. (2009). The curious—and crucial—case of mathematical knowledge for teaching. *Phi Delta Kappan*, 91 (2), 68–71.
- Beilock, S. L., & Maloney, E.A. (2015). Math Anxiety: A factor in Math Achievement Not to Be Ignored. *Policy Insights from the Behavioral and Brain Sciences*, 2(1), 4-12.
- Beilock, S. L., & Willingham, D. (2014). Ask the cognitive scientist math anxiety: can teachers help students reduce it? *American Education*, 38, 28-33.

- Boaler, J. (2015). What's Math Got To Do With It? How Teachers and Parents Can Help Transform Mathematics Learning and Inspire Success. New York: Penguin.
- Dreger, R. M., & Aiken, L. R., Jr. (1957). The identification of number anxiety in a college population. *Journal of Educational Psychology*, 48(6), 344-351. http://dx.doi.org/10.1037/h0045894
- Fosnot, C. T. (2016). Conferring with Young Mathematicians at Work. Connecticut: New Perspectives Learning.
- Geist, E. (2003). Infants and toddlers exploring mathematics. Young Children, 58(1), 10-12.
- Ma, L. (1999). Knowing and Teaching Elementary Mathematics. Boston, MA: Houghton Mifflin Company.

- Maloney, E. A., & Beilock, S. L. (2012). Math anxiety: who has it, why it develops, and how to guard against it. *Trends in Cognitive Science*, 16, 404-406. doi:10.1016/j.tics.2012.06.08
- Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2015).

 Intergenerational Effects of Parents' Math Anxiety on Children's Math

 Achievement and Anxiety. *Psychological Science*, 1-9. doi:10.1177/0956797615592630
- Piaget, J. (1936). Origins of intelligence in the child. London: Routledge & Kegan Paul.
- Richardson, F. C., & Suinn, R. M. (1972). The Mathematics Anxiety Rating Scale. Journal of Counseling Psychology, 19, 551-554.

- Scarpello, G. (2007). Helping students get past math anxiety. Techniques: Connecting Education & Careers, 82(6), 34.35.
- Turner, J. C., Midgley, C., Meyer, D. K., Gleen, M., Anderman, E. M., Kang, Y., & Patrick, H. (2002). The classroom environment and students' reports of avoidance strategies in mathematics: A multimethod study. *Journal of Educational Psychology*, 94, 88-106.
- Vukovic, R. K., Roberts, S. O., & Wright, L. G. (2013). From Parental Involvement, to Children's Mathematical Performance: The Role of Mathematics Anxiety. *Early Education and Development*, 24, 446-467. doi:10.1080/10409289.2012.693430
- Young, C. B., Wu., S., & Menon, V. (2012). Neurodevelopmental basis of math anxiety. *Psychological Science*, 23, 492-501.

Maria Franshaw

Elementary Mathematics Specialist and Curriculum Coordinator

Math Methods Adjunct Professor Doctoral Candidate, Graduation expected May, 2019

@mfranshawftk mfranshaw@robs.org