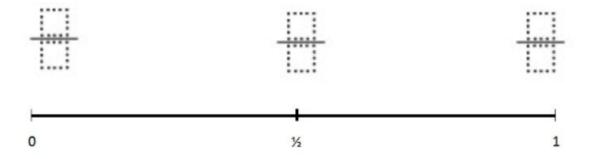
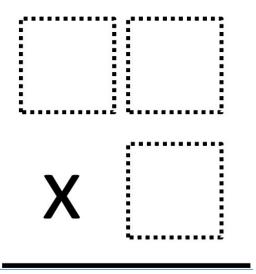

Which fraction is missing?



Directions: Use the digits 1 to 9, no more than once, to create three fractions that are as close to zero, one half and one as possible. NOTE: Close as possible is measured by adding up all the differences and making it the least possible value.

have to start?

There are 45 students in the school choir. They stand in rows of 5 each. How many rows of students are there in the school choir?	Amy bought 6 boxes of donuts. There are 4 donuts in each box. How many donuts did Amy buy?
Paul has a bookcase with 4 shelves. He wants to put an equal number of books on each shelf. He has 28 books. How many books should he place on each shelf?	A restaurant puts 4 slices of ham on each sandwich. How many sandwiches can be made with 20 slices of ham?
Martin has 25 action figures. Nine of them are Star Wars, and the rest are Avengers. How many Avengers action figures does Martin have?	Sonia has 48 toys. She puts the toys into 6 bags with the same number of toys in each bag. How many toys are in each bag?
The students on the bus sit in 8 rows with 4 students in each row. How many students are on the bus?	A great dane is 3 feet tall. A horse is twice as tall as a great dane. How tall is the horse?
Farshid has some baseball cards. He buys 14 more. Now he has 38 baseball cards. How many did he have to start?	The house is 24 feet tall. It is 3 times as tall as the tree. How tall is the tree?


<u>Practicing Multiplication</u> – Use *Sage and Scribe!* structure with your shoulder partner.

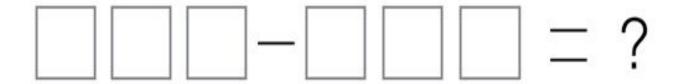
- 1. Begin with Partner A as the Sage and Partner B as the Scribe.
- 2. The Sage gives the Scribe step-by-step instructions on how to solve the problem.
- 3. The Scribe records the Sage's solutions and coaches if needed. Celebrate your work together.
- 4. Switch roles for the next problem.

4 x 217	5 x 123	6 x 216	7 x 154
223 x 8	332 x 9	345 x 3	239 x 6
9 x 138	5 x 213	4 x 266	7 x 137

Target Multiplication! – Our Target is <u>450</u>.

<u>Directions</u>: Using the numbers 1 - 8, no more than one time each, make a product that is close to 450. How close can you get to 450?

Go to <u>www.openmiddle.com</u> for more problems like this one.


<u>Practicing Subtraction</u> – Use *Sage and Scribe!* structure with your shoulder partner.

- 1. Begin with Partner A as the Sage and Partner B as the Scribe.
- 2. The Sage gives the Scribe step-by -step instructions on how to solve the problem.
- 3. The Scribe records the Sage's solutions and coaches if needed. Celebrate your work together.
- 4. Switch roles for the next problem.

268 - 136	478 - 255	297 - 145	466 - 245
563 - 236	694 - 256	783 - 344	962 - 233
748 - 369	937 - 758	645 - 256	656 - 289

Subtract to Get the Smallest Difference

<u>Directions:</u> Place any digit, 1 through 9, in the boxes below to create the smallest possible difference. Each digit can only be used once.

Go to www.openmiddle.com for more problems like this one.