

Presentation Outline

- Oregon Context
- Oregon Mathways
- Specific actions
 - Engagement
 - Pathways
 - FocusOn Track

Oregon Policy Context

- Mathematics requirements are standards-based rather than course-based.
- High school credits are proficiency-based rather than time-based.
- 3 credits of high school math required to graduate.
- Course sequences and options are local decisions.
- · 40-40-20 Goal.

Finding Focus

- Too many high school standards
- · Lack of consistency as educators choose which standards to focus on.
- Recognition the role of Algebra 2 & Pre-calculus to prepare for enrollment in Calculus, but other options also could exist.
- A number of assessments students may need to take in grade 11

Moving Forward

- Identify draft conceptual framework that identifies core content for first two credits
- Use NCTM Essential skills as a framework
- to organize content.
- · Crosswalk to
- · CCSS-HS content, Current state assessment framework, and
 Finding focus regional workshops
- Gather feedback as schools pilot courses aligned to proposed framework.

"Perfect" Standards

"Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away."

- Antoine de Saint-Exupéry, Airman's Odyssey

Introduction to Lenses

- · Who is at the table when content standards are written?
- Who should be at the table that may have been left out in the past?

3	Organ auton	REGON			Oregon Draft Conceptual Framework (2018) High School Math
	A	C	E	F	6
	Туре		Target	Concept	Standards Statement (Text)
2		NQ	NQ		Number, Quantity, and Measurement
÷	Focus	NQ	NQA		Number Serve
	Target	NQ	NQ.A.1	NQ.A.1	Demonstrate computational fluency with real numbers
	Concept	NQ	NQ.A.1	NQ.A.1.1	Fluently determine precise calculations using rational and irrational numbers to make comparisons and solve problems.
	Concept	NQ.	NQ.A.1		Use estimation and approximation of calculations to make comparisons and solve problems.
7	Concept	NQ	NQ.A.1	NQ.A.1.3	Reason quantitatively and use units to make comparisons and solve problems.
8	Focus	NQ	NQ.8		Measurement
9	Target	NQ	NQ.8.1	NQ.8.1	Reason quantitatively to solve applied problems
10	Concept	NQ	NQ.8.1	NQ.8.1.1	Use length, area, and volume measurements to solve applied problems.
	Concept	NQ	NQ.8.1	NQ.8.1.2	Use properties of congruence and similarity to solve applied problems.
12	Concept	NQ	NQ.B.1	NQ, B.1.3	Use graphs and coordinates to solve applied problems.
13	Domain				Algebra and Functions
14	Focus	AF	AF.A		Algebra
15	Target	AF	AF.A.1	AF.A.1	Write expressions in equivalent forms by using algebraic properties
16	Concept	AF	AF.A.1	AF.A.1.1	Interpret the structure of expressions using algebraic reasoning.
17	Concept	AF	AF.A.1	AF.A.1.2	Write expressions in equivalent forms to make different characteristics or features visible and solve problems.
18	Concept	AF	AF.A.1	AF.A.1.3	Perform arithmetic operations on expressions.
19	Target	AF	AF.A.2	AF.A.2	Find solutions to an equation, inequality, or system of equations or inequalities
20	Concept	AF	AF.A.2	AF.A.2.1	Solve equations and inequalities in one variable.
21	Concept	AF	AF.A.2	AF.A.2.2	Understand a problem and formulate an equation to solve it.
22	Concept	AF	AF.A.2	AF.A.2.3	Solve systems of equations.
23	Target	AF	AF.A.3	AF.A.3	Understand solving equations as a process of reasoning and explain the reasoning
	Concept	AF	AF.A.3	AFA31	Determine an efficient strategy to find a solution.
25	Concept	AF	AF.A.3	AFA32	Purposefully analyze equations (with and without technology) to understand patterns and make predictions.
	Concept	AF	AF.A.3	AF.A.3.3	Construct a viable argument to justify a solution method using expressions and equations.
	Target	AF	AF.A.4	AF.A.4	Create equations that describe numbers or relationships
	Concept	AF	AF.A.4	AFA.4.1	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
9	Concept	AF	AF.A.4	AFA.42	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable option in a modeling context.
	Concept	AF	AF.A.4	AF.A.4.3	Create equations to solve problems within linear, exponential, and quadratic situations.

- Lane County
- Central Oregon
- Portland Metro
- Oregon State University
- Southern Oregon
- Eastern Oregon

Characteristics of Rich Context Lessons

- 1. The approach shown has high potential for student engagement.
- The context of the lesson is authentic and mirrors real-world applications.
- The lesson offers the opportunity to leverage significant mathematics.
- The lesson demonstrates the application of math practices using appropriate tools.
- The lesson portrays math as a part of effective CTE-STEM practice, including critical thinking, communication, and boundary-spanning problem solving.

