Pascal's Pyramid

Meet Pascal's Triangle's
equally interesting
yet often overlooked cousin!

Do & Think Now:

What would a 3-D Pascal's Triangle look like?

NCTM 2019

Alison "Sunny" Mall

Assistant Principal / Mathematics Teacher

Homer High School, Homer, Alaska

Interests: Teacher Disposition, Rural Math Ed

PAEMST 2005

NSTA/NCTM STEM Ambassador 2018-2019

Oh ... and I love math! <u>mathnunnies@gmail.com</u>

Pascal's Pyramid

Materials (for a "7"-layer pyramid):

- → 84 gumdrops
- → 336 toothpicks

Assessments:

- → Construction
- → 20 Questions

Math Practices:

- → Problem Solving & Persevering
- → Reason Abstractly & Quantitatively
- → Patterning & Attending to Precision

The Amazon

Spice Drops Candy old fashioned gum drops jelly candy 7 pounds bag by SweetGourmet

★★★☆☆ × 234 customer reviews | 16 answered questions

Serve Clean Round Toothpicks, 5000 Count

by Serve Clean

★★★★ ✓ 24 customer reviews | 6 answered questions

Amazon's Choice

for "toothpicks bulk"

Price: \$15.99 \prime

Thank you for being a Prime member. Get \$70 off instantly: Pay \$0.00 upon approval for the Amazon Prime Rewards Visa Card.

Size: 5000 count

1600 count \$7.99 5000 count \$15.99 vprime

Pascal's Pyramid Assessment - Part 1

Please work as a team to construct a neat, complete and timely product.

Neatness: /5 points Completeness: + /5 points Timeliness: /5 points Group Effort: + /5 points

/20 points

TOTAL:

Pascal's Pyramid Assessment - Part 2

Pascal's Pyramid Assessment - Part II Good luck to	C. TOOTHPICKS (Hint: Try to do it a couple of ways. Discuss it with one another. Make			
Assume a perfectly built 7-layer pyramid for all questions unless otherwise stated.	sure you're not missing any!)			
A. GUMDROPS (Hint: Go layer by layer. Look for a pattern.)	14. How many toothpicks are in your pyramid?			
How many gumdrops are in your pyramid?	15. How many toothpicks would you need for a 10-layer pyramid?			
2. How many gumdrops would you need for an 8-layer pyramid?	16. How many toothpicks would you need for a n-layer pyramid? *			
3. How many gumdrops would you need for a 10-layer pyramid?	b. TRIANGLES (Hint: Be systematic and orderly.)			
4. How many gumdrops would you need for an n-layer pyramid?*	17. Three gumdrops and three toothpicks form a small equilateral triangle. How many of these small equilateral triangles are in your pyramid?			
5. How many gumdrops have 12 toothpicks in them?	mese sman equitate at mangles are in your pyrumor.			
6. How many gumdrops have 9 toothpicks in them?	E. SMALL PYRAMIDS			
7. How many gumdrops have 6 toothpicks in them?	18. Four gumdrops and six toothpicks form a small pyramid (like the top two layers). H many <u>small</u> pyramids are in your 7-layer pyramid?			
How many gumdrops have 3 toothpicks in them?				
9. How many gumdrops are located entirely in the middle?	F. OTHER SHAPES			
B. PYRAMID	 Name at least six other shapes (besides triangle and pyramids) that you see in you pyramid. Draw a sketch of each one. 			
10. How many faces does your pyramid have?				
11. How many edges does your pyramid have?				
12. How many corners (vertices) does your pyramid have?	G. CHALLENGE PROBLEM			
10 / 11 / 10 / 10 / 10 / 10 / 10 / 10 /	20. How many different triangles of all different sizes are in your pyramid?			

13. Are the answers for 10-12 the same for an 8-layer pyramid? _____

"5"-Layer (n=4) Pascal's Pyramid - Construction

Where's the math?

- Pascal's Pyramid is to trinomial expansion as Pascal's Triangle is to binomial expansion.
- Counting, patterning, multiple solution paths.
- Finding recursive and explicit formulas for an n-layer pyramid.
- Vocabulary: pyramid, faces, edges, vertices, triangles, squares, tetrahedron, octahedron, trapezoid, equilateral, hexagon (concave and convex), figurative numbers.
- Discrete Math: The Twelve Fold Way
- How many triangles?

Trinomial Expansion

$$(x+y+z)^4 = 1x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + 1y^4 + 4y^3z + 6y^2z^2 + 4yz^3 + 1z^4 + 4xz^3 + 6x^2z^2 + 4x^3z + 12x^2yz + 12xy^2z + 12xyz^2$$

Layer 3 (3)

5 5 10)20(10) Layer 5 10)30(30)10 5)20(30)20(5) 1 5 10)10(5 1)

http://wfhsmathclub.blogspot.com/2012/05/pascals-pyramid.htm

Counting, Patterning, Multiple Solution Paths

How did you figure the number of toothpicks?

Counting?

6 picks per small pyramid?

Multiply the number of gumdrops by 3, 6, 9 or 12 then divide by two?

Finding Recursive and Explicit Formulas Problems #4, #16, et. al., for n=6

$$\frac{1}{6}n(n+1)(n+2)$$

$$T_n = \sum_{k=1}^n \frac{k(k+1)}{2}$$

$$a_0 = 1$$

$$a_n = a_{n-1} + \frac{(n+1)(n+2)}{2}$$

Where's the vocabulary?

Figurate Numbers

figurate numbers

Numbers that can be represented by a geometrically shaped arrangement of equally spaced points.

examples

3

6

10

4

9

16

Discrete Mathematics

What is discrete mathematics?

- → study of mathematical structures that are fundamentally discrete rather than continuous
- → discrete = individually separate and distinct

Twelve Fold Way

The Twelve-Fold Way is a unified model for counting permutations, combinations and partitions.

Count the number of ways to place a collection X of $m \ge 1$ cubes into a collection Y of $n \ge 1$ cups, with the following options:

- → The cubes are either distinguishable (labeled) or indistinguishable (unlabeled).
- → The **placement** in the **cups** is either unrestricted, injective (one-to-one) or surjective (onto).

The Cubes

Labeled (distinguishable)

Unlabeled (indistinguishable)

The Cups

Labeled

Unlabeled

The Placements

Unrestricted Placement

- □ Any number of cubes can be placed in any of the cups.
- □ Anything goes!

Injective (one-to-one) Placement

■ No sharing of cubes

Surjective (onto) Placement

■ No empty cups

Twelve Fold Way

- → 2 choices for cubes
- → 2 choices for cups
- → 3 placement choices
 - = 2 2 3 = **12** folds

The First Fold

- Set X: m labeled cubes
- Set Y: n labeled cups
- Placement: unrestricted

How many possible ways are there for placement?

	1	2	3	4	5	 n
1	1	2	3	4	5	n
2	1	4	9	16	25	n^2
3	1	8	27	64	125	n^3
4	1	16	81	256	1024	n^4
5	1	32	243	1024	3125	n^5
m	1	2 ^m	3 ^m	4 ^m	5 ^m	n^m

How many triangles? (#20)

How many triangles are in each of the figures shown?

1

2

3

4.

5.

STEM lessons ...

- 1. ... focus on real-world issues and problems.
- 2. ... are guided by the engineering design process.
- 3. ... immerse students in hands-on inquiry and open-ended exploration.
- 4. ... involve students in productive teamwork.
- Iessons apply rigorous math and science content your students are learning.
- 6. ... allow for multiple right answers and reframe failure as a necessary part of learning.

8TH ANNUAL

STEM

Forum & Expo

HOSTED BY

National Science Teachers
Association

HOME

REGISTER TO ATTEND

ATTENDEE INFO

PROGRAM

EXHIBITOR INFO

EXHIBIT HALL FLOORPLAN

