Illustrative Mathematics

Levels of Rigor in Proofs Using Transformations

Gabe Rosenberg, Tina Cardone

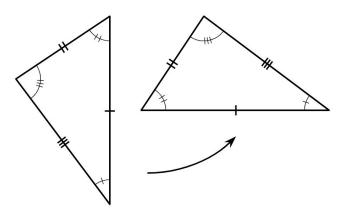
Today's Goals

Understand:

- our definitions of transformations
- how we use transformations to prove congruence
- ways to support students in the process of attending to precision and developing rigorous arguments

Rigid Transformations

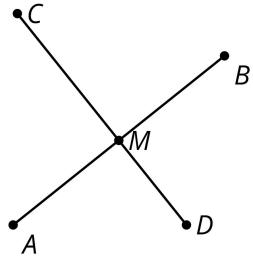
- A rigid transformation is a translation, reflection, rotation, or any sequence of the three.
- Rigid transformations take lines to lines, angles to angles of the same measure, and segments to segments of the same length.



Math Talk

Segment *CD* is the perpendicular bisector of segment *AB*. Find each transformation mentally.

- A transformation that takes A to B.
- A transformation that takes B to A.
- A transformation that takes C to D.
- A transformation that takes *D* to *C*.

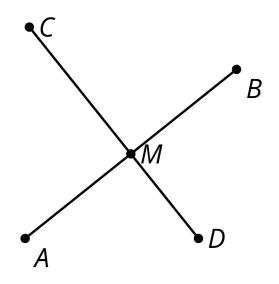


The Reference Chart

- Students need a shared understanding of the foundations to write proofs.
 - Definitions
 - Assertions
 - Theorems
- Find the definition of congruent on your chart.

Translation

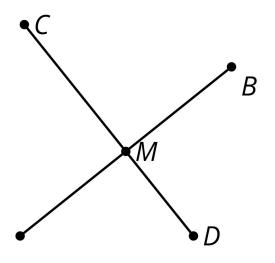
Translation is a rigid transformation that takes a point to another point so that the directed line segment from the original point to the image is parallel to the given line segment and has the same length and direction.



Translate A by the directed line segment from A to B.

Reflection

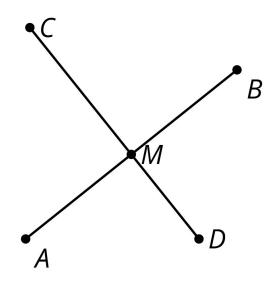
Reflection is a rigid transformation that takes a point to another point that is the same distance from the given line, is on the other side of the given line, and so that the segment from the original point to the image is perpendicular to the given line.



Reflect *A* across line *CD*.

Rotation

Rotation is a rigid transformation that takes a point to another point on the circle through the original point with the given center. The two radii to the original point and the image make the given angle.



Rotate *A* counterclockwise by 180° using center *M*.

What's the Segment?

Geometry
Unit 2: Congruent Triangles
Lesson 5: Points, Segments, and Zigzags

A Conjecture

• If *AB* is a segment in the plane and *CD* is a segment in the plane, then *AB* is congruent to *CD*.

A Revised Conjecture

- If AB is a segment in the plane and CD is a segment in the plane with the same length as AB, then AB is congruent to CD.
- Prove the conjecture.

Proving the Triangle Congruence Theorems Sentence Frames for Proofs

Transformatio	ns:										
 Translate 	from	to	,								
Rotate	using	as the cente	er by angle _								
Rotate	using	as the cente	er so that	coincide	s with						
Reflect	across										
 Reflect 	across the	perpendicula	r bisector of _								
 Segments _ 	and	are the sa	me length so	they are co	ngruent. Th	erefore, th	ere is a rig	id motion	that takes _	to _	
Apply that r	ig <mark>id</mark> motion to	·									
Justifications:											
We know th	e image of _	is congru	ent to	because rig	gid motions	preserve r	neasure.				
Points	and	coincide after	r translating b	ecause we d	defined our	translatio	n that way!				
 Since points 	and	are the	same distance	e along the	same ray fr	om	they have	to be in t	he same plac	e.	
Rays	and	coincide after r	otating becau	se we defin	ed our rota	tion that w	ay!				
The image of	of mus	st be on ray	since bo	th an	id ai	re on the s	ame side o	f	and make the	same ang	gle with
it at											
Points	and	coincide beca	use they are	both at the i	intersection	of the sar	ne lines, ar	nd 2 distir	ct lines can o	nly inters	ect in 1
place.											
 is the 	e perpendicu	lar bisector of	the segment	connecting	and	, be	cause the p	perpendic	tular bisector	is determ	ined by
2 points tha	t are both eq	uidistant from	the endpoint	ts of a segme	ent.						
Conclusion sta	tement:										
We have she	own that a rig	gid motion take	esto_		to	, and	to	_, therefo	ore triangle _	is co	ngruen
to triangle _											

Levels of Rigor in Proofs

Sample 1:

Two figures are congruent if there is a rigid motion that takes the first figure exactly to the second. First, translate segment AB by the directed line segment from A to C. Point A' will coincide with C because we defined our transformation that way! Then rotate the image, segment A'B', by the angle B'CD, so that rays A"B" and CD coincide. Translation and rotation both preserve distance so segment *A"B"* is the same length as segment AB, which means segment CB" is the same length as segment *CD*. Since points *B*" and *D* are the same distance along the same ray from *C* they have to coincide. Therefore, there is a rigid motion that takes AB to CD and the segments must be congruent.

Sample 2:

We need to find a rigid motion that works. Translate point *A* to point *C*. Rotate around that point so that the segments overlap. This will line up the image of point *B* with point *D* since the segments have the same length and our rigid motions don't change lengths. So, there is a rigid motion that takes *AB* to *CD*. The segments must be congruent.

Invisible Triangles

Geometry

Unit 2: Congruent Triangles

Lesson 3: Congruent Triangles, Part 1

Let's Play!

- Player 1 will be the transformer and takes the transformer card.
- Player 2 draws one triangle card, without showing it to anyone.
- Player 2 studies the diagram to figure out which sides and which angles correspond. Tell Player 1 what you have figured out.

Let's Play!

Player 1:

- Take notes about what they tell you so that you know which parts of their triangles correspond.
- Think of a sequence of rigid motions that you could tell your partner to get them to take one of their triangles onto the other.
- Be specific in your language. The notes on your card can help with this.

Let's Play!

Player 2:

- Listen carefully to the instructions from the transformer.
- Follow their instructions.
- Draw the intermediate steps.
- Let them know when they have lined up one, two, or all three vertices on your triangles.

Reflections

- Would the same sequence of moves work for all the different triangles?
- Why might it be useful to have a sequence of moves that works for any pair of triangles with, say, two pairs of corresponding sides congruent and the pair of included angles between them congruent?

Proving the Side-Angle-Side Triangle Congruence Theorem

Geometry

Unit 2: Congruent Triangles

Lesson 6: Side-Angle-Side Triangle Congruence

Warm-Up

Highlight each piece of given information that is used in the proof, and each line in the proof where that piece of information is used.

•
$$\overline{AB} \cong \overline{DE}$$

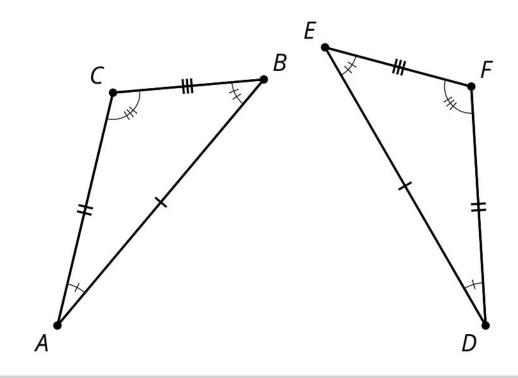
•
$$AC \cong \overline{DF}$$

•
$$\overline{BC}\cong \overline{EF}$$

•
$$\angle A \cong \angle D$$

•
$$\angle B \cong \angle E$$

•
$$\angle C \cong \angle F$$



Writing a Proof

- Work with your tablemates to do the activity.
- Use appropriate tools strategically.
- Be ready to discuss what aspects of this activity will be challenging for students.
 - 1. Two triangles have 2 pairs of corresponding sides congruent, and the corresponding angles between those sides are congruent. Sketch 2 triangles that fit this description and label them LMN and PQR, so that:
 - \circ Segment LM is congruent to segment PQ
 - \circ Segment LN is congruent to segment PR
 - \circ Angle L is congruent to angle P
 - 2. Use a sequence of rigid motions to take LMN onto PQR. For each step, explain how you know that one or more vertices will line up.
 - 3. Look back at the congruent triangle proofs you've read and written. Do you have enough information here to use a proof that is like one you saw earlier? Use one of those proofs to guide you in writing a proof for this situation.

Levels of Rigor in Proofs

- If we provide students with:
 - a reference chart
 - a template of sentence frames
 - a model proof

what was the lift?

So What?

After proving a theorem students might:

- Add a new sentence frame to the proof template.
- Add a new theorem to the reference chart.
- Use the theorem to prove new theorems.
 (properties of isosceles triangles is next)

Students should recognize the process of establishing valid mathematical statements as the central act of doing mathematics."

Catalyzing Change in High School Mathematics

Now What?

Write down (or tweet with #LearnWithIM) one thing you learned or are thinking about now.

- When do you invite students to improve the rigor of their statements?
- How do you build supports into the proof writing process?

THANK YOU

Stay connected with Illustrative Mathematics: illustrativemathematics.org

@IllustrateMath

#LearnWithIM

Illustrative Mathematics

