

Proportional Relationships:

A Love Story of Linear Algebra

St. Lucie Public Schools Florida

- Elizabeth.Pruitt@stlucieschools.org
 - Liz Pruitt
 - Coordinator of Curriculum
- Christina.Worley@stlucieschools.org
 - Chris Worley
 - Elementary Math Curriculum Developer

Interacting Today

Padlet:

 https://padlet.com/pruitte/
 wax3gi744ims

OneDrive: https://tinyurl.com/yxuv9qb6

Equivalent Fractions

Measurement & Data

Algebraic Thinking

Ratios

Proportional Relationships

Attributes of a Line

Linear Algebra

Proportional Relationships:

A Love Story of Linear Algebra

Equivalent Fractions

- Starts in 3rd Grade
- Allows for the generation of fractions
- Important to note what happens in equivalent fractions
 - FRACTION = A NUMBER

- Starts in 4th Grade
- Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36),...

- Starts in 5th Grade
- Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane.

https://padlet.com/pruitte/wax3gi744ims

Why are these foundational skills important?

Ratios

- Starts in 6th Grade
- Ratios arise in situations in which two (or more) quantities are related.
- RATIO = A RELATIONSHIP
- Important to build models with students first.
- Frayer Model is one way to do this

Starting Ratio:			Bar Mode	I/ Tape Diagra	m/ Other Model:
<u>Table:</u>					
	Place the pro				
Double Number Lines:	1621	DOX			Coordinate Grid:
			1		
					
	-				
l					
					———

DOUBLE NUMBER LINES 6.RP.A.I

- Use a double number line to represent the following situation.
 - Grandma walks 2 miles in 30 minutes.

DOUBLE NUMBER LINES 6.RP.A.2

- Use a double number line to represent the following situation.
 - Ms. Fraiser the librarian can read $1\frac{1}{2}$ books in 3 days. Create a number line to model this information.
 - How many books can Ms. Fraiser read in one day?

What other questions can be asked using this information?

PROBLEM SOLVING WITH RATIOS 6.RP.A.3

		Bar Model/ Tape Diagram/Qther Model:
Table:		
Double Number Lines:	Two batches of cookies require 7 cups of flour. Solve to find how much flour will be needed for up to 8 batches of cookie.	Coordinate Grid:

re decided to make chocolate chip cookie the math club! The recipe calls for % cuigar and the recipe makes 20 cookies club has 60 members! How much need?

https://padlet.com/pruitte/wax3gi744ims

Why is it important to make connections of different representations?

Proportional Relationships

MAFS.7.RP.1.2

Recognize and represent proportional relationships between quantities.

- a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
- b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
- c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.
- d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0,0) and (1,r) where r is the unit rate.

Solve for Rates and Ratios in Multiple Ways

Starting Ratio:		Equation to Repres	sent Proportionality:
Table:			
Double Number Lines:	Place the prol		Coordinate Grid:

Buying Bananas, Assessment Version

Task

Carlos bought $6\frac{1}{2}$ pounds of bananas for \$5.20.

- a. What is the price per pound of the bananas that Carlos bought? [____]
- b. What quantity of bananas would one dollar buy? [____] pounds
- c. Which of the points in the coordinate plane shown below correspond to a quantity of bananas that cost the same price per pound as the bananas Carlos bought? (Select all that apply.)

Linear Algebra

MAFS.8.EE.2.5

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

MAFS.8.EE.2.6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.

The graphs below show the cost y of buying x pounds of fruit. One graph shows the cost of buying x pounds of peaches, and the other shows the cost of buying x pounds of plums.

- a. Which kind of fruit costs more per pound? Explain.
- b. Bananas cost less per pound than peaches or plums. Draw a line alongside the other graphs that might represent the cost y of buying x pounds of bananas.

Name: Period:

Item 1

Use the following information to complete the task.

Mrs. Thomas assigned the following graph of line v to a group of students on a big poster.

Joy, Gaby, and Dave are working on the poster together to compute the slope of line v. Joy finds the slope between the points (0, -3) and (3,3). Gaby finds the slope between the points (-1, -5) and (4,5). Dave finds the slope between the points (1, -1) and (2,1). They have each drawn a triangle to help with their calculations (shown below).

Part A:

Which student has drawn which triangle? Match the name of the student with the triangle they drew.

Part B:

Determine the slope that each student calculated.

Joy:	Gaby:	Dave:
Joy:	Gaby:	Dave:

Part C:

Which of the following statements are true? Select all that apply.

- A. The slope of \overline{CF} is equal to the slope of \overline{GI} .
- B. The slope of \overline{CF} is equal to the slope of \overline{AB} .
- C. The slope of \overline{CF} is equal to the slope of \overline{CD} .
- D. The slope of \overline{CF} is equal to the slope of line v.
- E. The slope of line v is equal to $\frac{CD}{DF}$.
- F. The slope of line v is equal to $\frac{EB}{4B}$
- G. The slope of line v is equal to $\frac{GI}{HI}$

Part D:

Which of the following statements best describes the way that the triangles drawn by the students illustrate the concept of slope calculation?

- A. For each pair of right triangles, we can find the proportion that compares each horizontal leg. This quotient is the slope of the line.
- B. For each pair of right triangles, we can find the proportion that compares each vertical leg. This quotient is the slope of the line.
- C. For each right triangle, we can divide the length of the vertical leg by the length of the horizontal leg. This quotient is the slope of the line.
- D. For each right triangle, we can divide the length of the horizontal leg by the length of the vertical leg. This quotient is the slope of the line.

Part E:

Complete the equation of line v in the spaces provided below.

$$y = \left(\begin{array}{c} \\ \\ \end{array}\right) x + \left(\begin{array}{c} \\ \end{array}\right)$$

Starting Ratio:		Bar Model/ Tape Diagram/ Other Model:
Table:		
	Place the problem in the	
Nouble Number Lines	text box	<u>Coordinate Grid:</u>
Double Number Lines:		<u>coordinate orta.</u>
		<u> </u>
1		
		
	ŕ	
		
1		

Starting Ratio:			Bar Model/	Tape Diagram/Other Model:
Table:				
Double Number Lines:	Two batches of require 7 cups of Solve to find how flour will be need to 8 batches of	f flour. w much ded for up		Coordinate Grid:

Starting Ratio:		Equation to Represent Proportionality:
<u>Table:</u>		
	Place the problem in the	
North Work of Linear	text box	Canadinata Cuidi
<u>Double Number Lines:</u>		<u>Coordinate Grid:</u>
		<u> </u>
1		
		
	•	
I		
		·

Solve for Rates and Ratios in Multiple Ways

Starting Ratio:		Equation to Represent Proportionality:
<u>Table:</u>		
Double Number Lines:	Carlos bought 6 1/2 pounds of bananas for \$5.20.	s <u>Coordinate Grid:</u>
<u> </u>		
		

Name: Period:

Item 1

Use the following information to complete the task.

Mrs. Thomas assigned the following graph of line v to a group of students on a big poster.

Joy, Gaby, and Dave are working on the poster together to compute the slope of line v. Joy finds the slope between the points (0, -3) and (3,3). Gaby finds the slope between the points (-1, -5) and (4,5). Dave finds the slope between the points (1, -1) and (2,1). They have each drawn a triangle to help with their calculations (shown below).

Calculator Yes Page 1 of 5

Part A:

Which student has drawn which triangle? Match the name of the student with the triangle they drew.

Joy Gaby Dave $\triangle GHI$ $\triangle CDF$ $\triangle AEB$

Part B:

Determine the slope that each student calculated.

Joy:

Gaby:

Dave:

Part C:

Which of the following statements are true? Select all that apply.

- A. The slope of \overline{CF} is equal to the slope of \overline{GI} .
- B. The slope of \overline{CF} is equal to the slope of \overline{AB} .
- C. The slope of \overline{CF} is equal to the slope of \overline{CD} .
- D. The slope of \overline{CF} is equal to the slope of line v.
- E. The slope of line v is equal to $\frac{CD}{DF}$
- F. The slope of line v is equal to $\frac{EB}{AB}$
- G. The slope of line v is equal to $\frac{GI}{HI}$.

Part D:

Which of the following statements best describes the way that the triangles drawn by the students illustrate the concept of slope calculation?

- A. For each pair of right triangles, we can find the proportion that compares each horizontal leg. This quotient is the slope of the line.
- B. For each pair of right triangles, we can find the proportion that compares each vertical leg. This quotient is the slope of the line.
- C. For each right triangle, we can divide the length of the vertical leg by the length of the horizontal leg. This quotient is the slope of the line.
- D. For each right triangle, we can divide the length of the horizontal leg by the length of the vertical leg. This quotient is the slope of the line.

Part E:

Complete the equation of line v in the spaces provided below.

$$y = \left(\begin{array}{c} \\ \\ \end{array}\right) x + \left(\begin{array}{c} \\ \end{array}\right)$$

Standard: MAFS.8.EE.2.6 Student Copy

Item 2

PART A:

Complete the table to show four points on the same line.

х	у
1	
-2	-5
3	5
	-2

D.	Δ	R٦	Г	R

A line is drawn through the four points. Write the equation of the line in slope-intercept form.

$\overline{}$		
l		

PART C:

What is another point that falls on this line?

- 1		
	\	<i>'</i>

Item 3

Plot the following points on the given graph in order to answer the questions below:

(-4,-1), (-2,0), (0,1) and (2,2).

Part A:

Draw a line that connects the four points, then draw two similar right triangles and label them.

Part B:

Find the slope of the hypotenuse of the two similar triangles you created in Part A.

Triangle 1:	Triangle 2:

Part C:

Compare the slopes of the two triangles. What do you notice?

Part D:

Write the equation of the line in the form y = mx + b.

Standard: MAFS.8.EE.2.6 Student Copy

Extension:

Select all points listed below that fall on this same line.

- A. (1,0)
- B. (3,-1)
- C. (4,3)
- D. (-6, -2)
- E. (-9, -17)
- F. (10,6)

Using any of the coordinates above, explain how the points are on the same line.

Calculator Yes Page **5** of **5**