Link to Google slides: https://tinyurl.com/StructureTablesNCTM19

Connecting Function Representations by Looking for and Making Use of Structure in In-Out Tables

NCTM 2019

Christy Pettis
christy.pettis@uwrf.edu
@PettisChristy

Terry Wyberg
wyber001@umn.edu
@TerryWyberg

Aran Glancy
aran.glancy@gmail.com
@AranGlancy

William, 6th grade

William, 5th grade

"We're learning about these things called 'expressions.'

I don't like them because they don't seem finished."

$$4 + 5 + 4$$

William, 5th grade

"We're learning about these things called 'expressions.'

I don't like them because they don't seem finished."

$$4 + 5 + 4 = 13$$

$$4 + (3 \cdot 5)$$

How might I make a picture of 4 plus 3 groups of 5?

$$4 + (3 \cdot 5)$$

How might I make a picture of 4 plus 3 groups of 5?

$$4 + (3 \cdot 5)$$

"Writing for Structure"

The mathematical symbols accurately reflect the *structure* of the dot picture

$$4 + (3 \cdot 5)$$

"Writing for Structure"

The mathematical symbols accurately reflect the *structure* of the dot picture

$$4 + (3 \cdot 5)$$

"Writing for Structure"

The mathematical symbols accurately reflect the *structure* of the dot picture

$$4 + (3 \cdot 5)$$

"Writing for Structure"

The mathematical symbols accurately reflect the *structure* of the dot picture

Make a picture that has 19 dots but that you would NOT describe as 4 + (3 x 5)

What expression would you write to describe your picture?

Writing for Structure

Writing for Structure

$$4 + (3 \cdot 5)$$

$$2 \cdot 9 + 1$$

$$3 \cdot 6 + 1$$

$$3 \cdot (3 + 3) + 1$$

Writing for Structure

?????

 $4 + (3 \times 5)$

Symbol Sense

Without calculating, what are some things you can say are true about these number patterns?

$$(1 \cdot 2) + 7$$

$$(2 \cdot 3) + 7$$

$$(3 \cdot 4) + 7$$

$$(4 \cdot 5) + 7$$

. . .

$$5(\frac{1}{2})^2$$

$$5(\frac{1}{2})^3$$

$$5(\frac{1}{2})^4$$

...

$$1 + 2 \cdot 3$$

$$2 + 2 \cdot 4$$

$$3 + 2 \cdot 5$$

$$4 + 2 \cdot 6$$

. . .

Symbol Sense → **Arithmetic** understanding

I can *fluently* (accurately, flexibly, efficiently) calculate the value of expressions.

$$(1 \cdot 2) + 7 = 9$$

$$(2 \cdot 3) + 7 = 13$$

$$(3 \cdot 4) + 7 = 19$$

$$(4 \cdot 5) + 7 = 27$$

...

$$5(\frac{1}{2})^1 = 2.5$$

$$5(\frac{1}{2})^2 = 1.25$$

$$5(\frac{1}{2})^3 = 0.625$$

$$5(\frac{1}{2})^4 = 0.3125$$

...

$$1 + 2 \cdot 3 = 7$$

$$2 + 2 \cdot 4 = 10$$

$$3 + 2 \cdot 5 = 13$$

$$4 + 2 \cdot 6 = 16$$

. . .

I can investigate and make sense of mathematical expressions without calculating.

The structure of the expression has meaning for me,

and I can use that structure to solve problems, make conjectures, and investigate patterns and relationships.

$$(1 \cdot 2) + 7$$

$$(2 \cdot 3) + 7$$

$$(3 \cdot 4) + 7$$

$$(4 \cdot 5) + 7$$

. . .

$$5(\frac{1}{2})^{1}$$

$$5(\frac{1}{2})^2$$

$$5(\frac{1}{2})^3$$

$$5(\frac{1}{2})^4$$

$$\bullet = \bullet$$

$$1 + 2 \cdot 3$$

$$2 + 2 \cdot 4$$

$$3 + 2 \cdot 5$$

$$4 + 2 \cdot 6$$

. . . .

Let's Talk Tables

Let's Talk Tables

In	Out
0	2 +3
1	5 4 2
2	8
3	11 1 1 2
4	14
n	<u>3</u> n +2

		2,2
In	Out	<u>X + X +X</u>
0	(2)	+574, 1-2
1	7 4	+115
2	18 🗸	17)+6
3	35	+1/2)+6
4	58	+132

Symbol Sense → **Arithmetic** understanding

I can *fluently* (accurately, flexibly, efficiently) calculate the value of expressions.

In	Out
0	2 +3
1	5 4 2
2	8
3	11)+3
4	14
n	3n +2

		2,2
In	Out	$\frac{3}{2}X^{2} + X + \frac{2}{2}$
0	(Ž)	+574, 1-2
1	7 4	+115-67
2	18 🗸	11) +6
3	35	+17=)+6
4	58 🗸	1+132

I can investigate and make sense of mathematical expressions without calculating.

The structure of the expression has meaning for me,

and I can use that structure

In	Out	
0	2)+
1	5 +3	V
2	8	
3	11	
4	14	

I can investigate and make sense of mathematical expressions without calculating.

The structure of the expression has meaning for me,

and I can use that structure

In	Out	
0	2	<u>)+3</u>
1	2 + 3) }+3
2	2 +82 • 3	
3	11	
4	14	

I can investigate and make sense of mathematical expressions without calculating.

The structure of the expression has meaning for me,

and I can use that structure

In	Out	
0	2	<u>)+3</u>
1	2 + 3) }+3
2	2 + 2 • 3	V+3
3	2 1 3 3	1+2
4	2 14.3	
n	2 + n•3	

I can investigate and make sense of mathematical expressions without calculating.

The structure of the expression has meaning for me,

and I can use that structure

In	Out	
0	2 +20 · 3	<u></u>
1	2 +21+ 3	V \+3
2	2 + 2 • 3	\+3
3	2 + 3•3	V+3
4	2 + 4•3	
n	2 + n·3	

Arithmetic Thinking

How can I calculate each step?

In	Out	
0	2	+3
1	5 🖔	+2
2	8 5	\ . 1
3	11)+5
4	14)+3
•••		
n	3n +2	

Algebraic Thinking

What do all these numbers have in common?

In	Out
0	2+0·3
1	2 + 1 · 3
2	2 + 2 · 3
3	2+3·3
4	2 + 4 · 3
n	2 + n · 3

There are many ways to write for structure

Arithmetic Thinking

Out In 3 11 14 3n +n

Algebraic Thinking

In	Out
0	2
1	2+3
2	2+3+3
3	2+3+3+3
4	2+3+3+3+3
n	2 + 3++3

In	Out
0	2+0·3
1	2+1·3
2	2+2·3
3	2+3·3
4	2+4·3
•••	•••
n	2 + n · 3

Writing for structure: Choices teachers make

Rewrite the table in a way that reveals the structure

IN	TUO
0	7
1	12
2	17
3	22
4	27
	•••
n	

Rewrite the table in a way that reveals the structure

IN	OUT
0	7
1	12
2	17
3	22
4	27
n	

IN	OUT
0	7 + 0.5
1	7 + 1.5
2	7 + 2·5
3	7 + 3.5
4	7 + 4.5
	•••
n	7 + <i>n</i> ·5

Choose one table and make a visual pattern that represents the structure

IN	OUT
0	2
1	2+3
2	2+3+3
3	2+3+3+3
4	2+3+3+3+3
•••	
n	2 + 3++3

IN	OUT
0	7 + 0.5
1	7 + 1.5
2	7 + 2.5
3	7 + 3· 5
4	7 + 4.5
• • •	
n	7 + n·5

Terry's Toothpick Pattern

+3
+3
- 0
+3+3
+3+3+3
+3+3+3+3
+ 3++3

Step	# toothpicks	Visual pattern
0	2	———
1	2 + 3	_[
2	2 + 3 + 3	
3	2 + 3 + 3 + 3	

X	У
0	0+2
1	1+2
2	2+2
3	3+2
4	4+2

X	У
0	2
1	1+2
2	1+1+2
3	1+1+1+2
4	1+1+1+1+2

x	у
0	3 · 2 0
1	3 · 2 1
2	3 · 2 2
3	3 · 2 3
4	3 · 2 4

x	у
0	0 · 3 + 2
1	1 · 3 + 2
2	2 · 3 + 2
3	3 · 3 + 2
4	4 · 3 + 2

x	у
0	2
1	3+2
2	3+3+2
3	3+3+3+2
4	3+3+3+3+2

X	у
0	3
1	3 · 2
2	3 · 2 · 2
3	3 · 2 · 2 · 2
4	3 - 2 - 2 - 2

X	У
0	0+2
1	1+2
2	2+2
3	3+2
4	4+2

X	у
0	0 · 3 + 2
1	1 · 3 + 2
2	2 · 3 + 2
3	3 · 3 + 2
4	4 · 3 + 2

X	у
0	2
1	1+2
2	1+1+2
3	1+1+1+2
4	1+1+1+1+2

X	у
0	2
1	3+2
2	3+3+2
3	3+3+3+2
4	3+3+3+3+2

These *look* so different!

$$y = a \cdot r^x$$

x	у
0	0 · 3 + 2
1	1 · 3 + 2
2	2 · 3 + 2
3	3 · 3 + 2
4	4 · 3 + 2

X	у
0	3 · 2 0
1	3 · 2 1
2	3 · 2 2
3	3 · 2 3
4	3 · 2 4

X	у
0	2
1	3+2
2	3+3+2
3	3+3+3+2
4	3+3+3+3+2

X	У
0	3
1	3 · 2
2	3 · 2 · 2
3	3 · 2 · 2 · 2
4	3 - 2 - 2 - 2

The commonalities between arithmetic and geometric sequences is revealed when writing for structure

A "structure-focused" introduction to In-Out tables...

Dot Talks

Pattern Talks

1. What can you know without calculating?

$$(0 \cdot 3) + 1$$

$$(1 \cdot 3) + 1$$

$$(2 \cdot 3) + 1$$

$$(3 \cdot 3) + 1$$

. . .

Dot Talks

Pattern Talks

- What can you know without calculating?
- 2. Make an In-Out table and find the rule

$$(0 \cdot 3) + 1$$

$$(1 \cdot 3) + 1$$

$$(2 \cdot 3) + 1$$

$$(3 \cdot 3) + 1$$

. . .

In Out

0
$$(0 \cdot 3) + 1$$

1 $(1 \cdot 3) + 1$

2 $(2 \cdot 3) + 1$

3 $(3 \cdot 3) + 1$

...

n $(n \cdot 3) + 1$

Dot Talks

Pattern Talks

- 1. What can you know without calculating?
- 2. Make an In-Out table and find the rule
- 3. Can you rewrite to show the structure?

$$(0 \cdot 3) + 1$$

$$(1 \cdot 3) + 1$$

$$(2 \cdot 3) + 1$$

$$(3 \cdot 3) + 1$$

. . .

In	Out
0	(0 · 3) + 1
1	(1 · 3) + 1
2	(2 · 3) + 1
3	(3 · 3) + 1
n	$(n \cdot 3) + 1$

In	Out
0	7
1	12
2	17
3	22
n	

Rewrite the table in a way that reveals the structure

Table	
In	Out
0	2
1	2+3
2	2+3+3
3	2+3+3+3
4	2+3+3+3+3
n	2+3+3++3
	n times

Table Graph

	constant
In	Out
0	2
1	2+3
2	2+3+3
3	2+3+3+3
4	2+3+3+3+3
n	2+3+3++3
	n times

Table Graph constant Out In 0 11 2+3 +7 2 2+3+3 8 8 3 2+3+3+3

Visual Pattern

Table Graph Visual Pattern

Connecting Representations using Structure

Stop Motion Animation

Google Slides:
1 per move
(26 for this animation)

Tall Tweets to turn
Google Slides into gif

Same or Different?

In	Out
0	2
1	2 + 3
2	2 + 3 + 3
3	2 + 3 + 3 + 3
4	2+3+3+3+3
•••	•••
n	

In	Out
0	2
1	2 · 3
2	2 · 3 · 3
3	2 · 3 · 3 · 3
4	2 · 3 · 3 · 3 · 3
n	

In	Out
0	$3 + 0^2$
1	3 + 1 ²
2	$3 + 2^2$
3	$3 + 3^2$
4	$3 + 4^2$
•••	
n	$3 + n^2$

In	Out
0	$3 + 2 \cdot 0^2$
1	3 + 2·1 ²
2	3 + 2·2 ²
3	$3 + 2 \cdot 3^2$
4	3 + 2·4 ²
n	$3 + 2 \cdot n^2$

In	Out
0	0 ²
1	1 ²
2	2 ²
3	3 ²
4	42
•••	•••
n	n^2

In	Out
0	$0^2 + 2$
1	1 ² + 2
2	2 ² + 2
3	$3^2 + 2$
4	4 ² + 2
•••	•••
n	$n^2 + 2$

In	Out
0	02
1	1 ²
2	2 ²
3	3 ²
4	4 ²
•••	
n	n^2

In	Out
0	$2 \cdot 0^2 + 4 \cdot 0 + 3$
1	$2 \cdot 1^2 + 4 \cdot 1 + 3$
2	$2 \cdot 2^2 + 4 \cdot 2 + 3$
3	$2 \cdot 3^2 + 4 \cdot 3 + 3$
4	$2 \cdot 4^2 + 4 \cdot 4 + 3$
•••	
n	$2 \cdot n^2 + 4 \cdot n + 3$

Link to Google slides: https://tinyurl.com/StructureTablesNCTM19

Thank you for coming!

Christy Pettis
christy.pettis@uwrf.edu
@PettisChristy

Terry Wyberg
wyber001@umn.edu
@TerryWyberg

Aran Glancy
aran@umn.edu
@AranGlancy

Do you love multiplication and integers?!

3-4 pm TODAY
Sapphire KL
Minus times minus is
plus: The reason for
this we will discuss

